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Abstract—We describe the experience with courses that teach
the Foundations of Cyber-physical Systems (CPS) and methods for
ensuring the correctness of CPS designs. CPSs combine cyber
effects (computation & communication) with physical effects
(motion or other physical processes). CPS represent a paradigm
shift that transcends the separation of computer science, which
traditionally focuses on computation & communication isolated
from the physical world, versus engineering and physics, which
traditionally focus more on physical effects than on software
intensive solutions. CPS are a unique challenge and unique
opportunity for education. They challenge, because of their
mathematical demand and interdisciplinary nature. CPS are an
opportunity, because students learn important insights about the
interface with other areas and develop a deeper understanding
about the principles that make cyber and physical aspects work
together. The course addresses the challenges of designing CPS
that people can bet their lives on by emphasizing CPS contracts.

I. INTRODUCTION

Cyber-physical systems (CPS) are systems combining cyber
effects (computation and/or communication) with physical
effects (motion or other physical processes). Cars [1], aircraft
[2], and robots [3] lead to prototypical examples, because they
move physically in space and how they move is determined
by computerized control algorithms that may even exchange
information with their environment. CPS are a general solution
concept, however, which extends to many other areas, includ-
ing power plants [4], the whole power grid [5], or medical CPS
[6]. Since CPS perform critical tasks [7], the most important
question about them has been aptly phrased by Jeannette Wing:

How can we provide people with cyber-physical
systems they can bet their lives on?

To realize the importance of this question, the reader is
advised to imagine him or herself taking a ride in a self-driving
car and wondering whether it would be safe to read a book or
take a nap instead of watching out for how the autonomous
car deals with the oncoming traffic.

In this paper, we describe our view on how CPS education
can help reach this goal. This view has crystallized based
on our experience with two different versions of a course
that teaches CPS with an emphasis on foundations and meth-
ods for ensuring the correctness of CPS designs. Both have
been offered in the Computer Science Department and the
Electrical and Computer Engineering Department at Carnegie
Mellon University, with about equal participation from both
backgrounds. Our view is also based on the experience with
mentoring around two dozen undergraduate, master, Ph.D.
students, postdocs, or domain experts in the field. This view
is, furthermore, based on the ongoing design of a new CPS

course exclusively for undergraduates,1, about which it is too
early to report on results, however.

This course will likely become easier to teach in succession
with programming courses that focus on contracts as the one
developed at CMU [8]. But since that course has only recently
been introduced into the CMU curriculum, we have not yet had
the opportunity of observing the result of such a succession.

II. CPS FOUNDATIONS EDUCATION

With CPS principles and technologies becoming increas-
ingly important in a growing number of areas, the only hope
for a successful and enduring CPS education that is true to
the CPS ideals of an overarching science is proper attention to
the CPS foundations. Solid foundations are not just the part of
CPS with the most enduring impact in an ever-changing world
of CPS applications during the student’s careers. Foundations
are also required to master the formidable challenges that
CPSs provide. The education in most science and engineering
subjects starts with foundations. CPS are not an exception. It is
easier to grasp the specifics of a particular new CPS application
based on a solid understanding of the foundations of CPS.

At the same time, a significant fraction of the CPS educa-
tion depends on developing the right intuition for the relevant
behaviors of systems, for their critical properties, and for an
adequate assessment of the difficulties involved in ensuring that
models of the system will perform as expected. Developing this
intuition would be difficult, if not impossible, without concrete
CPS applications. One way of ensuring a CPS view across
application domains would be to study multiple application
domains in depth, e.g., during subsequent lectures. In our ex-
perience, however, a deeper appreciation for the commonalities
across CPS can be obtained if part of the learning objective
in homework and lab assignments or projects is this study of
application domains that first look different on the outset, only
to uncover their closely related mathematical core as part of
the assignment or project. Since many CPS applications have a
component of equations of motion from Newtonian mechanics,
commonalities are inevitable to be found during the study.

The most challenging aspects of CPS education are:

1) The high demand for mathematical sophistication cutting
across numerous areas of mathematics, which are tradi-
tionally less seamlessly integrated;

2) The diversity of backgrounds from people interested in
CPS, which directly reflects the large number of disci-
plines from which CPS draws ideas and relates to;

1Course material available at http://symbolaris.com/course/fcps13.html
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3) The intellectual challenges of understanding and identify-
ing the complex interactions that different aspects of the
CPS design have on its functioning;

4) The difficulties with making CPS designs safe, which
is still a grand challenge in research, but whose current
solutions have to transition into widespread practice re-
gardless, because today’s system designs need to be made
safe today and not just patched after a problem has already
occurred in practice, which might harm people.

We argue that challenge 1 is best addressed by a very
gradual introduction of the most important principles and
intuitions of the required mathematical background alongside
a growing set of practicing challenges with pointers for self-
study on demand. Challenge 2 is a challenge for the instructor,
but one that turns into a welcome opportunity, because it is
part of the special learning experience of CPS to have a cross-
disciplinary audience in which members from each discipline
bring different solutions and different ways of thinking to
lectures, recitations, and labs. This phenomenon, plus possible
collaboration on projects across disciplines, gives students an
appreciation for the values and styles of other disciplines
and enables them to communicate more effectively across
disciplines, which is one of the challenges in CPS practice.
Challenge 2 is alleviated somewhat by focusing on principles
and intuition for the mathematical background material and
referring to on-demand background reading material, e.g., [9].
According to informal feedback from the students, differences
based on prior background tend to deteriorate after a few lec-
tures, where reasonably balanced challenges arise. Challenge
3 is addressed by giving an overview of each of the most
characteristic features of CPS and how they can be modelled
and analyzed over the course of the semester. We reserve an in-
depth study for a few aspects, mostly the interaction of discrete
and continuous phenomena [7]. But it is crucial that CPS
students are exposed to all characteristic fundamental features
in order to be prepared and sensitive to the specific issues
of each phenomenon, once they encounter them in practice.
Challenge 3 is simplified substantially by the multi-dynamical
systems view underlying our approach [10]–[12]. Challenge 4
is significant, but central to the success of CPS. The apprecia-
tion for safety technologies and correctness methods for CPS
is easy to convey with the perspective of having to trust our
lives to a CPS and in light of a number of infamous historical
examples. The understanding how to approach correctness of
CPS designs can, however, be taught as well. Towards the
end of our courses, for example, most students have been
able to formally verify interesting CPS. A large number of
the students have come up with impressive verification results
in final projects, most of which were entirely self-defined,
e.g., about distributed elevator controls, (simplified) TCAS-
type aircraft collision avoidance maneuvers, or CICAS-type
car controllers for intersections, or statistical sampling based
verification procedures.

While there is unbounded potential for getting any other
part of a CPS implementation wrong, the most devastating
consequences often come from oversights in the high-level
system or control design. This, along with the fact that the most
comprehensive overview of CPS phenomena can be conveyed
starting from those levels, leads us to focus CPS education
efforts primarily on CPS control designs in this course.

III. LEARNING OBJECTIVES

There are many interrelated learning objectives for this 15-
week course. In analogy to programming language education
[8], we organize the objectives along the dimensions: modeling
and control, computational thinking [13], and CPS skills.

A. Modeling and Control

In the area of modeling and control, successful students will

• understand the core principles behind CPS. They
are important for effectively recognizing opportunities
how the integration of cyber and physical aspects can
solve problems that no part could solve alone.

• develop models and controls. In order to understand,
design, and analyze CPS, it is important to be able to
develop models for the various relevant aspects of a
CPS design and to design controllers for the intended
functionalities based on appropriate specifications.

• identify the relevant dynamical aspects. It is impor-
tant to be able to identify which types of phenomena
of a CPS have a relevant influence for the purpose
of understanding a particular property of a particular
system. These allow us to judge, for example, where
it is important to manage stochastic effects, or where
a nondeterministic model is more adequate.

B. Computational Thinking

In the area of computational thinking, successful students
should be able to

• identify specifications and critical properties. In
order to develop correct CPS designs, it is important
to identify what “correctness” means, how a design
may fail to be correct, and how to make it correct.

• understand abstraction and system architectures.
They are essential for the modular organization of
CPS, and for the ability to reason about separate parts
of a system independently. Because of the overwhelm-
ing practical challenges, abstraction is more critical
than in software design. A formal treatment of CPS
architectures [14] is beyond the scope of this course.

• express pre- and post-conditions and invariants for
CPS models. Pre- and post-conditions allow us to
capture under which circumstance it is safe to run
a CPS or a part of a CPS design, and what safety
entails. They allow us to achieve what abstraction and
hierarchies achieve at the system level: decompose
correctness of a full CPS into correctness of smaller
pieces. Invariants achieve a similar decomposition by
establishing which relations of variables remain true
no matter how long and how often the CPS runs.

• use design-by-invariant. In order to develop correct
CPS designs, invariants are an important structuring
principle guiding what the control has to maintain in
order to preserve the invariant. This guidance simpli-
fies the design process, because it applies locally at
the level of individual localized control decisions that
preserve invariants without explicitly having to take
system-level closed-loop properties into account.

• reason rigorously about CPS models. Reasoning is
required to ensure correctness and find flaws in a CPS
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design. Both informal reasoning and formal reasoning
in a logic are important objectives for being able to
establish correctness.

• verify CPS models of appropriate scale. Formal
verification helps finding and fixing bugs and proving
correctness, which is helpful in all stages of the CPS
design. Verification is not only critical but, given the
right abstractions, surprisingly feasible in high level
CPS control designs.

C. CPS Skills

In the area of CPS skills, successful students will be able to

• understand the semantics of a CPS model. What
may be easy in a classical isolated program becomes
very demanding when that program interfaces with
effects in the physical world. A full treatment of, e.g.,
the semantics of stochastic CPS effects is better placed
in a specialized course. But understanding the meaning
of a CPS model with fewer dynamical aspects and
know how it will execute is fundamental to reasoning.

• develop an intuition for operational effects. Intuition
for the joint operational effect of a CPS is crucial, e.g.,
about what the effect of a particular discrete computer
control algorithm on a continuous plant will be.

• use higher-level model-predictive control. The de-
sign of many CPS can be guided systematically by
adopting a higher-level model-predictive control style
in which verification and design go hand in hand [12].
This successively replaces constraints on the future
evolution of the system by conditions on the current
state that ensure them.

IV. CPS PROGRAM MODELS

We are convinced that CPS design is inseparably linked
to computational thinking. Whenever the CPS design needs to
be correct, it is hard to achieve that goal without a sufficient
understanding of the relevant safety conditions and careful
attention to the invariants maintained during the system run.

A. Hybrid Programs

The cornerstone of our course design are hybrid programs
(HPs) [9]–[12], which capture relevant dynamical aspects of
CPS in a simple programming language with a simple seman-
tics. One important aspect of HPs is that they directly allow the
programmer to refer to real-valued variables representing real
quantities and specify their dynamics as part of the HP. The
control structure of HPs supports simple regular expression
style operators for nondeterministic control as in Kleene alge-
bras [15]. HPs support sequential composition (α;β) of HPs
and nondeterministic branching by nondeterministic choices
(α ∪ β), which will nondeterministically run either α or β.
HPs support nondeterministic repetition (α∗), which runs HP
α repeatedly any number of times. Because CPS deal with
the uncertainties of the real world, nondeterminism is more
important for modeling accuracy than in isolated computer
programs. Conditionals (if(H)α elseβ) and loops (while(H)α
etc.) are supported as abbreviations based on test statements
(?H), which test the condition expressed by logical formula
H in the current state similar to an assert or assume. The most

important aspect of HPs, however, is that, besides assignments
(x := θ) of the value of expression θ to variable x, HPs support
differential equations (x′ = θ&H). The latter represents a
continuous evolution that, at the time of execution, makes the
system follow this differential equation x′ = θ any arbitrary
nondeterministic amount of time, provided the system stays
in the evolution domain characterized by logical formula H
during this entire continuous evolution.

The extension to the domain of real-valued variables and
the addition of differential equations as primitive operations in
the middle of the program are the most fundamental extensions
making HPs a proper programming language for CPS. But
nondeterminisms of HPs are another important feature required
for the adequacy of CPS models. Over the course of the
semester, further extensions of the programming language of
HPs are revealed in subsequent layers for other dynamical as-
pects of CPS [9], [12], including disturbance, nondeterministic
inputs, continuous-time inputs, aspects of distributed hybrid
systems, and a brief glimpse at stochastic effects. For lack of
space, those will not be discussed here.

B. CPS Contracts

The design of the CPS contracts language for HPs loosely
follows the contract languages for conventional programming
languages, especially of the C0 programming language [8],
JML [16], and Spec# [17]. Preconditions for HPs are expressed
as @requires(H) where H is a (simple) logical formula that has
to evaluate to true before the HP runs. It is an error to start an
HP in an initial state where H evaluates to false. Preconditions
capture the requirements on the state in which it is safe to run
a HP. Postconditions for HPs are expressed as @ensures(H)
where the HP is considered to be unsafe if it can lead to a
state in which H evaluates to false. Postconditions capture the
safety properties that a HP enforces.

The following is a simple example of a HP with a contract.
It is a simple model of a vehicle at position x moving with
velocity v and acceleration a along a one-dimensional line.

@requires ( v ˆ2 ≤ 2∗b ∗ (m−x ) )
@requires ( v ≥ 0 ∧ A≥ 0 ∧ b>0)
@ensures ( x ≤m)
{

i f ( v ˆ2 ≤ 2∗b ∗ (m−x ) − (A+b ) ∗ (A+2∗v ) ) {
a := A

} e l s e {
a := −b

}
t := 0 ;
{x ’= v , v ’= a , t ’ =1 , v ≥ 0 ∧ t ≤ 1}

}∗@invariant ( v ˆ2 ≤ 2∗b ∗ (m−x ) )

This HP model repeats (as indicated by the repetition ∗ in
the last line) a control loop whose controller first sets the
acceleration a (according to the if statement), then a clock
t is reset to zero, and then the system follows the differential
equation x′ = v, v′ = a, t′ = 1 for an arbitrary amount
of time, yet at most as long as indicated by the evolution
domain v ≥ 0∧t ≤ 1. In particular, the vehicle will only move
continuously for at most 1 time unit and at most as long as
v ≥ 0, before the loop repeats and the control executes again.



4 ANDRÉ PLATZER

The controller checks the safety-critical if condition v2 ≤
2b(m−x)−(A+b)(A+2v) and chooses positive acceleration
(a := A) if it evaluates to true, and braking (a := −b) other-
wise. This condition checks whether it is safe to accelerate
and is one of the most important decisions in the CPS design.
Systematic CPS design constructs it by high-level model-
predictive control from the invariant [12]. The most critical
part of a CPS system design are the invariants. Invariants for
HPs are expressed as @invariant(H) attached to a loop, where
H is a logical formula that evaluates to true every time that
loop is run. Invariants can be attached by @invariant(H) to
a differential equation (not shown), where H evaluates to true
always when following the differential equation. Invariants and
their corresponding safety conditions capture the most critical
elements of a CPS design and convey the most informative
insights about what we can rely on no matter how long and in
which way the system will evolve.

Reasoning why H is an invariant, either of a loop in a
CPS or of a differential equations in a CPS, is part of the
learning objectives. The course first uses informal arguments
and later shifts to formal proofs. Techniques for generating
invariants automatically [18] have been implemented in the
verification tool KeYmaera. But it is bad style not to include
the most crucial design choices in a CPS design: invariants.
Furthermore, we are convinced that designing any CPS on any
level needs to work with at least an intuitive understanding
of preserved properties of the system behavior, which should,
consequently, be formally captured as invariants that are part
of the CPS design for subsequent use in the overall design and
implementation process rather than having to be rediscovered.

Contracts are ultimately rendered in differential dynamic
logic (dL) [9]–[12] for formal specification and verification
purposes and used for finding a proof. Since correctness and
proofs are an important part of CPS design, and dL is crucial
for high-level model-predictive control [12], dL and its proof
calculus are discussed in the course, but only after an initial
emphasis on CPS models, specifications, and contracts.

V. CONCLUSIONS AND FUTURE WORK

We have given an overview of a new course on the Foun-
dations of CPS, of which we have taught different versions
to a mix of students from quite different areas. The course
has a focus on CPS foundations, resting on an integration of
principles from computational thinking, modeling and control,
and CPS skills. The most exciting features of the course are
that it shows a smooth and accessible way of understanding
the most important essence of CPS in successive layers of
a CPS programming language, while, simultaneously putting
an emphasis on correctness, contracts, and CPS reasoning.
We believe that it is the explicit focus on contracts and the
simplicity and elegance of their formal basis in logic [11] that
allows this course to be successful.

Our experience with the course has been very positive.
We believe that a clear focus on the true essentials of CPS
without the complexity and distractions, e.g., of controller
implementations in a low-level system programming language
like C, have helped students reach the learning goals of this
course. Results from the online course evaluations conducted
by the university have been encouraging, e.g., with an average
total of 4.77 on a scale of 1 to 5, with 5 being the best.

Future work includes the development of a richer course
toolset, e.g., for CPS simulation and verified code synthesis.
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