
Lecture Notes on
Lexical Analysis

15-411: Compiler Design
André Platzer

Lecture 6

1 Introduction

Lexical analysis is the first phase of a compiler. Its job is to turn a raw
byte or character input stream coming from the source file into a token
stream by chopping the input into pieces and skipping over irrelevant de-
tails. The primary benefits of doing so include significantly simplified jobs
for the subsequent syntactical analysis, which would otherwise have to ex-
pect whitespace and comments all over the place. The job of the lexical
analysis is also to classify input tokens into types like INTEGER or IDEN-
TIFIER or WHILE-keyword or OPENINGBRACKET. Another benefit of the
lexing phase is that it greatly compresses the input by about 80%. A lexer
is essentially taking care of the first layer of a regular language view on the
input language. We follow a presentation similar to a recent book [WSH12,
Ch. 2]. Further presentations can be found in [WM95, Ch. 7] and [App98,
Ch. 2].

2 Lexer Specification

We fix an alphabet Σ, i.e., a finite set of input symbols, e.g., the set of all
letters a-z and digits 0-9 and brackets and operators +,- and so on.1 The
the set Σ∗ of words or strings is defined as the set of all finite sequences of
elements of Σ. For instance, ifah5+xy-+ is a string, but not necessarily a
very interesting one, from a grammatical perspective (which is what lexers

1Real lexers also have to deal with capital letters, but we simply pretend to be ignorant
about capitalization in these lecture notes to make things easier.

LECTURE NOTES

L6.2 Lexical Analysis

will not have to know about, because that’s the parser’s job). The empty
string with no characters is denoted by ε, but you will sometimes also find
the name λ for it, which we don’t use here in order to not get confused with
Church’s λ-calculus.

A lexer specification has to say what kind of input it accepts and which
token type it will associate with a particular input. For example, the frag-
ment 15411 of the input string should be tokenized as an INTEGER. For
reasons of representational efficiency, it is a very good idea to specify the
input that a lexer accepts by regular expressions. On a side note, regular
expressions and their extensions [Sal66, Koz97, HKT00, Pla12] actually turn
out to be very useful for many purposes.

Regular expressions r, s are expressions that are recursively built of the
following form:

regex matches
a matches the specific character a from the input alphabet
[a− z] matches a character in the specified range of letters a to z
ε matches the empty string
r|s matches a string that matches r or one that matches s
rs matches a string that can somehow be split into two parts,

the first matching r, the second matching s
r∗ matches a string that consists of n parts where each

part matches r, for any natural number n ≥ 0

For instance, the set of strings over the alphabet {a, b} with no two or
more consecutive a’s is described by the regular expression b∗(abb∗)∗(a|ε).
Other common regular expressions are

regex defined matches
r+ rr∗ matches a string that consists of n parts where each

part matches r, for any natural number n ≥ 1
r? r|ε optionally matches r, i.e., matches the empty string

or a string matching r

To specify a lexical analyzer we can use a sequence of regular expres-
sions along with the token type that they recognize (the last one, LPAREN,
for instance, recognizes a single opening parenthesis, whose occurrence on
the right hand side we need to quote to distinguish it from brackets used
to describe the regular expression, likewise for space):

LECTURE NOTES

Lexical Analysis L6.3

IF ≡ i f
GOTO ≡ g o t o
FOR ≡ f o r
IDENTIFIER ≡ [a− z]([a− z]|[0− 9])∗

INT ≡ [0− 9][0− 9]∗

REAL ≡ ([0− 9][0− 9]∗.[0− 9]∗)|(.[0− 9][0− 9]∗)
LPAREN ≡ "("
ASSIGN ≡ "="
SKIP ≡ " "∗

In addition, we would say that tokens matching the SKIP whitespace
recognizer are to be skipped and filtered away from the input, because the
parser does not want to see whitespace. Likewise with comments. Note,
however, that whitespaces and comments are still significant for the lexer
because they separate tokens. For example, if xyz gives IF IDENTIFIER,
while ifxyz gives IDENTIFIER, even if the SKIP token in between is
never shown to the parser.

Regular expressions themselves are not unambiguous for splitting an
input stream into a token sequence. The input goto5 could be tokenized
as IDENTIFIER or as the sequence GOTO INT. The input sequence if 5
could be tokenized as IF INT or as IDENTIFIER INT.

As disambiguation rule we will use the principle of the longest possible
match. The longest possible match from the beginning of the input stream
will be matched as a token. And if there are still multiple regular expression
rules that match the same length, then the first rule with longest match
takes precedence over others.

Why do we choose the longest possible match as a disambiguation
rule instead of the shortest? The shortest would be easier to implement.
But with the shortest match, ifo = ford trimotor would be tokenized
as IF IDENTIFIER ASSIGN FOR IDENTIFIER and not as IDENTIFIER
ASSIGN IDENTIFIER. And, of course, the latter is what one would have
meant by assigning the identifier for the 1925 Ford Trimotor aircraft “Tin
Goose” to the identified flying object (ifo).

3 Lexer Implementation

Lexers are specified by regular expressions. Classically, however, they are
implemented by finite automata.

Definition 1. A finite automaton for a finite alphabet Σ consists of

LECTURE NOTES

L6.4 Lexical Analysis

• a finite set Q of states,

• a set ∆ ⊆ Q×Σ×Q of edges from states to states that are labelled by letters
from the input alphabet Σ. We also allow ε as a label on an edge, which then
means that (q, ε, q′) is a spontaneous transition from q to q′ that consumes
no input.

• an initial state q0 ∈ Q

• a set of accepting states F ⊆ Q.

The finite automaton accepts an input string w = a1a2 . . . ak ∈ Σ∗ iff there is an
n ∈ N and a sequence of states q0, q1, q2, . . . , qn ∈ Q where q0 is the initial state
and qn ∈ F is an accepting state such that (qi−1, ai, qi) ∈ ∆ for all i = 1, . . . , n.

In pictures, this condition corresponds to the existence of a set of edges
in the automaton labelled by the appropriate input:

q0
a1→ q1

a2→ q2
a3→ q3

a4→ · · · an−1→ qn−1
an→ qn ∈ F

As an abbreviation for this situation, we also write (q0, w) →∗ (qn, ε). We
also write (qi−1, aiwi) → (qi, wi) when (qi−1, ai, qi) ∈ ∆. By that we mean
that the automaton, when starting in state q0 can consume all input of word
w with a series of transitions and end up in state qn with no remaining input
to read (ε). For instance, an automaton for accepting REAL numbers is

0start

1 2

3 4

0−
9

.

0-9

.
0-9

0-9

0-9
0-9

REAL

Of course, when we use this finite automaton to recognize the number
3.1415926 in the input stream 3.1415926-3+x;if, then we do not only
want to know that a token of type REAL has been recognized and that the
remaining input is -3+x;if. We also want to know what the value of the

LECTURE NOTES

Lexical Analysis L6.5

token of type REAL has been, so we store it’s value along with the token
type.

The above automaton is a deterministic finite automaton (DFA). At every
state and every input there is at most one edge enabling a transition. But in
general, finite automata can be nondeterministic finite automata (NFA). That
is, for the same input, one path may lead to an accepting state while an-
other attempt fails. That can happen when for the same input letter there
are multiple transitions from the same state. In particular, in order to be
able to work with the longest possible match principle, we have to keep
track of the last accepting state and reset back there if the string cannot be
accepted anymore. Consider, for instance, the nondeterministic automaton
that accepts both REAL and INT and starts of by a nondeterministic choice
between the two lexical rules.

0

1 2

3 4

0−
9

.

0-9

.
0-9

0-9

0-9
0-9

REAL

q p
0− 9

0-9

INT

q0start

ε

ε

In the beginning, this poor NFA needs to guess which way the future input
that he hasn’t seen yet will end up. That’s hard. But NFAs are quite conve-
nient for specification purposes (just like regular expressions), because the
user does not need to worry about these choices.

LECTURE NOTES

L6.6 Lexical Analysis

4 Regular Expressions Nondeterministic Finite Au-
tomata

Regular expressions are very nice for representing what a lexer is supposed
to read. Fortunately, the regular expressions can be converted into a finite
automaton (and also backwards, which we will not need here).

For converting a regular expression r into a nondeterministic finite au-
tomaton (NFA), we define a recursive procedure. We start with an extended
NFA that still has regular expressions as input labels on the edges.

q0start qf
r

Then we successively transform edges that still have regular expressions as
improper input labels by their defining automata patterns. That is, when-
ever we find a regular expression on an edge that is not just a single letter
from the input alphabet then we use the transformation rule to get rid of it

q p
r|s q p

r

s

q prs q q1 pr s

q pr∗ q q1 p1 pε
r

ε

ε

ε

When applying the rule we match on the pattern on the left in the current
candidate for an NFA and replace it by the right, introducing new states
q1, q2 as necessary.

LECTURE NOTES

Lexical Analysis L6.7

5 Nondeterministic Finite Automata Deterministic
Finite Automata

The conversion from regular expressions to NFAs is quite simple. NFAs
are convenient for specification purposes, but bad for implementation. It
is easy to implement a DFA, however. We just store the current state in a
program variable, initialized to q0, and depending on the next input char-
acter, we transition to the next state according to the transition table ∆.
Whenever there is an accepting state, we notice that this would be a token
that we recognized. But in order to find the longest possible match, we still
keep going. If we ultimately find an input character that is not recognized
or accepted, then we just backtrack to the last possible match that we have
remembered (and unconsume the input characters we have read from the
input stream so far). But how would we implement an NFA? There are
so many choices that we do not know which one to choose. There is no
canonical last accepting choice in an NFA even.

What we could do to implement an NFA is to follow the input like in a
DFA implementation, but whenever there is a choice, we follow all options
at once. That will branch quickly and will require us to do a lot of work
at once, which is inefficient. Nevertheless, it gives us the right intuition
about what has to be done. We just need to turn it around and follow the
same principle in a precomputation step instead of at runtime. We follow
all options and keep the set of choices of where we could be around.

This is the principle behind the powerset construction that turns an NFA
into a DFA by following all options at once. That is, instead of a single
state, we now consider the set of states in which we could be. We, of course,
want to start in the initial powerset state {q0} that only consists of the single
initial state q0. But, first we have to follow all possible ε-transitions that lead
us from q0 to other states. When S ⊆ Q is a set of states, we define Clε(S)
to be the ε-closure of S, i.e., the set of states we can go to by following
arbitrarily many ε-transitions from states of S, which do not consume any
input.

Clε(S) :=
⋃
q∈S
{q′ : (q, ε)→∗ (q′, ε)}

Now from a set of states S ⊆ Q we make a transition, say with input letter
a and figure out the set of all states to which we could get to by following
a-transitions from any of the S states, again following ε-transitions:

N(S, a) := Clε({q′ ∈ Q : (q, a)→ (q′, ε) and q ∈ S})

LECTURE NOTES

L6.8 Lexical Analysis

The condition (q, a) → (q′, ε) is equivalent to (q, a, q′) ∈ ∆. We can sum-
marize all these transitions by just a single a-transition from S to successor
N(S, a). Repeating this process results in a DFA that accepts exactly the
same language as the original NFA. The complexity of the algorithm could
be exponential, though, because there are exponentially many states in the
powerset that we could end up using during the DFA construction.

Definition 2 (NFA DFA). Given an NFA finite automaton (Q,∆, q0, F), the
corresponding DFA (Q′,∆′, q′0, F

′) accepting the same language is defined by

• Q′ is a subset of the sets of all subsets of Q, i.e., a part of the powerset
Q′ ⊆ 2Q

• ∆′ := {(S, a,N(S, a)) : a ∈ Σ}.

• q′0 := Clε(q0)

• F ′ := {S ⊆ Q : S ∩ F 6= ∅}

After turning the NFA into a DFA, we can directly implement it to rec-
ognize tokens from the input stream.

It should be noted that there are direct ways of obtaining DFAs from
regular expressions, without going through the construction of NFAs. Those
techniques are very algebraic and elegant using Brzozowski derivatives
[Brz64].

6 Minimizing Deterministic Finite Automata

Another operation that is often done by lexer generator tools is to minimize
the resulting DFA by merging states and reducing the number of states
and transitions in the automaton. This is an optimization and we will not
pursue it any further.

7 Regular Expression Deterministic Finite Automata

It turns out that there is a very elegant and purely algebraic way of directly
translating regular expressions into DFAs without having to go through
explicit automata construction, determinization, and possibly minimiza-
tion. This algebraic approach uses Brzozowski derivatives [Brz64] and An-
timirov’s partial derivatives [Ant96]. For this, we identify regular expressions

LECTURE NOTES

Lexical Analysis L6.9

by the set of words that they match. So instead of saying that regular ex-
pression r matches the word w, we simply write w ∈ r. The derivative,
Da(r) of a regular expression r by alphabet letter a is defined as

Da(r) = {w : aw ∈ r}

The derivative represents the set of continuations after letter a that the reg-
ular expression r can match. The derivative of a regular expression can be
computed syntactically in a very similar way as the usual derivatives of
functions. The result is a regular expression.

Da(∅) = ∅
Da(ε) = ∅
Da(a) = ε

Da(b) = ∅ (b 6= a)

Da(r|s) = Da(r) | Da(s)

Da(rs) = Da(r)s | δ(r)Da(s)

Da(r
∗) = Da(r)r

∗

If we tilt our head a little bit and pretend | was addition (+) and pre-
tend that rs would be multiplication, this looks very much like a standard
derivative of functions with ε playing the role of 1 and ∅ playing the role
of 0. The primary difference is the occurrence of operator δ(r) in Da(rs),
which we still need to define. The operator δ(r) is supposed to detect
whether r matches the empty word ε. Thus, δ(r) is defined as follows

δ(r) =

{
ε if ε ∈ r
∅ otherwise

This operator can be computed entirely syntactically as well

δ(∅) = ∅
δ(ε) = ε

δ(a) = ∅
δ(r|s) = δ(r) | δ(s)
δ(rs) = δ(r)δ(s)

δ(r∗) = ε

LECTURE NOTES

L6.10 Lexical Analysis

For ordinary functions, higher derivatives can be defined by deriving
multiple times. The same thing makes sense for derivatives of regular ex-
pressions where we define Dw(r) for a word w by a simple inductive defi-
nition on w in which we derive successively by the next letter:

Dε(r) = r

Dwa(r) = Da(Dw(r))

A number of very interesting theoretical and practical results can be proved
about Brzozowski derivatives and their extensions. Here we only show
how an automaton can be constructed systematically using successive deriva-
tives. It can be shown that this process terminates.

The idea is that Da(r) represents the “remainder” regular expression
of r after input a has been read. Thus, there is a transition with input a
from the state r to the state Da(r). We simply use regular expressions as
the states of an automaton (not as their actions like in Section 4).

As an example, consider the regular expression r = 1(0|1)∗0. Thus, we
construct a DFA for it by starting from a state Dε(r) = r and successively
following all letters a1 to statesDa1(r) and then on following all letters a2 to
states Da1a2(r) and so on. The states where the regular expression matches
the empty word ε are the ones that are final states. State s is a final state iff
δ(s) = ε. In fact, it can be shown that w ∈ r iff δ(Dw(r)) = ε.

Dε

r
start

D1

(0|1)∗0

D10

(0|1)∗0|ε

D0

∅

1

0

1

0
0

0,1

1

In this automaton graph, we use the notation
Dw

s
to say that Dw(r) = s.

It can also be shown that every regular expression can be written in the

LECTURE NOTES

Lexical Analysis L6.11

following linear form
r = δ(r) +

∑
a∈Σ

aDa(r)

8 Summary

Lexical analysis reduces the complexity of subsequent syntactical analysis
by first dividing the raw input stream up into a shorter sequence of tokens,
each classified by its type (INT, IDENTIFIER, REAL, IF, ...). The lexer also
filters out irrelevant whitespace and comments from the input stream so
that the parser does not have to deal with that anymore. The steps for
generating a lexer are

1. Specify the token types to be recognized from the input stream by a
sequence of regular expressions

2. Bear in mind that the longest possible match rule applies and the first
production that matches longest takes precedence.

3. Lexical analysis is implemented by DFA.

4. Convert the regular expressions into NFAs (or directly into DFAs us-
ing derivatives).

5. Join them into a master NFA that chooses between the NFAs for each
regular expression by a spontaneous ε-transition

6. Determinize the NFA into a DFA

7. Optional: minimize the DFA for space

8. Implement the DFA for a recognizer. Respect the longest possible
match rule by storing the last accepted token and backtracking the
input to this one if the DFA run cannot otherwise complete.

Quiz

1. Why do compilers have a lexing phase? Why not just do without it?

2. Should a lexer return whitespaces and comments?

3. Why do we categorize tokens into token classes, instead of just work-
ing with the particular piece of the input string they represent?

LECTURE NOTES

L6.12 Lexical Analysis

4. Why are there programming languages that do not accept inputs like
x----y?

5. What aspects of the programming language does a lexer not know
about?

6. Do lexer tools work with regular expressions or automata internally?
Should they?

7. Why can lexers not work with nondeterministic finite automata? They
are so useful for description purposes.

8. Should a reserved keyword of a programming language be a token
class of its own? What are the benefits and downsides?

References

[Ant96] Valentin M. Antimirov. Partial derivatives of regular expres-
sions and finite automaton constructions. Theor. Comput. Sci.,
155(2):291–319, 1996.

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, Cambridge, England, 1998.

[Brz64] Janusz A. Brzozowski. Derivatives of regular expressions. J.
ACM, 11(4):481–494, 1964.

[HKT00] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic logic. MIT
Press, Cambridge, 2000.

[Koz97] Dexter Kozen. Kleene algebra with tests. ACM Trans. Program.
Lang. Syst., 19(3):427–443, 1997.

[Pla12] André Platzer. Logics of dynamical systems. In LICS, pages 13–
24. IEEE, 2012.

[Sal66] Arto Salomaa. Two complete axiom systems for the algebra of
regular events. J. ACM, 13(1):158–169, 1966.

[WM95] Reinhard Wilhelm and Dieter Maurer. Compiler Design. Addison-
Wesley, 1995.

[WSH12] Reinhard Wilhelm, Helmut Seidl, and Sebastian Hack. Compiler
Design: Syntactic and Semantic Analysis. Addison-Wesley, 2012.

LECTURE NOTES

	Introduction
	Lexer Specification
	Lexer Implementation
	Regular Expressions Nondeterministic Finite Automata
	Nondeterministic Finite Automata Deterministic Finite Automata
	Minimizing Deterministic Finite Automata
	Regular Expression Deterministic Finite Automata
	Summary

