
Final Exam

15-317/657 Constructive Logic
André Platzer

December 16, 2016

Name: André Platzer

Andrew ID: aplatzer

Instructions

• This exam is open-book, closed internet.

• Remember to label all inference rules in your deductions.

• Throughout this exam, explain whenever there are notable steps or choices or subtleties and
justify the rationale for your particular choice!

• You have 3 hours to complete the exam.

• There are 6 problems on 14 pages, including blank pages for extra space at the end.

• Consider writing out deductions on scratch paper first.

Max Score

New Connections 80

Colorful Cuts in Cutalog 30

Proof Checking 30

Miraculously Linear Sequent Rules 50

Unification 80

Completely Classical 30

Total: 300

Please keep in mind that this is a sample solution, not a model solution. Problems admit
multiple correct answers, and the answer the instructor thought of may not necessarily be the
best or most elegant.

1

15-317/657 Final, page 2/14 Andrew ID:
1 New Connections (80 points)

Consider the new connective �(A,B,C) that your friendly verificationists gave meaning to by
the following introduction rule:

A true

B true
u

...
D true

�(A,B,D) true
�Iu

Task 110 Give the elimination rule(s) that harmoniously fit to �I :

Solution:
�(A,B,D) true

A true
�E1

�(A,B,D) true B true

D true
�E2

Task 210 Prove local soundness for the � connective.

Solution:

A
A true

B true
u

D
D true

�(A,B,D) true
�Iu

A true
�E1

=⇒R

A
A true

A
A true

B true
u

D
D true

�(A,B,D) true
�Iu B

B true

D true
�E2

=⇒R

B
B true

u

D
D true

Task 310 Prove local completeness for the � connective.

Solution:

D
�(A,B,D) true =⇒E

D
�(A,B,D) true

A true
�E1

D
�(A,B,D) true B true

u

D true
�E2

�(A,B,D) true
�Iu

15-317/657 Final, page 3/14 Andrew ID:
Task 410 Recall the alternative notationA1, A2, . . . , An ` A to indicate thatA true is provable in the

natural deduction calculus from the assumptions A1 true and A2 true and . . .An true.
Rewrite all natural deduction rules for �(A,B,D) in this notation Γ ` A.

Solution:

Γ ` A Γ, B ` D

Γ ` �(A,B,D)
�I

Γ ` �(A,B,D)

Γ ` A
�E1

Γ ` �(A,B,D) Γ ` B

Γ ` D
�E2

Task 510 Give rules for verifications and uses of the � connective.

Solution:

A↑

B↓
u

...
D↑

�(A,B,D)↑
�Iu

�(A,B,D)↓

A↓
�E1

�(A,B,D)↓ B↑

D↓
�E2

Task 610 Present corresponding sequent calculus rules for �(A,B,D)

Solution:
Γ =⇒ A Γ, B =⇒ D

Γ =⇒ �(A,B,D)
�R

Γ,�(A,B,D), A =⇒ C

Γ,�(A,B,D) =⇒ C
�L1

Γ,�(A,B,D) =⇒ B Γ,�(A,B,D), D =⇒ C

Γ,�(A,B,D) =⇒ C
�L2

15-317/657 Final, page 4/14 Andrew ID:
Task 720 Prove the case of the cut theorem for sequent calculus where �(A,B,D) is the principal

formula in both deductions for Γ =⇒ �(A,B,D) and Γ,�(A,B,D) =⇒ C implies Γ =⇒ C.
Explicitly indicate why the induction hypothesis is applicable.

Solution:
D1

Γ =⇒ A
D2

Γ, B =⇒ D

Γ =⇒ �(A,B,D)
�R

E1
Γ,�(A,B,D), A =⇒ C

Γ,�(A,B,D) =⇒ C
�L1

Γ, A =⇒ C By IH on �(A,B,D), D and E1 ≺ E
Γ =⇒ C By IH on A ≺ �(A,B,D), D1 and above

D1

Γ =⇒ A
D2

Γ, B =⇒ D

Γ =⇒ �(A,B,D)
�R

E1
Γ,�(A,B,D) =⇒ B

E2
Γ,�(A,B,D), D =⇒ C

Γ,�(A,B,D) =⇒ C
�L2

Γ, D =⇒ C By IH on �(A,B,D), D and E2 ≺ E
Γ =⇒ B By IH on �(A,B,D), D and E1 ≺ E
Γ =⇒ D By IH on B ≺ �(A,B,D), above and D2

Γ =⇒ C By IH on D ≺ �(A,B,D), above and first line

15-317/657 Final, page 5/14 Andrew ID:
2 Colorful Cuts in Cutalog (30 points)

Recall that red cuts change the meaning of a Prolog program, while green cuts are merely for
efficiency. For each cut in the following Prolog programs explain whether it is red or green and
give a concrete justification why (e.g. using an explained example).

Task 110 p(X,[Y|Ys]) :- member(X,[Y|Ys]), !, member(X,Ys).

Solution: Red cut when X is not ground, because it commits to the first element of the
list [Y|Ys], so to Y and then checks whether X occurs a second time in the remaining
Ys. Without that red cut, p would additionally unify X with every element in Ys,
because both member tests then succeed. For example p(X,[1,2,1,2]) will only succeed
with X=1 with a cut but also with X=2 without the cut.

Task 210 q(X, [Y|Ys]) :- X=Y.

q(X, [Y|Ys]) :- q(X,Ys), !.

Solution: Red cut because q(X, [1,2,3]) will never yield X=3 with the cut because it
will only X=1, X=2 since it cuts off backtracking at the first match of the second clause.

Task 310 q(X, [Y|Ys]) :- X=Y, !.

q(X, [Y|Ys]) :- q(X,Ys).

Solution: Red cut, because it commits to the first match because unifiability of X and
the first list element Y will cause the second clause to never be used again. q(A, [1,2])
will only yield A=1 with the cut but will yield A=1 then A=2 without the cut.

15-317/657 Final, page 6/14 Andrew ID:
3 Proof Checking (30 points)

Consider the following sequent calculus proof in the untyped restricted sequent calculus:

p(x) −→ p(x)
init 7©

q(x, x), p(x) −→ q(x, x)
id 8©

p(x), p(x)⊃ q(x, x) −→ q(x, x)
⊃R 6©

p(x), p(x)⊃ q(x, x) −→ ∀y q(y, x)
∃R 5©

p(x),∀x (p(x)⊃ q(x, x)) −→ ∀y q(y, x)
∀L 4©

∀x (p(x)⊃ q(x, x)) −→ p(x)⊃∀y q(y, x)
3©

∀x (p(x)⊃ q(x, x)) −→ ∀y (p(y)⊃∀x q(x, y))
∀R 2©

−→ ∀x (p(x)⊃ q(x, x))⊃∀y (p(y)⊃∀x q(x, y))
⊃L 1©

At the following rule numbers, indicate all errors in the above proof. If a proof step is unsound
and there is no way to fix and justify it, explain why.

Solution:

1© ⊃R has been used instead of ⊃L

2© the parameter has been called like an existing variable name x, which is not what
the rule says but acceptable here since x does not occur free in the sequent.

3© rule name ⊃R missing

4© Optional: weakening has been used implicitly

5© rule ∀R has been used here, but the step is unsound, as a fresh name should have
been chosen for y not reuse parameter x. This is unsound and renders this proof
unsound

6© ⊃L has been used instead of ⊃R.

7© weakening was used implicitly on p(x)⊃ q(x, x)

8© Optional: identity is admissible but init rule would have sufficed

15-317/657 Final, page 7/14 Andrew ID:
4 Miraculously Linear Sequent Rules (50 points)

We consider suggestions for new and improved proof rules that fierce Captain Toughch came
up with for linear logic. For each rule, mark whether it is s© sound or u© unsound. Then
explain why the rule is sound (e.g., by deriving it or proving it to be admissible) or unsound
(e.g., by showing how it can be used to prove a formula that it should not prove).

Task 110
Γ; ∆ `̀ A⊗B
Γ; ∆ `̀ A&B

R1

Solution: u© unsound since the premise allows resources from ∆ to be split to pro-
duce A and B separately, while the conclusion provides all of ∆ both for A and for B.
So only sound in may-use sublinear logic.

A `̀ A
init

A `̀ A
init

A,A `̀ A⊗A
⊗R

A,A `̀ A&A
R1

should not prove since only one A is needed for A&A but two are supplied.

Task 210
Γ; ∆ `̀ A&B

Γ; ∆ `̀ A⊗B
R2

Solution: u© unsound since the premise provides all of ∆ both forA and forB, while
the conclusion requires resources from ∆ to be split to produce A and B separately.

A `̀ A
init

A `̀ A
init

A `̀ A&A
&R

A `̀ A⊗A
R2

should not prove since two A are needed for A⊗A but only one is supplied.

15-317/657 Final, page 8/14 Andrew ID:
Task 310

Γ; ∆ `̀ A Γ′; ∆′ `̀ B(C

Γ,Γ′; ∆,∆′, A(B `̀ C
R3

Solution: s© sound since it is acceptable, just unnecessary, to split the unrestricted
resources up. (R is invertible so its inverse admissible, which transforms the second
premise as expected:

Γ; ∆ `̀ A

Γ,Γ′; ∆ `̀ A
W

Γ′; ∆′ `̀ B(C

Γ′; ∆′, B `̀ C
(R−1

Γ,Γ′; ∆′, B `̀ C
W

Γ,Γ′; ∆,∆′, A(B `̀ C
(L

Task 410
Γ; ∆ `̀ A Γ; ∆′, A(B,B `̀ C

Γ; ∆,∆′, A(B `̀ C
R4

Solution: u© unsound since linear implication can be used twice

A `̀ A
init

A `̀ A
init

B `̀ B
init

B `̀ B
init

B,B `̀ B ⊗B
⊗L

A,A(B `̀ B ⊗B
(R

A,A,A(B `̀ B ⊗B
R4

which should not prove because if there is only one copy of the linear implication
rewrite, it should not be possible to use it twice.

15-317/657 Final, page 9/14 Andrew ID:
Task 510

Γ; ∆, P `̀ P
R5

Solution: u© unsound since ∆ eats resources

Γ;B,P `̀ P
R5

should not prove since it wastes the unsolicited esource B

15-317/657 Final, page 10/14 Andrew ID:
5 Unification (80 points)

Unification specified the judgment t .
= s | θ where θ is the most-general unifier for terms t

and s. Recall that a most-general unifier θ is a unifier, i.e., tθ = sθ, and most-general among
all unifiers, i.e., all other unifiers for s and t are of the form τσ (that is σ after τ) for some
substitution σ.

Task 110 Identify conditions on the input under which the following unification rule is sound:

s1
.
= t1 | θ1 s2

.
= t2 | θ2

f(s1, s2)
.
= f(t1, t2) | θ1θ2

Solution: Correct if the variables of the first argument do not appear in the second
argument.

Task 220 Prove soundness of the above rule under the circumstances that you have identified. That
is: if f(s1, s2)

.
= f(t1, t2) | θ1θ2 by the above rule, then θ1θ2 unifies f(s1, s2) and f(t1, t2).

Solution: The condition implies that since the variables of s1, t1 do not occur in s2, t2
so neither do the variables of the unifier θ1 of s1, t1 occur in s2, t2 such that the unifier
θ1 has no effect there and can be added or removed arbitrarily. In particular s2θ1 = s2
and t2θ1 = t2. Consequently, under the above conditions, the new rule derives from
the function application and list application rules as follows:

s1
.
= t1 | θ1

s2
.
= t2 | θ2

s2θ1
.
= t2θ2 | θ2

cond

(s1, s2)
.
= (t1, t2) | θ1θ2

unify − cons

f(s1, s2)
.
= f(t1, t2) | θ1θ2

unify − app

Semantic proof alternative: def indicates by definition of substitution and ◦ indicates
use of the composition theorem for substitutions while IH indicates induction hy-
pothesis and cond indicates condition from previous task.
s1θ1 = t1θ1 by IH on the first premise.
s2θ2 = t2θ2 by IH on the second premise.

f(s1, s2)(θ1θ2)
def
= f

(
(s1, s2)(θ1θ2)

) def
= f

(
s1(θ1θ2), s2(θ1θ2)

) ◦
= f

(
(s1θ1)θ2, (s2θ1)θ2

) IH
=

f
(
(t1θ1)θ2, (s2θ1)θ2

) cond
= f

(
(t1θ1)θ2, s2θ2

) IH
= f

(
(t1θ1)θ2, t2θ2

) cond
= f

(
(t1θ1)θ2, (t2θ1)θ2

) ◦
=

f
(
t1(θ1θ2), t2(θ1θ2)

) def
= f(t1, t2)(θ1θ2)

15-317/657 Final, page 11/14 Andrew ID:
Task 310 Under which circumstances is the following unification rule sound, in which function

symbol g is used on the left instead of f? Justify why.

s1
.
= t1 | θ1 s2

.
= t2 | θ2

g(s1, s2)
.
= f(t1, t2) | θ1θ2

Solution: This is never sound since function symbols f and g are different, so no
substitution of variables can ever make the identical.

Substitutions on propositional logical formulas are defined like for terms. They replace
variables by terms and leave the formulas unchanged otherwise. Recall the usual nam-
ing conventions that u, v, w, x, y, z are logical variables, a, b, c constant symbols, f, g, h, k
function symbols, and p, q, r predicate symbols.

Task 410 Give a most-general unifier of the following formulas or explain why none exists:

p(f(x), x) ∨ q(h(f(x), c))
and p(f(a), g(b)) ∨ q(h(z, c))

Solution: Impossible since x must be a by the first argument but also g(b) by the sec-
ond argument, which no substitution can make happen for different function symbols
a and g.

Task 510 Give a most-general unifier of the following formulas or explain why none exists:

p(f(x), x, u, f(u)) ∨ q(h(f(x), a))
and p(z, g(b), k(z), w) ∨ q(h(z, a))

Solution:
(f(g(b))/z, g(b)/x, k(f(g(b)))/u, f(k(f(g(b))))/y)

15-317/657 Final, page 12/14 Andrew ID:
Task 610 Does the unification algorithm for terms given in the lecture give unique results? Or are

there cases where the same input s, t give different unifiers θ for which s
.
= t | θ holds?

Explain briefly.

Solution: Even if most-general unifiers are not unique because they differ by variable
renamings, the algorithm in the lecture notes will still give a unique answer, because
only one rule ever applies.

Task 710 Give a simple expression describing the complexity of checking whether the result θ of a
unification algorithm on input s, t is sound, so really a unifier.

Solution: Linear in the size of the result of the substitution (min of both outputs is
acceptable)

O(|tθ|)

15-317/657 Final, page 13/14 Andrew ID:
6 Completely Classical (30 points)

Recall propositional classical logic, in which a formula is valid iff it is true for all ways of
assigning true or false to its atomic formulas. Here we only consider classical propositional
formulas with implication ⊃ and negation ¬ (because those are enough to express all others).

A set of axioms of classical logic is called complete if every (classical) propositional logical
formula that is valid can be proved from the axioms (using a proof rule called modus ponens,
i.e., if A and A⊃B are proved then so is B).

Carew Meredith showed that the following single axiom, called CM, is complete for classical
propositional logic:((

((A⊃B)⊃(¬C ⊃¬D))⊃C
)
⊃E

)
⊃
(
(E⊃A)⊃(D⊃A)

)
Prove the Carew Meredith axiom in your favorite calculus for intuitionistic logic or explain
why that is not possible.

Solution: This is impossible since if CM is complete then it proves the law of excluded
middle A ∨ ¬A. But the law of excluded middle is not provable in intuitionistic logic by
the lecture notes.

15-317/657 Final, page 14/14 Andrew ID:

Blank page for extra answers if needed

