
Constructive Logic (15-317), Fall 2016
Assignment 3: Sequents and Quantifiers

Contact: Evan Cavallo (ecavallo@cs.cmu.edu)

Due Tuesday, September 27, 2016

This assignment is due at the beginning of class on the above date and must
be submitted electronically via autolab. Submit your homework as a tar archive
containing two files: hw3.pdf (your written solutions) and hw3.tut (your Tutch
solutions).

1 Sequents for Natural Deduction

In this section we will look at another style of notation for natural deduction,
based on sequents. For a list of judgments Γ = J1,J2, . . . ,Jn and single judg-
ment J , the sequent Γ ` J , read “Γ entails J ,” is another way of writing the
hypothetical judgment

J1 · · · Jn
...
J

We can rewrite the rules of natural deduction to use this notation. For example,
here are the rules for implication:

Γ,A true ` B true
Γ ` A ⊃ B true ⊃I Γ ` A ⊃ B true Γ ` A true

Γ ` B true ⊃E

We no longer have a floating A true assumption in the introduction rule, but
instead simply add it to the context of hypotheses. This notation is often clearer
and easier to work with for metatheory, since the hypotheses in scope are made
explicit. On the other hand, it can get quite cluttered when the context is large.

Note: this is not the sequent calculus, which is an entirely different logical
system. It’s just an alternative notation for the usual natural deduction rules.
This exercise is meant to clarify the different between natural deduction and
sequent calculus.

1

Task 1 (6 points). Rewrite the rules for the connectives ∧ and ∨ using this
notation.

Task 2 (3 points). State the substitution principle for judgments in this notation.

2 Terms and Quantifiers

2.1 Tutch, Quantified

Task 3 (8 points). For each proposition below, prove its truth using Tutch. Elim-
inating existential quantifiers in Tutch results in a witness. As an example, note
the line c:t,˜A(c) in this proof:

proof ExNotImpNotAll : (?x:t. ˜A(x)) => ˜!x:t. A(x) = begin

[?x:t. ˜A(x);

[!x:t. A(x);

[c: t, ˜A(c);

A(c);

F]; F];

˜!x:t. A(x)];

(?x:t. ˜A(x)) => ˜!x:t. A(x);

end;

You can find documentation for quantifiers in Tutch at https://www.andrew.
cmu.edu/course/15-317/software/tutch/doc/html/tutch_6.html.

1. proof apply : (!x:t.A(x) => B(x)) => (!x:t.A(x)) => (!x:t.B(x));

2. proof instance : (!x:t.A(x)) & (?y:t.B(y)) => ?z:t.A(z);

3. proof swap : (?y:t.!x:t.A(x,y)) => (!x:t.?y:t.A(x,y));

4. proof frobenius : (R & ?x:t.Q(x)) <=> ?x:t.(R & Q(x));

2.2 Lawvere Equality

Consider the following rules for a connective ∼. The judgment t ∼τ s true is
intended to express that t and s are equal terms of type τ.

t : τ
t ∼τ t true ∼I

t ∼τ s true
t : τ

∼Etype
t ∼τ s true

a : τ
...

P(a, a) true
P(t, s) true

∼Ea
prop

2

https://www.andrew.cmu.edu/course/15-317/software/tutch/doc/html/tutch_6.html
https://www.andrew.cmu.edu/course/15-317/software/tutch/doc/html/tutch_6.html

Task 4 (3 points). Show that the rule

s ∼τ t true Q(s) true
Q(t) true Leibniz

is derivable in this system.

Task 5 (4 points). Give natural deduction proofs of the following judgments:

1. ∀x:τ.∀y:τ.(x ∼τ y) ⊃ (y ∼τ x) true

2. (∀x:τ.∀y:τ.x ∼τ y) ⊃ (∃z:τ.P(z)) ⊃ (∀z:τ.P(z)) true

You may use the derived rule Leibniz in your proofs.

Task 6 (3 points). Show that the connective ∼ is locally sound and complete by
giving all relevant local reductions and local expansions.

3 Data Types

Recall the introduction rules, recursion elimination rule, and induction elimina-
tion rule for the natural number type:

z : nat natIz
n : nat
s n : nat natIs

n : nat t0 : τ

x : nat r : τ
...

ts : τ
R(n, t0, x.r.ts) : τ natEx,r

n : nat C(z) true

x : nat C(x) true
u

...
C(s x)

C(n) true natEx,u

Task 7 (3 points). Prove the following judgment in natural deduction.

∀x:nat.¬(x ∼nat z) ⊃ ∃y:nat.(x ∼nat s y) true

Task 8 (6 points). Define the following primitive recursive functions in Tutch.
You can find documentation for programming with types at https://www.
andrew.cmu.edu/course/15-317/software/tutch/doc/html/tutch_5.html.

val plus : nat -> nat -> nat

val mult : nat -> nat -> nat

val factorial : nat -> nat

3

https://www.andrew.cmu.edu/course/15-317/software/tutch/doc/html/tutch_5.html
https://www.andrew.cmu.edu/course/15-317/software/tutch/doc/html/tutch_5.html

Task 9 (4 points). The natural numbers are a simple example of an inductively
defined type. Other inductively defined types include lists and trees. Just
like natural numbers, lists and trees are constructed by successively applying
constructors. Consider the following introduction rules for a type treeκ of trees
with leaves of type κ.

k : κ
leaf(k) : treeκ

treeIleaf
l : treeκ r : treeκ
node(l; r) : treeκ

treeInode

A recursion rule gives us a way to define functions out of an inductive type, while
an elimination rule allows us to prove theorems about it. Define a recursion rule
and an elimination rule for the type treeκ.

4

	Sequents for Natural Deduction
	Terms and Quantifiers
	Tutch, Quantified
	Lawvere Equality

	Data Types

