
Int J Softw Tools Technol Transfer (2016) 18:67–91
DOI 10.1007/s10009-015-0367-0

How to Model and Prove Hybrid Systems with KeYmaera:
A Tutorial on Safety?

Jan-David Quesel, Stefan Mitsch, Sarah Loos, Nikos Aréchiga, André Platzer

Carnegie Mellon University, Pittsburgh, PA, USA e-mail: {jquesel|smitsch|sloos|arechiga|aplatzer}@cmu.edu

Published online: 27 February 2015
c© Springer-Verlag Berlin Heidelberg 2015

Abstract. This paper is a tutorial on how to model hy-
brid systems as hybrid programs in differential dynamic
logic and how to prove complex properties about these
complex hybrid systems in KeYmaera, an automatic and
interactive formal verification tool for hybrid systems.
Hybrid systems can model highly nontrivial controllers
of physical plants, whose behaviors are often safety crit-
ical such as trains, cars, airplanes, or medical devices.
Formal methods can help design systems that work cor-
rectly. This paper illustrates how KeYmaera can be used
to systematically model, validate, and verify hybrid sys-
tems. We develop tutorial examples that illustrate chal-
lenges arising in many real-world systems. In the context
of this tutorial, we identify the impact that modeling
decisions have on the suitability of the model for veri-
fication purposes. We show how the interactive features
of KeYmaera can help users understand their system de-
signs better and prove complex properties for which the
automatic prover of KeYmaera still takes an impractical
amount of time. We hope this paper is a helpful resource
for designers of embedded and cyber-physical systems
and that it illustrates how to master common practical
challenges in hybrid systems verification.

1 Introduction

Hybrid systems [3, 17, 26] feature both discrete and con-
tinuous dynamics, which is important for modeling and
understanding systems with computerized or embedded

? This material is based upon work supported by the National
Science Foundation under NSF CAREER Award CNS-1054246,
NSF EXPEDITION CNS-0926181, NSF CNS-0931985, and CNS-
1035800. This research was partially supported by the German
Research Council (DFG) in SFB/TR 14 AVACS. The second au-
thor is supported by the ERC under grant PIOF-GA-2012-328378.
The third author is supported by DOE CSGF.

controllers for physical systems. Prime examples of hy-
brid systems include cars [18, 34], aircraft [56, 63, 64],
trains [58], robots [43], and even audio protocols [27].
The design of any controller for these systems is criti-
cal, because malfunctions may have detrimental conse-
quences to the system operation. A number of formal
verification techniques have been developed for hybrid
systems, but verification is still challenging for complex
applications [2]. Experience can make a big difference
when making trade-offs to decide on a modeling style,
on the most suitable properties to consider, and on the
best way to approach the verification task.

This article introduces hybrid system modeling with
differential dynamic logic [44, 45, 47, 50, 51]. Further-
more, we explain how to prove complex properties of
hybrid systems with our theorem prover KeYmaera [57].
We intend this paper to be a valuable resource for system
designers and researchers who face design challenges in
hybrid systems and want to learn how they can success-
fully approach their verification task. Formal verification
is a challenging task, but we argue that it is of utmost
importance for safety-critical designs, and the coverage
benefits compared to traditional incomplete system test-
ing far outweigh the cost. Especially, the possibility of
checking and dismissing designs early in the develop-
ment cycle reduces the risk of design flaws causing costly
downstream effects.

Even though some of our findings apply to other ver-
ification tools, we focus on KeYmaera [57] in this paper.
KeYmaera implements differential dynamic logic [44, 45,
47, 50, 51], which is a specification and verification logic
for hybrid systems. KeYmaera is based on KeY [8], and
is presently the premier theorem prover for hybrid sys-
tems. For formal details and more background on the ap-
proach behind KeYmaera, we refer to the literature [45–
47]. KeYmaera has now matured to a powerful veri-
fication tool that has been used successfully to verify
cars [34, 37], aircraft [29, 56], trains [58], robots [36], and

http://dx.doi.org/10.1007/s10009-015-0367-0

2 Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera

surgical robots [32], and to verify practical, real-world
control schemes such as PID [6, 58]. Similar to all other
verification tools, some decisions in the modeling, spec-
ification, and proof approach make verification unnec-
essarily tedious, while others are computationally more
effective. Relative completeness results [45, 47] identify
exactly which decisions are critical, but even the deci-
sions that are not can have a dramatic impact on the
effectiveness of the verification process in practice [47].

We identify best practices for hybrid systems verifica-
tion that help practitioners and researchers verify hybrid
systems with KeYmaera more effectively. We develop a
series of tutorial examples that illustrate how to mas-
ter increasingly complicated challenges in hybrid sys-
tems design and verification. These examples are care-
fully chosen to illustrate common phenomena that oc-
cur in practice, while being easier to understand than
the full details of our specific case studies1: here, we il-
lustrate hybrid systems and KeYmaera by considering
motion in a series of car models. We emphasize that
KeYmaera is in no way restricted to car dynamics but
has been shown to work for more general dynamics, in-
cluding hybrid systems with nonlinear differential equa-
tions, differential inequalities, and differential-algebraic
constraints.

2 Introduction to Hybrid Systems Modeling

In this section we exemplify the main concepts of hy-
brid systems, before we introduce hybrid programs, a
program notation for hybrid systems.

2.1 Hybrid Systems by Example

Hybrid systems, as already mentioned, comprise contin-
uous and discrete dynamics. The movement of cars (i. e.,
their continuous dynamics) can be described by differ-
ential equations. Kinematic models based on Newton’s
laws of mechanics are sufficient for basic car interactions
where p is the position of the car, v its velocity and a
its acceleration. All these state variables are functions in
time t. They observe the following ordinary differential
equation (ODE):(dp

dt
= v,

dv

dt
= a

)
≡ (p′ = v, v′ = a) (1)

This ODE models that the position p of the car changes
over time with velocity v, and that the velocity v changes
with acceleration a. As time domain we use the non-
negative real numbers, denoted by R≥0, and instead of
dp
dt we write p′ for the time-derivative of p, so that the
right side of (1) is the notation in KeYmaera. It is equiv-
alent to the ODE on the left side of (1).

1 Specific case studies include cars [34, 37], aircraft [29, 56],
trains [58], robots [36], and surgical robots [32]. The models of
these case studies are included in KeYmaera.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
−2

−1

0

1

2

3

4

5

6

7

8

9

t

Acceleration

Velocity

Position

Fig. 1: One example trace of a hybrid system for car dynam-
ics (1) with the acceleration signal changing as indicated over
time and the velocity and position following according to (1)

Notice that equation (1) does not explicitly specify
whether the acceleration a evolves over time. KeYmaera
follows the explicit change principle. That is, no vari-
able changes unless the model explicitly specifies how it
changes. In particular, the absence of the derivative of
a in (1) indicates a is constant during this continuous
evolution. If we want acceleration a to evolve, then we
need to specify how, for example, by adding another dif-
ferential equation a′ = j where j is the jerk, and then j
is implicitly constant during the continuous evolution.

If we want to model an analog controller for a, we
can replace a in (1) by a term that describes how the
analog controller sets the acceleration a, depending on
the current position p and velocity v. For example, if
vs is the set-value for the velocity, we could describe a
simple proportional controller with gain Kp that moves
v toward the intended vs by the differential equation
p′ = v, v′ = Kp(v − vs).

A common alternative is to use a discrete controller,
which turns the purely continuous dynamical system into
a hybrid system that exhibits both discrete and continu-
ous dynamics. A discrete controller instantaneously sets
values at particular points in time. An example trajec-
tory is shown in Fig. 1 for the car dynamics (1), con-
trolled by a discrete controller for the acceleration a that
changes its values at various instants in time as indi-
cated. The figure traces the values of the system state
variables p, v, and a over (real-valued) time t. The ac-
celeration a changes its value instantaneously according
to some discrete controller (not specified in (1)) and this
effect propagates to the velocity and position according
to the relations given by the differential equation (1).

Given a target speed vs suppose we want to build a
discrete controller for the acceleration a that chooses a
constant positive acceleration of A if the current speed
is too low and a constant deceleration of −B if it is too
high. Formula (2) shows a hybrid system that includes

Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera 3

such a controller.(
if v ≤ vs then a :=A else a :=−B fi;

(p′ = v, v′ = a)
)∗

(2)

The first statement here is a case distinction started with
if and ended with fi. It first checks whether the current
velocity v is less than or equal to the desired velocity
vs (i. e., whether v ≤ vs holds). If that is the case then
the car chooses to accelerate by executing a := A. This
means that the value of a gets updated to the value of
A. In the following, we assume A is a symbolic constant
denoting the maximal acceleration. Otherwise, i. e., if
v > vs then the assignment a := −B gets executed,
assigning the maximal deceleration of −B to a. The op-
erator ; is for sequential composition. That is, after the
first statement finishes (here, the if statement) the next
statement is executed, here the differential equation sys-
tem (p′ = v, v′ = a) from (1). Hence after the controller
chooses an acceleration, the variables evolve according
to the solution of this differential equation system for
some time. During this evolution the acceleration a is
constant. The operator ∗ at the end of (2) denotes non-
deterministic repetition like in a regular expression. That
is, the sequence of the discrete controller and the differ-
ential equation system are repeated arbitrarily often. In
this example, the loop enables the discrete controller to
update the acceleration repeatedly any number of times.

A common and useful assumption when working with
hybrid systems is that discrete actions do not consume
time (whenever they do consume time, it is easy to trans-
form the model to reflect this just by adding explicit ex-
tra delays). Because discrete actions are assumed not to
consume time, multiple discrete actions can occur while
the continuous dynamics do not evolve.

The model (2) does not specify when the continuous
evolution stops to give the discrete controller another
chance to react. This is because the number of loop iter-
ations as well as the durations of the respective continu-
ous evolutions are chosen nondeterministically (even no
repetition and evolution for zero duration are allowed).
Evolution domain constraints in differential equations
can introduce bounds on the continuous dynamics. We
model an upper bound on time in (3) with a clock vari-
able c. That is, we ensure that at least every ε time units
the discrete controller can take action.(

if v ≤ vs then a :=A else a :=−B fi;

c := 0; (p′ = v, v′ = a, c′ = 1 & c ≤ ε)
)∗

(3)

The clock c is reset to zero by the discrete assignment
c := 0 before every continuous evolution and then evolves
with a constant rate of c′ = 1. The formula c ≤ ε that is
separated from the differential equation by & is an evo-
lution domain constraint. Evolution domain constraints
are formulas that restrict the continuous evolution of
the system to stay within that domain. This means the

continuous evolution starts within the specified domain
and must stop before it leaves this region. Therefore, the
continuous evolution in (3) evolves for at most ε time
units. The evolution can still take any amount of time,
nondeterministically, just not longer than ε. As a result,
the discrete controller is invoked at least every ε time
units because any continuous evolution for more than
ε time units violates the evolution domain constraint
c ≤ ε. This modeling paradigm ensures that if the dis-
crete control happens to react faster than within ε time
(e. g., if new sensor data is returned early), then it will
still satisfy the same safety properties.

Note that the model (3) only puts an upper bound
on the duration of a continuous evolution, not a lower
bound. The discrete controller can react faster than ε
and, in fact, in Fig. 1, it does react more often. However,
if a lower bound is desired for a given example, it can
easily be included by using a test that allows the con-
troller to execute only after a given time has elapsed.
Tests are discussed below, but we will not discuss lower
bounds on sampling in our examples, because they are
usually not needed for the safety argument.

The next extension to our model adds nondetermin-
istic choice of the acceleration. If, as in (4), we replace
the assignment a := A by a := A ∪ a := 0 (read “a
becomes A or a becomes 0”), then the controller can
always choose to keep its current velocity instead of ac-
celerating further. We use ∪ to denote nondeterministic
choice, meaning the program can follow either side, in
this case setting a to 0 or setting a to A.(

if v ≤ vs then a :=A ∪ a := 0

else a :=−B fi;

c := 0; (p′ = v, v′ = a, c′ = 1 & c ≤ ε)
)∗(4)

In summary, nondeterministic choice ∪ , repetition ∗,
differential equations, and assignment are important mod-
eling constructs for safety verification purposes. They al-
low us to capture the safety-critical aspects of many dif-
ferent controllers all within a single model. Their nonde-
terministic nature helps us not to take an overly narrow
view of the behavior that we want to cover because it
might occur during some system runs.

2.2 Hybrid Programs

The program model for hybrid systems that we have il-
lustrated by example is called hybrid programs (HP) [45–
47, 50, 51]. The syntax of hybrid programs is shown to-
gether with an informal semantics in Table 1. KeYmaera
also supports an ASCII variation of the notation in Ta-
ble 1. The basic terms (called θ in the table) are either
rational number constants, real-valued variables or (pos-
sibly nonlinear) polynomial or rational arithmetic ex-
pressions built from those.

The effect of x := θ is an instantaneous discrete jump
assigning the value of θ to the variable x. For example in

4 Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera

Table 1: Statements of hybrid programs (F is a first-order formula, α, β are hybrid programs)

Statement Effect

α; β sequential composition where β starts after α finishes
α ∪ β nondeterministic choice, following either alternative α or β
α∗ nondeterministic repetition, repeating α n times for any n ∈ N
x := θ discrete assignment of the value of term θ to variable x (jump)
x := ∗ nondeterministic assignment of an arbitrary real number to x(
x′1 = θ1, . . . , continuous evolution of xi along the differential equation system

x′n = θn&F
)

x′i = θi restricted to evolution domain F
?F test if formula F holds at current state, abort otherwise
if F then α fi perform α if F is true at current state, do nothing otherwise
if F then α else β fi perform α if F is true at current state, perform β otherwise

Fig. 1, the acceleration a changes instantaneously at time
1.8 from 0 to 5, by the discrete jump a :=A when A has
value 5. The term θ can be an arbitrary polynomial. For
a car with current velocity v the deceleration necessary

to come to a stop within distance m is given by − v2

2m .
The controller could assign this value to the acceleration

by the assignment a :=− v2

2m , provided m 6= 0.

The effect of x′ = θ&F is an ongoing continuous evo-
lution controlled by the differential equation x′ = θ that
is restricted to remain within the evolution domain F ,
which is a formula of real arithmetic over unprimed vari-
ables. The evolution is allowed to stop at any point in F
but it must not leave F . Systems of differential equa-
tions and higher-order derivatives are defined accord-
ingly: p′ = v, v′ = −B& v ≥ 0, for instance, character-
izes the braking mode of a car with braking force B that
holds within v ≥ 0 and stops any time before v < 0. The
extension to systems of differential equations is straight-
forward, see [45–47].

For discrete control, the test action ?F (read as “as-
sume F”) is used as a condition statement. It succeeds
without changing the state if F is true in the current
state, otherwise it aborts all further evolution. For ex-
ample, a car controller can check whether the chosen ac-
celeration is within physical limits by ?(−B ≤ a ≤ A).
If a computation branch does not satisfy this condition,
that branch is discontinued and aborts. From a model-
ing perspective, tests should only fail if a branch is not
possible in the original system, as it will no longer be
possible in the model of the system. Therefore, during
verification we consider only those branches of a system
where all tests succeed.

From these basic constructs, more complex hybrid
programs can be built in KeYmaera similar to regular
expressions. The sequential composition α;β expresses
that hybrid program β starts after hybrid program α fin-
ishes, as in expression (2). The nondeterministic choice
α∪β expresses alternatives in the behavior of the hybrid
system that are selected nondeterministically. Nondeter-
ministic repetition α∗ says that the hybrid program α
repeats an arbitrary number of times, including zero.

These operations can be combined to form any other
control structure.

For instance, (?v ≤ vs; a :=A) ∪ (?v ≥ vs; a :=−B)
says that, depending on the relation of the current speed v
of some car and a given target speed vs, a is chosen to
be the maximum acceleration A if v ≤ vs or maximum
deceleration −B if v ≥ vs. If both conditions are true
(hence, v = vs) the system chooses either way. Note
that the choice between the two branches is made non-
deterministically. However, the test statements abort the
program execution if the left branch was chosen in a state
where v ≤ vs does not hold, or the right branch was cho-
sen in a state where v ≥ vs was not satisfied. In other
words, only one choice works out unless v = vs in which
case either a :=A or a :=−B can run. As abbreviations,
KeYmaera supports if-statements with the usual mean-
ing from programming languages. The if-statement can
be expressed using the test action, sequential composi-
tion and the choice operator.

if F then α fi ≡ (?F ;α) ∪ (?¬F)

if F then α else β fi ≡ (?F ;α) ∪ (?¬F ;β)

Its semantics is that if condition F is true, the then-part
α is executed, otherwise the else-part β is performed,
if there is one, otherwise the statement is just skipped.
Note that even though we use nondeterministic choice
in the encoding, the choice becomes deterministic as the
conditions in the test actions are complementary, so ex-
actly one of the two tests ?F and ?¬F fails in any state.

The nondeterministic assignment x := ∗ assigns any
real value to x. That is, every time x := ∗ is run, an arbi-
trary real number will be put into x, possibly a different
one every time. Thereby, x := ∗ expresses unbounded
nondeterminism that can be used, for example, for mod-
eling choices for controller reactions. For instance, the
program a := ∗; ?a > 0 nondeterministically assigns any
positive value to the acceleration a, because only positive
choices for the value of a will pass the subsequent test
?a > 0. Any nonpositive assignments will be discarded.

Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera 5

2.3 Differential Dynamic Logic

KeYmaera implements differential dynamic logic dL [44,
45, 47, 50, 51] as a specification and verification language
for hybrid systems. The formulas of dL can be used to
specify the properties of the hybrid systems of interest.
The logic dL also comes with a proof calculus [44, 45,
47, 50, 51] that has been implemented in KeYmaera and
can be used to prove these properties and, thus, verify
their correctness.

Within a single specification and verification language,
dL combines operational system models with means to
talk about the states that are reachable by system tran-
sitions. The dL formulas are built using the operators
in Table 2 where ∼ ∈ {>,≥,=, 6=,≤, <} is a comparison
operator and θ1, θ2 are arithmetic expressions in +,−, ·, /
over the reals. The logic dL provides parametrized modal
operators [α] and 〈α〉 that refer to the states reachable
by hybrid program α and can be placed in front of any
formula. The formula [α]φ expresses that all states reach-
able by hybrid program α satisfy formula φ. So [α]φ is
true in exactly those states from which running α only
leads to states that satisfy φ. Likewise, 〈α〉φ expresses
that there is at least one state reachable by α for which φ
holds. These modalities can be used to express neces-
sary or possible properties of the transition behavior
of α in a natural way. They can be nested or combined
propositionally. For example [α]φ ∧ [β]ψ is true in those
states where all executions of α lead to states satisfying
φ and executing β only reaches states satisfying ψ. Using
modalities and propositional connectives, we can express
Hoare triples {φ}α{ψ} for hybrid systems by φ→ [α]ψ.
Here the formula φ serves as a precondition. This means
that the system must satisfy the postcondition ψ after
all ways of running α only if the initial state satisfied
φ. The logic dL supports quantifiers like in ∃p [α]〈β〉φ,
which says that there is a choice of parameter p (ex-
pressed by ∃p) such that for all possible behaviors of
hybrid program α (expressed by [α]) there is a reaction
of hybrid program β (expressed by 〈β〉) that ensures φ.
Likewise, ∃p ([α]φ ∧ [β]ψ) says that there is a choice of
parameter p that makes both [α]φ and [β]ψ true, simul-
taneously. This is, the choice makes [α]φ ∧ [β]ψ true, i. e.,
the formula φ holds for all states reachable by α execu-
tions and, independently, ψ holds after all β executions.
This gives a flexible logic for specifying and verifying
even sophisticated properties of hybrid systems, includ-
ing the ability to refer to multiple hybrid systems at
once. The variables quantified over can occur in any hy-
brid program or formula, so quantifiers can be used to
quantify over system parameters as well as parameters
in pre- and postconditions.

Note that differential equations of dL [45] constitute
a crucial generalization compared to discrete dynamic
logic [25, 59]. Another important change is that dL is
defined over the domain R, not natural numbers. The

formal semantics of differential dynamic logic and more
details about it can be found in [44, 45, 47, 50, 51].

3 Proving with KeYmaera

KeYmaera [57] is an interactive theorem prover. Its input
is a single formula of differential dynamic logic combin-
ing both the system description and the property under
consideration. To prove this formula, it is safely decom-
posed into several subtasks according to the proof rules
of dL [44, 45, 47, 50, 51]. The boolean structure of the in-
put formula is successively transformed into a proof tree
(where applicable). Programs are handled by symbolic
execution. That is for each program construct there is
a proof rule that calculates its effect. For instance, as-
signments x := θ can be handled by replacing every oc-
currence of x by its new value θ in the postcondition.
Choices in the program flow are explored separately. For
example, [α ∪ β]φ is true if and only if [α]φ and [β]φ,
because both paths are possible; so the system α ∪ β
will only be safe (satisfy φ) if all its α executions are
safe ([α]φ) and all its β executions are safe ([β]φ). For
loops, KeYmaera uses (inductive) invariants. An induc-
tive invariant for proving φ→ [α∗]ψ is a formula J that
is satisfied in the current state (φ → J) and, starting
from any state satisfying the invariant J , executing the
loop body leads into a state also satisfying the invari-
ant J (J → [α]J). Hence induction shows that starting
from the state just reached the program will end up in
states satisfying the invariant (A → [α∗]J). In order to
use this pattern for reasoning about formulas that are
not inductive invariants themselves we add a third task:
we have to show that the property we want to show is a
consequence of the invariant (J → ψ).

For differential equations (ODEs) there are two pos-
sible routes. If the ODE has a polynomial solution, we
can replace it by a discrete assignment at each point in
time t. In this case we have a polynomial for each vari-
able that symbolically describes the value of this variable
over time. Thus, we can assign this polynomial with a
symbolic parameter t to the variable as long as we quan-
tify over t, since the ODE could have evolved for any
amount of time. However, if there is no polynomial so-
lution available this would yield formulas in an unde-
cidable theory. Instead, in those cases, we apply differ-
ential induction [46, 47, 51, 52], which is induction for
differential equations showing that the derivative of the
evolution domain candidate points inwards w.r.t. the re-
gion it characterizes. When proving inductive properties
of loops, the loop body can be seen as direction in which
the system will evolve. That is, the loop body describes
one atomic evolution step. Similarly, the direction for
the variables are given in the differential equation sys-
tem. A set of points is invariant, if following along the
given direction we stay within this set. The basic idea
can be seen on the following example. Assume two func-

6 Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera

Table 2: Operators and (informal) meaning in differential dynamic logic (dL)

dL Operator Meaning

θ1 ∼ θ2 comparison true iff θ1 ∼ θ2 with ∼ ∈ {>,≥,=, 6=,≤, <}
¬φ negation / not true if φ is false
φ ∧ ψ conjunction / and true if both φ and ψ are true
φ ∨ ψ disjunction / or true if φ is true or if ψ is true
φ→ ψ implication / implies true if φ is false or ψ is true
φ↔ ψ bi-implication / equivalent true if φ and ψ are both true or both false
∀xφ universal quantifier true if φ is true for all values of variable x in R
∃xφ existential quantifier true if φ is true for some values of variable x
[α]φ [·] modality / box true if φ is true after all runs of hybrid program α
〈α〉φ 〈·〉 modality / diamond true if φ is true after at least one run of hybrid program α

tions f : R≥0 → R and g : R≥0 → R. If we can show that
f(0) > g(0) and f ′(t) ≥ g′(t) for all t ∈ R≥0 then we can
conclude that f(t) > g(t) for all t ∈ R≥0. For loops we
have to follow the direction for exactly one execution of
the loop body. In the case of differential induction, we
check for an infinitesimal step instead. That is we show
that for a given candidate set, for each point that satis-
fies the original evolution domain constraint the gradient
of the system points inwards w.r.t. this set. Unlike in-
duction for loops, we might have to repeat this step sev-
eral times, thereby strengthening the evolution domain
within each step by a differential cut [46, 47, 51, 52]. Ul-
timately, the goal is to reach an evolution domain con-
straint which is a subset of the postcondition we are
trying to prove.

Once we have dealt with all the modalities in the
formulas, we end up with a first-order formula over the
reals. Validity of those can be decided by quantifier elim-
ination [62]. The original method proposed by Tarski
however has non-elementary complexity. Davenport and
Heintz have shown that the worst-case complexity of
such a procedure will always be doubly exponential [16].
Still, we can use quantifier elimination in many prac-
tical examples. KeYmaera interfaces with a number of
tools (e. g., Mathematica [65], Redlog [19], Z3 [41], and
QEPCAD B [11]) and implements algorithms to deal
with special cases more efficiently. Note that the user
only interacts with KeYmaera and these tools are in-
voked transparently in the background.

4 Related Tools

There has been significant research on hybrid system
verification and related approaches include a number of
hybrid system verification tools.

The ultimate goal of these approaches is to provide
fully automated verification tools for hybrid systems.
Unfortunately, this is provably impossible, because the
problem is not even semi-decidable [4, 45]. Therefore,
different compromises have been made. Fully automated

tools compromise by restricting the classes of hybrid sys-
tems they can handle and additionally they still do not
guarantee termination. Semi-automated tools can auto-
matically explore the state space, but must fall back to
the user where the automated search fails. For the lat-
ter, the user can then use domain knowledge to steer the
tool into a promising direction for the verification.

For the user, the decision which tool to use depends
on the system characteristics that appear in the models.

Tools for Real-time Systems. Real-time systems [42] is
the class that provides the most automatic tools. There-
fore, models that comply to the following restrictions are
best tackled with tools like Uppaal [33]. The main ad-
vantage is that reachability is decidable for real-time sys-
tems, whereas it is undecidable for hybrid systems. This
is achieved by restricting models such that all continu-
ous variables represent clocks instead of physical motion
in space, i. e., the derivatives of all variables are con-
stantly 1. Furthermore, computations are limited to re-
setting variables to 0 instead of arbitrary values. Uppaal
uses these properties to its advantage and can check a
rich set of properties by smart, exhaustive, set-valued
simulation of the system.

Uppaal has been extended to a verification tool for
priced timed automata [5, 10]. Priced timed automata
extend real-time systems with variables that can have
constant but arbitrary and changing slopes. However,
they cannot be used in any way that influences the reach-
ability relation. That is, they can neither restrict discrete
computations nor continuous evolutions. However, cost
optimal reachability is decidable and implemented by
Uppaal CORA [9].

Tools for Linear or Affine Hybrid Systems. If the sys-
tem model falls into the class of linear or affine hybrid
systems, model checking [14] tools are applicable. These
systems allow a much richer class of dynamics for both
continuous evolutions (constant differential inclusions or
linear ordinary differential equations) as well as discrete
transitions (linear assignments). That is, for affine hy-
brid systems, all assignments have the form x := θ and

Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera 7

differential equations have the form x′ = θ&F where θ
is restricted to a multi-variate polynomial of at most de-
gree 1. For linear hybrid systems, the evolutions have
to have the form (A ≤ x′ ≤ B) &F , where A and B
are constant numbers. These inclusions are often used
as overapproximations of the actual system dynamics.
In both cases, F can only be a conjunction of linear
constraints. Among the first tools following this line are
HyTech [27], d/dt [7], and PHAVer [22]. PHAVer, which
superseded HyTech, was recently superseded itself by
SpaceEx [23]. SpaceEx is a fully automated tool for ver-
ification of hybrid systems with linear, affine dynamics.
FOMC [15] provides methods tailored to similar systems
with large discrete state spaces. Much like Uppaal, all
these tools perform an exhaustive search of the state
space fully automatically. If they succeed, no user inter-
action is necessary. However, unlike Uppaal, termina-
tion is no longer guaranteed, since reachability for lin-
ear hybrid systems is an undecidable question. Model
checking is a versatile approach, which is good in finding
counterexamples. Note, however, that those counterex-
amples need manual inspection, because the employed
overapproximations may result in spurious counterex-
amples. Thus, it can also be used as a complementary
approach to techniques showing the absence of errors,
such as KeYmaera.

Tools for Nonlinear Hybrid Systems. Nonlinear hybrid
systems feature even richer dynamics, i. e., the restric-
tions defined above for affine hybrid systems no longer
apply. If specific bounds or ranges for the variables are
known, numerical methods provide means to tackle the
verification task. Flow∗ [13] can be used for bounded
simulation-based model checking of nonlinear hybrid sys-
tems up to a given time horizon and bound on the num-
ber of jumps. The iSAT algorithm [21, 35] couples in-
terval constraint propagation with Cylindrical Algebraic
Decomposition and methods from SAT solving, thereby
providing a solver for boolean combinations of nonlin-
ear constraints (including transcendental functions) over
discrete and continuous variables with bounded ranges.
iSAT-ODE [20] extends iSAT with validated enclosure
methods for the solution sets of nonlinear ordinary differ-
ential equations (ODEs), allowing Bounded Model Check-
ing of hybrid systems on overapproximations or exact so-
lutions of the ODEs. For low-dimensional systems, HSol-
ver [61] offers methods for unbounded horizon reachabil-
ity analysis of hybrid systems. It implements abstraction
refinement based on interval constraint propagation.

Systems with rich dynamics or symbolic parameters
can be verified in KeYmaera. KeYmaera is a semi-auto-
mated tool for unbounded horizon, purely symbolic and
sound verification of hybrid systems. It performs auto-
mated proof search and allows the user to interact and
steer the prover in cases where the automated proof
search procedures fail. A strong point of KeYmaera is
the automated decomposition of the original verification

problem into smaller subtasks while retaining a clear
connection to the original problem. This allows the user
to focus on the difficult cases, where interaction is neces-
sary and let the prover take care of those cases where the
necessary steps can be performed automatically. Still, in
contrast to fully automated tools, some knowledge about
the core ideas behind KeYmaera is necessary to apply
it successfully to complex systems, even though some
systems can be verified fully automatically, such as the
European Train Control System [58] and aircraft round-
about maneuvers [56]. The following sections are meant
to provide an easy-to-follow introduction into these ideas
based on a running example from the automotive do-
main.

5 KeYmaera Tutorial

Starting from a simple example, we develop a series of
increasingly more complex systems which illustrate how
modeling and verification challenges can be handled in
KeYmaera. We highlight incremental changes between
models using boldface symbols. The example files in
this paper can be found in the project KeYmaera Tuto-
rial of KeYmaera, which can be downloaded from

http://symbolaris.com/info/KeYmaera.html .

A series of video tutorials which complement the exam-
ples presented in this paper can be found at

http://video.symbolaris.com .

5.1 Example 1: Uncontrolled Continuous Car Model

First we will look at a simple system in which a car
starts at some nonnegative velocity and accelerates at
a constant rate along a straight lane. The requirement
we want to prove is that the car never travels backward
in space. Example 1 captures the setup of this scenario:
when starting at the initial conditions init, all execu-
tions of the car [plant] must ensure the requirements
req. The scenario setup is expressed using the dL for-
mula init → [plant](req): the initial conditions are on
the left-hand side of a logical implication (→); the (hy-
brid) program and the requirement form its right-hand
side. We used the box modality [plant] to express that all
states reachable by the continuous model of the system
plant satisfy our requirements req.

The initial conditions are formally specified in for-
mula (6): the velocity and the acceleration must both
be positive initially (v ≥ 0 ∧ A > 0). In this example,
the plant is very simple, cf. formula (7): the derivative
of position is velocity (p′ = v) and the derivative of ve-
locity is maximum acceleration (v′ = A). Fig. 2 shows a
sample trace of this system, where acceleration A = 1
is constant while velocity v and position p change ac-
cording to the differential equations. Finally, formula (8)
states that the velocity of the car is positive v ≥ 0 and,

http://symbolaris.com/info/KeYmaera.html
http://video.symbolaris.com

8 Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera

Example 1 Safety property of an uncontrolled contin-
uous car model

init → [plant] (req) (5)

init ≡ v ≥ 0 ∧A > 0 (6)

plant ≡ p′ = v, v′ = A (7)

req ≡ v ≥ 0 (8)

a
lt

er
-

n
a
ti

v
e init ≡ v ≥ 0 ∧A > 0 ∧ p0 = p (9)

req ≡ p ≥ p0 (10)

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

40

t

Acceleration

Velocity

Position

Fig. 2: Simulated trace of Example 1

thus, captures our requirement that the car never travels
backward in space. Note, that many different ways exist
to model even such a simple system and express correct-
ness properties about them: in formulas (9)–(10) we use
an additional variable to remember the initial position
of the car and require that the car will never be before p0
(10). Being forced to find and formalize suitable safety
properties is one of the major benefits of using formal
verification. For example, if our car interacts with other
autonomous or malicious vehicles in the environment,
safety suddenly becomes a nontrivial question of who is
to blame if an accident occurs [36, 39].

KeYmaera proves Example 1 automatically. In Ex-
ample 1 we modeled only continuous components in the
plant. In the next example we will allow a discrete con-
troller to interact with the system.

5.2 Example 2: Safety Property of Hybrid Systems

Example 1 had a plant but no controller. This means
that, once started, the car would drive for an arbitrary
amount of time without any option to ever change its
initial decision of full acceleration. In Example 2, we in-
troduce a discrete controller, ctrl, into the model of the
system. The task of the controller in this example is to
adjust the velocity by accelerating or braking, and still
never drive backward.

The example follows closed-loop feedback control,
which is a typical control system principle, as depicted
in Fig. 3: a controller tries to minimize the error e (dif-
ference between a desired output response r and sensed

Controller Plant

Disturbances

u

Sensors

r e y

−

ym

Fig. 3: Closed-loop feedback control system principle

output measurements ym) by computing set values u as
input for a plant. The plant, possibly influenced by some
disturbances, produces an output response y, which is
fed back into the controller through sensors as measure-
ments.

Example 2 shows the model, which was extended from
Example 1. The essential difference is the hybrid pro-
gram in formula (11), whose controller ctrl is repeated
together with the plant nondeterministically in a loop, as
indicated by the repetition star at the end of the hybrid
program in (11). The state transition system of this hy-
brid program is depicted in Fig. 4a. The initial conditions
in formula (12) now contain a specification for braking
force B > 0. The controller has three simple options as
stated in formula (13): it may cause the car to accelerate
with rate A > 0, maintain velocity by choosing accelera-
tion 0, or brake with rate −B < 0. We model the control
options as a nondeterministic choice (∪) in order to ver-
ify multiple concrete controllers at once. Because the
hybrid program is within a [·] modality in (11), whether
the controller chooses to accelerate, maintain velocity, or
brake, the postcondition req must always hold for (11)
to be true.

When a real car brakes, it decelerates to a complete
stop—it is not possible to drive a car backward by brak-
ing. In order to model this, in formula (14) we extended
the plant from the previous example and prevent the
continuous dynamics from evolving beyond what is pos-
sible in the real world. So, even though evolving over
time with p′ = v, v′ = −B would eventually cause the
car to drive backward, we disallow these traces by adding
an evolution domain constraint of v ≥ 0 in the plant
(separated by &), which restricts the model of the car
to realistic movement.

Example 2 Safety property of a hybrid car model

init → [(ctrl ; plant)∗] (req) (11)

init ≡ v ≥ 0 ∧A > 0 ∧B > 0 (12)

ctrl ≡ a := A ∪ a := 0 ∪ a :=−B (13)

plant ≡ p′ = v, v′ = a & v ≥ 0 (14)

req ≡ v ≥ 0 (15)

Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera 9

ctrl plant
a :=A

a := 0

a :=−B

p′ = v, v′ = a

& v ≥ 0

∗
(a) State transition system

0 1 2 3 4 5 6 7
−1

0

1

a = −B

a = 0

a = A

varying durations of continuous dynamics

t

a

(b) Control decisions: accelerate, coast, and brake; nondeter-
ministic duration of continuous dynamics

0 1 2 3 4 5 6 7
−7
−6
−5
−4
−3
−2
−1

0
1
2
3
4
5
6
7
8
9

10

t

Acceleration

Velocity

Position

(c) Sample trace: velocity and position per acceleration choice

Fig. 4: A hybrid car controller (Example 2)

We also want the discrete controller to be able to
change the acceleration of the vehicle at any time. Like
in a regular expression, the nondeterministic repetition ∗

creates a loop over the ctrl and plant. The plant evolves
for an arbitrary amount of time (it may even evolve for
zero time) as long as it satisfies the evolution domain.
When the plant completes, the program can loop back
to the ctrl which is again allowed to choose between
accelerating, maintaining velocity, or braking. All the
states that are reachable by this program must satisfy
the postcondition req of formula (15), which is the same
as in the previous example.

Fig. 4b shows a sequence of control choices that gov-
ern the plant for varying plant execution duration. The
resulting sample trace of the continuous change of the
car’s velocity v and position p, which follows from these
control decisions, is shown in Fig. 4c.

In order to prove properties of a loop, we need to
identify an invariant, which is a formula that is true
whenever the loop repeats. That is, a formula inv that
is initially valid (init→ inv), that implies the postcon-
dition (use case inv→ req), and where the loop body
preserves the invariant (here inv→ [ctrl; plant]inv). In-
variants are critical parts of the system design. As such,
they should always be communicated as part of the sys-

tem, for which KeYmaera provides annotations:

init → [(ctrl; plant)
∗
@invariant(v ≥ 0)](req)

The @invariant(inv) annotation for a loop indicates that
inv is a loop invariant. KeYmaera uses this annotation
to find proofs more efficiently. If absent, KeYmaera tries
to compute an invariant automatically [55] as it does
in Example 2. Here, the invariant v ≥ 0 is trivial and
will follow from Guideline 1. It is good style to annotate
invariants when known, because they communicate and
document important information about the behavior of
a system.

For a step-by-step tutorial on using loop invariants
in KeYmaera, watch the Loop Invariant video [1].

5.3 Example 3: Event-Triggered Hybrid Systems

Now we will add some complexity to the system and
the controller. We want to model a stop sign assistant:
while the car is driving down the lane, the controller
must choose when to begin decelerating so that it stops
at or before a stop sign. This means that it is no longer
sufficient to let the controller run at arbitrary points
in time as in Example 2, since the controller now must

10 Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera

brake when it approaches a stop sign. Thus, we have
to change our model to prevent the plant from running
an infinite amount of time. We can do this by adding
an additional constraint to the evolution domain of the
plant. Depending on the nature of this additional con-
straint we either speak of an event-triggered system or a
time-triggered system. The former interrupts the plant
when a particular event in the environment occurs (e. g.,
when the car is too close to a stop sign), while the latter
interrupts the plant at periodic times (e. g., every 50 ms).

We will start with an event-triggered system, since
those are often easier to prove than time-triggered sys-
tems. A time-triggered model will be discussed in Ex-
ample 5.

Example 3a Stop sign controller (event-triggered)

init → [(ctrl; plant)∗](req) (16)

init ≡ v ≥ 0 ∧A > 0 ∧B > 0 ∧ safe (17)

safe ≡ p +
v2

2B
< S (18)

ctrl ≡ (?safe; a :=A) ∪ (?v = 0; a := 0) ∪ (a :=−B) (19)

plant ≡
(
p′ = v, v′ = a & v ≥ 0∧ p +

v2

2B
≤ S

)
(20)

∪
(
p′ = v, v′ = a & v ≥ 0 ∧ p +

v2

2B
≥ S

)
(21)

req ≡ p ≤ S (22)

The stop sign assistant is modeled in Example 3a and
depicted in Fig. 5a. The basic setup of the model in for-
mula (16) is the same as in Example 2. However, we have
to adapt the initial condition in (17) such that the car
starts at a position that is still sufficiently distant from
the stop sign. Intuitively, the car is at a safe position if
it can still stop before it reaches the position S of the
stop sign. Using kinematic equations, we derive that the
stopping distance of the car when decelerating at rate

−B is v2

2B (see Guideline 1 for step-by-step instructions
on how to derive such constraints); thus, the proposition
safe is true when the current position plus the stopping
distance of the car is less than the position S of the stop
sign, as specified in formula (18).

Guideline 1 (Evolution domains and invariants)
In order to derive evolution domain constraints for event-
triggered control, and to find an inductive invariant for
the system, we analyze the model of Example 3a. We
start at the safety condition and the kinematic equations
of the car, as summarized in the formula below.

[p′ = v, v′ = a & v ≥ 0] (p ≤ S) (23)

If the evolution domain v ≥ 0 is sufficiently strong al-
ready (meaning v ≥ 0 → p ≤ S), we are done. Since
v ≥ 0 → p ≤ S is not valid here, we analyze further.

Formula (23) does not mention specific choices of ac-
celeration. However, the controller ctrl includes one un-
conditional choice (braking by a := −B), so we have to
interrupt the continuous dynamics at the latest when the
car can still stop in the remaining distance to the stop
sign with braking power −B. We, therefore, replace ac-
celeration a with the maximum braking power −B.

[p′ = v, v′ = −B & v ≥ 0] (p ≤ S)

Now we analyze the differential equations step by step,
starting with p′ = v. This means, the position of the
car will no longer change when its velocity becomes 0.
Hence, we need to find out where the car will stop, or
in other words, how far the car will be driving until it is
stopped. Such questions can be answered from differential
equations through integration, so we get one indefinite
integral from p′ = v, and a nested indefinite integral
because v′ = −B.∫ (

v +

∫
(−B) dt

)
dt = vt− Bt2

2

This way, we can compute the distance for specific choices
of t. Most interesting to us is a choice of t when the car
is stopped. We determine how long it will take the car
to stop, i. e., we compute the time until v = 0. Since
we are now analyzing velocity, we only need to integrate
once: v+

∫
(−B) dt = 0, which gives us v−Bt = 0. We

solve for t to get t = v
B . Now that we know the stopping

time, we can determine the stopping distance easily by
computing the definite integral:∫ v

B

0

(
v +

∫
(−B) dt

)
dt = vt− Bt2

2

∣∣∣∣∣
v
B

0

=
v2

2B

In summary, the evolution domain is found by linking
the stopping distance with the safety constraint as follows

p+ v2

2B ≤ S.

The controller in formula (19) still chooses between
accelerating, maintaining velocity, and braking, but the
first two options are not allowed if the car is too close to
the stop sign. We restrict the choice of accelerating by
adding the test ?safe, so that the car may only accelerate
if it is still sufficiently distant from the stop sign. Here
we see why the inequality in safe (18) must be strict; if
we are stopped at the stop sign, it would not be safe to
accelerate. For now, we only allow the car to maintain
velocity (a := 0) when it is already stopped, since other-
wise the car could coast through the intersection. Later,
we are going to relax this unrealistic restriction. The
proposition derived in Guideline 1 is added as an event-
trigger to the evolution domain, cf. (20). This ensures
that the controller executes if the car comes within the
minimum stopping distance of the stop sign; however,
the controller is free to execute at any time before this
point is reached to adapt acceleration as needed, because
the duration of an ODE is nondeterministic. Notice that

Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera 11

ctrl

plant
?p+ v2

2B
< S

?v = 0

a :=−B

a :=A

a := 0

p′ = v, v′ = a & v ≥ 0 ∧ p+ v2

2B
≤ S

p′ = v, v′ = a & v ≥ 0 ∧ p+ v2

2B
≥ S

∗
(a) State transition system

0 1 2 3 4 5 6 7 8 9
−0.5

0

1

a = −B

a = 0

a = A

Event: evolution domain p+ v2

2B
≤ S violated at t ≈ 3.85

t

a

(b) Control decisions: first coast, then accelerate until evolution
domain constraint is violated, brake, and finally stay stopped

0 1 2 3 4 5 6 7 8 9
−1

0

1

t

Acceleration

Velocity

Position

Safety Margin

(c) Sample trace: velocity and position per acceleration choice;
distance to stop sign |p− S| gives the remaining safety margin

Fig. 5: Event-triggered stop sign controller (Example 3a)

in (21) we have to include a nondeterministic choice such
that the physics of the system may still evolve even when
the event trigger is no longer satisfied. A full discussion
of why this is important is deferred to Section 5.4. Fi-
nally, the postcondition req in formula (22) defines that
in all states that are reachable by the event-triggered
hybrid program, the position of the car must not exceed
the position of the stop sign p ≤ S.

An example for event-triggered control and its ef-
fects is shown in Fig. 5b and 5c: the car accelerates until
the evolution domain constraint triggers braking, which
causes the car to stop smoothly at the stop sign.

Using KeYmaera to Discover Constraints In this model,
it was easy to use Guideline 1 to derive the stopping dis-
tance of the car, the evolution domain, and the condi-
tions for ctrl ; however, for more complex models, the so-
lution may not be so apparent. We may get hints about
what ctrl and the evolution domain should be by first
trying to prove safety in a system that is obviously unsafe
or that we merely suspect to be safe in some scenarios.

To illustrate this method, in Example 3b we start
with a simpler version of Example 3a.

Example 3b Unsafe stop sign controller design to dis-
cover safety constraints

init → [ctrl; plant](req) (24)

init ≡ v ≥ 0 ∧A > 0 ∧B > 0 ∧ safe ∧ p ≤ S (25)

safe ≡ true (26)

ctrl ≡ (?safe; a :=A) ∪ (?v = 0; a := 0) ∪ (a :=−B) (27)

plant ≡ p′ = v, v′ = a & v ≥ 0 (28)

req ≡ p ≤ S (29)

We remove the nondeterministic repetition (24), so
that we do not yet have to worry about loop invari-
ants. For lack of a better understanding of safe, in (26)
we define it to be true unconditionally, which means in
init (25) we just strive to not violate our requirement
p ≤ S and place the car somewhere in front of the stop
sign. It also means that ctrl allows the car to choose ac-
celeration without any restrictions, which cannot always
be correct, as illustrated in Fig. 6. The plant (28) and
the requirement (29) remain the same as in Example 3a,
but with the event-trigger removed from the evolution
domain. Attempting to prove property (24) of Exam-

12 Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera

0 0.5 1
−0.4

0

0.5

1

t

Acceleration

Velocity

Position

Safety Margin

Fig. 6: Sample trace of Example 3b; safety margin becomes
negative immediately due to unsafe controller

ple 3b results in two open goals in which there are formu-
las which, had they been included in safe, the property
req would have held (apply local quantifier elimination
to the consequent to remove quantifiers from these for-
mulas). Some of these formulas contradict our assump-
tions in init (25), so we ignore them. However, there is
one remaining formula which does not contradict any as-
sumption: B ≥ v2(2S+−2p)−1. The failed proof attempt
indicates that we should change our design to obey this
constraint. With some algebraic manipulation, we see
that this constraint is almost identical to the restriction
we added to the ctrl in Example 3a.

To see an example of how KeYmaera can discover a
braking constraint, watch the video Discover Constraints
Using KeYmaera [1].

It is not uncommon for the first attempt at proving
the safety of a system to be unsuccessful because the
model is in fact unsafe. KeYmaera allows the user to
examine a trace of the hybrid program which obeys the
initial conditions, and follows the execution of the hy-
brid program, but violates the given safety requirement.
In Example 3b, there are infinitely many such counterex-
amples that could be generated; however, one counterex-
ample (which KeYmaera automatically generates) sets
the position of the stop sign to be S = 0, the initial posi-
tion and velocity of the car to be p = −23 and v = 986,
and maximum acceleration A = 38. These assignments
of values to the symbolic parameters are all permissible
by the initial conditions. The transition then has the car
accelerate at rate A and allows the system to evolve for
0.1 time steps, at which point the position of the car is
p = 75.79, so the car has run past the stop sign and the
requirement p ≤ S has been violated, showing that the
system is unsafe. This behavior is similar (albeit with
more extreme values) to the behavior depicted in Fig. 6.

For a video tutorial on how to generate counterex-
amples in KeYmaera, watch the Find Counterexample
video [1].

5.4 Example 4: Pitfalls when Modeling Event-Triggered
Hybrid Systems

When modeling event-triggered systems, we have to make
sure that our event model does not restrict the physical
behavior in order to react to certain events [54]. Consider
a cruise control with the goal of reaching and maintain-
ing a certain velocity, say vs. A simple event-triggered
model for this is shown in Example 4. Certainly, we can
prove that this controller ensures that the velocity never
exceeds the set-value vs as every time the car reaches
velocity vs it will set the acceleration to 0.

Example 4 Event-triggered cruise control

init → [(ctrl; plant)∗](req) (30)

init ≡ v ≤ vs ∧A > 0 (31)

ctrl ≡ if v = vs then a := 0 else a :=A fi (32)

plant ≡ p′ = v, v′ = a & v ≤ vs (33)

req ≡ v ≤ vs (34)

init → [(ctrlf ; plant)∗](req) (35)

ctrlf ≡ a :=A (36)

init → [(ctrl; plantr)∗](req) (37)

plantr ≡ (p′ = v, v′ = a & v ≤ vs)

∪ (p′ = v, v′ = a & v ≥ vs)
(38)

init → [(ctrlf ; plantr)∗](req) (39)

Unfortunately, this is not the reason we can prove
this property. Replacing the controller by one that al-
ways chooses to accelerate reveals that the validity of
the formula does not depend on our control choices, i.e.,
formula (35) is valid as well. This stems from the fact
that any continuous evolution along (33) is already re-
stricted to the domain we consider critical. Thus, there is
no transition leaving this domain once we reach its bor-
der which makes the property trivially true. However,
safety in real-world systems crucially relies on correct
functioning of our controllers. Thus we have to adapt
the model to reflect the fact that the car could in some
scenarios exceed the velocity we want to maintain and
then show that our controller makes sure that it does
not do so.

Consider the plant model given in (38). Here we mod-
ify the plant in such a way that time may evolve re-
gardless of the relation of v and vs. The controller will
still be invoked and able to update the acceleration be-
fore (or at the very latest when) the velocity reaches
vs. However, now since there are transitions that might
invalidate our requirement to never exceed the veloc-
ity vs we can observe a difference between our origi-
nal controller (32) and the faulty one (36). That is, the
formula (37) with the original controller (32) is valid,
whereas the formula (39), which depends on the faulty
controller (36), is not. More generally, it is important

Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera 13

not to restrict physics when adding events, but only to
split it into regions. These regions, formed by evolution
domain constraints, must overlap: for example, v ≤ vs
and v ≥ vs in (38) share a boundary. Otherwise, e. g.,
with v < vs and v ≥ vs, the program could not switch
between the differential equation systems in (38), see
Section 6.3 for details.

5.5 Example 5: Time-Triggered Hybrid Systems

Event-triggered systems like the one in Example 3a make
proving easier, but they are difficult (if not impossible) to
implement. In order to implement Example 3a faithfully,
it would require a sensor which would sense position and
velocity data continuously, so that it could notify the
controller instantaneously when the car crosses the final
braking point. A more realistic system is one in which
the sensors take periodic measurements of position and
velocity and the controller executes each time those sen-
sor updates are taken. However, if we do not restrict the
amount of time between updates, then there is no way
to control the car safely, since it would essentially be
driving blind. Instead, we require that the longest time
between sensor updates is bounded by a symbolic ε > 0.
To account for imperfect timing, the controller can also
handle updates that come in before the ε deadline. In
this section, we implement this system and prove it is
safe.

Fig. 7b shows control decisions that follow this princi-
ple. At the latest every ε time units the controller senses
the velocity and position of the car and makes a new
decision to accelerate, stay stopped, or brake. A sample
trace of the continuous dynamics resulting from these
control decisions is sketched in Fig. 7c.

With this change, we must create a more intelligent
controller. The controller must respect its own reaction
delays to make sure to take action if it might be unsafe
to defer braking until the next control cycle. There are
two essential differences between Example 3a and Ex-
ample 5 with its transition system depicted in Fig. 7a:
Example 5 introduces a clock into the plant (44) that
stops continuous dynamics before c ≤ ε becomes false,
and the acceleration branch can only be taken if it is safe
to accelerate for up to ε time.

Condition (43) uses the upper bound ε in the safety
condition that allows the car to accelerate. In Exam-
ple 3a we used the formula safe from (18) to determine
whether it was safe for the car to accelerate at the present
moment. Now, we must have a controller which not only
checks that it is safe to accelerate at present, but also
that doing so for up to ε time will still be safe. We use
the formula safeε (43) in Example 5, which checks that
while accelerating for ε time, the car will always be able
to come to a complete stop before the stop sign. Guide-
line 2 describes how we can derive such safeε analytically
from the model.

Example 5 Stop sign controller (time-triggered)

init → [(ctrl; plant)∗](req) (40)

init ≡ v ≥ 0 ∧A > 0 ∧B > 0 ∧ p +
v2

2B
≤ S ∧ ε > 0

(41)

ctrl ≡ (?safeε; a :=A) ∪ (?v = 0; a := 0) ∪ (a :=−B) (42)

safeε ≡ p +
v2

2B
+

(
A

B
+ 1

)(
A

2
ε2 + εv

)
≤ S (43)

plant ≡ c := 0; p′ = v, v′ = a, c′ = 1 & v ≥ 0 ∧ c ≤ ε
(44)

req ≡ p ≤ S (45)

Guideline 2 (safeε for time-triggered control) In
the case of time-triggered control, a decision (e. g., ac-
celerating with A) is safe when, after ε time, braking is
still safe, which is captured in the following formula.

[c := 0]

[p′ = v, v′ = A, c′ = 1 & v ≥ 0 ∧ c ≤ ε]
[p′ = v, v′ = −B & v ≥ 0] (p ≤ S)

Now, we have an explicit upper bound ε on time, so we
can determine the distance traveled while accelerating
with A using the following definite integral derived from
the differential equations:∫ ε

0

(
v +

∫
Adt

)
dt = vt+

At2

2

∣∣∣∣ε
0

= vε+ Aε2

2 .

We can also compute the new velocity after ε time using
v +

∫ ε
0
Adt. This yields an equivalent formula[

p := p+ vε+ Aε2

2 ; v := v +Aε
]

[p′ = v, v′ = −B & v ≥ 0] (p ≤ S)

As a next step, we follow the approach from Guideline 1
to determine the distance for braking to a full stop from
the increased velocity v +Aε:∫ (v+Aε)/B

0

(v +Aε−Bt)dt = v2

2B + A
B

(
A
2 ε

2 + εv
)
,

with braking time following from v +Aε−Bt = 0.
Since we already know the distance for braking to a

full stop from Guideline 1 (v
2

2B), we could alternatively
find the distance needed to compensate the increased ve-
locity: ∫ Aε/B

0

(v +Aε−Bt)dt = A
B

(
A
2 ε

2 + εv
)

with braking time following from Aε−Bt = 0.
When we add the distance traveled while accelerating

with the distance needed to stop afterwards, we get

p+ v2

2B +
(
A
B + 1

) (
A
2 ε

2 + εv
)
≤ S

as definition for safeε, matching (43).

14 Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera

ctrl plant

?v = 0

a :=−B

a :=A

a := 0 c := 0

p′ = v, v′ = a, c′ = 1

& v ≥ 0 ∧ c ≤ ε

∗

?p+ v2

2B
+
(
A
B

+ 1
) (

A
2
ε2 + εv

)
≤ S

(a) State transition system

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3
−0.5

0

0.5

1

a = −B

a = 0

a = A

t = 5ε t = 10ε

t

a

(b) Control decisions: despite nondeterministic loop duration
ci ≤ ε, the system was simulated with c = ε

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3
−1

−0.5

0

0.5

1

t

Acceleration

Velocity

Position

Safety Margin

(c) Sample trace: velocity and position per acceleration choice;
distance to stop sign |p− S| gives the remaining safety margin

Fig. 7: Time-triggered stop sign controller (Example 5)

Because we have already proven a very similar sys-
tem in Example 3a, it may be tempting to simply add a
safety margin for how much the position of the car can
change in time ε. However, the proof holds for the gen-
eral, symbolic case (that is arbitrarily large values), so
there is no constant error margin large enough that can
be safe for all controllers.

5.6 Example 6: Guarded Nondeterministic Assignment

In previous examples, we have only represented con-
trollers which can choose from a discrete choice of ac-
celerations (either A, 0, or −B).

A more realistic controller would be able to choose
any acceleration within a range of values representing the
physical limits of the system. In Example 6 and Fig. 8a
we introduce guarded nondeterministic assignment to
represent an arbitrary choice of a real value within a
given range.

In this example, we only need to change the ctrl to
introduce nondeterministic assignment, while the rest of
Example 6 is identical with Example 5: Line (48) of Ex-
ample 6 assigns an arbitrary real value to a (a := ∗). The

Example 6 Stop sign controller (guarded nondetermin-
istic assignment)

init → [(ctrl; plant)∗](req) (46)

init ≡ v ≥ 0 ∧A > 0 ∧B > 0 ∧ p+
v2

2B
≤ S ∧ ε > 0 (47)

ctrl ≡ (?safeε; a := ∗; ?−B ≤ a ≤ A)

∪ (?v = 0; a := 0) ∪ (a :=−B)
(48)

safeε ≡ p+
v2

2B
+

(
A

B
+ 1

)(
A

2
ε2 + εv

)
≤ S (49)

plant ≡ c := 0; p′ = v, v′ = a, c′ = 1 & v ≥ 0 ∧ c ≤ ε (50)

req ≡ p ≤ S (51)

subsequent test checks that the value of a is in the inter-
val [−B,A] of physically possible accelerations. This op-
eration eliminates all traces which do not satisfy the test,
so only traces in which a is in [−B,A] are considered. As
a result, when we prove the property in Example 6, we
are proving safety for all values of a within [−B,A]. The
value assigned to a nondeterministically can be different
on every loop execution. Fig. 8b shows an example se-

Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera 15

ctrl
plant

?v = 0

a :=−B

a := ∗ ?−B ≤ a ≤ A

a := 0 c := 0

p′ = v, v′ = a, c′ = 1

& v ≥ 0 ∧ c ≤ ε

∗

?p+ v2

2B
+
(
A
B

+ 1
) (

A
2
ε2 + εv

)
≤ S

(a) State transition system

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3
−0.5

0

0.5

1

a = −B

a = 0

a = A

t = 5ε t = 10ε

t

a

(b) Control decisions: nondeterministically chosen acceleration
constrained with guard −B ≤ a ≤ A

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3
−1

−0.5

0

0.5

1

t

Acceleration

Velocity

Position

Safety Margin

(c) Sample trace: velocity and position per acceleration choice;
distance to stop sign |p− S| gives the remaining safety margin

Fig. 8: Time-triggered controller with nondeterministic assignment (Example 6)

quence of the control choices made by such a controller.
The resulting trace of the car’s velocity and position is
depicted in Fig. 8c.

When using guarded nondeterministic assignment, it
is important to keep in mind some of the perils of using
tests. Because tests eliminate traces completely, we no
longer prove safety at any point in time for traces that
fail the test. So, if we mistakenly use a guard that is
impossible to satisfy, such as ?(a2 < 0), our safety prop-
erty will hold vacuously. Good practice is to use simple
bounds that are obviously satisfiable, such as a range be-
tween two symbolic variables as shown in this example.
Additionally, we can include a branch on the controller
with no tests; in this example, the controller may always
choose to brake.

5.7 Example 7: Nondeterministic Overapproximation

A good technique to prove properties that involve com-
plicated formulas is to use nondeterministic overapprox-
imation. If the value of a variable ax is given by a com-
plicated function ax = f(x), but the value of f(x) is

contained entirely in some interval [f1, f2], the proof can
often be greatly simplified by omitting the exact expres-
sion for f(x) and simply allowing ax to nondeterminis-
tically take any value in [f1, f2] by using guarded non-
deterministic assignment as discussed in Section 5.6.

For instance, in Example 6 the car’s braking mech-
anism is modeled simply as choosing a negative accel-
eration, and is always fixed. In a more realistic braking
model, like the one outlined in [28], braking would be
modeled as

v′ =
1

M

(
−c1Tb − f0 − c2v − c3v2

)
where Tb is the braking torque, c1Tb is the braking force,
M is the mass of the car, f0 is the static friction force,
c2v is the rolling friction force, and c3v

2 is aerodynamic
drag. This model has five more variables than the previ-
ous one. KeYmaera uses quantifier elimination as a de-
cision procedure for first order real arithmetic, which is
doubly exponential in the number of variables [16]. Thus,
it helps to avoid unnecessary variables. In Example 7, we
use a simpler model in which only one new variable is
added.

16 Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera

Example 7 Stop sign controller with nondeterministic
braking

init → [(ctrl; plant)∗](req) (52)

init ≡ v ≥ 0 ∧A > 0 ∧B ≥ b > 0 ∧ p+
v2

2b
≤ S ∧ ε > 0

(53)

ctrl ≡ (?safeε; a := ∗; ?−B ≤ a ≤ A)

∪ (?v = 0; a := 0)

∪ (a := ∗; ?−B ≤ a ≤ −b)

(54)

safeε ≡ p+
v2

2b
+

(
A

b
+ 1

)(
A

2
ε2 + εv

)
≤ S (55)

plant ≡ c := 0; p′ = v, v′ = a, c′ = 1 & v ≥ 0 ∧ c ≤ ε (56)

req ≡ p ≤ S (57)

In this model, the car’s maximum total braking ca-
pability is between some symbolic parameters b and B,
as modeled in (54). This means that we can guarantee
at least b as the car’s braking capability, but the brakes
might be as strong as any value in the interval [b, B].
In comparison to Example 6, thus, we have to adapt init
(53) and safeε (55) so that both consider the new mini-
mum braking capability b instead of B.

Since the controls of real systems are usually deter-
ministic and often complex, it can be useful to prove
that the implemented controller is a deterministic re-
finement of the proved nondeterministic controller. This
area is rich with possibilities for future research, but for
preliminary methods on refinement, see [6].

5.8 Example 8: Differential Inequality Models of
Disturbance

In this section we introduce differential inequality mod-
els as a technique to consider external disturbance [46,
47], such as the influence of road conditions on braking.
If the value of a variable v changes nondeterministically
according to acceleration a, as in the previous examples,
and some disturbance d, we can use differential inequal-
ity models of disturbance. For example, the differential
inequality v′ ≤ ad models the effect of disturbance d on
the acceleration a of our car, i. e., in the worst case the
effective braking force may be reduced and the acceler-
ation increased depending on a maximum disturbance
factor d. Here, we use multiplicative disturbance; addi-
tive disturbance of the form v′ ≤ a + d is possible in
dL as well. Observe that inequalities can also be used to
bound the derivative from below, e. g. ad ≤ v′, or both
bounds at once, e. g., a − d ≤ v′ ≤ a + d. However, for
safety properties in many cases only one bound, upper
or lower, is relevant and thus the other bound might be
omitted from the models.

Example 8 introduces such a differential inequality
model of disturbance on top of Example 7. The specific
differential inequality v′ ≤ ad used in this example mod-

els that the effective braking force and the effective ac-
celeration force are subject to disturbance d; the dis-
turbance is negligible when the acceleration or braking
force is small, but it grows with increasing force. This
model avoids disturbance when the car does not accel-
erate (a = 0), which means that disturbance alone will
not cause the car to move when it is stopped.

Example 8 Stop sign controller with braking distur-
bance

init → [(ctrl; plant)∗](req) (58)

init ≡ v ≥ 0 ∧A > 0 ∧B ≥ b > 0

∧ p+
v2

2bd
≤ S ∧ ε > 0 ∧ d > 0

(59)

ctrl ≡ (?safeε; a := ∗; ?−B ≤ a ≤ A)

∪ (?v = 0; a := 0)

∪ (a := ∗; ?−B ≤ a ≤ −b)
(60)

safeε ≡ p+
v2

2bd
+

(
A

b
+ 1

)(
Ad

2
ε2 + εv

)
≤ S (61)

plant ≡ c := 0; p′ = v,v′ ≤ ad, c′ = 1 & v ≥ 0 ∧ c ≤ ε
(62)

req ≡ p ≤ S (63)

Example 8 uses the same loop of sequential execu-
tion of controller and plant as Example 7, cf. (58). We
adapt the initial condition in formula (59) to reflect that
disturbance may reduce the braking force of the car to
bd, but does not eliminate the braking force (d > 0).
The controller itself remains the same as in Example 7,
cf. (60). The main difference is in the controller’s safety
condition given in formula (61), which considers the fact
that disturbance may reduce the effective braking force

of the car (v
2

2bd) as well as its acceleration (Ad2) until the
brakes apply. Here, the disturbance affects braking and
acceleration alike. For models with asymmetric distur-
bance (e. g., stronger acceleration and weaker brakes, see

[36]), the braking term v2

2b and the acceleration term A
2 ε

2

would be affected in different ways. Finally, the plant
(62) replaces the differential equation of Example 7 with
the differential inequality model.

5.9 Example 9: Lyapunov Functions and Invariants

We have seen in the previous sections that knowing sys-
tem invariants ahead of time can greatly simplify the
proof process. In this section, we discuss how Lyapunov
functions, which are an important tool in control design,
can be used to provide invariants that are useful for ver-
ification.

We will first define Lyapunov functions, and then use
them to verify an invariant for a proportional-derivative
(PD) controller for our car model. We will use a Lya-
punov function to verify that a specific class of sets con-

Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera 17

stitutes invariants, and then we will use these invariants
to design and verify a discrete-time trajectory genera-
tor for our car so that it can approach the intersection
without violating it.

A Lyapunov function is a generalization of the idea
of energy for mechanical systems. A thorough exposi-
tion of Lyapunov functions and its role in control the-
ory can be found in [31]. For our purposes, we will only
consider global Lyapunov functions for continuous sys-
tems. Consider a continuous system x′ = f(x), such that
f(xeq) = 0 for some state value xeq. We say that the
point xeq is an equilibrium of the system, because the
system will not evolve when at xeq. Note that in general
x can be a vector. We say that a function V is a global
Lyapunov function of the system if

1. V (xeq) = 0, i. e., it is zero at the equilibrium,
2. V (x) > 0 for all x 6= xeq, and
3. dV

dx f < 0 for all x 6= xeq.

These conditions ensure that the system will gravi-
tate towards the equilibrium. The first and second condi-
tions together guarantee that the equilibrium is a global
minimum of the Lyapunov function. The third condi-
tion says that the dynamics of the system descend the
gradient of the function V . As a result, the system will
evolve in a way that minimizes V , and will stop at the
equilibrium.

A Lyapunov function is often called a generalized en-
ergy function, because energy of a system is always pos-
itive (2) and must always be dissipated (3), according
to the laws of physics. A Lyapunov function, however, is
a more general idea which can be used in cases when a
straightforward notion of energy is not available or does
not make physical sense.

The key property of Lyapunov functions which we
will use in this section is that for any positive constant
c, the sublevel set V (x) ≤ c is an invariant of the sys-
tem. Intuitively, this follows from the fact that along the
system dynamics, the Lyapunov function is decreasing.
Then along all future states, V (x) must be less than
the initial state, so that V (x) ≤ c for all future states.
Lyapunov functions are often available as a side effect of
controller design, which can be leveraged for verification.

As an example, consider the model in Example 9a.
This example shows our familiar car model, but with the
addition of a continuous proportional-derivative (PD)
control law in (67) that controls the acceleration of the
car with the goal of stabilizing the system around a ref-
erence position pr. The constant Kp is called the pro-
portional gain, which allows the controller to act on the
difference between the current car position p and the de-
sired position pr. The constant Kd is called the deriva-
tive gain, which allows the controller to respond to the
velocity. With this form, the controller prescribes zero
acceleration when p = pr and v = 0. The controller gains
in Example 9a have been chosen according to a standard
control design procedure known as pole placement [12],

and as a side effect of the control design procedure it
is known that the controlled system has the Lyapunov
function given below.

V (p, pr, v) =
5

4
(p− pr)2 +

(p− pr)v
2

+
v2

4

In Example 9a, the proof task is to show that the set
of positions and velocities such that V (p, pr, v) < c is an
invariant set, for any positive constant c. This is a simple
verification task that only requires telling KeYmaera to
treat the safety condition as a differential invariant (see
Section 5.10), and the proof follows from the properties
of the Lyapunov function.

Example 9a A PD control law for the car model

init→ [plant] (req) (64)

init ≡ v ≥ 0 ∧ c > 0 ∧Kp = 2 ∧Kd = 3 (65)

∧ V (p, pr, v) < c (66)

plant ≡ p′ = v, v′ = −Kp(p− pr)−Kdv (67)

req ≡ V (p, pr, v) < c (68)

In general, the goal of a controller design task is to
feed inputs to the physical system such that the state of
the system moves from some initial value xi to a desired
final value xf . Traditionally, this task is decoupled into
the design of two subsystems;

1. a regulator, which stabilizes or regulates the state of
the system around a given setpoint, and

2. a trajectory generator, which produces a sequence of
setpoints that the system should use as references on
its way to the target state.

Note that the feedback controller shown in Fig. 3 is
a regulator, since it seeks to stabilize the system state
around a desired reference r (in Example 9a, the con-
troller tries to stabilize the car at a reference position
pr). This reference would in practice be generated by a
trajectory generator, which is not shown in Fig. 3.

A näıve design for a trajectory generator is to simply
feed the desired final state as the reference state value,
and to let the regulator do all of the work of bringing
the system to the desired state. In practice, this is not
a good solution, because attempting to move the state
between two distant values will result in a large con-
trol effort. In the example of a car, this means that the
controller will accelerate maximally. This will strain the
engine, forcing it to operate outside of the conditions for
which it was calibrated. As a result, performance across
numerous benchmarks such as fuel efficiency and emis-
sions reduction will degrade. Additionally, a passenger
in such a car will be made uncomfortable by the sudden
jolt of acceleration.

18 Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9

10

t

Reference

Position

Velocity

(a) Regulator with reference value set to
the position of the stop sign

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9

10

t

Reference

Position

Velocity

(b) Trajectory generator: reference update
second by second

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9

10

t

Reference

Position

Velocity

(c) Trajectory generator: fast reference up-
date with Lyapunov-based condition (72)

Fig. 9: Difference between approaching the stop sign with a regulator or a trajectory generator (Example 9b)

For general physical systems, sudden control shocks
may damage the equipment, and in general will cause ex-
cessive wear, shortening its lifespan. Working together,
a combination of a regulator and a trajectory genera-
tor will allow the system to glide gracefully along a tra-
jectory to the desired final state. Fig. 9 illustrates the
difference between using only a regulator and using a
trajectory generator: note that the maximum velocity
in Fig. 9a considerably exceeds the velocity in Fig. 9b,
where a trajectory generator updates the reference point
every other second. The velocity curve becomes smooth
when the trajectory generator runs fast, see Fig. 9c.

In Example 9b, we design a discrete-time trajectory
generator that chooses the reference point pr such that
the reference point is always in front of the current posi-
tion, and the car never violates the stop sign. One strat-
egy is to have a sampling controller that chooses as ref-
erence the midpoint between the current position and
the stop sign. The controller may choose a new refer-
ence point whenever the car is “near” the old reference
point, in a way that we will make more precise below.
The controller moves along a chain of reference points
being equilibria of the Lyapunov function, see Fig. 10.

The controller measures the position of the car and
saves its value into a variable called pm. Then, the con-
troller chooses as a reference the mid point between
pm and the stop sign at S, which is at a distance of
(pm + S)/2 (71). We consider the reference point as the
equilibrium of the Lyapunov function, so that the value

of the Lyapunov function at the stop sign is
(
S−pm

2

)2
. If

the car is inside the sublevel set V (p, pr, v) ≤
(
S−pm

2

)2
,

the Lyapunov function would have to increase for the
car to be able to exceed the stop sign, but it cannot. It
follows that the system can never exceed the stop sign.
Hence, the Lyapunov function sublevel set V (p, pr, v) ≤(
S−pm

2

)2
is an invariant. However, it may be the case

that the car has not yet reached a position at which it
is inside this invariant. To remedy this, the trajectory

S

p(1) p(1)r

p(2) p(2)r

p(3) p(3)r

Fig. 10: Illustration of reference points set by the tra-
jectory generator: point p(1) moves towards reference

point p
(1)
r until close enough, i.e. condition (72) holds

at a point p(2), which is when the trajectory generator

switches the reference point to p
(2)
r . Finally, at p(3) the

generator switches to p
(3)
r .

Example 9b A trajectory generator for the stop sign
controller

init→ [(ctrl; plant)∗] (req) (69)

init ≡ v ≥ 0 ∧ pm ≤ p ≤ S ∧ pr =
pm + S

2

∧Kp = 2 ∧Kd = 3

∧ V (p, pr, v) ≤
(
S − pm

2

)2

(70)

ctrl ≡
(
pm := p; pr :=

pm + S

2
; (71)

?V (p, pr, v) ≤
(
S − pm

2

)2
)

(72)

∪ ?true (73)

plant ≡ p′ = v, v′ = −Kp(p− pr)−Kdv & v ≥ 0 (74)

req ≡ p ≤ S (75)

Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera 19

generator checks in (72) to see whether it has entered
the sublevel set for the next trajectory point, and oth-
erwise simply keeps the old one by testing whether the
formula true holds, which is a no-op (73). The corre-
sponding model in Example 9b can be easily verified by
using the loop invariant (76).

V (p, pr, v) ≤
(
S − pm

2

)2

∧pm ≤ p∧pr =
pm + S

2
∧v ≥ 0

(76)
The first conjunct represents the sublevel set of the

Lyapunov function that is active when the trajectory
generator calculates the reference point. The second con-
junct says that the measured position is always less than
or equal to the current position—i. e., the measured po-
sition can be outdated, but it can never exceed the posi-
tion. The third conjunct says that the reference position
is the midpoint between the last measured position and
the stop sign. These two conjuncts contain information
that is visible in the discrete portion (71) of the pro-
gram, but not the continuous part. By lifting this into
the loop invariant, we are able to use this information
when proving goals about the overall program. Similarly,
the fourth conjunct says that the velocity is always pos-
itive. This is a property of the continuous portion (74)
of the program, which we lift into the loop invariant so
that it can be used in the proof of safety of the over-
all system. Note that we also require that this invariant
holds at the start of the system evolution in (70), so that
the system is not unsafe before the reference trajectory
generator can even act on it. The controller tests that it
holds for the new trajectory point before switching to it
(72). Otherwise, the new reference point pr is discarded
and the old reference point is kept in (73) instead. At
runtime, this means that the controller never switches
to a distant target point before it made enough progress
towards the current target point, so that the next target
point can be used safely.

5.10 Example 10: Car Controller for Nonlinear
Dynamics

In the previous examples we have modeled motion of
the car on a one-dimensional straight lane. In the next
step, we model the behavior of a car with steering, so
that it drives on a two-dimensional lane. Steering lets
the car choose a steering angle, which influences the turn
radius of the car: keeping the front wheels straight means
the car drives straight, turning them a little results in a
slight turn with a large radius, turning them hard results
in a sudden turn with a small radius. This means the
car drives a sequence of circular arcs with varying radii
as a trajectory. An animation of this type of controller,
which discretely changes curve radius to control steering,
can be viewed online: Modeling Discrete Steering [1]. A
sample trajectory is depicted in Fig. 11.

c(1)

θ

p

c(3)

Fig. 11: Motion on a road as a sequence of circular arcs:
Curved trajectory of a car that stays on its lane following
a sequence of circular arcs around the respective centers
c(i) of varying radius and varying arc lengths.

c = (cx, cy)

p = (px, py)

r

trajectory

o = (ox, oy)
θ

ox = cos θ

sin θ = oy

Fig. 12: State illustration of a car on a two-dimensional
plane. The car has position p = (px, py), orientation o =
(ox, oy), and drives on circular arcs of radius r and an-
gle θ around curve center points c = (cx, cy).

Such motion leads to nonlinear dynamics models. As
a safety property, we want to prove that the car con-
troller manages to stay within the bounds of the lane,
i. e., it does not deviate from the center of the lane too
much.

But first let us consider how we must extend the
one-dimensional car model to become two-dimensional,
as illustrated in Fig. 12. The car now needs two coordi-
nates to describe its current position p = (px, py) and
we need to describe where it is heading. Note that in
the previous models, orientation was implicitly encoded
in the velocity of the car (the car was heading towards
increasing position values). Here, we describe the ori-
entation of the car with a two-dimensional vector that
points in the direction where the car is currently driving:
o = (ox, oy). We make o a unit vector, because otherwise
it would implicitly also describe the velocity v of the car.

But how is this orientation vector linked to the curve
of the car and how does it change over time? Let us
model a curve to find out. An important property of a
curve is its radius r. The car makes a sharp turn if the
radius r is small. If the radius becomes larger then the
curve becomes increasingly straightened; the car drives a
straight line if the radius is infinite (r =∞). We do not
need to model the center of the curve, because we can

20 Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera

infer it from the orientation of the car and the radius us-
ing the following formulas: ox = −py−cyr and oy = px−cx

r .
The center of the curve must be on an axis perpendicu-
lar to the orientation of the car, and it is either r to the
left or to the right of the car on this axis, depending on
whether the car drives a left turn or a right turn. Does
this mean we have to introduce a new variable telling us
whether the car drives clockwise or counter-clockwise?
Luckily no: in this case, we can spare an additional vari-
able by encoding whether the curve bends left or right
in the radius r. A positive radius r > 0 means driving
counter-clockwise (i. e., left curve as in Fig. 12), while a
negative radius r < 0 means driving clockwise (i. e., right
curve).

Now that we know how the curve is linked to the
current orientation of the car, let us consider how we
need to change the orientation along the curve. We know
that the car drives with linear velocity v, which changes
according to the acceleration of the car v′ = a. On a
straight line as in the previous examples this lets us
easily compute new positions of the car through New-
ton’s laws of motion. On a circular curve, we can con-
sult rigid body planar motion to compute the angular
velocity ω on the circle from the linear velocity v of the
car and the radius r of the curve: rω = v. As a result,
angular velocity also changes according to the accelera-
tion of the car ω′ = a

r . But more importantly, the an-
gular velocity ω lets us derive position changes of the
car on the curve in terms of an angle θ between the
car’s current position and its new positions. The differ-
ential equation for changing the angle is simply θ′ = ω.
Knowing the angle on the curve now makes it easy to
compute the orientation of the car using trigonometry:
o = (ox, oy) = (cos θ, sin θ). To sum up, the orientation
changes of our car could be modeled using the differen-
tial equations

o′x = (cos θ)′ = (− sin θ)θ′,

o′y = (sin θ)′ = (cos θ)θ′,

θ′ = ω, and ω′ =
a

r
.

Unfortunately, we cannot easily use trigonometric
functions, nor any other transcendental functions in a
proof, because they result in undecidable arithmetic. So
we need to find a different representation. On close exam-
ination, the differential equations do not actually need
to make the angle θ explicit, because we encode the an-
gle implicitly in the orientation of the car ox = cos θ and
oy = sin θ. So we can rephrase the differential equations
as o′x = (− sin θ)θ′ = −oyω and o′y = (cos θ)θ′ = oxω.
This technique of differential axiomatization [46] was
also applied to handle curved flight maneuvers and the
motion of autonomous robots [36]. Even though these
differential equations do not have a closed-form polyno-
mial solution, it turns out that we can handle such dif-
ferential equations using differential cuts and differential

invariants. But before we dive into the details of these
advanced verification techniques for differential equation
systems, let us briefly summarize the model.

In Example 10 the car is initially stopped at the cen-
ter of the lane (py = ly), its initial steering points to
a curve of positive radius (r > 0), and the orientation
of the car is a unit vector (‖o‖ = 1). As in the previ-
ous models, the car has three control choices: in (79) it
may choose a new trajectory when it is safe to do so by
choosing a new radius (r 6= 0) and adjusting its angular
velocity to fit the linear velocity (ωr = v); in (80) it may
stay stopped by not accelerating a = 0 when already
being stopped; and in (81) it may brake nondeterminis-
tically −B ≤ a ≤ −b on its current trajectory to stay on
the lane. The plant is modeled in (83)–(86) using the dif-
ferential equation systems introduced above. The overall
pattern of the plant is still similar to p′ = v, v′ = a from
the previous examples, except that the direction into
which the position p moves is in two-dimensional space
and changing. The safety property req in (87) formalizes
what it means for a car to stay within lane bounds: the
position of the car py deviates from the center of the lane
ly by at most half the lane width lw. Here, we assume
that the lane is oriented along the x-axis of our space
and its width along the y-axis.

Example 10 Car controller with nonlinear dynamics

init→ [(ctrl; plant)∗] (req) (77)

init ≡ lw > 0 ∧ py = ly ∧ v ≥ 0 ∧ r > 0 ∧ ‖o‖ = 1

∧A > 0 ∧B ≥ b > 0 ∧ ε > 0
(78)

ctrl ≡ (?safeε; a := ∗; ?−B ≤ a ≤ A);

ω := ∗;
r := ∗; ?r 6= 0 ∧ ωr = v

(79)

∪ (?v = 0; a := 0;ω := 0) (80)

∪ (a := ∗; ?−B ≤ a ≤ −b) (81)

safeε ≡ |py − ly|+
v2

2b
+

(
A

b
+ 1

)(
A

2
ε2 + εv

)
< lw

(82)

plant ≡ c := 0; (83)

p′x = vox, p
′
y = voy, v

′ = a, (84)

o′x = −oyω, o′y = oxω, ω′ =
a

r
, c′ = 1 (85)

& v ≥ 0 ∧ c ≤ ε (86)

req ≡ |py − ly| < lw (87)

The proof of Example 10 uses differential cuts, dif-
ferential weakening and differential induction, since the
differential equations in Example 10 do not have a poly-
nomial solution. We describe these proof techniques in
detail below.

Differential Invariants, Differential Cuts, and Differen-
tial Induction When a differential equation system does

Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera 21

not have a closed-form solution, we cannot follow our
practice from the examples so far and simply replace
the differential equation system with its solution after
introducing a time variable. To handle such systems,
KeYmaera provides proof rules for differential induc-
tion, differential invariants, differential cut and differ-
ential weakening [46, 47, 50, 52]. In the following para-
graphs we illustrate how to prove properties about sys-
tems with nonlinear dynamics using these proof rules.

A simple proof rule for handling differential equation
systems is differential weakening. Differential weakening
replaces a differential equation system with its evolution
domain constraints. For example, let us assume we want
to use differential weakening to prove [plant](v ≥ 0),
where plant denotes the differential equation system of
lines (83)–(86) of Example 10. When we apply differen-
tial weakening, we have to show

v ≥ 0 ∧ c ≤ ε︸ ︷︷ ︸
evolution domain

→ v ≥ 0︸ ︷︷ ︸
safety condition

,

because v ≥ 0∧c ≤ ε is the evolution domain (86) of the
differential equation system. Here, we can show our re-
quirement, because the evolution domain constraints are
sufficiently informative to let us prove the requirement.
More often than not, however, the evolution domain con-
straints do not carry enough information. For example,
we cannot prove [plant](c ≥ 0) using differential weak-
ening alone, since v ≥ 0 ∧ c ≤ ε→ c ≥ 0 is not true.

We can use differential cuts to make the evolution
domain sufficiently informative. A differential cut adds
information that we have proved about an ODE to the
evolution domain constraints of a differential equation
system. This way, we can increasingly strengthen the
evolution domain by successively applying differential
cuts, until eventually the differential equation can be
resolved by differential weakening.

Let us use a differential cut to enrich the evolution
domain constraint of Example 10. Here, we use our do-
main knowledge about the system to find appropriate
differential cuts. By inspecting the clock variable, we see
that it is reset to 0 at the beginning and then evolves
with constant slope 1. We can therefore use the differen-
tial cut rule to provide c ≥ 0 as an additional evolution
domain constraint, so that the evolution domain con-
straint (86) becomes v ≥ 0 ∧ c ≤ ε ∧ c ≥ 0. Using this
new evolution domain constraint, we can now use differ-
ential weakening to prove [plant](c ≥ 0) from above.

However, before we get to use such an additional con-
straint, we first have to prove that it holds along the
differential equation system, since otherwise additional
constraints in the evolution domain would change the
system dynamics. We call such constraints differential
invariants.

Differential invariants are somewhat similar to induc-
tive invariants for discrete loops: a differential invariant
has to be true at the beginning of the continuous evolu-
tion, it has to stay true throughout the evolution, and it

has to be strong enough so that we can prove our safety
condition from it. Thus, differential invariants define an
induction principle for differential equations [50].

The corresponding proof rule in KeYmaera is called
differential invariant. Intuitively, differential invariants
show that a formula is getting “more true” when follow-
ing the differential equation system. To prove that c ≥ 0
is a differential invariant of the differential equation sys-
tem in line (85), we have to show that c ≥ 0 is true at
the beginning and remains true throughout. The con-
straint is true at the beginning because the clock is reset
in line (83) and 0 ≥ 0 holds trivially. Showing that the
constraint remains true throughout needs a little expla-
nation. The differential invariant rule lets us assume the
current evolution domain constraint, because the contin-
uous evolution is not allowed to leave it. It requires us to
show that the syntactic derivative of the new constraint
is true [52]:

v ≥ 0 ∧ c ≤ ε︸ ︷︷ ︸
evolution domain

→ c′ ≥ 0′︸ ︷︷ ︸
syntactic derivative

.

Primed variables and real numbers in this syntactic deriva-
tive are further substituted with their actual term as de-
fined in the differential equation system. So we have to
show v ≥ 0∧c ≤ ε→ 1 ≥ 0, because 0′ = 0 by definition
and c′ = 1 as specified in line (85) of Example 10.

In the complete example we use further differential
cuts similar to our robot case study [36] to strengthen
the evolution domain constraint with differential invari-
ants on orientation, velocity, and traveled distance. More
in-depth information about differential weakening, cuts,
and induction can be found in [52].

For step-by-step instructions on how to use differen-
tial invariants, differential cuts, and differential weaken-
ing in KeYmaera, watch the Differential Cuts, Invari-
ants, and Weakening video [1].

6 Advanced Modeling Concepts and Pitfalls

In this section, we introduce advanced modeling con-
cepts and we discuss modeling pitfalls resulting in faulty
models that vacuously satisfy any property.

6.1 Hybrid Time

A common assumption in hybrid systems, as already
mentioned, is that discrete actions do not consume time.
Because discrete actions are assumed not to consume
time, multiple discrete actions can occur at the same
real point in time. To capture this mathematically, the
time axis used in hybrid systems models contains a nat-
ural number component which counts the number of dis-
crete actions. That is, a hybrid point in time is a pair
(r, n) ∈ R≥0 × N. For each real-valued point in time r
there is a discrete time axis that reflects the order of

22 Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera

Table 3: Summary of tutorial examples: modeling aspects and proof strategies

Description ODE Strategy Statistics

Incremental Change Design Proof Stepsi Time

Ex. 1 Uncontrolled plant Linear Design ODE Automated 0 / 7 1.1 s
Ex. 2 Discrete controller, nondeterministic

repetition
Linear Find invariant (auto-

mated in some cases)
Automated 0 / 73 1.3 s

Ex. 3a Event-triggered controller Linear Find event trigger Automated 0 / 85 0.7 s
Ex. 4 Pitfalls in event-triggered control Linear Avoid pitfalls No proof since

not valid
– –

Ex. 5 Time-triggered controller Linear Find safe control con-
ditions

Automated 0 / 107 0.7 s

Ex. 6 Guarded nondeterministic assignment Linear Model assignment
guards

Automated 0 / 114 1.1 s

Ex. 7 Nondeterministic overapproximation
of formulas

Linear Model formula
bounds

Automated 0 / 131 3.1 s

Ex. 8 Actuation disturbance Diff.
Ineq.ii

Model disturbance
bounds

Diff. inequality
elimination

61 / 416 1.8 s

Ex. 9 Lyapunov functions, PD control Linear Find Lyapunov func-
tions, controller gains

Differential in-
variant

0 / 29
52 / 239

2.9 s
14.8 s

Ex. 10 Curved motion in two-dimensional
space

Nonlin. Avoid transcendental
functions

Differential
cut, invariant

170 / 737 2.1 s

i Proof steps: interactive / total steps ii Differential inequality

discrete actions. Hence the time model for hybrid sys-
tems, called hybrid time, is given by R≥0 × N, see [53]
for details.

6.2 Discrete Actions with Nonzero Duration

We have assumed that the computations by the con-
troller take zero time because this is a common assump-
tion to simplify controller design and analysis. However,
in many cases it is desirable to consider delays due to
sensors, computation time, and actuators. The general
idea is to model the start of the desired action and store
the result in ghost variables, then allow the continuous
dynamics to evolve for the desired duration, and finally
store the values of the ghost variables into the program
variables when they take effect. Here we will illustrate
the case of computation delay. Suppose, for example,
that we are controlling the acceleration of a car as be-
fore, and that the computation time takes up to half a
second. Then the controller can be modeled by the fol-
lowing hybrid program.

Example 11 Controller with nonzero computation time

ctrl ≡ z :=−b; (88)

t := 0; (p′ = v, v′ = a, t′ = 1 & t ≤ 0.5); (89)

a := z; (90)

First, in line (88) the desired acceleration of −b is
stored into the ghost variable z. Then, in line (89) the

plant is allowed to evolve as long as a time variable t is
less than or equal to 0.5, meaning it will delay subsequent
actions for up to half a second. Finally, in line (90) we
update the acceleration commanded by the controller
to the value of the ghost variable, which was computed
before the delay. This style can also be used to address
sensor and actuator delay.

6.3 Disjoint Tests and Evolution Domains

When combining choices and tests it is important to
make sure that the model does not get blocked in an
unnatural way. For example, the program

(?v < 3; v′ = A) ∪ (?v > 5; v′ = −B) (91)

cannot evolve if v is between 3 and 5. Therefore, it is
good modeling practice to have at least one branch in
the program for each case, so (91) should be augmented
with a case ∪?3 ≤ v ≤ 5; v′ = Evolution domain
constraints also need to be designed with care. For ex-
ample, the HP

((v′ = −B & v ≥ 0) ∪ (v′ = −b & v < 0))
∗

(92)

has disjoint evolution domain constraints. When v = 0,
the system cannot switch to the second choice, because
its evolution constraint v < 0 is not satisfied for the
initial state. There is an infinitesimal gap in the model,
see [54]. So, the second branch should use the evolution
domain constraint v ≤ 0 instead of v < 0.

Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera 23

6.4 Non-Existence of Systems

Tests outside nondeterministic choices must be used care-
fully, since they potentially entail non-existence of the
modeled system. For example, the dL statement

A > 0 ∧ v > 0→ [(v′ = A) ; ?v = 0] (v = 0)

results in an empty set of executions, since none of the
values of v will satisfy the test ?v = 0. Thus, the property
v = 0 is vacuously true simply because the system never
runs successfully. Such issues can be detected by liveness
proofs using the diamond modality 〈α〉: the dL statement
v > 0 → 〈(v′ = A) ; ?v = 0〉 (v = 0) is only true, if at
least one run satisfies the requirement, which is not the
case if A > 0.

6.5 Safety Throughout vs. Safety Finally

The evolution of a differential equation system is al-
lowed to nondeterministically stop at any time (even
zero) before the evolution domain becomes false. Thus,
dL properties of the form [(x′ = θ & H)]φ usually verify
safety throughout system execution. A subsequent test,
as in [(x′ = θ & c ≤ ε) ; ?c = ε]φ, however, means that
all traces that end before the clock reached its maximum
time will not be considered during the proof. Thus, we
only verify that the requirement φ will be true at the
end of the evolution after exactly time ε, which is weaker
than safety throughout. The lesson here is to always take
care when using tests, as discussed in Section 5.6, or to
add temporal logic dTL, see [30, 47].

7 Summary and Outlook

In this tutorial, we presented the basic modeling and
proof techniques provided by KeYmaera to verify para-
metric hybrid systems, focusing on safety properties.

The modeling and proof process followed in this tu-
torial gradually develops the relevant features of hy-
brid system models and its associated proof techniques.
Such an incremental development is not only effective for
learning KeYmaera but continues to be helpful in most
hybrid system applications for managing proof complex-
ity. Since the dynamics of applications is often complex
and their behavior rather subtle, it is almost impossi-
ble to get them correct without first considering simpler
models and simpler controllers and basing the subse-
quent design of extensions on provably correct designs
of the simpler systems. Incremental proofs for incremen-
tal system designs make it easier to localize which part
of a controller design is responsible for violating safety.
Proof strategies are also often easier to find in simpler
settings and then transferred to subsequent more com-
plex system designs. In this tutorial, we incrementally

developed models and their associated proof strategies,
as summarized in Table 3.

KeYmaera’s proofs enable strong guarantees about
the correctness of system design models. If the real sys-
tem fits to the model, its behavior is guaranteed to sat-
isfy the correctness properties verified w.r.t. the model.
KeYmaera supports ModelPlex, a method to automati-
cally turn verified models into provably correct runtime
monitors, so that proofs about models transfer to the
running system in verifiably correct ways [38].

In the following paragraphs, we briefly list further
features of KeYmaera. In addition to safety properties,
KeYmaera is able to show liveness properties. These can
be expressed using the diamond modality 〈·〉. Where in
the proofs of safety properties invariants were necessary
to prove properties of loops now variants, provided us-
ing @variant(. . .) annotations, are required [45]. A vari-
ant can be seen as a formula encoding progress (cf. a
termination function in discrete program verification).
KeYmaera can also be used to prove general formulas
of dL with arbitrary nesting of quantifiers and modal-
ities. We refer to previous work [45, 47, 58] for such
examples, which is helpful, for instance, for controlla-
bility and reactivity properties. KeYmaera can be used
to reason about hybrid games by means of differential
dynamic game logic [60]. Here, the number of interac-
tions between box and diamond modalities is not fixed
a priori but instead statements about arbitrary alter-
nations of these can be made. Therefore, this extension
can be used, for instance, to reason about the existence
of a controller rather than the correct functioning of a
specific one.

In addition KeYmaera can be used to reason about
distributed hybrid systems with an a priori unknown
number of interacting agents. For this, hybrid programs
can be extended to quantified hybrid programs and the
logic allows quantifiers over additional domains such as
the domain of all cars. The resulting logic is called quan-
tified differential dynamic logic [48, 49]. Among other
things, this allows to reason explicitly about the number
of cars involved in a lane change maneuver during the
proof instead of having to apply some argument why it
is sufficient to consider only a certain limited number of
cars [34].

While invariants are an integral part of a system de-
sign, KeYmaera also supports techniques for automat-
ically generating invariants and differential invariants
[55], for which significant progress has been made re-
cently [24], leading to a decision procedure for algebraic
invariants.

Finally, we have been investigating proof-aware refac-
torings to support incremental model and control de-
signs with incremental proofs [40]. The idea is to perform
transformations on the hybrid programs in a structured
way in order to minimize the effort required for reprov-
ing properties about these programs. This specifically
supports an iterative development of hybrid systems.

24 Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera

Acknowledgments. The authors would like to thank
the anonymous reviewers for their very constructive and
detailed feedback.

References

1. Online KeYmaera tutorial videos.
http://video.symbolaris.com

2. Alur, R.: Formal verification of hybrid systems. In:
Chakraborty, S., Jerraya, A., Baruah, S.K., Fis-
chmeister, S. (eds.) EMSOFT. pp. 273–278. ACM
(2011)

3. Alur, R., Courcoubetis, C., Halbwachs, N., Hen-
zinger, T.A., Ho, P.H., Nicollin, X., Olivero, A.,
Sifakis, J., Yovine, S.: The algorithmic analysis of
hybrid systems. Theor. Comput. Sci. 138(1), 3–34
(1995)

4. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho,
P.H.: Hybrid automata: An algorithmic approach to
the specification and verification of hybrid systems.
In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel,
H. (eds.) Hybrid Systems. LNCS, vol. 736, pp. 209–
229. Springer (1992)

5. Alur, R., La Torre, S., Pappas, G.J.: Optimal paths
in weighted timed automata. Theor. Comput. Sci.
318(3), 297–322 (2004)

6. Aréchiga, N., Loos, S.M., Platzer, A., Krogh, B.H.:
Using theorem provers to guarantee closed-loop sys-
tem properties. In: Tilbury, D. (ed.) ACC. pp. 3573–
3580 (2012)

7. Asarin, E., Dang, T., Maler, O.: The d/dt tool for
verification of hybrid systems. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV. LNCS, vol. 2404, pp. 365–
370. Springer (2002)

8. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Veri-
fication of Object-Oriented Software: The KeY Ap-
proach, LNCS, vol. 4334. Springer (2007)

9. Behrmann, G., Fehnker, A.: Efficient guiding to-
wards cost-optimality in UPPAAL. In: Margaria, T.,
Yi, W. (eds.) TACAS. LNCS, vol. 2031, pp. 174–188.
Springer (2001)

10. Behrmann, G., Fehnker, A., Hune, T., Larsen,
K.G., Pettersson, P., Romijn, J., Vaandrager,
F.W.: Minimum-cost reachability for priced timed
automata. In: Benedetto, M.D.D., Sangiovanni-
Vincentelli, A.L. (eds.) HSCC. LNCS, vol. 2034, pp.
147–161. Springer (2001)

11. Brown, C.W.: QEPCAD B: A program for comput-
ing with semi-algebraic sets using CADs. SIGSAM
Bull. 37(4), 97–108 (2003)

12. Chen, C.T.: Linear System Theory and Design. Ox-
ford University Press, 3rd edn. (1999)

13. Chen, X., Ábrahám, E., Sankaranarayanan, S.:
Flow*: An analyzer for non-linear hybrid systems.
In: Sharygina, N., Veith, H. (eds.) CAV, LNCS, vol.
8044, pp. 258–263. Springer (2013)

14. Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model
Checking. MIT Press, Cambridge, MA, USA (1999)

15. Damm, W., Dierks, H., Disch, S., Hagemann, W.,
Pigorsch, F., Scholl, C., Waldmann, U., Wirtz, B.:
Exact and fully symbolic verification of linear hy-
brid automata with large discrete state spaces. Sci.
Comput. Program. 77(10-11), 1122–1150 (2012)

16. Davenport, J.H., Heintz, J.: Real quantifier elimi-
nation is doubly exponential. Journal of Symbolic
Computation 5(1/2), 29–35 (1988)

17. Davoren, J.M., Nerode, A.: Logics for hybrid sys-
tems. IEEE 88(7), 985–1010 (2000)

18. Deshpande, A., Göllü, A., Varaiya, P.: SHIFT: A for-
malism and a programming language for dynamic
networks of hybrid automata. In: Antsaklis, P.J.,
Kohn, W., Nerode, A., Sastry, S. (eds.) Hybrid Sys-
tems. LNCS, vol. 1273, pp. 113–133. Springer (1996)

19. Dolzmann, A., Sturm, T.: Redlog: Computer algebra
meets computer logic. ACM SIGSAM Bull. 31, 2–9
(1997)

20. Eggers, A., Ramdani, N., Nedialkov, N., Fränzle,
M.: Improving SAT modulo ODE for hybrid sys-
tems analysis by combining different enclosure meth-
ods. In: Barthe, G., Pardo, A., Schneider, G. (eds.)
SEFM. LNCS, vol. 7041, pp. 172–187. Springer
(2011)

21. Fränzle, M., Herde, C., Teige, T., Ratschan, S.,
Schubert, T.: Efficient solving of large non-linear
arithmetic constraint systems with complex boolean
structure. JSAT 1(3-4), 209–236 (2007)

22. Frehse, G.: PHAVer: algorithmic verification of hy-
brid systems past HyTech. STTT 10(3), 263–279
(2008)

23. Frehse, G., Guernic, C.L., Donzé, A., Cotton, S.,
Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang,
T., Maler, O.: SpaceEx: Scalable verification of hy-
brid systems. In: Gopalakrishnan, G., Qadeer, S.
(eds.) CAV. LNCS, vol. 6806, pp. 379–395. Springer
(2011)

24. Ghorbal, K., Platzer, A.: Characterizing algebraic
invariants by differential radical invariants. In:
Ábrahám, E., Havelund, K. (eds.) TACAS. LNCS,
vol. 8413, pp. 279–294. Springer (2014)

25. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic.
MIT Press (2000)

26. Henzinger, T.A.: The theory of hybrid automata. In:
LICS. pp. 278–292. IEEE Computer Society (1996)

27. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HyTech:
A model checker for hybrid systems. STTT 1(1-2),
110–122 (1997)

28. Ioannu, P., Xu, Z., Eckert, S., Clemons, D., Sieja, T.:
Intelligent cruise control: Theory and experiment.
In: CDC. pp. 1885–1890 (1993)

29. Jeannin, J.B., Ghorbal, K., Kouskoulas, Y., Gard-
ner, R., Schmidt, A., Platzer, E.Z.A.: A formally ver-
ified hybrid system for the next-generation airborne
collision avoidance system. In: Baier, C., Tinelli, C.

http://video.symbolaris.com

Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera 25

(eds.) TACAS. LNCS, Springer (2015)
30. Jeannin, J.B., Platzer, A.: dTL2: Differential tem-

poral dynamic logic with nested temporalities for
hybrid systems. In: Demri, S., Kapur, D., Weiden-
bach, C. (eds.) IJCAR. LNCS, vol. 8562, pp. 292–
306. Springer (2014)

31. Khalil, H.K.: Nonlinear Systems. Prentice Hall, 3rd
edn. (2001)

32. Kouskoulas, Y., Renshaw, D.W., Platzer, A.,
Kazanzides, P.: Certifying the safe design of a vir-
tual fixture control algorithm for a surgical robot.
In: Belta, C., Ivancic, F. (eds.) HSCC. pp. 263–272.
ACM (2013)

33. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a
nutshell. STTT 1(1+2), 134–152 (1997)

34. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise
control: Hybrid, distributed, and now formally ver-
ified. In: Butler, M., Schulte, W. (eds.) FM. LNCS,
vol. 6664, pp. 42–56. Springer (2011)

35. Loup, U., Scheibler, K., Corzilius, F., Ábrahám, E.,
Becker, B.: A symbiosis of interval constraint prop-
agation and cylindrical algebraic decomposition. In:
Bonacina, M.P. (ed.) CADE. LNCS, vol. 7898, pp.
193–207. Springer (2013)

36. Mitsch, S., Ghorbal, K., Platzer, A.: On prov-
ably safe obstacle avoidance for autonomous robotic
ground vehicles. In: Newman, P., Fox, D., Hsu, D.
(eds.) Robotics: Science and Systems (2013)

37. Mitsch, S., Loos, S.M., Platzer, A.: Towards formal
verification of freeway traffic control. In: Lu, C. (ed.)
ICCPS. pp. 171–180. IEEE (2012)

38. Mitsch, S., Platzer, A.: Modelplex: Verified runtime
validation of verified cyber-physical system mod-
els. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV.
LNCS, vol. 8734, pp. 199–214. Springer (2014)

39. Mitsch, S., Quesel, J.D., Platzer, A.: From safety to
guilty and from liveness to niceness. In: 5th Work-
shop on Formal Methods for Robotics and Automa-
tion (2014)

40. Mitsch, S., Quesel, J.D., Platzer, A.: Refactoring, re-
finement, and reasoning – a logical characterization
for hybrid systems. In: Jones, C.B., Pihlajasaari, P.,
Sun, J. (eds.) FM. LNCS, vol. 8442, pp. 481–496.
Springer (2014)

41. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT
solver. In: Ramakrishnan, C.R., Rehof, J. (eds.)
TACAS. LNCS, vol. 4963, pp. 337–340. Springer
(2008)

42. Olderog, E.R., Dierks, H.: Real-time systems - for-
mal specification and automatic verification. Cam-
bridge University Press (2008)

43. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Hybrid sys-
tems: from verification to falsification by combining
motion planning and discrete search. Form. Methods
Syst. Des. 34(2), 157–182 (2009)

44. Platzer, A.: Differential dynamic logic for veri-
fying parametric hybrid systems. In: Olivetti, N.

(ed.) TABLEAUX. LNCS, vol. 4548, pp. 216–232.
Springer (2007)

45. Platzer, A.: Differential dynamic logic for hybrid sys-
tems. J. Autom. Reas. 41(2), 143–189 (2008)

46. Platzer, A.: Differential-algebraic dynamic logic for
differential-algebraic programs. J. Log. Comput.
20(1), 309–352 (2010)

47. Platzer, A.: Logical Analysis of Hybrid Systems:
Proving Theorems for Complex Dynamics. Springer,
Heidelberg (2010)

48. Platzer, A.: Quantified differential dynamic logic for
distributed hybrid systems. In: Dawar, A., Veith, H.
(eds.) CSL. LNCS, vol. 6247, pp. 469–483. Springer
(2010)

49. Platzer, A.: A complete axiomatization of quantified
differential dynamic logic for distributed hybrid sys-
tems. Logical Methods in Computer Science 8(4),
1–44 (2012), special issue for selected papers from
CSL’10

50. Platzer, A.: The complete proof theory of hybrid sys-
tems. In: LICS. pp. 541–550. IEEE (2012)

51. Platzer, A.: Logics of dynamical systems. In: LICS.
pp. 13–24. IEEE (2012)

52. Platzer, A.: The structure of differential invariants
and differential cut elimination. Logical Methods in
Computer Science 8(4), 1–38 (2012)

53. Platzer, A.: Analog and hybrid computation: Dy-
namical systems and programming languages. Bul-
letin of the EATCS 114, 151–200 (2014)

54. Platzer, A.: Foundations of cyber-physical systems.
Lecture Notes 15-424/624, Carnegie Mellon Uni-
versity (2014), http://symbolaris.com/course/

fcps14/fcps14.pdf

55. Platzer, A., Clarke, E.M.: Computing differential
invariants of hybrid systems as fixedpoints. Form.
Methods Syst. Des. 35(1), 98–120 (2009)

56. Platzer, A., Clarke, E.M.: Formal verification of
curved flight collision avoidance maneuvers: A case
study. In: Cavalcanti, A., Dams, D. (eds.) FM.
LNCS, vol. 5850, pp. 547–562. Springer (2009)

57. Platzer, A., Quesel, J.D.: KeYmaera: A hybrid the-
orem prover for hybrid systems. In: Armando, A.,
Baumgartner, P., Dowek, G. (eds.) IJCAR. LNCS,
vol. 5195, pp. 171–178. Springer (2008)

58. Platzer, A., Quesel, J.D.: European Train Control
System: A case study in formal verification. In: Bre-
itman, K., Cavalcanti, A. (eds.) ICFEM. LNCS, vol.
5885, pp. 246–265. Springer (2009)

59. Pratt, V.R.: Semantical considerations on Floyd-
Hoare logic. In: FOCS. pp. 109–121. IEEE Computer
Society (1976)

60. Quesel, J.D., Platzer, A.: Playing hybrid games with
KeYmaera. In: Gramlich, B., Miller, D., Sattler,
U. (eds.) IJCAR. LNCS, vol. 7364, pp. 439–453.
Springer (2012)

61. Ratschan, S., She, Z.: Safety verification of hybrid
systems by constraint propagation-based abstrac-

http://symbolaris.com/course/fcps14/fcps14.pdf
http://symbolaris.com/course/fcps14/fcps14.pdf

26 Quesel et al.: How to Model and Prove Hybrid Systems with KeYmaera

tion refinement. ACM Trans. Embed. Comput. Syst.
6(1) (2007)

62. Tarski, A.: A Decision Method for Elementary Al-
gebra and Geometry. University of California Press,
Berkeley, 2nd edn. (1951)

63. Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolu-
tion for air traffic management: a study in multi-
agent hybrid systems. IEEE T. Automat. Contr.
43(4), 509–521 (1998)

64. Umeno, S., Lynch, N.A.: Safety verification of an
aircraft landing protocol: A refinement approach.
In: Bemporad, A., Bicchi, A., Buttazzo, G.C. (eds.)
HSCC. LNCS, vol. 4416, pp. 557–572. Springer
(2007)

65. Wolfram, S.: The Mathematica book (5th edn.).
Wolfram-Media (2003)

	Introduction
	Introduction to Hybrid Systems Modeling
	Proving with KeYmaera
	Related Tools
	KeYmaera Tutorial
	Advanced Modeling Concepts and Pitfalls
	Summary and Outlook

