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1 Operational Semantics

A strategy to give an operational semantics to a language is to construct a meta-interpreter for that language in itself.
The idea is that simpler constructs should be used to represent more complex ones. This can be refined further and
further until the fragment of the language used in the meta-interpreter is so simple that it can be straightforwardly
translated to an abstract machine.

Our first proposal for a prolog meta-interpreter was a very simple one1:

solve(ttrue).

solve((A, B)) :- solve(A), solve(B).

solve(P) :- clause(P, B), solve(B).

Task 1. Extend the meta-interpreter above to a bounded interpreter which fails if no proof of a given depth can be
found. In terms of proof trees, the depth is the length of the longest path from the final conclusion to an axiom.

Solution 1: See meta.pl.

1We are using ttrue so that it is not confused with the meta-language true and to allow this code to run on SWI-Prolog.
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2 Unification

Before we talk about unification, we need to understand substitutions. A substitution is a function σ from variables
to terms. Since this is a function, it makes no sense to talk about substitutions that take the same variable x to two
different terms. Remember that variables are also terms, so substitutions that replace variables by variables are
completely acceptable.

The notation2 we will use for substitutions is: σ : (t1/x1, ..., tn/xn), meaning that σ replaces the variable xi by the
term ti. Another (more widely accepted) convention is to write the application of a substitution σ to a term t as tσ
instead of the usual function application notation σ(t).

Task 2. Apply each of the following substitutions, when well-defined, to the term x ∧ x(x) and write the result:

• (r/x, z/x)

• (r/x, z/r)

• (r/x)(z/r)

• (z/r)(r/x)

Solution 2: • Not a valid substitution.

• r ∧ x(r)

• z ∧ x(z)

• r ∧ x(r)

Task 3. Substitution of terms can also be applied to formulas. Define how substitutions will be applied to formulas
of the shape ¬A, A ∨ B, ∀x.A.

Solution 3:

(¬A)σ = ¬(Aσ)
(A ∨ B)σ = (Aσ) ∨ (Bσ)
(∀x.A)σ = ∀x.(Aσ)if x < σ

Note that the substitution for the quantified formula need to be capture-avoiding.

Now to unifiers. The substitution σ is a unifier for the terms s and t if sσ = tσ. Two terms s and t are called
unifiable if a unifier σ exists.

Task 4. Analyse whether each of the pairs of terms below are unifiable and, if they are, write down a unifier for
them:

• x, y

• x, f (x)

• g(x), f (x)

• f (x, g(y)), f (h(a), g(z))

• f (x, y), f (g(y), g(z))

• f (x, y), f (g(y), g(x))

• f (x, y), f (g(z), g(x))
2Amazingly enough, researchers have been unable to agree on a unified notation for substitutions, so they write them as they please.

Watch out for that when reading other sources.
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Solution 4: • x, y unifiable with (x/y)

• x, f (x) not unifiable.

• g(x), f (x) not unifiable.

• f (x, g(y)), f (h(a), g(z)) unifiable with (h(a)/x, z/y)

• f (x, y), f (g(y), g(z)) unifiable with (g(g(z))/x, g(z)/y).

• f (x, y), f (g(y), g(x)) not unifiable.

• f (x, y), f (g(z), g(x)) unifiable with (g(z)/x, g(g(z))/y)

We have discovered last class that prolog has actually a unification bug. There are attempts to work around it,
but it still causes some unwanted behaviors.

Task 5. Type the following queries to the prolog interpreter and explain what happens:

• X = f(X).

• f(X) = Y, f(Y) = X, X = Y.

Solution 5: • X = f(X). Prolog finds a “unification” for this, even if they are not unifiable.

• f(X) = Y, f(Y) = X, X = Y. Prolog tries to find a unification for these terms and loops forever. See what
happens with trace and try changing the order of the clauses.
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