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1 Introduction

So far, this course explored only one way to deal with differential equations: the [′] ax-
iom from Lecture 5 on Dynamical Systems & Dynamic Axioms. However, in order to
use the [′] axiom or its sequent calculus counterpart the [′] rule from Lecture 6 on Truth
& Proof for a differential equation x′ = f(x), we must be able to find a symbolic solu-
tion to the symbolic initial value problem (i.e. a function y(t) such that y′(t) = f(y) and
y(0) = x). But what if the differential equation does not have such a solution y(t)? Or
if y(t) cannot be written down in first-order real arithmetic? Lecture 2 on Differential
Equations & Domains allows many more differential equations to be part of CPS mod-
els than just the ones that happen to have simple solutions. These are the differential
equations we will look at in this lecture.

You may have seen a whole range of methods for solving differential equations in
prior courses. But, in a certain sense, “most” differential equations are impossible to
solve, because they have no explicit closed-form solution with elementary functions,
for instance [Zei03]:

x′′(t) = et
2

And even if they do have solutions, the solution may no longer be in first-order real
arithmetic. One solution of

v′ = w,w′ = −v

for example is v(t) = sin t, w(t) = cos t, which is not expressible in real arithmetic (recall
that both are infinite power series) and leads to undecidable arithmetic [Pla08a].
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L10.2 Differential Equations & Differential Invariants

Today’s lecture reinvestigates differential equations from a more fundamental per-
spective, which will lead to a way of proving properties of differential equations with-
out using their solutions.

The lecture seeks unexpected analogies among the seemingly significantly different
dynamical aspects of discrete dynamics and of continuous dynamics. The first and
influential observation is that differential equations and loops have more in common
than one might suspect.1 Discrete systems may be complicated, but have a powerful
ally: induction as a way of establishing truth for discrete dynamical systems by generi-
cally analyzing the one step that it performs (repeatedly like the body of a loop). What
if we could use induction for differential equations? What if we could prove proper-
ties of differential equations directly by analyzing how these properties change along
the differential equation rather than having to find a global solution first and inspecting
whether it satisfies that property? What if we could tame the analytic complexity of dif-
ferential equations by analyzing the generic local “step” that a continuous dynamical
system performs (repeatedly). The biggest conceptual challenge will, of course, be in
understanding what exactly the counterpart of a step even is for continuous dynamical
systems, because there is no such thing as a next step for a differential equation.

More details can be found in [Pla10b, Chapter 3.5] and [Pla10a, Pla12d, Pla12a, Pla12b].
Differential invariants were originally conceived in 2008 [Pla10a, Pla08b] and later used
for an automatic proof procedure for hybrid systems [PC08, PC09]. These lecture notes
are based on an advanced axiomatic logical understanding of differential invariants via
differential forms [Pla15].

This lecture is of central significance for the Foundations of Cyber-Physical Systems.
The analytic principles begun in this lecture will be a crucial basis for analyzing all
complex CPS. The most important learning goals of this lecture are:

Modeling and Control: This lecture will advance the core principles behind CPS by
developing a deeper understanding of their continuous dynamical behavior. This
lecture will also illuminate another facet of how discrete and continuous systems
relate to one another, which will ultimately lead to a fascinating view on under-
standing hybridness [Pla12a].

Computational Thinking: This lecture exploits computational thinking in its purest
form by seeking and exploiting surprising analogies among discrete dynamics
and continuous dynamics, however different both may appear at first sight. This
lecture is devoted to rigorous reasoning about the differential equations in CPS
models. Such rigorous reasoning is crucial for understanding the continuous be-
havior that CPS exhibit over time. Without sufficient rigor in their analysis it can
be impossible to understand their intricate behavior and spot subtle flaws in their
control or say for sure whether and why a design is no longer faulty. This lecture
systematically develops one reasoning principle for equational properties of dif-
ferential equations that is based on induction for differential equations. Subsequent

1 In fact, discrete and continuous dynamics turn out to be proof-theoretically quite intimately related
[Pla12a].
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Differential Equations & Differential Invariants L10.3

lectures expand the same core principles developed in this lecture to the study of
general properties of differential equations. This lecture continues the axiomatiza-
tion of differential dynamic logic dL [Pla12c, Pla12a] pursued since Lecture 5 on
Dynamical Systems & Dynamic Axioms and lifts dL’s proof techniques to systems
with more complex differential equations. The concepts developed in this lecture
form the differential facet illustrating the more general relation of syntax (which
is notation), semantics (what carries meaning), and axiomatics (which internalizes
semantic relations into universal syntactic transformations). These concepts and
their relations jointly form the significant logical trinity of syntax, semantics, and
axiomatics. Finally, the verification techniques developed in this lecture are criti-
cal for verifying CPS models of appropriate scale and technical complexity.

CPS Skills: We will develop a deeper understanding of the semantics of the contin-
uous dynamical aspects of CPS models and develop and exploit a significantly
better intuition for the operational effects involved in CPS.

CT

M&C CPS

discrete vs. continuous analogies
rigorous reasoning about ODEs
induction for differential equations
differential facet of logical trinity

understanding continuous dynamics
relate discrete+continuous

semantics of continuous dynamics
operational CPS effects

2 Global Descriptive Power of Local Differential Equations

Differential equations let the physics evolve continuously for longer periods of time.
They describe such global behavior locally, however, just by the right-hand side of the
differential equation.

Note 1 (Local descriptions of global behavior by differential equations). The key
principle behind the descriptive power of differential equations is that they describe the
evolution of a continuous system over time using only a local description of the direction
into which the system evolves at any point in space. The solution of a differential equation
is a global description of how the system evolves, while the differential equation itself is a
local characterization. While the global behavior of a continuous system can be subtle and
challenging, its local description as a differential equation is much simpler.

This difference between local description and global behavior can be exploited for proofs.

15-424 LECTURE NOTES ANDRÉ PLATZER
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L10.4 Differential Equations & Differential Invariants

Based on Lecture 2 on Differential Equations & Domains, the semantics of differential
equations was defined in Lecture 3 on Choice & Control as:

Note 2 (Semantics of differential equations).

[[x′ = f(x) &Q]] = {(ϕ(0), ϕ(r)) : ϕ(ζ) |= x′ = f(x) and ϕ(ζ) |= Q for all 0≤ζ≤r
for a solution ϕ : [0, r]→ S of any duration r}

That is,a the final state ϕ(r) is connected to the initial state ϕ(0) by a continuous function
of some duration r ≥ 0 that solves the differential equation and satisfies Q at all times,

when interpreting ϕ(ζ)(x′)
def
= dϕ(t)(x)

dt (ζ) as the derivative of the value of x over time t at
time ζ.

aTwo subtleties will ultimately give rise to a minor clarification. Can you foresee them already?

The solution ϕ describes the global behavior of the system, which is specified locally
by the right-hand side f(x) of the differential equation.

Lecture 2 has shown a number of examples illustrating the descriptive power of dif-
ferential equations. That is, examples in which the solution was very complicated even
though the differential equation was rather simple. This is a strong property of differ-
ential equations: they can describe even complicated processes in simple ways. Yet,
that representational advantage of differential equations does not carry over into the
verification when verification is stuck with proving properties of differential equations
only by way of their solutions, which, by the very nature of differential equations, are
more complicated again.

This lecture, thus, investigates ways of proving properties of differential equations
using the differential equations themselves, not their solutions. This leads to differential
invariants [Pla10a, Pla12d, Pla15], which can perform induction for differential equa-
tions.

3 Differential Equations vs. Loops

A programmatic way of developing an intuition for differential invariants leads through
a comparison of differential equations with loops. This perhaps surprising relation can
be made completely rigorous and is at the heart of a deep connection equating discrete
and continuous dynamics proof-theoretically [Pla12a]. This lecture will stay at the sur-
face of this surprising connection but still leverage the relation of differential equations
to loops for our intuition.

To get started with relating differential equations to loops, compare

x′ = f(x) vs. (x′ = f(x))
∗

How does the differential equation x′ = f(x) compare to the same differential equation
in a loop (x′ = f(x))∗ instead? Unlike the differential equation x′ = f(x), the repeated
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Differential Equations & Differential Invariants L10.5

differential equation (x′ = f(x))∗ can run the differential equation x′ = f(x) repeatedly.
Albeit, on second thought, does that get the repetitive differential equation (x′ = f(x))∗

to any more states than where the differential equation x′ = f(x) could evolve to?
Not really, because chaining lots of solutions of differential equations from a repeti-

tive differential equation (x′ = f(x))∗ together will still result in a single solution for the
same differential equation x′ = f(x) that we could have followed all the way.2

Note 3 (Looping differential equations). (x′ = f(x))∗ is equivalent to x′ = f(x), writ-
ten (x′ = f(x))∗ ≡ (x′ = f(x)), i.e. both have the same transition semantics:

[[(x′ = f(x))
∗
]] = [[x′ = f(x)]]

Differential equations “are their own loop”.3

In light of Note 3, differential equations already have some aspects in common with
loops. Like nondeterministic repetitions, differential equations might stop right away.
Like nondeterministic repetitions, differential equations could evolve for longer or shorter
durations and the choice of duration is nondeterministic. Like in nondeterministic rep-
etitions, the outcome of the evolution of the system up to an intermediate state influ-
ences what happens in the future. And, in fact, in a deeper sense, differential equations
actually really do correspond to loops executing their discrete Euler approximations
[Pla12a].

With this rough relation in mind, let’s advance the dictionary translating differential
equation phenomena into loop phenomena and back. The local description of a differ-
ential equation as a relation x′ = f(x) of the state to its derivative corresponds to the
local description of a loop by a repetition operator ∗ applied to the loop body α. The
global behavior of a global solution of a differential equation x′ = f(x) corresponds to
the full global execution trace of a repetition α∗, but are similarly unwieldy objects to
handle. Because the local descriptions are so much more concise than the respective
global behaviors, but still carry all information about how the system will evolve over
time, we also say that the local relation x′ = f(x) is the generator of the global system
solution and that the loop body α is the generator of the global behavior of repetition
of the loop. Proving a property of a differential equation in terms of its solution corre-
sponds to proving a property of a loop by unwinding it (infinitely long) by axiom [∗]
from Lecture 5 on Dynamical Systems & Dynamic Axioms.

Now, Lecture 7 on Control Loops & Invariants made the case that unwinding the
iterations of a loop can be a rather tedious way of proving properties about the loop,
because there is no good way of ever stopping to unwind, unless a counterexample can
be found after a finite number of unwindings. This is where working with a global
solution of a differential equation with axiom [′] is actually already more useful, be-
cause the solution can actually be handled completely because of the quantifier ∀t≥0

2This is related to classical results about the continuation of solutions, e.g., [Pla10b, Proposition B.1].
3Beware not to confuse this with the case for differential equations with evolution domain constraints,

which is subtly different (Exercise 1).
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L10.6 Differential Equations & Differential Invariants

Note 4 (Correspondence map between loops and differential equations).
loop α∗ differential equation x′ = f(x)

could repeat 0 times could evolve for duration 0
repeat any number n ∈ N of times evolve for any duration r ∈ R, r ≥ 0
effect depends on previous loop iteration effect depends on the past solution
local generator α local generator x′ = f(x)
full global execution trace global solution ϕ : [0, r]→ S
proof by unwinding iterations with axiom [∗] proof by global solution with axiom [′]
proof by induction with loop invariant rule loop proof by differential invariant

over all durations. But Lecture 7 introduced induction with invariants as the preferred
way of proving properties of loops, by, essentially, cutting the loop open and arguing
that the generic state after any run of the loop body has the same characterization as
the generic state before. After all these analogous correspondences between loops and
differential equations, the obvious question is what the differential equation analogue
of a proof concept would be that corresponds to proofs by induction for loops, which
is the premier technique for proving loops.

Induction can be defined for differential equations using what is called differential
invariants [Pla10a, Pla12d]. The have a similar principle as the proof rules for induction
for loops. Differential invariants prove properties of the solution of the differential
equation using only its local generator: the right-hand side of the differential equation.

Recall the loop induction proof rule from Lecture 7 on Loops & Invariants:

[[α∗]] =
⋃
n∈N

[[αn]] with αn+1 ≡ αn;α and α0 ≡ ?true

loop
Γ ` F,∆ F ` [α]F F ` P

Γ ` [α∗]P,∆ ω ν

[[α∗]]

F

[α∗]F
[[α]]

F → [α]F

[[α]] [[α]]

F

4 Intuition of Differential Invariants

Just as inductive invariants are the premier technique for proving properties of loops,
differential invariants [Pla10a, Pla12d, Pla08b, Pla10b] provide the primary inductive
technique we use for proving properties of differential equations (without having to
solve them).

The core principle behind loop induction is that the induction step investigates the
local generator α ands shows that it never changes the truth-value of the invariant F
(see the middle premise F ` [α]F of proof rule loop or the only premise of the core
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Differential Equations & Differential Invariants L10.7

essentials induction proof rule ind from Lecture 7). Let us try to establish the same
inductive principle, just for differential equations. The first and third premise of rule
loop transfer easily to differential equations. The challenge is to figure out what the
counterpart of F ` [α]F would be since differential equations do not have a notion of
“one step”.

What does the local generator of a differential equation x′ = f(x) tell us about the
evolution of a system? And how does it relate to the truth of a formula F all along the
solution of that differential equation? That is, to the truth of the dL formula [x′ = f(x)]F
expressing that all runs of x′ = f(x) lead to states satisfyingF . Fig. 1 depicts an example
of a vector field for a differential equation (plotting the right-hand side of the differen-
tial equation as a vector at every point in the state space), a global solution (in red), and
an unsafe region ¬F (shown in blue). The safe region F is the complement of the blue
unsafe region ¬F .

Figure 1: Vector field and one solution of a differential equation that does not enter the
blue unsafe regions

One way of proving that [x′ = f(x)]F is true in a state ω would be to compute a
solution from that state ω, check every point in time along the solution to see if it is in the
safe region F or the unsafe region ¬F . Unfortunately, these are uncountably infinitely
many points in time to check. Furthermore, that only considers a single initial sate ω,
so proving validity of a formula would require considering every of the uncountably
infinitely many possible initial states and computing and following a solution in each
of them. That is why this naı̈ve approach would not compute.

A similar idea can still be made to work when the symbolic initial-value problem can
be solved with a symbolic initial value x and a quantifier for time can be used, which
is what the solution axiom [′] does. Yet, even that only works when a solution to the
symbolic initial-value problem can be computed and the arithmetic resulting from the
quantifier for time can be decided. For polynomial solutions, this works, for example.
But polynomial come from very simple systems only (called nilpotent linear differential
equation systems).

Reexamining the illustration in Fig. 1, we suggest an entirely different way of check-
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http://symbolaris.com/course/fcps16/07-loops.pdf


L10.8 Differential Equations & Differential Invariants
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Figure 2: One scenario for the rotational dynamics and relationship of vector (v, w) to
radius r and angle ϑ

ing whether the system could ever lead to an unsafe state in ¬F when following the
differential equation x′ = f(x). The intuition is the following. If there were a vector in
Fig. 1 that points from a safe state in F to an unsafe state ¬F (in the blue region), then
following that vector could get the system into an unsafe ¬F . If, instead, all vectors
point from safe states to safe states in F , then, intuitively, following such a chain of
vectors will only lead from safe states to safe states. So if the system also started in a
safe state, it would stay safe forever.

Let us make this intuition rigorous to obtain a sound proof principle that is perfectly
reliable in order to be usable in CPS verification. What we need to do is to find a way of
characterizing how the truth of F changes when moving along the differential equation.

5 Deriving Differential Invariants

How can the intuition about directions of evolution of a logical formula F with respect
to a differential equation x′ = f(x) be made rigorous? We develop this step by step.

Example 1 (Rotational dynamics). As a guiding example, consider a conjecture about the
rotational dynamics where v andw represent the direction of a vector rotating clockwise
in a circle of radius r (Fig. 2):

v2 + w2 = r2 → [v′ = w,w′ = −v]v2 + w2 = r2 (1)

The conjectured dL formula (1) is valid, because, indeed, if the vector (v, w) is ini-
tially at distance r from the origin (0,0), then it will always be when rotating around
the origin, which is what the dynamics does. That is, the point (v, w) will always re-
main on the circle of radius r. But how can we prove that? In this particular case, we
could possibly investigate solutions, which are trigonometric functions (although the
ones shown in Fig. 2 are not at all the only solutions). With those solutions, we could
perhaps find an argument why they stay at distance r from the origin. But the resulting
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Differential Equations & Differential Invariants L10.9

¬ ¬FF F

Figure 3: Differential invariant F remains true in the direction of the dynamics

arithmetic will be unnecessarily difficult and, after all, the argument for why the sim-
ple dL formula (1) is valid should be easy. And it is, after we have discovered the right
proof principle as this lecture will do.

First, what is the direction into which a continuous dynamical system evolves? The
direction is exactly described by the differential equation, because the whole point of a
differential equation is to describe in which direction the state evolves at every point in
space. So the direction into which a continuous system obeying x′ = f(x) follows from
state ω is exactly described by the time-derivative, which is exactly the value [[f(x)]]ω
of term f(x) in state ω. Recall that the term f(x) can mention x and other variables so
its value [[f(x)]]ω depends on the state ω.

Note 5 (Differential invariants are “formulas that remain true in the direction of
the dynamics”). Proving dL formula [x′ = f(x)]F does not really require us to answer
where exactly the system evolves to but just how the evolution of the system relates to the
formula F and the set of states ω in which F evaluates to true . It is enough to show that
the system only evolves into directions in which formula F will stay true (Fig. 3).

A logical formula F is ultimately built from atomic formulas that are comparisons of
(polynomial or rational) terms such as e = 5 or v2 + w2 = r2. Let e denote such a
(polynomial) term in the variable (vector) x that occurs in the formula F . The semantics
of a polynomial term e in a state ω is the real number [[e]]ω that it evaluates to. In which
direction does the value of e evolve when following the differential equation x′ = f(x)
for some time? That depends both on the term e that is being evaluated and on the
differential equation x′ = f(x) that describes how the respective variables x evolve over
time.

Note 6. Directions of evolutions are described by derivatives, after all the differential equa-
tion x′ = f(x) describes that the time-derivative of x is f(x).

Let’s derive the term e of interest and see what that tells us about how e evolves over
time. How can we derive e? The term e could be built from any of the operators dis-
cussed in Lecture 2 on Differential Equations & Domains, to which we now add divi-
sion for rational terms to make it more interesting. Let V denote the set of all variables.
Recall from Lecture 2 that terms e are defined by the grammar (where e, ẽ are terms, x
is a variable, and c is a rational number constant):

e ::= x | c | e+ ẽ | e− ẽ | e · ẽ | e/ẽ
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L10.10 Differential Equations & Differential Invariants

It is, of course, important to take care that division e/ẽ only makes sense in a context
where the divisor ẽ is guaranteed not to be zero in order to avoid undefinedness. We
only allow division to be used in a context where the divisor is ensured not to be zero.

If the term is a sum e + k, then the mathematical expectation is that its derivative
should be the derivative of e plus the derivative of k. If the term is a product e · k, its
derivative is the derivative of e times k plus e times the derivative of k by Leibniz’ rule.
The derivative of a rational number constant c ∈ Q is zero.4 The other operators are
similar, leaving only the case of a single variable x. What is its derivative?

Before you read on, see if you can find the answer for yourself.

4Of course, the derivative of real number constants c ∈ R is also zero, but only rational number constants
are allowed to occur in the formulas of first-order logic of real arithmetic (or any real-closed fields).
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Differential Equations & Differential Invariants L10.11

The exact value of the derivative of a variable x very much depends on the current
state and on the overall continuous evolution of the system. So we punt on that for now
and define the derivative of a variable x in a seemingly innocuous way to be the differ-
ential symbol x′ and consider what to do with it later. This gives rise to the following
way of computing the derivative of a term syntactically.
Remark 2 (Derivatives). Recall the familiar syntactic laws for derivatives:

(c())′ = 0 for numbers or constants c() (2a)
(x)′ = x′ for variable x ∈ V (2b)

(e+ k)′ = (e)′ + (k)′ (2c)
(e− k)′ = (e)′ − (k)′ (2d)
(e · k)′ = (e)′ · k + e · (k)′ (2e)

(e/k)′ = ((e)′ · k − e · (k)′)/k2 (2f)

Note that, while the intuition and precise semantics of derivatives of terms will ul-
timately be connected with more involved aspects of how values change over time,
the computation of derivatives of terms according to 2 is a seemingly innocuous but
straightforward recursive computation on terms. If we apply the equations (6) from
left to right, they define a recursive operator on terms (·)′ called syntactic (total) deriva-
tion.

Expedition 1 (Differential Algebra). Even though the following names and con-
cepts are not needed directly for his course, let’s take a brief scientific expedition
to align 2 with the algebraic structures from differential algebra [Kol72] in order
to illustrate the systematic principles behind 2. Case (6a) defines (rational) num-
ber symbols alias literals as differential constants, which do not change their value
during continuous evolution. Their derivative is zero. The number symbol 5 will
always have the value 5 and never change, no matter what differential equation is
considered. Equation (6c) and the Leibniz or product rule (6e) are the defining con-
ditions for derivation operators on rings. The derivative of a sum is the sum of the
derivatives (additivity or a homomorphic property with respect to addition, i.e. the
operator (·)′ applied to a sum equals the sum of the operator applied to each sum-
mand) according to equation (6c). Furthermore, the derivative of a product is the
derivative of one factor times the other factor plus the one factor times the deriva-
tive of the other factor as in (6e). Equation (6d) is a derived rule for subtraction
according to the identity e− k = e+ (−1) · k and again expresses a homomorphic
property, now with respect to subtraction rather than addition.

The equation (6b) uniquely defines the operator (·)′ on the differential polynomial
algebra spanned by the differential indeterminates x ∈ V , i.e. the symbols x that have
indeterminate derivatives x′. It says that we understand the differential symbol
x′ as the derivative of the symbol x for all state variables x ∈ V . Equation (6f)
canonically extends the derivation operator (·)′ to the differential field of quotients by
the usual quotient rule. As the base field R has no zero divisorsa, the right-hand side
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L10.12 Differential Equations & Differential Invariants

of (6f) is defined whenever the original division e/k can be carried out, which, as
we assumed for well-definedness, is guarded by k 6= 0.

aIn this setting, R has no zero divisors, because the formula ab = 0 → a = 0 ∨ b = 0 is valid, i.e. a
product is zero only if a factor is zero.

The derivative of a division e/k uses a division, which is where we need to make
sure not to accidentally divide by zero. Yet, in the definition of (e/k)′, the division is by
k2 which, fortunately, has the same roots that k already has, because k = 0 ↔ k2 = 0
is valid for any term k. Hence, in any context in which e/k was defined, its derivative
(e/k)′ will also be defined.

Now that we have a first definition of derivation at hand, the question still is which
of the terms should be derived when trying to prove (1)? Since that is not necessarily
clear so far, let’s turn the formula (1) around and consider the following equivalent
(Exercise 2) dL formula instead, which only has a single nontrivial term to worry about:

v2 + w2 − r2 = 0→ [v′ = w,w′ = −v]v2 + w2 − r2 = 0 (3)

Derivation of the only relevant term v2 + w2 − r2 in the postcondition of (3) according
to 2 gives

(v2 + w2 − r2)′ = 2vv′ + 2ww′ − 2rr′ (4)

2 makes it possible to form the derivative of any polynomial or rational term. The
total derivative operator (·)′ does not, however, result in a term involving the variables

V , but, instead, a differential term, i.e. a term involving V ∪ V ′, where V ′ def
= {x′ : x ∈ V}

is the set of all differential symbols x′ for variables x ∈ V . The total derivative (e)′ of a
polynomial term e is not a polynomial term, but may mention differential symbols such
as x′ in addition to the symbols that where in e to begin with. All syntactic elements of
those differential terms are easy to interpret based on the semantics of terms defined in
Lecture 2, except for the differential symbols. What now is the meaning of a differential
symbol x′? And, in fact, what is the precise meaning of the construct (e)′ for a term e
and the equations in (6) to begin with?

Before you read on, see if you can find the answer for yourself.
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Differential Equations & Differential Invariants L10.13

6 The Meaning of Prime

The meaning [[x]]ω of a variable symbol x is defined by the state ω as ω(x), so its value
[[x]]ω in state ω is directly determined by the state via [[x]]ω = ω(x). It is crucial to no-
tice the significant subtleties and challenges that arise when trying to give meaning
to a differential symbol x′ or anything else with a derivative connotation such as the
differential term (e)′ of term e.

The first mathematical reflex may be to set out for a definition of x′ in terms of a
time-derivative d

dt of something. The question is what that something would be. The
meaning of a differential symbol x′ in a state ω simply cannot be defined as a time-
derivative, because derivatives do not even exist in such isolated points. It is utterly
meaningless to ask for the rate of change of the value of x over time in a single isolated
state ω. For time-derivatives to make sense, we at least need a concept of time and
the values understood as a function of time. That function needs to be defined on a
big enough interval for derivatives to have a chance to become meaningful. And the
function needs to be differentiable so that the time-derivatives even exist to begin with.

Expedition 2 (Semantics of differential algebra). The view of Expedition 1 sort of
gave (e)′ a meaning, but, when we think about it, did not actually define it. Dif-
ferential algebra studies the structural algebraic relations of, e.g., the derivative
(e+ k)′ to the derivatives (e)′ plus (k)′ and is incredibly effective about capturing
and understanding them starting from (6). But algebra—and differential algebra is
no exception—is, of course, deliberately abstract about the question what the indi-
vidual pieces mean, because algebra is the study of structure, not the study of the
meaning of the objects that are being structured in the first place. That is why we
can learn all about the structure of derivatives and derivation operators from dif-
ferential algebra, but have to go beyond differential algebra to complement it with
a precise semantics that relates to the needs of understanding the mathematics of
real cyber-physical systems.

Along a (differentiable) continuous function ϕ : [0, r]→ S, however, we can make
sense of what x′ means. And in fact we already did. Well, if its duration r > 0 is
nonzero so that we are not just talking about an isolated point ϕ(0) again. At any point
in time ζ ∈ [0, r] along such a continuous evolution ϕ, the differential symbol x′ can
be taken to mean the time-derivative d

dt of the value [[x]]ϕ(t) of x over time t at time ζ
[Pla10a, Pla12c, Pla15]. That is, at any point in time ζ along the solution ϕ, it makes
sense to give x′ the meaning of the rate of change of the value of x over time along ϕ.
Which is exactly what the semantics of differential equations from Note 2 already did
to give meaning to the differential equation in the first place:
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Note 7 (Semantics of differential symbols along a differential equation). The value
of differential symbol x′ at time ζ ∈ [0, r] along a solution ϕ : [0, r]→ S of some duration
r > 0 of a differential equation x′ = f(x) &Q equals the analytic time-derivative at ζ:

ϕ(ζ)(x′)
def
=

dϕ(t)(x)

dt
(ζ) (5)

Intuitively, the value [[x′]]ϕ(ζ) = ϕ(ζ)(x′) of x′ is, thus, determined by considering how
the value [[x]]ϕ(ζ) = ϕ(ζ)(x) of x changes along the function ϕ when we change time ζ
“only a little bit”. Visually, it corresponds to the slope of the tangent of the value of x at
time ζ; see Fig. 4.

0 t

ϕ(t)(x)

x0 ϕ(ζ)(
x
′ )x′ = x3

ζ

ϕ(ζ)(x)

Figure 4: Semantics of differential symbols

Now that we know what value x′would have along a differential equation that leaves
at least two questions. What does it mean independently without reference to the par-
ticular differential equation? And what value would it have along a differential equa-
tion of duration r = 0 where the right-hand side of (5) but not even exist?

While the latter question may be the more obvious one, the more daunting one is the
former question. What does x′ mean? What is its value? Since the differential symbol
x′ is a term and the semantics of terms is the real-value that they mean in a state ω, the
differential symbol x′ should also have a meaning as a real number in that state ω. So
what is the value ω(x′)?

Hold on, we had considered and discarded that question already. Derivatives do not
carry meaning in isolated states. They still don’t. But it is important to understand why
the lack of having a value and a meaning would cause complications for the fabrics of
logic.

Expedition 3 (Denotational Semantics). The whole paradigm of denotational seman-
tics, initiated for programming languages by Dana Scott and Christopher Strachey
[SS71], is based on the principle that the semantics of expressions of programming
languages should be the mathematical object that it denotes. That is, a denota-
tional semantics is a function assigning a mathematical object [[e]]ω from a semantic
domain (here R) to each term e, depending on the state ω.

The meaning of terms, thus, is a function [[·]] : Trm → (S → R) which maps each
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term e ∈ Trm to the function [[e]] : S → R giving the real value [[e]]ω ∈ R that the
term e has in each state ω ∈ S. In fact, this is exactly how the semantics of terms of
dL has been defined in Lecture 2 in the first place. For classical logics such as first-
order logic, this denotational semantics has always been the natural and dominant
approach since Frege [?].

Scott and Strachey [SS71], however, pioneered the idea of leveraging the denota-
tional style of semantics to give meaning to programming languages. And, indeed,
dL’s hybrid programs have a denotational semantics. The meaning of a HP α is the
reachability relation [[α]] ⊆ S × S that it induces on the states S. Correspondingly,
the (denotational) meaning of hybrid programs as defined in Lecture 3 is a function
[[·]] : HP → ℘(S × S) assigning a relation [[α]] ⊆ S × S in the powerset ℘(S × S) to
each HP α.

A crucial feature of denotational semantics done the right way, however, is com-
positionality. The meaning [[e+ ẽ]] of a compound such as e+ ẽ should be a simple
function of the meaning [[e]] and [[ẽ]] of its pieces e and ẽ. This compositionality is
exactly the way the meaning of differential dynamic logic is defined. For example:

[[e+ ẽ]]ω = [[e]]ω + [[ẽ]]ω

for all states ω, which, with a point-wise understanding of +, can be summarized
as

[[e+ ẽ]] = [[e]] + [[ẽ]]

Consequently, also the meaning of a differential symbol x′ should be defined compo-
sitionally in a modular fashion and without reference to outside elements such as the
differential equation in which it happens to occur. The meaning of terms is a function of
the state, and not a function of the state and the context or purpose for which it happens
to have been mentioned.5 The actual values that x′ is supposed to evaluate to changes
quite a bit depending on the state, e.g. according to (5).

The mystery of giving meaning to differential symbols, thus, resolves by declaring
the state to be responsible for assigning a value not just to all variables x but also to
all differential symbols x′. A state ω is a mapping ω : V ∪ V ′ → R assigning a real
number ω(x) ∈ R to all variables x ∈ V and a real number ω(x′) ∈ R to all differential
symbols x′ ∈ V ′. The values that the states ϕ(ζ) visited along a solution ϕ : [0, r]→ S of
a differential equation x′ = f(x) &Q assign to x′ will have a close relationship, namely
(5) and ϕ(ζ) |= x′ = f(x). But that relationship is by virtue of ϕ being a solution of a
differential equation, so that the family of states ϕ(ζ) for ζ ∈ [0, r] have a unique link.
It is perfectly consistent to have a state ω in which ω(x′) = 4 and other equally isolated
state ν in which ν(x′) = 16. In fact, that is just what happen for the initial ω and final
state ν of following the differential equation x′ = x2 from ω(x) = 2 for 1

4 time units. If
we do not know that ω and ν are the initial and final states of that differential equation

5With sufficient care, it would even be possible to restrict the meaning of x′ only to certain contexts for
some purposes, but that comes at the cost of adding significant technical complexity and inconvenience
[Pla10a] and is, thus, quite an undesirable and unnecessary complication.
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or if we do not know that it was exactly 1
4 time units that we followed it, there is no

reason to suspect any relationship between the values of ω(x′) and ν(x′).
Now we finally figured out the answer to the question what x′ means and what its

value is. It all depends on the state. And nothing but the state. So we can come back
to the question what the value of x′ would be along a differential equation that we fol-
lowed for duration r = 0. The right-hand side of (5) does not exist if r = 0 (which, for
duration r = 0 we will take to mean as not imposing any conditions). But the semantics
of differential equations (Note 2) still unambiguously demands that ϕ(ζ) |= x′ = f(x)
holds during the solution including at the end at time r, that is, ϕ(r)(x′) = [[f(x)]]ϕ(r).

Note 8 (Solutions of duration zero). In case of duration r = 0, the only condition for
the transition of a continuous evolution is that the initial ω and final state ν agree (excepta

on {x′}{) and that ν(x′) = [[f(x)]]ν.
aIn fact, turns out to be useful [Pla15] to allow any arbitrary value of x′ in the initial state ω of a

continuous evolution since the previous value of x′ may not yet be in sync with the expected
derivative in the differential equation x′ = f(x) yet.

Differential symbols x′ have a meaning from now as being interpreted directly by the
state. Yet, what is the meaning of a differential term (e)′ such as those in 2?

Before you read on, see if you can find the answer for yourself.
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7 More Meanings of More Primes: Differentials

At this point it should no longer be a surprise that the first mathematical reflex of un-
derstanding the primes of (e)′ from 2 in terms of time-derivatives will quickly fall short
of its own expectations, because there still is no time-derivative in the isolated state ω
that the value [[(e)′]]ω has at its disposal. Unfortunately, though, we cannot follow the
same solution and ask the state to assign any arbitrary real value to each differential
term. After all, there should be a close relationship of [[(2x2)′]]ω and [[(8x2)′]]ω namely
that 4[[(2x2)′]]ω = [[(8x2)′]]ω. Thus, the structure and meaning of the term e should con-
tribute to the meaning of (e)′. The first step, though, is to ennoble the primes of (e)′ as
in 2 and officially consider them as part of the language of differential dynamic logic
by adding them to its syntax.

Definition 3 (dL Terms). A term e of differential dynamic logic is defined by the
grammar (where e, ẽ are terms, x a variable with corresponding differential symbol
x′, and c a rational number constant):

e ::= x | x′ | c | e+ ẽ | e− ẽ | e · ẽ | e/ẽ | (e)′

The semantics of terms, of course, remains unchanged except that the new addition of
differential terms (e)′ needs to be outfitted with a proper meaning.

The value of (e)′ is supposed to tell us something about how the value of e changes.
But it is not and could not possibly be the change over time that this is referring to,
because there is no time nor time-derivative to speak of in an isolated state ω. The trick
is that we can still determine how the value of e will change, just not over time. We can
tell just from the term e itself how its value will change locally depending on how its
constituents change.

Recall that the partial derivative ∂f
∂x (ξ) of a function f by variable x at the point ξ

characterizes how the value of f changes as x changes at the point ξ. The term 2x2

will locally change according to the partial derivative of its value by x, but the ultimate
change will also depend on how x itself changes locally. The term 5x2y also changes
according to the partial derivative of its value by x but also its partial derivative by y
and ultimately depends on how x as well as y themselves change locally.

The clou is that the state ω has the values ω(x′) of the differential symbols x′ at its
disposal, which, qua Note 7, are reminiscent of the direction that x would be evolving
to locally, if only state ω were part of a solution of a differential equation. The value
ω(x′) of differential symbol x′ acts like the “local shadow” of the time-derivative dx

dt at
ω if only that derivative even existed at that point to begin with. But even if that time-
derivative cannot exist at a general isolated state, we can still understand the value
ω(x′) that x′ happens to have in that state as the direction that x would involve in
locally at that state. Likewise the value ω(y′) of y′ can be taken to indicate the direction
that y would involve in locally at that state. Now all it takes is a way to accumulate the
change by summing it all up to lead to the meaning of differentials [Pla15].
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Definition 4 (Semantics of differentials). The semantics of differential term (e)′ in
state ω is the value [[(e)′]]ω defined as

[[(e)′]]ω =
∑
x∈V

ω(x′)
∂[[e]]

∂x
(ω)

The value [[(e)′]]ω is the sum of all (analytic) spatial partial derivatives at ω of the
value of e by all variables x ∈ V multiplied by the corresponding tangent or direc-
tion of evolution described by the value ω(x′) of differential symbol x′ ∈ V ′.

That sum over all variables x ∈ V has finite support, because e only mentions finitely
many variables x and the partial derivative by variables x that do not occur in e is 0,
so do not contribute to the sum. The spatial derivatives exist since the evaluation [[e]]ω
is a composition of smooth functions such as addition, multiplication etc., so is itself
smooth.

Overall the (real) value of (e)′, thus, depends not just on e itself and the values in
the current state ω of the variables x that occur in e but also on the direction that these
variables are taken to evolve to according to the values of the respective differential
symbols x′ in ω; see Fig. 5.

→ R

Figure 5: Differential form semantics of differentials: their value depends on the point
as well as on the direction of the vector field at that point

Quite crucially observe one byproduct of adopting differentials as first-class citizens
in dL. The constructs in 2, which previously were somewhat amorphous and seman-
tically undefined recursive syntactic definitions without proper semantic counterparts,
have now simply become perfectly meaningful equations of differential terms. The
meaning of equations is well-defined on reals and both sides of each of the equations in
(6) has a precise meaning using Def. 4. Of course, it remains to show that the equations
in (6) are valid, meaning they are true in all states so that they can be adopted as sound
axioms. But that turns out to be the case [Pla15].
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Lemma 5 (Derivation lemma). When considered as equations of differentials, the equa-
tions (6) from 2 are valid and can, thus, be adopted as sound axioms:

(c())′ = 0 for numbers or constants c() (6a)
(x)′ = x′ for variable x ∈ V (6b)

(e+ k)′ = (e)′ + (k)′ (6c)
(e− k)′ = (e)′ − (k)′ (6d)
(e · k)′ = (e)′ · k + e · (k)′ (6e)

(e/k)′ = ((e)′ · k − e · (k)′)/k2 (6f)

Proof. We only consider one case of the proof which is reported in full elsewhere [Pla15].

[[(e+ k)′]]ω =
∑
x

ω(x′)
∂[[e+ k]]

∂x
(ω) =

∑
x

ω(x′)
∂([[e]] + [[k]])

∂x
(ω)

=
∑
x

ω(x′)
(∂[[e]]

∂x
(ω) +

∂[[k]]

∂x
(ω)
)

=
∑
x

ω(x′)
∂[[e]]

∂x
(ω) +

∑
x

ω(x′)
∂[[k]]

∂x
(ω)

= [[(e)′]]ω + [[(k)′]]ω = [[(e)′ + (k)′]]ω

This gives us a way of computing simpler forms for differentials of terms by ap-
plying the equations (6) from left to right, which will, incidentally, lead us to the same
result that the total derivation operator would have. Except now the result has been ob-
tained by a chain of logical equivalence transformations each of which are individually
grounded semantically with a soundness proof. It also becomes possible to selectively
apply equations of differentials as need be in a proof without endangering soundness.
Who would have figured that our study of differential equations would lead us down
a path to study equations of differentials instead?

8 Differential Substitution Lemmas

Now that we obtained a precise semantics of differential symbols x′ and differentials
(e)′ that is meaningful in any arbitrary state ω, no matter how isolated it may be, it is
about time to come back to the question what we can learn from those values along a
differential equation.

Along the solution ϕ of a differential equation, differential symbols x′ do not have
arbitrary values but are interpreted as time-derivatives of the values of x at all times ζ
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(Note 7):

[[x′]]ϕ(ζ) = ϕ(ζ)(x′)
def
=

dϕ(t)(x)

dt
(ζ) =

d[[x]]ϕ(t)

dt
(ζ)

That is, along a differential equation, the values of differential symbols x′ coincide with
the analytic time-derivative of the values of x. The key insight is that this continues to
hold not just for differential symbols x′ but also for differentials (e)′ of arbitrary terms
e.

The following central lemma, which is the differential counterpart of the substitution
lemma, establishes the connection between syntactic derivation of terms and seman-
tic differentiation as an analytic operation to obtain analytic derivatives of valuations
along differential state flows. It will allow us to draw analytic conclusions about the
behaviour of a system along differential equations from the truth of purely algebraic
formulas obtained by syntactic derivation. In a nutshell, the following lemma shows
that, along a flow, analytic derivatives of valuations coincide with valuations of syntac-
tic derivations.

Lemma 6 (Differential lemma). Let ϕ |= x′ = f(x) ∧Q for some solution ϕ : [0, r] →
S of duration r > 0. Then for all terms e (defined all along ϕ) and all times ζ ∈ [0, r]:

[[(e)′]]ϕ(ζ) =
d [[e]]ϕ(t)

dt
(ζ)

In particular, [[e]]ϕ(ζ) is continuously differentiable in ζ.

Note 13 (The differential lemma clou). Lemma 6 shows that analytic time-derivatives
coincide with differentials. The clou with Lemma 6 is that it equates precise but sophisti-
cated analytic time-derivatives with purely syntactic differentials. The analytic timederiva-
tives on the right-hand side of Lemma 6 are mathematically precise and pinpoint exactly
what we are interested in: the rate of change of the value of e along ϕ. But they are un-
wieldy for computers, because analytic derivatives are ultimately defined in terms of limit
processes and also need a whole solution to be well-defined. The syntactic differentials on
the left-hand side of Lemma 6 are purely syntactic (putting a prime on a term) and even
their simplifications via the recursive use of the axioms (6) are computationally tame.

Having said that, the syntactic differentials need to be aligned with the intended analytic
time-derivatives, which is exactly what Lemma 6 achieves. To wit, even differentiating
polynomials and rational functions is much easier syntactically than by unpacking the
meaning of analytic derivatives in terms of limit processes.

The differential lemma immediately leads to a first proof principle for differential
equations. If the differential (e)′ is always zero along a differential equation, then e will
always be zero if it was zero initially:
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Lemma 7 (First version of differential invariant rule). The following is a sound proof
rule

DI0
` [x′ = f(x) &Q](e)′ = 0

e = 0 ` [x′ = f(x) &Q]e = 0

Proof. If ϕ is a solution of x′ = f(x) &Q, then the premise implies that ϕ |= (e)′ = 0
since all restrictions of solutions are again solutions. Consequently, Lemma 6 implies

0 = [[(e)′]]ϕ(ζ) =
d [[e]]ϕ(t)

dt
(ζ)

so that e stays zero along ϕ by mean-value theorem, since it initially started out 0
(antecedent of conclusion) and had 0 change over time (above). Hold on, that use of
Lemma 6 was, of course, predicated on having a solution ϕ of duration r > 0 (other-
wise there are no time-derivatives to speak of). Yet, solutions of duration r = 0 directly
imply e = 0 from the initial condition in the antecedent of the conclusion.

The only nuisance with this proof rule is that DI0 never proves any interesting proper-
ties on its own. For Example 1, it would lead to:

` [v′ = w,w′ = −v]2vv′ + 2ww′ − 2rr′ = 0
DI0v2 + w2 − r2 = 0 ` [v′ = w,w′ = −v]v2 + w2 − r2 = 0
→R ` v2 + w2 − r2 = 0→ [v′ = w,w′ = −v]v2 + w2 − r2 = 0

Without knowing anything about v′ and w′ and r′ in the postcondition, this proof has
no chance of ever closing. What stands to reason is to use the right-hand sides of the
differential equations for their left-hand sides, after all both sides of the equation are
supposed to be equal. The question is how to justify that that’s sound.

Lemma 6 shows that, along a differential equation, the value of the differential (e)′

of a term e coincides with the analytic time-derivative of the term e. Now, along a
differential equation x′ = f(x), the differential symbols x′ themselves actually have a
simple interpretation: their values are determined directly by the differential equation.
Putting these thoughts together leads to a way of replacing differential symbols with
the corresponding right-hand sides of their respective differential equations. That is,
replacing left-hand sides of differential equations with their right-hand sides.

Note 15. The direction into which the value of a term e evolves as the system follows a
differential equation x′ = f(x) depends on the differential (e)′ of the term e and on the
differential equation x′ = f(x) that locally describes the evolution of x over time.

Lemma 8 (Differential assignment). If ϕ |= x′ = f(x) ∧Q for a flow ϕ : [0, r]→ S of
any duration r ≥ 0, then

ϕ |= P ↔ [x′ := f(x)]P
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Proof. The proof is a direct consequence of the fact that the semantics of differential
equations (Note 2) requires that ϕ(ζ) |= x′ = f(x) holds at all times ζ all along ϕ. Con-
sequently, the assignment x′ := f(x) that changes the value of x′ around to be the value
of f(x) will have no effect, since x′ already does have that value along the differential
equation to begin with. Thus, P and [x′ := f(x)]P are equivalent along ϕ.

By using this equivalence at any state along a differential equation x′ = f(x) this gives
rise to a simple axiom characterizing the effect that a differential equation has on its
differential symbols:

Corollary 9 (Differential effects). The differential effect axiom is sound:

DE [x′ = f(x) &Q]P ↔ [x′ = f(x) &Q][x′ := f(x)]P

The last ingredient is the differential assignment axiom [′:=] for x′ := e in direct analogy
to the assignment axiom [:=] for [x := e]P just for a differential symbol x′ instead of a
variable x:

[′:=] [x′ := e]p(x′)↔ p(e)

Let’s continue the proof for Example 1:

` [v′ = w,w′ = −v]2v(w) + 2w(−v)− 2rr′ = 0
[′:=] ` [v′ = w,w′ = −v][v′:=w][w′:=− v]2vv′ + 2ww′ − 2rr′ = 0
DE ` [v′ = w,w′ = −v]2vv′ + 2ww′ − 2rr′ = 0
DI0 v2 + w2 − r2 = 0 ` [v′ = w,w′ = −v]v2 + w2 − r2 = 0
→R ` v2 + w2 − r2 = 0→ [v′ = w,w′ = −v]v2 + w2 − r2 = 0

Oops, that did not make all differential symbols disappear, because r′ is still around,
since r did not have a differential equation in (3) to begin with. Stepping back, what
we mean by a differential equation like v′ = w,w′ = −v that does not mention r′ is that
r is not supposed to change. If r is supposed to change during a continuous evolution,
then there has to be a differential equation for r describing how r changes.

Note 18 (Explicit change). Hybrid programs are explicit change: nothing changes un-
less an assignment or differential equation specifies how (compare the semantics from Lec-
ture 3). In particular, if a differential equation (system) x′ = f(x) does not mention z′,
then the variable z does not change during x′ = f(x), so the differential equation systems
x′ = f(x) and x′ = f(x), z′ = 0 are equivalent.

We will assume z′ = 0 without further notice for variables z that do not change during
a differential equation.

Since (3) does not have a differential equation for r, Note 18 implies that its differen-
tial equation v′ = w,w′ = −v is equivalent to v′ = w,w′ = −v, r′ = 0, which, with DE,
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would give rise to an extra [r′:=0], which we will assume implicitly after showing its
use explicitly just once.

∗
R ` 2v(w) + 2w(−v)− 0 = 0
G ` [v′ = w,w′ = −v]2v(w) + 2w(−v)− 0 = 0

[′:=] ` [v′ = w,w′ = −v][v′:=w][w′:=− v][r′:=0]2vv′ + 2ww′ − 2rr′ = 0
DE ` [v′ = w,w′ = −v]2vv′ + 2ww′ − 2rr′ = 0
DI0 v2 + w2 − r2 = 0 ` [v′ = w,w′ = −v]v2 + w2 − r2 = 0
→R ` v2 + w2 − r2 = 0→ [v′ = w,w′ = −v]v2 + w2 − r2 = 0

This is amazing, because we found out that the value of v2 + w2 − r2 does not change
over time (ultimately because its time-derivative is zero) along the differential equation
v′ = w,w′ = −v. And we found that out without ever solving the differential equation,
just by a few lines of simple symbolic proof steps.

9 Differential Invariant Terms

In order to be able to use the above reasoning as part of a sequent proof efficiently, let’s
package up the argument in a simple proof rule. As a first shot, we stay with equations
of the form e = 0, which gives us soundness for the following proof rule.

Lemma 10 (Differential invariant terms). The following special case of the differential
invariants proof rule is sound, i.e. if its premise is valid then so is its conclusion:

DI=0
` [x′:=f(x)](e)′ = 0

e = 0 ` [x′ = f(x)]e = 0

Proof. We could prove soundness of this proof rule by going back to the semantics and
lemmas we proved about it. The easier soundness proof is to prove that it is a derived
rule, meaning that it can be expanded into a sequence of other proof rule applications
that we have already seen to be sound:

` [x′ := f(x)](e)′ = 0
G ` [x′ = f(x) &Q][x′ := f(x)](e)′ = 0

DE ` [x′ = f(x) &Q](e)′ = 0
DI0e = 0 ` [x′ = f(x) &Q]e = 0

This proof shows DI=0 to be a derived rule because it starts with the premise of DI=0

as the only open goal and ends with the conclusion of DI=0, using only proof rules we
already know are sound.
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This proof rule enables us to prove dL formula (3) easily in dL’s sequent calculus:

∗
R ` 2vw + 2w(−v)− 0 = 0

[′:=] ` [v′:=w][w′:=− v]2vv′ + 2ww′ − 0 = 0
DI=0v2 + w2 − r2 = 0 ` [v′ = w,w′ = −v]v2 + w2 − r2 = 0
→R ` v2 + w2 − r2 = 0→ [v′ = w,w′ = −v]v2 + w2 − r2 = 0

See�Rotational differential invariant�
Taking a step back, this is an exciting development, because, thanks to differential in-

variants, the property (3) of a differential equation with a nontrivial solution has a very
simple proof that we can easily check. The proof did not need to solve the differen-
tial equation, which has infinitely many solutions with combinations of trigonometric
functions.6 The proof only required deriving the postcondition and substituting the
differential equation in.

10 Proof by Generalization

So far, the argument captured in the differential invariant term proof rule DI=0 works
for

v2 + w2 − r2 = 0→ [v′ = w,w′ = −v]v2 + w2 − r2 = 0 (3)

with an equation v2 + w2 − r2 = 0 normalized to having 0 on the right-hand side but
not for the original formula

v2 + w2 = r2 → [v′ = w,w′ = −v]v2 + w2 = r2 (1)

because its postcondition is not of the form e = 0. Yet, the postcondition v2 + w2 −
r2 = 0 of (3) is trivially equivalent to the postcondition v2 + w2 = r2 of (1), just by
rewriting the polynomials on one side, which is a minor change. That is an indication,
that differential invariants can perhaps do more than what proof rule DI=0 already
knows about.

But before we pursue our discovery of what else differential invariants can do for us
any further, let us first understand a very important proof principle.

Note 20 (Proof by generalization). If you do not find a proof of a formula, it can some-
times be easier to prove a more general property from which the one you were looking for
follows.

6Granted, the solutions in this case are not quite so terrifying yet. They are all of the form

v(t) = a cos t+ b sin t, w(t) = b cos t− a sin t

But the special functions sin and cos still fall outside the fragments of arithmetic that are known to be
decidable.
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This principle, which may at first appear paradoxical, turns out to be very helpful.
In fact, we have made ample use of Note 20 when proving properties of loops by in-
duction. The loop invariant that needs to be proved is usually more general than the
particular postcondition one is interested in. The desirable postcondition follows from
having proved a more general inductive invariant.

Recall the monotone generalization rule from Lecture 7 on Control Loops & Invariants:

MR
Γ ` [α]Q,∆ Q ` P

Γ ` [α]P,∆

Instead of proving the desirable postcondition P of α (conclusion), proof rule MR
makes it possible to prove the postcondition Q instead (left premise) and prove that
Q is more general than the desired P (right premise). Generalization MR can help
us prove the original dL formula (1) by first turning the postcondition into the form
of the (provable) (3) and adapting the precondition using a corresponding cut with
v2 + w2 − r2 = 0:

→R

MR

cut,WL,WR

R
∗

v2 + w2 = r2 ` v2 + w2 − r2 = 0
DI=0

R
∗

2vw + 2w(−v)− 0 = 0

[v′:=w][w′:=− v]2vv′ + 2ww′ − 0

v2 + w2 − r2 = 0 ` [v′ = w,w′ = −v]v2 + w2 − r2 = 0

v2 + w2 = r2 ` [v′ = w,w′ = −v]v2 + w2 − r2 = 0
R

∗
v2 + w2 − r2 = 0 ` v2 + w2 = r2

v2 + w2 = r2 ` [v′ = w,w′ = −v]v2 + w2 = r2

v2 + w2 = r2 → [v′ = w,w′ = −v]v2 + w2 = r2

This is a possible way of proving the original (1), but also unnecessarily complicated.
Differential invariants can prove (1) directly once we generalize proof rule DI=0 ap-
propriately. For other purposes, however, it is still important to have the principle of
generalization Note 20 in our repertoire of proof techniques.

11 Example Proofs

Of course, differential invariants are just as helpful for proving properties of other dif-
ferential equations.

Example 11 (Self-crossing). Another example is the following invariant property illus-
trated in Fig. 6:

x2 + x3 − y2 − c = 0→ [x′ = −2y, y′ = −2x− 3x2]x2 + x3 − y2 − c = 0

This dL formula proves easily using DI=0:

∗
R ` 2x(−2y) + 3x2(−2y)− 2y(−2x− 3x2) = 0

[′:=] ` [x′:=− 2y][y′:=− 2x− 3x2]2xx′ + 3x2x′ − 2yy′ − 0 = 0
DI=0x2 + x3 − y2 − c = 0 ` [x′ = −2y, y′ = −2x− 3x2]x2 + x3 − y2 − c = 0
→R ` x2 + x3 − y2 − c = 0→ [x′ = −2y, y′ = −2x− 3x2]x2 + x3 − y2 − c = 0
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Figure 6: Two differential invariants of the indicated dynamics (illustrated in thick red)
for different values of c

See�Self-crossing polynomial invariant�
Example 12 (Motzkin). Another nice example is the Motzkin polynomial, which is an
invariant of the following dynamics (see Fig. 7):

x4y2 + x2y4 − 3x2y2 + 1 = c→
[x′ = 2x4y + 4x2y3 − 6x2y, y′ = −4x3y2 − 2xy4 + 6xy2]x4y2 + x2y4 − 3x2y2 + 1 = c

This dL formula proves easily using DI=0, again after normalizing the equation to
have right-hand side 0:

∗
R ` 0 = 0

[′:=] ` [x′:=2x4y + 4x2y3 − 6x2y][y′:=− 4x3y2 − 2xy4 + 6xy2](x4y2 + x2y4 − 3x2y2 + 1− c)′ = 0

DI=0. . . ` [x′ = 2x4y + 4x2y3 − 6x2y, y′ = −4x3y2 − 2xy4 + 6xy2]x4y2 + x2y4 − 3x2y2 + 1− c = 0

→R ` · · · → [x′ = 2x4y + 4x2y3 − 6x2y, y′ = −4x3y2 − 2xy4 + 6xy2]x4y2 + x2y4 − 3x2y2 + 1− c = 0

This time, the proof step that comes without a label is simple, but requires some space:

(x4y2 + x2y4 − 3x2y2 + 1− c)′ = (4x3y2 + 2xy4 − 6xy2)x′ + (2x4y + 4x2y3 − 6x2y)y′

After substituting in the differential equation, this gives

(4x3y2+2xy4−6xy2)(2x4y+4x2y3−6x2y)+(2x4y+4x2y3−6x2y)(−4x3y2−2xy4+6xy2)
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Figure 7: Two differential invariants of the indicated dynamics is the Motzkin polyno-
mial (illustrated in thick red) for different values of c

which simplifies to 0 after expanding the polynomials, and, thus, leads to the equation
0 = 0, which is easy to prove.

See�Motzkin polynomial invariant� Note that the arithmetic complexity reduces
when hiding unnecessary contexts as shown in Lecture 6 on Truth & Proof.

Thanks to Andrew Sogokon for the nice Example 12.

12 Differential Invariant Terms and Invariant Functions

It is not a coincidence that these examples were provable by differential invariant proof
rule DI=0, because that proof rule can handle arbitrary invariant functions.

Expedition 4 (Lie characterization of invariant functions). The proof rule DI=0

works by deriving the postcondition and substituting the differential equation in:

DI=0
` [x′:=f(x)](e)′ = 0

e = 0 ` [x′ = f(x)]e = 0

There is something quite peculiar about DI=0. Its premise is independent of the
constant term in e. If, for any constant symbol c, the formula e = 0 is replaced by
e− c = 0 in the conclusion, then the premise of DI=0 stays the same, because c′ = 0.
Consequently, if DI=0 proves

e = 0 ` [x′ = f(x)]e = 0
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then it also proves
e− c = 0 ` [x′ = f(x)]e− c = 0 (7)

for any constant c. This observation is the basis for a more general result, which
simultaneously proves all formulas (7) for all c from the premise of DI=0.

On open domains, equational differential invariants are even a necessary and
sufficient characterization of such invariant functions, i.e. functions that are invari-
ant along the dynamics of a system, because, whatever value c that function had in
the initial state, the value will stay the same forever. The equational case of differ-
ential invariants are intimately related to the seminal work by Sophus Lie on what
are now called Lie groups [Lie93, Lie97].

Theorem 13 (Lie [Pla12b]). Let x′ = f(x) be a differential equation system and Q a
domain, i.e., a first-order formula of real arithmetic characterizing a connected open
set. The following proof rule is a sound global equivalence rule, i.e. the conclusion is
valid if and only if the premise is:

DIc
Q ` [x′:=f(x)](e)′ = 0

∀c
(
e = c→ [x′ = f(x) &Q]e = c

)
Despite the power that differential invariant terms offer, challenges lie ahead in prov-

ing properties. Theorem 13 gives an indication where challenges remain.
Example 14 (Generalizing differential invariants). The following dL formula is valid

x2 + y2 = 0→ [x′ = 4y3, y′ = −4x3]x2 + y2 = 0 (8)

but cannot be proved directly using DI=0, because x2 + y2 is no invariant function of
the dynamics. In combination with generalization (MR to change the postcondition
to the equivalent x4 + y4 = 0) and a cut (to change the antecedent to the equivalent
x4 + y4 = 0), however, there is a proof using differential invariants DI=0:

∗
R ` 4x3(4y3) + 4y3(−4x3) = 0

[′:=] ` [x′:=4y3][y′:=− 4x3]4x3x′ + 4y3y′ = 0
DI=0 x4 + y4 = 0 ` [x′ = 4y3, y′ = −4x3]x4 + y4 = 0

cut,MRx2 + y2 = 0 ` [x′ = 4y3, y′ = −4x3]x2 + y2 = 0
→R ` x2 + y2 = 0→ [x′ = 4y3, y′ = −4x3]x2 + y2 = 0

The use of MR leads to another branch x4 + y4 = 0 ` x2 + y2 = 0 that is elided above.
Similarly, cut leads to another branch x2 + y2 = 0 ` x4 + y4 = 0 that is also elided. Both
prove easily by real arithmetic (R).

See�Differential invariant after generalization�
How could this happen? How could the original formula (8) be provable only after

generalizing its postcondition to x4 + y4 = 0 and not before?
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Note 22 (Strengthening induction hypotheses). An important phenomenon we already
encountered in Lecture 7 on Loops & Invariants and other uses of induction is that, some-
times, the only way to prove a property is to strengthen the induction hypothesis. Differen-
tial invariants are no exception. It is worth noting, however, that the inductive structure
in differential invariants includes their differential structure. And, indeed, the deriva-
tives of x4 + y4 = 0 are different and more conducive for an inductive proof than those of
x2 + y2 = 0 even if both have the same set of solutions.

Theorem 13 explains why x2 + y2 = 0 was doomed to fail as a differential invariant
while x4 + y4 = 0 succeeded. All formulas of the form x4 + y4 = c for all c are invari-
ants of the dynamics in (8), because the proof succeeded. But x2 + y2 = c only is an
invariant for the lucky choice c = 0 and only equivalent to x4 + y4 = 0 for this case.

There also is a way of deciding equational invariants of algebraic differential equa-
tions using a higher-order generalization of differential invariants called differential
radical invariants [GP14].

13 Summary

This lecture showed one form of differential invariants: the form where the differential
invariants are terms whose value always stays 0 along all solutions of a differential
equation. The next lecture will use the tools developed in this lecture to investigate
more general forms of differential invariants and more advanced proof principles for
differential equations. They all share the important discovery in today’s lecture: that
properties of differential equations can be proved using the differential equation rather
than its solution.

The most important technical insight of today’s lecture was that even very compli-
cated behavior that is defined by mathematical properties of the semantics can be cap-
tured by purely syntactical proof principles using differentials. The differential lemma
proved that the values of differentials of terms coincide with the analytic derivatives
of the values. The derivation lemma gave us the usual rules for computing derivatives
as equations of differentials. The differential assignment lemma allowed us the intu-
itive operation of substituting differential equations into terms. Proving properties of
differential equations using a mix of these simple proof principles is much more civ-
ilized and effective than working with solutions of differential equations. The proofs
are also computationally easier, because the proof arguments are local and derivatives
even decrease the polynomial degrees.

The principles begun in this lecture have more potential, though, and are not lim-
ited to proving only properties of the rather limited form e = 0. Subsequent lectures
will make use of the results obtained and build on the differential lemma, derivation
lemma, and differential assignment lemma to develop more general proof principles
for differential equations.
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Exercises

Exercise 1. Note 3 explained that (x′ = f(x))∗ is equivalent to x′ = f(x). Does the same
hold for differential equations with evolution domain constraints? Are (x′ = f(x) &Q)∗

and x′ = f(x) &Q equivalent or not? Justify or modify the statement and justify the
variation.

Exercise 2. We argued that dL formulas (1) and (3) are equivalent and have then gone on
to find a proof of (3). Continue this proof of (3) to a proof of (1) using the generalization
rule MR and the cut rule.

Exercise 3. Prove the other cases of Lemma 5 where e is of the form e− k or e · k or e/k.

Exercise 4. What happens in the proof of Lemma 10 if there is no solution ϕ? Show that
this is not a counterexample to proof rule DI=0, but that the rule is sound in that case.

Exercise 5. Carry out the polynomial computations needed to prove Example 12 using
proof rule DI=0.

Exercise 6. Prove the following dL formula using differential invariants:

xy = c→ [x′ = −x, y′ = y, z′ = −z]xy = c

Exercise 7. Prove the following dL formula using differential invariants:

x2 + 4xy − 2y3 − y = 1→ [x′ = −1 + 4x− 6y2, y′ = −2x− 4y]x2 + 4xy − 2y3 − y = 1

Exercise 8. Prove the following dL formula using differential invariants:

x2 +
x3

3
= c→ [x′ = y2, y′ = −2x]x2 +

x3

3
= c

Exercise 9 (Hénon-Heiles). Prove a differential invariant of a Hénon-Heiles system:

1

2
(u2 + v2 +Ax2 +By2) + x2y − 1

3
εy3 = 0→

[x′ = u, y′ = v, u′ = −Ax− 2xy, v′ = −By + εy2 − x2]1
2

(u2+v2+Ax2+By2)+x2y−1

3
εy3 = 0
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[Lie97] Sophus Lie. Über Integralinvarianten und ihre Verwertung für die Theorie
der Differentialgleichungen. Leipz. Berichte, 49:369–410, 1897.
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