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Abstract

A gravitational slingshot is a maneuver to save fuel by using the gravity of a planet to accelerate or
decelerate a spacecraft. Due to the large distances and high speeds involved, slingshots require precise
accuracy to accomplish — the slightest mistake could cause the whole mission to fail. Therefore, we have
developed a cyber-physical system to model the physics and prove the safety and efficiency of powered
and unpowered gravitational slingshots. We present our findings and proof in this paper.

1 Introduction

A gravitational slingshot is a maneuver performed to increase or decrease the speed of a spacecraft by
simply approaching planetary bodies. A spacecraft’s usefulness and maneuverability is basically tied to the
amount of fuel it can carry, and the more fuel a spacecraft holds, the more fuel it needs to carry that fuel
into orbit. Therefore, gravitational slingshots are a very appealing way to save mass, and therefore money,
on deep-space missions since these maneuvers do not require any fuel. As missions conducted by national
and private space programs become more frequent and ambitious, the need for these precise maneuvers will
increase. Therefore, we have created a cyber-physical system that models the physics of a gravitational
slingshot for a spacecraft approaching a planet.

In the ”Approach” section of this paper, we give a brief overview of the physics involved with orbits and
gravitational slingshots.

In the ”Models and Properties” section of this paper, we describe what assumptions and simplifications we
made to model these astrophysics in a way for us to prove our desired properties with KeYmaeraX.

2 Approach

This section describes the physics of gravitational slingshots, including concepts like orbital trajectory, escape
velocity, and gravitational energy transfers.

2.1 Astrodynamics

Consider a spacecraft positioned 300 kilometers above the surface of Earth with no velocity. This spacecraft,
since it’s not moving, would begin to fall downward towards the surface of the planet. If the spacecraft were
given a small forward motion, say ten meters per second, it would still land (or crash) on the surface of the
planet, but it will do so some amount beyond the point where it would wind up if it had started completely
stationary — call this distance d. The higher the initial speed of the spacecraft, the larger d becomes.
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Now, consider what happens when d is larger than the radius of the planet. When this happens, the
spacecraft will continue to fall towards the planet forever (unless outside forces act upon it). This perpetual
path of motion is an orbit. An orbit is defined by several parameters, but the only parameter important to
us is the semi-major axis. An orbit’s semi-major axis is half the maximum diameter of the orbit’s ellipse.
Because the orbits we’ll model in slingshot.kyx will be perfectly circular, we’ll refer to the orbit’s radius
rorbit instead of semi-major axis aorbit.
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The linear velocity of the spacecraft vsc needed to outrun the planet’s gravity to attain a circular orbit can
be calculated from the following formula (Orbital Mechanics, n.d.):

vsc =

√
GM

(
2

rsc
− 1

rorbit

)
G is Isaac Newton’s universal gravitation constant, rsc is the distance between the spacecraft and the planet,
and M is the mass of the orbited planet. Because rsc is always equal to rorbit for circular orbits, we can
simplify the above equation to Equation 1:

vsc =

√
GM

rorbit
(1)

If a spacecraft is to break out of orbit with a planet, it must reach a speed where it can totally outrun
the gravity of the nearby planet. This speed is called escape velocity. It is calculated with the following
formula:

ve =

√
2GM

rorbit
(2)

2.2 Gravitational Slingshot

A planet’s gravity can be used to redirect or even speed up a spacecraft.

By approaching a planetary body from an angle other than the direction the body is moving, a change in
velocity occurs due to an energy transfer effected by gravitational fields. Gravitational slingshots are very
useful because they can change velocity without requiring any fuel.

In the simplest case, a craft approaches a planet at 180◦ difference between their velocities. The craft can
enter an orbit around the planet, gain some speed and exit the orbit with a higher velocity than when it
entered. Specifically, it will leave the planet with it’s original velocity plus the planet’s velocity relative to
the planet (thus resulting in a velocity of twice the planet’s plus original). This simple case is illustrated
below.

Fig 1: Gravitational Slingshot Speed Changes (Gravity assist , n.d.)

1Would you like to know more? Read about orbits in the rocket science primer found in Appendix C.
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In a more general case, we can observe a change in velocity based off the angle between the incoming and
outgoing trajectories. This obeys the following physical formula:

∆v = 2|vplanet|cos(θ)

These values are all from the planet’s perspective. As we can see, a sharper angle yields a bigger boost up to
the 180◦ mark. Gravitational assists are used to give the craft extra kinetic energy to reach it’s destination.
This was done using partial slingshots with the Voyager probes sent to the outer Solar System.

Fig 2: Voyager Trajectories (Voyager program, n.d.)

2.3 Powered Slingshot

In the 2014 Christopher Nolan science-fiction film Interstellar, the crew of the Endurance was able to travel
from Dr. Mann’s Planet to Edmund’s Planet by performing a powered gravitational slingshot or Oberth
maneuver around the black hole Gargantua.

A powered gravitational slingshot is when a spacecraft runs its engines while encountering a planet. Running
engines not only increases the velocity of a spacecraft, but also burns fuel, which decreases mass. Therefore,
a powered gravitational slingshot can significantly increase the effectiveness of a flyby.

If the spacecraft begins the burn when travelling at vsc and burns the engines enough to change its velocity
∆v, then the change in orbital energy is:

∆Eorbit = v∆v +
1

2
(∆v)2

The closer the spacecraft is to the body, the faster its orbital velocity is, and therefore, the burn becomes
more effective (Oberth effect , n.d.).
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3 Models and Properties

Our model contains a spacecraft moving around the target planet while behaving according to orbital physics.
The model is a hybrid system that combines discrete decisions with continuous evolutions of physics. This
model simplifies live systems in various ways detailed in the below ’Assumptions and Limitations’ section.
Although this model simplifies various properties, we believe it creates a representative system that could
be expanded to model all appropriate physics with the right tools.

There are 3 main components to our model: control assignments, differential equations, and loop invariants
and safety/efficiency conditions.

• Within control assignments, the thrust of the craft is assigned within various scope considerations.
After the thrust is assigned, the differential equations are executed.

• The differential equations include those for accessing sine and cosine functions, changing velocity based
on thrust and cosine, and changing theta (the current angle traveled) based on our current velocity.

• There are 2 main conditions that should remain true after each execution of the loop (the loop in-
variants). The first states that if the craft has not reached the desired exit angle (slingtheta), our
velocity should be smaller than escape velocity. This is the crux of what we are proving with
our model. The second is that the craft orbit radius should be sufficiently above the surface of the
planet (150km is used in our model).

The figure below shows how the craft enters the gravitational influence of the planet, travels around it until
hitting slingtheta where it exits the gravitational influence with a velocity increase courtesy of the planet.

Fig 3: Slingshot Angles Diagram

This next figure shows how the orbit radius and planet radius are related.
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Fig 4: Slingshot Orbit Diagram

3.1 Design Choices

3.1.1 The Spacecraft

In our model, we use polar coordinates to express the position of the spacecraft.

orbitr is the distance between the spacecraft and the planet’s center of mass in meters.

We define theta (or θ) to be the current angle between traveled since entering the slingshot at θ = 0. The
planet is assumed to be moving opposite the direction of entry into the slingshot (this achieves maximum
slingshot effect). The spacecraft exits the slingshot at the exit angle, dubbed slingtheta. The differential
equation for θ follows the circular motion equations for angular velocity. Just as a distance differential would
be velocity, the θ differential equation involves angular velocity. Angular velocity is related to both linear
velocity and radius of the referenced circle, orbitr (Circular motion, n.d.).

v = ω ∗ r

ω =
v

orbitr

θ′ =
v

orbitr

Thus, as the craft moves faster, it completes the angle theta quicker and in turn the slingshot quicker.

3.1.2 The Planet

Planets orbiting stars have motion too. However, in our model, we decided to center our frame at the planet,
effectively ignoring the planet’s position. This allows us to simplify the model but lacks the descriptiveness
the full physical model would entail. The planet that the craft slingshots around has radius orbitr (measured
in kilometers). If orbitr is ever less than planetr, then our spacecraft has crashed onto the surface of the
planet. Because most planets in the Solar System have atmospheres, we require the following safety condition
to hold throughout the maneuver:

planetr + hatmosphere ≤ orbitr (3)

In our model, hatmosphere is equal to 150 kilometers.
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3.2 Thrust Control Assignment

Thrust is assigned non-deterministically, meaning thrust could be assigned to be anything that satisfies the
test following that assignment. This is important because although thrust should not be fixed to a single
value, it needs to fall within some physical constraints. In addition, we must choose our thrust such that
our scaling constant, x, is valid. The use and definition of this scaling constant is discussed in section 3.3.

3.2.1 Physics of Thrusting

We do not want the thrust of the craft to cause it to escape orbit. Therefore, we want our thrust to be
less than our escape velocity minus current velocity. Note that thrust is represented in units of acceleration
(kilometers per square second), not units of force.

thrust <

(
2GM

rorbit

)1/2

− v

=⇒ thrust+ v <

(
2GM

rorbit

)1/2

=⇒ (thrust+ v)2 <

(
2GM

rorbit

)
This final condition becomes part of our thrust test to ensure our thrust is not too powerful to escape orbit.
We’ve consciously chosen to not model when the test fails. The test is a statement that we’ve chosen not to
model space physics outside of orbit. All of our differential equations rely on being in the gravity influence
of the planet. In order to model when the test fails (that is, thrust puts us over escape velocity), we would
need an entirely different set of physics that would be hard or impossible to model in KeYmaeraX.

3.3 Scale Factor Considerations

To use cosine and sine within KeYmaeraX, we utilize the concept of differential ghosts. Two differential
equations are of interest:

c’ = -s

s’ = c

As the differential equations are executed repeatedly, c becomes a cosine wave and s becomes a sine wave.
This is important as we look back to how velocity is impacted by the slingshot maneuver.

∆V = 2 ∗ planetv ∗ cos(θ)

Although, as our system evolves, it produces cos(t), not cos(θ). Ideally, we would manipulate the period
of cosine to fit our needs, however, with the current version of KeYmaeraX, this is not possible. As a
simplification, we chose to scale the other components of velocity (i.e. from thrust) to bring velocity in line
with our use of cos(t). To explain this more clearly, we can examine the velocity differential equation from
our model:

v′ = x ∗ thrust+ c (4)

In this equation, c is cosine and thrust is in terms of acceleration (km/s2) as noted above. The equation is
derived from the idea that change in velocity should equal thrust plus deltaV due to the gravity slingshot:

v′ = thrust+ 2 ∗ planetv ∗ cos(θ)
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We’ve chosen to instead use cos(t) (or ’c’) in place of 2(planetv ∗ cos(θ)). To compensate, we’ve scaled
velocity to simulate stretching the period of cosine and multiplying by the various constants. In turn, we’ve
limited the domain of c to be −1 < c ≤ 0. This will prevent our cosine function from completing the wave
(which would correspond to traveling 360deg around the planet. The maximum slingshot angle is 180 deg
which is what we’ve limited the cosine wave to.

Since we’ve scaled thrust by x for the above reasons, we need to mathematically define x. Clearly it must
be in terms of c, the cosine, and thrust the control assignment. In fact, since v must be greater than 0, we
can analyze Equation 4 as follows:

0 < x ∗ thrust+ c

=⇒ − c < x ∗ thrust
=⇒ c > x ∗ thrust

=⇒ x <
c

thrust

We use both this final property and the square of that property (for negation reasons) in the test for thrust
to ensure thrust satisfies those properties. This is inherently better than having these conditions in the
domain constraint since it is more appropriate to chose a thrust that satisfies our proof properties than to
just assume the domain excludes thrusts that don’t.

3.4 Proof Techniques

In the proof, we use a loop invariant to show which properties will be true after each iteration of the loop.
The properties of the loop invariant are:

1. (theta ≤ slingtheta) =⇒ (v2 ≤ ((2 ∗G ∗ planetm)/orbitr))

2. orbitr > 0

3. thrust > 0

4. c2 + s2 = 1

5. planetr + 150 ≤ orbitr

The final safety condition is the same as the first loop invariant. This means that proving the loop invariant
will directly imply the post conditions. The loop invariant conditions follow from the control decision tests
(for thrust) and the properties of the continuous evolution of the hybrid program.

Invariants 2 and 5 hold by the precondition and the fact that they are constant. Invariant 3 holds by the
precondition and the test for thrust ensuring that it is positive. Invariant 4 is true by the evolution properties
of cosine and sine. Invariant 1 is true by the thrust test and preconditions. The most crucial part of the proof
is the differential invariant cut. This cut in the following properties: c2 + s2 = 1 & planetr+ 150 ≤ orbitr &
v2 ≤ (2 ∗G ∗ planetm)/orbitr & thrust > 0. Thus, we’ve been able to prove that while we haven’t reached
our desired slingshot angle, we are still within orbit (our primary proof goal).

As theta increases, our velocity increases due to thrust or simply the gravity of the slingshot itself. This in
turn causes theta to increase even more and the slingshot is underway. It is very important that the proof
guarantee that when the craft hasn’t exited the slingshot, it is going slow enough to maintain it’s position
within the gravity influence of the planet. A future (stronger) proof would state that precisely when theta
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equals slingtheta, we’ve escaped the gravity slingshot and our speed has been incremented twice that of the
planet’s velocity plus our initial velocity plus any velocity gained from thrust. It’s important to note that
this is a great first step and is still meaningful for modeling gravitational slingshots.

Note: The described hybrid system and proof can be found in files slingshot.kyx and slingshot.kyt.

3.5 Assumptions and Limitations

In order to come to a middle-ground on a system so complex that we couldn’t prove it and one so simple
it’s not realistic, we made some assumptions and compromises.

First, we abstracted certain properties of our spacecraft away. We assumed that its engines were capable of
producing any speed needed. Furthermore, we assumed that the engines had unlimited fuel, meaning that
not only were they able to run forever, but also never decreased the mass of the spacecraft.

Secondly, we had initially wanted to have orbitr change with thrust. When burning your engines in orbit,
if you thrust straight forward (in the direction of travel), your orbit radius will get larger. However, you can
compensate for this by thrusting towards the planet which reduces your orbit radius. It became very hard
to prove key points about velocity in our model when the orbit radius was also changing. This was due to
the escape velocity equation:

v2 ≤ 2 ∗G ∗M
rorbit

When neither v nor orbitr were constant, the proof became extraordinarily more complex. We chose to
make a simplification: thrust would assumed to be applied in a direction that would simultaneously propel
forward and inward (towards the planet) so as to keep orbitr constant. Although this often is not fuel
efficient in real space travel, it is not impossible to do. Thus, we believe it is a fair simplification to our
model.

Thirdly, working with cosines creates scenarios that are hard to prove. As they are not in first-order real
arithmetic, KeYmaeraX provides less help in solving them. We required the use of cosine in our velocity
differential since the gravity slingshot mechanics require them. We originally tried to eliminate this cosine
term by digging into where the slingshot equation, ∆V = 2 ∗ planetv ∗ cos(θ), came from. Unfortunately,
it has its roots in conservation of energy equations. Since these equations look at the energy of the system
before the event (slingshot) and after, there are no useful continuous evolution equations we can use for our
differential equations. So, we had to use the cosine function. To do this, we took tricks from previous labs
where circular dynamics were in play. This afforded us the use of cos(t). We needed cos(theta), so we
had to apply some tricky scaling to other portions of v′ to bring everything to a single scale (that of cos(t).
This is detailed in the ’Scale Factor Considerations’ section above.

Lastly, we did not utilize the full set of physical dynamics that we originally wanted to. Ideally, we would
have had the planet move in an orbit-like fashion and the incoming craft would be pulled into orbit as it
neared the planet’s gravitational influence. Instead, we went with a fixed-frame approach where the center
of the planet is at coordinates (0, 0). Although this is a significant simplification, it’s still realistic. When
analyzing a physical model, your viewpoint can be any point as long as you are consistent (which we believe
we were). Having a more complete physical model of space would have made our model more realistic but
harder to prove properties about.
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4 Conclusion

With our model and proof, we have shown that while performing a gravitational slingshot, a spacecraft
can control its thrust and remain inside the gravity influence of a planet until the ejection angle. Our goal
was to show that we could perform such a maneuver with a simulation using accurate physical laws. What
we achieved with the development of our model and proof is a first step to creating more complicated and
accurate models and proofs that would allow national space agencies and private organizations to confidently
execute these precise maneuvers.

A more complete model that involves factors such as change in orbiting radius and acceleration due to
spacecraft mass reduction would be a subject for future work that could have exciting and meaningful
implications for both cyber-physical systems and space travel.

5 Summary of Deliverables

The computer programs and proof created for this project are found in the appendixes of this document:

• Appendix A includes the full KeYmaeraX Model, which is also found in slingshot.kyx .

• The proof for this model can be found in Appendix B or in slingshot.kyt.

Equal work was performed by both project members.

6 Related Work

Space exploration has been entering new territory in the last 10 years. More and more commercial and
private launches have occurred and stirred up interest in what to explore next. Journeys to Mars and
beyond require a very precious resource in space: fuel. The hardest part about sending weight beyond our
atmosphere is having enough fuel to do so. Maneuvers are planned to be the most efficient possible. But,
there is a technique that can help reduce the fuel weight or make the fuel go further: gravity. Using the
gravity of a comparatively giant body (like a planet) is like getting free fuel.

Even though the planets don’t align very often to allow a massive chain gravitational slingshot executed by
the Voyager probe, there are often smaller chances to capitalize on the planetary alignments for a boost in
deltaV. Utilizing the Moon as a gravitational slingshot to get to Mars will be a key part in transporting
people and supplies to the red planet. This topic is very important to future orbital techniques and will
without a doubt be discussed when transporting any quantity of bulk beyond our atmosphere.
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8 Appendix A: KeYmaeraX Model

/*

AndrewID(s): amoran, jmannjr

KeYmaeraX version: 4.2b1

Proves with bundled tactic: Y

*/

Functions.

R G. /* Gravitational constant: G=6.673 x 10^-11 N*(m^2)*(kg^2) */

R slingtheta. /* Desired slingshot arc angle */

R vi. /* Initial velocity */

R u. /* Standard Gravitational Parameter */

R orbitr. /* Distance from craft to center of planet */

R planetm. /* Planet’s mass */

R planetr. /* Planet’s radius */

End.

ProgramVariables.

R v. /* Craft’s linear velocity */

R thrust. /* Craft’s thrust */

R theta. /* current completed arc angle */

R t. /* time */

R c. /* cosine */

R s. /* sine */

R x. /* scale */

End.

Problem.

(

/* Initial Conditions */

v >= 0 &

orbitr > 0 &

planetm > 0 &

thrust > 0 &

/* Current completed angle (theta) starts at 0 and is less than desired angle */

theta = 0 &

theta < slingtheta &

/* Enter at less than escape velocity */

v^2 <= ((2*G*planetm)/orbitr) &

/* Orbit must be sufficiently above the ground (150km) */

planetr + 150 <= orbitr &

/* Cosine and Sine setup */

c^2 + s^2 = 1 &

c = 0 &
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s = 1 &

/* Scaling factor setup */

x^2 <= (c^2/thrust^2) &

x <= c/thrust

)

->

[

{

{

/* Control Assignments */

/* Thrust is set non-deterministically for user control */

/* Thrust is less than escape velocity minus current velocity */

/* Thrust is chosen so that the scaling factors are satisfied */

thrust :=*; ?((thrust+v)^2 < ((2*G*planetm)/orbitr) & thrust > 0

& x < (c/thrust) & x^2 <= (c^2/thrust^2));

}

{

/* cosine and sine functions */

c’ = -s,

s’ = c,

/* Velocity changes by scaled thrust amount plus gravity assist (cosine). */

v’ = x*thrust + c,

/* Angle changes by angular velocity which is v/orbitr */

theta’ = v/orbitr,

/* Non-changing variables */

planetr’ = 0,

orbitr’ = 0,

thrust’ = 0,

slingtheta’ = 0,

planetm’ = 0,

G’ = 0,

/* Increment time */

t’ = 1

/* Make sure we never go backwards */

& v >= 0

/* Make sure cosine stays between 0 and -1 to prevent a looping orbit. */

& c > -1

& c <= 0

/* Make sure orbitr is positive so that we won’t crash (or divide by 0) */

& orbitr > 0

}

}*@invariant(
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/* While we haven’t reached our slingshot desired angle,

* we are going less than escape velocity

*/

((theta <= slingtheta) -> (v^2 <= ((2*G*planetm)/orbitr))) &

/* To prevent division by 0, make sure orbitr and thrust are always positive */

orbitr > 0 &

thrust > 0 &

/* cosine plus sine should always equal 1 */

c^2 + s^2 = 1 &

/* Inside planet gravity */

planetr + 150 <= orbitr

)

]((theta <= slingtheta) -> (v^2 <= ((2*G*planetm)/orbitr)))

End.

9 Appendix B: KeYmaeraX Proof

implyR(1) & loop({‘(theta<=slingtheta->v^2<=2*G*planetm/orbitr)&orbitr>0&thrust>0&

c^2+s^2=1&planetr+150<=orbitr‘},1) <(

QE,

QE,

composeb(1) & composeb(1) & randomb(1) & allR(1) & testb(1) & implyR(1) &

diffInvariant({‘c^2 + s^2 = 1 & planetr + 150 <= orbitr & v^2 <= (2*G*planetm)/orbitr &

thrust > 0‘}, 1) & diffWeaken(1) & implyR(1) & andR(1) <(

QE,

andR(1) <(

QE,

andR(1) <(

QE,

andR(1) <(

QE,

QE

)

)

)

)

)
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10 Appendix C: Rocket Science Primer

10.1 Orbits

The intuitive explanation of how orbits work can be found in the ”Astrodynamics” section of the main
document.

Orbits are defined by the following parameters:

• The eccentricity e describes the shape of the orbit (how elliptical or how hyperbolic it is).

• The semi-major axis a is the average of the orbit’s highest radius (apogee) and orbit’s lowest radius
(perigee).

There are three types of orbits, depending on the eccentricity e:

1. A circular orbit occurs when e = 0.

2. An elliptic orbit occurs when 0 < e < 1.

3. An escape trajectory occurs when e > 1. When e = 1, the shape of the orbital path is parabolic.
When e > 1, the shape of the orbit is hyperbolic.

10.2 The Rocket Equation

Force applied to an object is equal to an acceleration times the object’s mass. The more massive the object
is, the more force one must apply to accelerate it. The less massive the object is, the less force one must
apply to accelerate it.

Fuel has mass. Therefore, as fuel is burned, engines become more effective. Because fuel is limited, how
much the rocket can speed up or slow down is finite. The capacity for a spacecraft to change its velocity is
referred to as a delta-v budget and is given by the Tsiolkovsky Rocket Equation:

∆v = ve ln

(
m0

mf

)
...where:

• ve is the engine’s exhaust velocity.

• m0 is the wet mass of the spacecraft (the mass when full of fuel).

• mf is the dry mass of the spacecraft (the mass when empty of fuel).

10.3 Orbital Transfers

An object in orbit stays in orbit, unless an outside force acts upon it. Due to the relationship between orbital
speed and altitude, it stands that changing the speed of the orbit will also change the introduction of energy
into the system.
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If the spacecraft is orbiting at distance r1 at velocity v1 and wishes to reach an altitude of r2, then the
desired change in velocity is:

∆v =

√
2

(
µ

r1
− µ

r1 + r2

)
− v1

(FAA, n.d.)
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