
Lecture Notes on
Semantic Analysis

15-411: Compiler Design
André Platzer

Lecture 13b

1 Introduction

Last time, we have seen how we can define the static and dynamic seman-
tics of a programming language like C0. But there were a number of loose
ends. Basically, we have seen how to give a meaning to expressions by
evaluation. But we have not yet given a meaning to statements. We will do
this in this lecture.

2 Assignments to Lvalues

Assignments to primitive int variables are simple and ultimately just im-
plemented by a MOV instruction to the respective temp (see lectures 2 and
3). In more complicated languages with structured data, we can assign to
other expressions such as a[10 − i] or ∗p or x.f or even ∗x.f or (∗x).f alias
x−>f . Not all expressions qualify as proper expressions to which we can
assign to. It makes no sense to try to assign a value to x+ y nor to f(∗x−1)
that may only appear on the right-hand side of an expression (rvalues). The
expressions that make sense to appear on the left-hand side of an expres-
sion as they identify a proper location (say in memory) are called lvalues.
Lvalues are well-typed expressions of the form

x | ∗ e | e.f | e[t] | e−>f

for (well-typed) expressions e, t, primitive variable x and struct field f . The
only syntactically valid assignments in C0 are of the form l=e or l+=e and
so on for an lvalue l of type τ and an arbitrary (rvalue) expression e of

LECTURE NOTES

L13b.2 Semantic Analysis

type τ . No implicit type cast conversions or coercions happen in C0. While
some programming languages allow assignments to large types and give it
a memcopy semantics, C0 does not do so, because it is not clear for pointer
types if a shallow or deep copy would make more sense. Thus, in C0, only
small types can be assigned to directly.

An lvalue represents a destination location for the assignment, which is
either a variable x or an address a in memory. Essentially, for determining
the target of an lvalue, we use the rules of the structural operational seman-
tics that we have discussed so far, except that we stop at location a before
actually doing the memory access M(a). More precisely, we define the re-
lation v@M ⇒l d@M

′ to say that lvalue v, when evaluated in memory state
M represents location d and this evaluation changed the memory state to
M ′. It is defined as:

x@M ⇒l x@M

e@M ⇒ a@M ′

∗e@M ⇒l a@M
′

e : s e@M ⇒ a@M ′

e.f@M ⇒l a+ off(s, f)@M ′

e1 : τ [] e1@M ⇒ a@M ′ e2@M
′ ⇒ n@M ′′

e1[e2]@M ⇒l a+ n|τ |@M ′′

The side conditions and failure modes for the address computation when
evaluating lvalue e1[e2]@M ⇒l ... of an array access are just like those for
the value evaluation e1[e2]@M ⇒

Using this lvalue relation⇒l, we can define the effect of an assignment
v = e. The semantics of a statement does not produce a value, it just has
an effect on memory. Thus we just write e@M ⇒ @M ′ to describe the
transition. As a shorthand notation, we write M{a 7→ w} for the memory
state M ′′ that is obtained from a memory state M by changing the contents
of memory location a to the value w

v@M ⇒l x@M e@M ⇒ w@M ′

v = e @M ⇒ @M ′{addr(x) 7→ w}

v@M ⇒l a@M
′ e@M ′ ⇒ w@M ′′ M ′′(a) allocated

v = e @M ⇒ @M ′′{a 7→ w}
v@M ⇒l a@M

′ e@M ′ ⇒ w@M ′′ a = 0

v = e @M ⇒ SIGSEGV@M ′′

The effect of an assignment is undefined otherwise. In particular, whether
the assignment segfaults during a bad access or not may (at present) de-
pend on whether the compiler implements out of bounds checks. In later

LECTURE NOTES

Semantic Analysis L13b.3

labs, you will implement a safe compiler for C0 where out of bounds prob-
lems have to be checked. The difference between the first two rules is
whether the lvalue evaluates to a primitive variable name x, so that the
effect will be to change the memory contents of the corresponding address
addr(x), or whether the lvalue evalutes to an address right away. Notice
that we would not necessarily need the first rule had we defined the fol-
lowing rule instead:

x@M ⇒l addr(x)@M

We prefer to split up the rules, however, to make the difference in required
actions more apparent. For example, that the memory state will not change
when determining lvalues of primitive variables and that we do not need to
check whether the memory has been allocated because that is by construc-
tion (e.g., local variables are assigned statically to registers or to positions
on the stack).

Note especially, that for an assignment v = e, the lvalue v will be eval-
uated to a destination location before the right-hand side expression e will
be evaluated. When both v and e have been evaluated, the assignment to
v will actually be performed and the destination address a will only be ac-
cessed then. In particular:

1. *e = 1/0 will raise SIGFPE when e evaluates without any other ex-
ception, because e evaluates to an address (without complications)
and then, before this memory location is even accessed, the expres-
sion 1/0 is computed which throws an exception.

2. e[-1] = 1/0 should raise a SIGABRT in safe mode, assuming e
evaluates without any other exception during evaluation of e, be-
cause the target address computation for the lvalue itself failed.

3. e->f = 1/0will raise SIGSEGV when e evaluates to NULL without
any other exception during evaluation of e.

In principle, compound assignment operators ⊕= for an operator ⊕ ∈
{+,−, ∗, /, ...} work like assignments, but with the operation ⊕. Yet, the
meaning of compound assignment operators changes in subtle ways com-
pared to what it meant for just primitive variables. Now compound as-
signments are no longer just a syntactic expansion, because expressions can
now have side effects and it matters how often an expression is evaluated.
For a compound assignment e[t] += e’, the lvalue of e[t] is only com-
puted once, quite unlike for the assignment e[t] = e[t] + e’, where

LECTURE NOTES

L13b.4 Semantic Analysis

e[t] is evaluated to an address twice. A compound assignment

v ⊕= e

with an operator ⊕ executes as

v@M ⇒l x@M e@M ⇒ w@M ′

v = e @M ⇒ @M ′{V (x)← V (x)⊕ w}

v@M ⇒l a@M
′ e@M ′ ⇒ w@M ′′ M ′′(a) allocated

v ⊕= e @M ⇒ @M ′′{M ′′(a)←M ′′(a)⊕ w}

3 Function Calls

Suppose we have a function call f(e1, . . . , en) to a function f that has been
defined as τ f(τ1 x1, . . . , τn xn) {b}. We consider a simplified situation here
and just assume there is a return variable called %eax in the function body
b.

e1@M ⇒ v1@M1, e2@M1 ⇒ v2@M2, . . . , en@Mn−1 ⇒ vn@Mn b@M ′n ⇒ @M ′ τ small

f(e1, . . . , en)@M ⇒M ′(%eax)@M ′

whereM ′n is likeMn, except that the values vi of the arguments ei have been
bound to the formal parameters xi, i.e., M ′n(x1) = v1, . . . ,M

′
n(xn) = vn.

And now we remember that allocation is actually a function call in C0.
Consequently, in the intermediate representation of our C0 compiler, side
effects due to allocation can only occur at the statement level not nested
within expressions. Hence, specifying the semantics for the intermediate
representation is actually easier (it doesn’t need complicated M ′). But, un-
like its intermediate representation, C0 itself still needs to respect memory
state passing orders carefully.

4 Type Safety

An important property of programming languages is whether they are type-
safe. In a type-safe language, the static and dynamic semantics of a pro-
gramming language should fit together. If we have an expression e in a
program that has the type int, then we would be rather surprised to find at
runtime a result of evaluating e that is a float. If this could happen, then it is

LECTURE NOTES

Semantic Analysis L13b.5

rather hard to make sure that the program will always execute reasonably
even if the compiler accepted it as a well-typed program.

What we expect from the static and dynamic semantics of a type-safe
language is that types are preserved in the following sense. If we have a
program that is well-typed (the static semantics says it’s okay) and we fol-
low an evaluation step of the dynamic semantics, then the resulting pro-
gram is still well-typed (type preservation). Otherwise what can happen
is that we run a well-typed program and suddenly break the well-typing
leading to values out of the type ranges. That is, the property that we want
(and need to prove for our static and dynamic semantics) is that

If e : τ and e⇒ v then v : τ

For C0 (and other impure programming languages), the statement is a bit
more involved, because the dynamic semantics refers to the memory state
M . The program reads values from memory and stores values back in
memory. If the program would store an int into M(a) and then later on ex-
pect to read a pointer fromM(a), then type-safety is broken. Consequently,
type-preservation is a property of the form

If e : τ and e@M ⇒ v@M ′ and M is okay then v : τ and M ′ is okay

for a suitable definition of when a memory state M is “okay”, i..e, the types
of the values that it stores are compatible with what the program expects.

The other property that one would expect from type-safe languages is
that the dynamic semantics always knows what do do (with well-typed
programs). We do not want to be stuck in the middle of a run or an in-
terpretation of the program by the dynamic semantics rules not knowing
where to go and not having a rule that allows a transition. For instance,
if the program contains the well-typed expression e + f and the dynamic
semantics does not know how to evaluate the odd expression “test”+0.5,
then we better make sure that the evaluation of e can never lead to a string
“test” while, at the same time, the evaluation of f leads to the float 0.5.

If e : τ and e is not a final value then e→ e′ for some e′

Again, the real definition of progress is complicated by the fact that we
need to consider memory M .

The conjunction of type preservation and progress properties is called
type safety [WF94]. Without the progress property, every language could
be given a trivially type-preserving dynamic semantics that just stops eval-
uating whenever it hits an expression that would not preserve types. But
that doesn’t help write safer programs.

LECTURE NOTES

L13b.6 Semantic Analysis

Quiz

1. Which of the rules conveys important secret information about how
to implement a compiler correctly that are easy to miss?

2. How many ways are there to implement accesses like (∗a)[i]?

3. Why is 2[i] not allowed in the C0 language when it is allowed in C?

4. Is it important how exactly the compiler implements things like e[-1]
= 1/0 or not?

5. How can you make sure that you always generate the most effective
code for the subtleties in the rules? What information do you need for
that? Define a dataflow analysis that solves (some) of these issues.

6. In the rules discussed here, what would happen if you would move
the primes of memory M around? Which permutations still give a
good language semantics? And which permutations are still good
for implementation purposes? And which permutations spoil every-
thing?

7. Under which assumptions can you implement a compiler correctly
using the rules that do not track @M?

8. Can you write a compiler that does not distinguish between Lvalues
and Rvalues? Can you write a parser that does not?

9. Should programming languages have multidimensional arrays or should
they have an understanding of nested arrays of arrays of arrays in-
stead?

10. Some old C libraries use one-dimensional arrays. These libraries were
often translated from Fortran. They probably just didn’t know how
to write proper C, did they?

11. Suppose you hired a high-school student to translate a Fortran library
for numerical computation to C. Suppose it doesn’t work or occasion-
ally produces unexpected results. What is your first question?

12. Why is there a difference comparing e=e+a and e+=a? Should there
be a difference? Doesn’t this difference only confuse the user?

13. List all advantages and disadvantages that type preservation has when
writing a compiler.

LECTURE NOTES

Semantic Analysis L13b.7

14. List all advantages and disadvantages that type preservation has when
using a compiler.

15. List all advantages and disadvantages that type progress has when
writing a compiler.

16. List all advantages and disadvantages that type progress has when
using a compiler.

17. Is your job as a compiler designer easier if you can change the static
semantics of the programming language? How?

18. Is your job as a compiler designer easier if you can change the dy-
namic semantics of the programming language? How?

19. Is your job as a compiler designer easier if you can change the type
preservation aspects of the programming language? How?

20. Is your job as a compiler designer easier if you can change the type
progress aspects of the programming language? How?

21. In the last questions: what are the downsides for the user?

22. You want to add threads to C0. Which rules do you need to change
for that and how? Where are the difficulties?

References

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach to
type soundness. Inf. Comput., 115(1):38–94, 1994.

LECTURE NOTES

	Introduction
	Assignments to Lvalues
	Function Calls
	Type Safety

