One day, you visit a bakery you heard about from a good friend. Inside is an amazing selection of baked goods at all kinds of price ranges. Upon taking a look around, you just know that you would eat everything in the shop if only you could afford it. After taking a step back and pondering the sad state of your wallet, you begin to browse the inventory to figure out what you can buy with your limited pastry budget of five dollars.

Going forward, let’s represent each dollar as the proposition D and represent each unit of your boundless appetite as the proposition A.

Task 1. Suppose that there is some proposition, P, you want to prove using just your money and appetite as assumptions. What do judgements of this form look like in our sequent calculus-like notation? Remember, D is a linear assumption while A is unrestricted.

Solution 1: $D, D, D, D, D, !A \vdash P$

That feeling when you are so hungry you could eat a horse

After talking to the baker, you claim you could eat a horse if only it were made out of dough and within your price range. The baker, seeing this as a challenge, offers to make as many horse cookies as you want, with each costing only 1 unit of appetite, A, and creating 1 unit of happiness, H. Having attended recitation, you realize you could represent this cookie as a connective in linear logic, $A \rightarrow H$.

Task 2. Given this connective as a linear assumption, prove that you can generate only one unit of happiness.

Solution 2:

\[
\frac{\vdash A; A \equiv A}{\vdash A; \cdot \equiv A} \quad \text{init} \\
\frac{\vdash A; A \equiv H \equiv H}{\vdash \cdot; \cdot \equiv H \equiv H} \quad \text{init} \\
\frac{\vdash A; A \equiv H \equiv H}{\vdash \cdot; \cdot \equiv H \equiv H} \quad \text{init}
\]

Task 3. Given this connective as an unrestricted assumption, prove that you could generate two simultaneous units of happiness, represented as a simultaneous conjunction.
Solution 3:

\[
\begin{align*}
\frac{A, A \rightarrow H; A \vdash A}{A, A \rightarrow H; A \vdash A} & \text{ init} \\
\frac{A, A \rightarrow H; A \vdash A}{A, A \rightarrow H; A \vdash A} & \text{ copy} \\
\frac{A, A \rightarrow H; A \vdash A}{A, A \rightarrow H; A \vdash A} & \rightarrow L \\
\end{align*}
\]

Task 3. Given \(A \rightarrow H\) as a linear assumption, prove that you could generate two simultaneous units of happiness.

Solution 4:

\[
\begin{align*}
\frac{A, A \rightarrow H; A \vdash A}{A, A \rightarrow H; A \vdash A} & \text{ init} \\
\frac{A, A \rightarrow H; A \vdash A}{A, A \rightarrow H; A \vdash A} & \text{ copy} \\
\frac{A, A \rightarrow H; A \vdash A}{A, A \rightarrow H; A \vdash A} & \rightarrow L \\
\end{align*}
\]

Let us eat cake

You stumble upon the last remaining specialty cupcake of the day. After staring at it for far too long, you realize you must buy it. Once it is in your hands, you motion to take a bite. But wait! If you eat it now, will you be able to take it home and enjoy it later? Let’s find out!

Let’s represent the two outcomes as the propositions \(S_{\text{take cake home}}\) and \(S_{\text{eat cake now}}\) and represent the cupcake as \(C\).

Task 5. Given \(C \rightarrow S_{\text{take cake home}}\) and \(C \rightarrow S_{\text{eat cake now}}\) as unrestricted assumptions, prove that you cannot generate both \(S_{\text{take cake home}}\) and \(S_{\text{eat cake now}}\) simultaneously.

Solution 5:

\[
\begin{align*}
\frac{C \rightarrow S_{\text{take cake home}}; C \rightarrow S_{\text{eat cake now}}}{\text{ Γ} \vdash C \rightarrow S_{\text{take cake home}}} \\
\frac{C \rightarrow S_{\text{take cake home}}; C \rightarrow S_{\text{eat cake now}}}{\text{ Γ} \vdash S_{\text{take cake home}}} \\
\frac{C \rightarrow S_{\text{take cake home}}; C \rightarrow S_{\text{eat cake now}}}{\text{ Γ} \vdash S_{\text{eat cake now}}} \\
\end{align*}
\]

Where \(\text{ Γ} = \{C \rightarrow S_{\text{take cake home}}, C \rightarrow S_{\text{eat cake now}}\}\).

Task 6. Given the same assumptions, prove that the two outcomes are alternatives, represented as an alternative conjunction.

Solution 6:

\[
\begin{align*}
\frac{Γ; C \vdash C}{Γ; C \vdash C} & \text{ init} \\
\frac{Γ; C \vdash C}{Γ; C \vdash S_{\text{take cake home}}} & \text{ copy} \\
\frac{Γ; C \vdash C}{Γ; C \vdash S_{\text{eat cake now}}} & \text{ init} \\
\frac{Γ; C \vdash C}{Γ; C \vdash S_{\text{eat cake now}}} & \text{ copy} \\
\frac{Γ; C \vdash C}{Γ; C \vdash S_{\text{eat cake now}}} & \text{ &R} \\
\frac{Γ; C \vdash S_{\text{take cake home}} \& S_{\text{eat cake now}}}{Γ; C \vdash S_{\text{take cake home}} \& S_{\text{eat cake now}}} & \text{ &R} \\
\end{align*}
\]
Task 7. Given this alternative conjunction as a linear assumption, prove one of the outcomes.

Solution 7:

\[
\frac{\vdash \text{take cake home} \quad \vdash \text{take cake home}}{\vdash \text{take cake home} \land \text{take cake home} \quad \text{init}}
\]

\[
\frac{\vdash \text{take cake home} \land \text{eat cake now} \quad \vdash \text{take cake home}}{\vdash \text{take cake home} \quad \land L}
\]

Near the end

While on the long and linear bus ride home, you realize you didn’t spend as much money as you thought you would. Not finding the day’s events to be enough practice and regretting the fact that you didn’t buy more, you begin to think about the following problems:

Task 8. Prove \(\vdash \lnot A \rightarrow B \rightarrow A \).

Solution 8: This sequent is not provable:

\[
\frac{\frac{\vdash A \rightarrow B \rightarrow A}{\vdash A \rightarrow B \rightarrow A}}{\vdash A \rightarrow B \rightarrow A}
\]

Task 9. Prove \(\vdash A \land T \rightarrow A \) and \(\vdash A \rightarrow A \land T \).

Solution 9:

\[
\frac{\vdash A \rightarrow A \quad \vdash A \rightarrow A}{\vdash A \rightarrow A \land T \rightarrow A \land T \rightarrow A}
\]

Task 10. Prove \(\vdash A
\land 1 \rightarrow A \) and \(\vdash A \rightarrow A \land 1 \).

Solution 10:

\[
\frac{\vdash A \rightarrow A \quad \vdash A \rightarrow A}{\vdash A \rightarrow A \land 1 \rightarrow A \land 1 \rightarrow A}
\]

Task 11. Prove \(\vdash (A \land B \rightarrow C) \rightarrow (A \rightarrow B \rightarrow C) \).

Solution 11:

\[
\frac{\vdash A \rightarrow A \quad \vdash B \rightarrow B \quad \vdash C \rightarrow C}{\vdash (A \land B \rightarrow C) \rightarrow (A \rightarrow B \rightarrow C) \rightarrow L}
\]

\[
\vdash (A \land B \rightarrow C) \rightarrow (A \rightarrow B \rightarrow C) \rightarrow R \times 3
\]