
Constructive Logic (15-317), Fall 2016
Assignment 9: Forward Logic Programming

Contact: Evan Cavallo (ecavallo@cs.cmu.edu)

Due Thursday, December 1, 2016, 1:30pm

This assignment is due at the beginning of class on the above date and must
be submitted electronically via autolab. Submit your homework as a tar archive
containing:

• your written solutions in hw9.pdf,

• your solution to Task 1 in infer.pl,

• your solution to Task 4 in unify.pl.

After submitting via autolab, please check the submission’s contents to
ensure it contains what you expect. No points can be given to a submission
that isn’t there.

In this homework, we’ll be implementing forward logic programs. We’ll
be using a program, forward-chain, which accepts rule sets written in Prolog
syntax and outputs the result of running these rules to saturation. You can run
this program on AFS from /afs/andrew/course/15/317/bin/forward-chain,
or build it for yourself from source. (Running make will generate an SML heap
image, which you can run with sml @SMLload <heap-image>. You will need
ml-lex and ml-yacc to compile.)

1 Type Inference

In class we saw typing judgments of the form Γ ` e : τ, but only for a few specific
types like nat. In this section, we will consider typing judgments for a more
comprehensive language consisting of booleans, pairs and functions.

e ::= var(x) | true | false | if(e; e; e) | 〈e, e〉 | πL(e) | πR(e) | λx:τ.e | ee
τ ::= bool | τ × τ | τ→ τ

1

http://symbolaris.com/course/constlog16/forward-chain.tar.gz

Typing is defined by a judgment Γ ` e : τ, which asserts that expression e has
type τ in a context Γ of assumptions about the types that the variables in e have.
Of course, true is supposed to have type bool and the type of the pair 〈e1, e2〉 is
supposed to be the product of the types of e1 and e2. Likewise, the left projection
πL(e) of an expression e of product type σ × τ has type σ. This is achieved by
defining the typing judgment for the above language with the following typing
rules:

Γ ` true : bool Γ ` false : bool
Γ ` e : bool Γ ` et : τ Γ ` e f : τ

Γ ` if(e; et; e f) : τ

Γ ` eL : τL Γ ` eR : τR
Γ ` 〈eL, eR〉 : τL × τR

Γ ` e : τL × τR
Γ ` πL(e) : τL

Γ ` e : τL × τR
Γ ` πR(e) : τR

Γ, x : τ1 ` e : τ2

Γ ` λx:τ1.e : τ1 → τ2

Γ ` e1 : τ2 → τ Γ ` e2 : τ2
Γ ` e1e2 : τ

Γ, x : τ ` x : τ

As hinted above, we can read these rules programmatically as taking Γ and
e as inputs and producing a type τ as an output. (This is a partial function, since
an expression like πL(true) has no type.) The process of finding a type for a
given expression is called type inference.

Task 1 (12 pts). Write a forward-chaining program in infer.plwhich computes
the type of an expression e in a given context Γ. Assume that the input is specified
by seeding the database with the following facts:

• some number of predicates hastype(var(x), τ) specifying the types of all
variables in Γ, and

• a predicate infer(e) specifying the input expression.

When the program has run to saturation, the database should contain a predicate
hastype(e, τ) giving the inferred type of the input expression if and only if one
exists. There should be at most one type τ for which hastype(e, τ) holds (unique
output). You can assume that distinct bound variables have distinct names and
are moreover distinct from any free variables which appear (for example, the
expression 〈λx:bool.true, λx:bool.false〉 is not allowed because x is bound in
two places). See the infer.pl file included in the handout for the concrete
syntax of the operators.

Task 2 (4 pts). Explain why the assumption of distinct variable names is neces-
sary for this formulation of the algorithm.

2

Task 3 (4 pts). Discuss the advantages and disadvantages of this implementation
of type-inference as compared with a backward-chaining implementation.

2 Unification

In this section, we will implement an algorithm which tests if unification is
possible using forward logic programming. We will do this for the grammar of
types defined in the previous section, adding type metavariables (α, β, . . .).

τ ::= α | bool | τ × τ | τ→ τ

Our algorithm will work by checking if unification is impossible. The program
will take in a database of required equational constraints as input. After run-
ning to saturation, the database will include the fact contra (“contradictory
constraints”) if there is no unifier that will satisfy the equations.

One advantage of phrasing the problem this way is that we can maintain
a database of equations and add new constraints dynamically, with the system
alerting us if the set of equations ever becomes contradictory. You can interac-
tively add rules in forward-chain using the -i option.

Task 4 (12 pts). Implement a forward-chaining program in unify.pl which,
when seeded with a set of facts {unify(τ0, ρ0), . . . , unify(τn, ρn)}, generates the
fact contra if and only if it there is no substitution which simultaneously unifies
each equation di � ei. You do not have to implement the occurs check (see
Task 6). (Hint: if d and e are unifiable, what else must be unifiable? Generate all
relevant facts of this form and conclude contra if you deduce anything obviously
contradictory. For example, you can deduce τ1 � ρ1 from τ1 × τ2 � ρ1 × ρ2.)

Task 5 (4 pts). Use McAllester’s theorem to characterize the asymptotic com-
plexity of your solution.

Task 6 (4 pts). Recall that the occurs check, which is not present in Prolog,
disallows the unification of α with τ when the metavariable α itself occurs in
τ (but τ , α). For example, this prevents unifying α with α → bool. (Prolog
will instead conclude that α is the “infinite type” ((· · · → bool) → bool) →
bool). Explain how you could add the occurs check to your solution. In other
words, describe how you can modify your program so that contra is generated
whenever the inputs imply α � τ with α ∈ τ and α , τ.

3

	Type Inference
	Unification

