Constructive Logic (15-317), Fall 2016
Assignment 10: Learning Linear Logic

Contact: Giselle Reis (giselle@cmu.edu)
Due Thursday, December 8, 2016, 1:30pm

This assignment is due at the beginning of class on the above date and must
be submitted electronically via autolab. Submit your homework as a tar archive
containing the files hw1®.pdf and poly.pl.

After submitting via autolab, please check the submission’s contents to
ensure it contains what you expect. No points can be given to a submission
that isn’t there.

1 Alogic of conscious resources

Classical logic was about truth, intuitionistic logic was about proofs, now linear
logic is about resources!

Until now, structural rules could be applied to any formula on the left side
of a sequent. By structural rule I mean contraction and weakening, respectively:
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Because of that, the two following rules for conjunction on the right are
basically the sameﬂ
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But if we disallow structural rules on the formulas in the context, then these
rules can no longer be used interchangeably. The way to distinguish them in
linear logic is to have two connectives for conjunction, namely, & (called with)
and ® (called tensor). Since we now have two conjunctions, we will also have
two “trues” that will be their neutral elements: 1 is the neutral element for ®
and T for &.

!Think about how you can get one from the other by using structural rules.



Disjunction can also be split into two connectives, but for our formulation
of intuitionistic linear logic we will need only one, namely, ® (called plusﬂ Its
neutral element is 0.

The intuitionistic implication A O B represented the fact that we can trans-
form a proof of A into a proof of B. The linear implication A — B denotes that
we can transform a resource A into a resource B. And once this is done, A is no
longer available.

Finally, we might want to still have resources that can be used an unbounded
number of times. These are indicated by the unary operator ! (called bang).

The calculus in Figure l]is using a dyadic notation, meaning that it splits the
context into two parts: A containing linear resources (also the working context,
where the rules are applied) and I' containing unbound resources. It admits cut,
but we will not go into the details of the cut admissibility proof for now.

Task 1 (10). For each of the following sequents, prove that they hold by con-
structing a cut-free sequent calculus proof (using the calculus above) or explain
why they do not hold.
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Task 2 (5). Take the sequents above which you were not able to prove and
transform their conclusion C into C® T. Can you prove them now? What can
you conclude about the role of ® T? Can you think of an interesting way for
using this? (Be creative :)

Task 3 (5). It is possible to have a linear logic calculus where the left side of
the sequent is not split into two (multi-)sets. Explain how the calculus would
change and show the rules that would be different.

2 Practice some more Prolog

In this question we will study ways of computing the derivative of polynomials
in one variable with Prolog. Assume that polynomial expressions are repre-
sented as data structures of type poly built in an arbitrary shape from these
constructors:

2If you are curious, the other one is denoted by ’® and called par.
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plus(S,T) represents the sum of S and T

times(S,T) represents the product of S and T

var indicates the variable (only one variable occurs so no need for a name)
num(N) represents the number literal N (say as an integer)

In this problem you will define a predicate diff/2 to compute the derivative
of a polynomial expression represented in this way. For example, the following
query is expected to succeed:

?- diff(plus(var,num(5)), plus(num(l), num(0))).

Modes in Prolog describe the intended ways of using a predicate. Mode
+poly refers to an input argument of type poly that needs to be provided. Mode
-poly refers to an output argument of type poly that will be computed by the
predicate when all inputs are provided.

Task 4 (6). Write a Prolog program diff(+poly,-poly) that takes the polyno-
mial as an input in the first argument and produces its derivative as an output
in the second argument.

Task 5 (2). With mode diff(+poly,-poly), the predicate from TaskE]computes
a derivative. Is there a mode with which the predicate from Task {4 computes
antiderivatives (also known as indefinite integrals)? Justify.

Task 6 (2). Is there a mode with which the predicate from Task 4] can be used
to check whether a given polynomial expression is the integral of another given
polynomial expression? Justify.

3 This is (almost) the end

Congratulations on reaching this far on the Constructive Logic course! Hopefully
you are now more insightful of what a proof really means and how we can use
logic to reason about the world. You might also have noticed that the notion of
“reasoning” is quite subjective.

Now it is time to prepare for your final sprint. Here’s checklist of topics you
might want to review. Make sure you understand correctly how all those things
are related, and take a step back to appreciate the big picture of the course.

e Natural deduction: first representation of a logic, proofs can be viewed as
proof terms, nice correspondence to functional programming. Rules must
be harmonious, meaning that they are locally sound and complete.

e Verification: non-redundant version of natural deduction — disallows silly

steps that eliminate and introduce the same connective over and over
again. Sound and complete w.r.t. natural deduction.
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Sequent calculus (unrestricted): Can be obtained by a direct translation
from the verification calculus. Sound and complete w.r.t. verification. Cut
and init are admissible.

Connections between the concepts of harmony, local soundness and com-
pleteness, and cut and init admissibility.

Sequent calculus (restricted): “Slim” version of the previous sequent cal-
culus.

G4ip: decision procedure for intuitionistic logic. Cases on the left side of
implications on the left side of the sequent.

Quantifiers: all the calculi above can be formulated for first-order logic as
well, simply by adding the quantifier rules. The term being replaced for the
quantified variable has different restrictions depending on the quantifier
and the rule (left or right, introduction or elimination).

Backward logic programming (Prolog): a fragment of intuitionistic logic
is used as a programming language.

Operational semantics: understanding how backward logic programming
evaluates the clauses to try to prove a goal.

Unification: a key concept in logic programming. In backward logic pro-
gramming, the system tries to unify the query with the head of clauses.
The unification calculus can be used to do that.

Forward logic programming: “executing” a logic program in a pro-active
way and generating all possible facts instead of querying it for one thing
might be a good choice in terms of complexity. A forward logic program
saturates the database which you can then check for facts.

Linear logic: formulas are interpreted as resources — they are consumed
when used and, unless stated otherwise, cannot be used more than once.
New connectives show up here.

Good luck on finals!



T ANANARC

id T AAFC Py

I;Pw+P

AMFA T,A B I;AABiC
LA, ArAeB o8 TAA®BrRC®

R IARC 1L
I’;-wl1 ;A1TRC
I;A,A+B R ;AaM-A T,A,BEC
GAFA—B ;AL A, A—-BIrC ©
IA+A T;,A+B I;AA FC

&L;

LAFAB & T;A, A1 &A, I C

ART TR no TL rule

TARA; OR. LAARC T;ABrC
LGAFA ®A, IA,A®B I C

no OR rule I;A0FC OL

I;'rA R T AAFC
I;-HA -

EAEA————
LAAFC L

Figure 1: Dyadic calculus for intuitionistic linear logic
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