NASCAR Refueling Challenges: The Strategy Behind a Pit Stop

Connie Wang
Outline

• Background
• Model Highlights
• Safety and Efficiency
• Proof Highlights
• Conclusion
Background

• NASCAR races
 • 36 total races
 • 34 oval tracks
 • .526 – 2.66 miles long
 • 188 – 500 laps

• Refueling rules
 • No sensors to monitor exact gas level
 • 24 gallons per pit stop
Model Highlights

• Controls
 • if fuel > fc * v * T; continue;
 • if fuel ≤ fc * v * T; fuel = max;

• ODEs
 • \(x' = v * dx \)
 • \(y' = v * dy \)
 • \(dx' = -dy \)
 • \(dy' = dx \)
 • \(fuel' = -fc * v \) (linear)
 • \(fuel' = -(fc * v * t + c) \) (quadratic)
Safety and Efficiency

• Stay on track
 • $x^2 + y^2 = rad^2$

• Sufficient fuel
 • $fuel \geq 0$

• Do not stop unnecessarily
 • \textit{if} $fuel > fc \times v \times T$; \textit{continue};
Proof Highlights (on track)

• Loop invariants
 • $x^2 + y^2 = rad^2$
 • $dx^2 + dy^2 = 1$
 • $dx \cdot v = -y$
 • $dy \cdot v = x$
 • $rad \geq 0$

• Differential Cuts
 • $dx \cdot v = -y$
 • $dy \cdot v = x$
Proof Highlights (sufficient fuel)

• Loop Invariants
 • $fc > 0$
 • $T > 0$
 • $fuelinit > fc \times v \times T$ (linear)
 • $fuelinit > fc \times v \times T^2 + c \times T$ (quadratic)
 • $max > vc \times v \times T$

• Differential Cuts
 • $fuel = fuelinit - fc \times v \times T$ (linear)
 • $fuel = fuelinit - (fc \times v \times T^2 + c \times T)$ (quadratic)
Conclusion

• Can CPS models help NASCAR teams?
 • Proof helps devise strategies
 • Use of algorithmic CPS controllers

• Future work
 • Acceleration/deceleration
 • Time constraints
 • Multiple cars
 • Tire degradation
Thanks!

The Strategy Behind a Pit Stop