
FACS 2006

SAT-based Abstraction Refinement for
Real-time Systems

Stephanie Kemper2

Centrum voor Wiskunde en Informatica, Amsterdam

André Platzer1,3

University of Oldenburg, Department of Computing Science, Germany
Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

In this paper, we present an abstraction refinement approach for model checking safety properties of real-
time systems using SAT-solving. We present a faithful embedding of bounded model checking for systems
of timed automata into propositional logic with linear arithmetic and prove correctness. With this logical
representation, we achieve a linear-size representation of parallel composition and introduce a quick abstrac-
tion technique that works uniformly for clocks, events, and states. When necessary, abstractions are refined
by analysing spurious counterexamples using a promising extension of counterexample-guided abstraction
refinement with syntactic information about Craig interpolants. To support generalisations, our overall
approach identifies the algebraic and logical principles required for logic-based abstraction refinement.

Keywords: abstraction refinement, model checking, real-time systems, SAT, Craig interpolation

1 Introduction

Failures within embedded systems of automotive industry, railway technology, and
avionics usually have disastrous consequences. One dominant feature of these safety-
critical systems is that safety crucially depends on reactions that occur in time. For
instance, a train controller needs to apply the brakes as a response to driving faster
than the current track situation permits. Yet, this response has to be executed in
time before reaching an open gate or it will be useless.

The computational complexity introduced by the infinite state space of these
real-time systems leads to severe limitations in scalability even within very well-

1 This work was partially supported by the German Research Council (DFG) as part of the Transregional
Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14
AVACS, see www.avacs.org) and by a fellowship of the German Academic Exchange Service (DAAD).
2 Email: s.kemper@cwi.nl
3 Email: platzer@informatik.uni-oldenburg.de

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:s.kemper@cwi.nl
mailto:platzer@informatik.uni-oldenburg.de

Kemper and Platzer

esablished model checkers like Uppaal 4 . Aside from the omniscient state explosion
problem [4] already present in finite state model checking, current model checking
techniques for real-time systems are still limited in the number of concurrent quanti-
tative temporal observations (measured by clocks). One particularly dramatic cause
of the state explosion problem is the exponential blow-up obtained by forming the
cross product for parallel composition of timed automata (TA). To avoid this, we
define a linear-size parallel composition within the logical representation of TA.
Typically, only a reduced part of the full parallel composition has to be expanded
from our representation during satisfiability checking (SAT solving).

Very sophisticated and well-optimised techniques (e.g., [10]) guide high-end SAT
solvers to explore only a comparably narrow fragment around the part of the state
space relevant for the particular safety property. We build upon this development
by choosing a linear arithmetic/propositional encoding (as opposed to implementing
new algorithms for the restricted domain of TA from scratch): a philosophy that has
successfully proven its great potential in finite state systems [3]. With this basis, we
exploit the particularities of transition systems induced by timed automata using
abstraction refinement to deal with the challenges of infinite states.

Timed Automata
As the prevailing model for real-time systems, TA [1] are an extension of finite

automata with real-valued variables (clocks), that can measure the passing of time.
Their behaviour consists of a sequence of events happening over time. TA allow
two types of events: visible (external) and invisible (internal) actions. The former
are used for synchronisation with other automata, while the latter are used for
internal steps of a single automaton, independent from others. Transitions may
reset clocks and are considered to be instantaneous, i.e., time may only elapse
while the automaton remains in one of its states. The firing of transitions and the
dwell time are states is restricted by clock constraints—called guards and invariants,
respectively—which the current clock values have to satisfy.

The AVACS Project
The project AVACS (Automatic Verification and Analysis of Complex Systems)

addresses the rigorous mathematical analysis of models of complex safety critical
computerised systems, such as aircrafts, trains, cars, or other artifacts, whose po-
tential failures can endanger human life. In this context, we have implemented
a prototypical model checker in Java, called SAAtRe (SAT-based Abstraction
Refinement). As a SAT solver backend, SAAtRe uses FOCI 5 , since it is able to
derive interpolants, which play an important role in the refinement step in Section 5.

Structure of the Abstraction Refinement Loop
Abstraction refinement [4,6] is a promising direction of research to overcome

the challenges of the state explosion problem and infinite state model checking,

4 http://www.uppaal.com
5 By Kenneth McMillan (based on [9]).

2

http://www.uppaal.com

Kemper and Platzer

TA Represent

Abstract

Unfold[k] SAT solver

Concretise

FOCIRefine

s not reachable in k steps

s reachable

Fig. 1. SAT-based Abstraction Refinement Loop

while preserving correctness of verification results. Abstraction techniques over-
approximate system behaviour by removing constraints that are considered irrele-
vant for verifying a particular specification. If the abstract system is safe (no error
state is reachable) then, by conservative over-approximation, so is the original.

Fig. 1 depicts a conceptual overview of the data-flow in our abstraction refine-
ment loop (grey boxes represent external tools). We represent the transition char-
acteristics of a TA in propositional logic with linear arithmetic, and automatically
produce a simpler abstract version of it. After unfolding the resulting transition
formula (k times), a satisfiability check solves the bounded reachability question
in the abstract system. Depending on the outcome, the real-time system has ei-
ther been proven safe (s is unreachable) within bound k, or needs to be analysed
with respect to an abstract counterexample (concretised), again using SAT solv-
ing (FOCI). If the abstract counterexample has a counterpart in the non-abstracted
system, then the real-time system is unsafe. Otherwise, the counterexample is spu-
rious and results from an inappropriate initial choice of abstraction. Analysing the
counterexample (with Craig interpolants derived by FOCI) then helps to refine the
abstraction and start over until the system is proven safe or unsafe.

Related Work
Audemard et al. [2] reduce bounded model checking for TA to the satisfiability

problem of a mathematical formula. They elaborate on encoding LTL specifications
of TA. Without abstraction techniques, scalability of this approach is still limited,
though.

Jhala and McMillan [7] present an abstraction refinement approach for predicate
abstraction. Using interpolants, they generate refinements which take into account
specific characteristics of the property. A limitation, however, is the fact that their
approach relies on an appropriate choice of predicates for predicate abstraction. Our
approach can be considered as a quick (hence, scalable) approximation of predicate
abstraction, where predicate discovery is evident by exploiting the nature of TA.

The abstraction refinement framework presented by Clarke et al. [4] works with
Kripke structures originating from finite state programs. In contrast, our approach
deals with the challenges of infinite state model checking as introduced by the notion
of real-time clocks. Further, we directly use a formula representation tailored for
SAT-based bounded model checking.

Structure of this Paper
After introducing real-time systems and bounded model checking in Section 2,

we present a faithful representation of TA in propositional logic with linear arith-
metic for bounded model checking in Section 3, and give a soundness result. In
Section 4, we introduce a uniform abstraction, and extend the algebraic perspective

3

Kemper and Platzer

on soundness from Section 3 to correspondence results about abstraction. Section 5
closes the abstraction refinement loop by investigating how spurious counterexam-
ples can be exploited for refining abstractions, before concluding with a summary
and future work in Section 6.

2 Preliminaries

In this section we introduce standard notions for TA [1] and bounded model check-
ing [3], and present our running example.

Timed Automata

Definition 2.1 [Timed automata] Let TA be the set of all timed automata A =
(A,S, s0, X, I, E) with

• A is a finite set of (visible) events, with typical elements a, a′;
• S is a finite set of states, with initial state s0 ∈ S and typical elements s, s′;
• X is a finite set of (real-valued) clocks, with typical elements x, y;
• I : S → Φ(X) is a mapping that assigns an invariant to each state; and
• E ⊆ S × (A ∪ {τ})×Φ(X)×P(X)× S is a set of transitions; with (s, a, ϕ, Y, s′)

denoting an action transition from s to s′ on occurrence of event a, restricted by
the guard ϕ and resetting all clocks in the set Y .

Clock constraints (i.e., guards and invariants) ϕ∈Φ(X) are formulas of propositional
logic with clock comparisons, x−y∼c and x∼c for c∈Q, ∼∈{>,≥, <,≤,=}, and the
usual connectives ¬,∧,∨. A clock valuation ν is a mapping assigning a real value
to every clock, which represents the time elapsed since the corresponding clock
was last reset. To ensure that invariants hold amongst subsequent steps, they are
assumed convex (i.e., do not contain ∨,¬ [1]), which is an important property used
for efficient representation (Section 3.2). The special invisible event τ 6∈A denotes
an internal action that happens without communication with another automaton.

The trace semantics, TraceA, of a TAA is defined as the set of all traces of the as-
sociated transition system SA [1]: a configuration (s, ν) of SA consists of a state s∈S
and a clock valuation ν that satisfies the invariant I(s). Transitions of SA reflect the
way thatAmay evolve in time: a delay transition (s, ν) δ→(s, ν+δ) increases all clock
values by the same amount of time δ, an action transition (s, ν) a→(s′, ν ′) resets the
clocks in Y to zero on the event a and leaves the others unchanged while following
an edge (s, a, ϕ, Y, s′)∈E on which the guard ϕ is true for ν. Time has to increase
monotonically without converging (non-Zeno traces). TraceA,k is defined as the set
of prefixes of a trace of A with (at most) length k.

The combination of multiple automata performing joint broadcast communica-
tion (note that [1] uses pairwise synchronisation) forms a parallel real-time system;
its semantics is defined as that of the corresponding product automaton (we present
a technique to avoid the exponential cross product in Section 3.4).

Definition 2.2 [Product of TA] LetA=(A,S, s0, X, I, E) and Ã=(Ã, S̃, s̃0, X̃, Ĩ, Ẽ)
be TA with X ∩ X̃ = ∅. The product of A and Ã is the TA A‖Ã, defined as

4

Kemper and Platzer

A‖Ã = (A ∪ Ã, S × S̃, (s0, s̃0), X ∪ X̃, I‖, E‖) with

• I‖(s, s̃) = I(s) ∧ Ĩ(s̃) and

• Transitions (s, a, ϕ, Y, s′) ∈ E and (s̃, ã, ϕ̃, Ỹ , s̃′) ∈ Ẽ give rise to:
- ((s, s̃), a, ϕ, Y, (s′, s̃)) ∈ E‖ iff a 6∈ Ã or a = τ (discrete transition of A),
- ((s, s̃), ã, ϕ̃, Ỹ , (s, s̃′)) ∈ E‖ iff ã 6∈ A or ã = τ (discrete transition of Ã),
- ((s, s̃), a, ϕ ∧ ϕ̃, Y ∪ Ỹ , (s′, s̃′)) ∈ E‖ iff a = ã (synchronisation).

Bounded Model Checking for Timed Automata
Bounded model checking (BMC) has turned out to be amongst the most promis-

ing approaches for verification of safety properties [3]. The principle is to examine
prefix fragments of the transition system, and successively increase the exploration
bound until it reaches (a computable indicator of) the diameter of the system—or
an unsafe trace has been discovered.

Definition 2.3 [Bounded safety] Let A=(A,S, s0, X, I, E) be a TA, let s∈S be an
error state. A is safe with respect to s within bound k, denoted by A|=k¬EFs, if
there is no finite trace tk∈TraceA,k, starting from s0 and ending in s. Otherwise, A
is called unsafe with respect to s.

On the basis of these ¬EFs reachability properties, other bounded LTL specifi-
cations can be verified using the encoding in [2].

Running Example
Fig. 2 shows a slightly adapted version of the well-known Train-Gate-Control-

ler example (see, e.g., [1]): trains have an additional state (“emergency stop”)
which they enter in case the controller detects they are approaching too fast (v<2).
Trains may cross the gate only after they received a “go” signal, which is sent by
the controller after the gate has closed succesfully. The error state of this system is
in∧¬down, i.e., a train crosses a gate that is (partially) open.

out far away

in nearby

emergency stop

TRAIN

up closing

opening down

GATE

no train train approaching gate closing

leaving
slow train

train in train stopped fast train

CONTROLLER

approaching

x:=0 near
1<x<3go

stopgo

exit
x<5

lower

y:=0 τ
y<1

raise

y:=0

τ
1<y<2

approaching

v:=0

lower

v≤1

near
v≥2

near
v<2

go
stopgo

v≥2

exit
v:=0

raise
v<1

Fig. 2. Train-Gate-Controller example

3 Representation of Timed Automata

In the sequel, let A=(A,S, s0, X, I, E) be a TA. In this section, we construct a for-
mula, ϕ(A), in propositional logic with linear arithmetic that represents the tran-

5

Kemper and Platzer

sition relation of A, defined in terms of the transition characteristics from step t−1
to step t. Unfolding the resulting transition formula k times yields a variant ϕ(A)k,
which represents all possible behaviour of A for the first k steps (see Section 3.3).
This formula, together with a representation of the safety property, is unsatisfiable
iff A is safe within bound k.

3.1 Overview: The Fundamental Concepts

The possible behaviour of a TA depends on the current system configuration (i.e.,
state and clock valuation). Since these change with time, the truth of a formula ψ
about the corresponding configuration of a TA depends on the time step t (see [11]
for details). Hence, we define ψt as the localisation of ψ, which is obtained by adding
the index t to all propositional letters and variable symbols occurring in ψ. Thus,
if ψ is of vocabulary s, x, a, then ψt will refer to st, xt, at instead. In particular:

States For every state s∈S, the Boolean variable st represents whether the au-
tomaton is in state s at step t.

Events For every event a∈A∪{τ}, the Boolean variable at represents whether the
automaton executes a transition in step t that is labelled with a.

Clocks For every clock x∈X, the rational variable xt (clock reference) represents
the absolute point in time when x was last reset up to step t. An additional ratio-
nal variable zt (absolute time reference) represents the absolute amount of time
that has passed until step t. The clock value of clock x at step t is thus obtained
by zt−xt. This temporal difference representation significantly improves the SAT
solving performance, due to the decreased number of arithmetic operations [8].

Observe that even though clocks are real-valued, a rational encoding is sufficient
since linear arithmetic is equisatisfiable for rational and real variables [8].

3.2 Transition Relation

The representation of the transition relation has to model both action and delay
transitions. It constrains the possible valuations of variables representing the au-
tomaton configuration at subsequent step t depending on those at t−1.

Definition 3.1 [Timed automaton representation] For a TA A, the formula repre-
sentation ϕ(A) of its transition relation in propositional logic with linear arithmetic
is defined in equation (8) of Fig. 3.

Before executing an action transition (s, a, ϕ, Y, s′)∈E of step t in (1), the au-
tomaton is in state s (at step t−1), event a occurs and guard ϕ is satisfied. The
values of the absolute time reference and clock references of X\Y do not change, all
clock references in Y are adjusted to the actual point in time. After the execution
(at step t), the automaton is in state s′. For a delay transition (2), the automaton
remains in state s, the value of the absolute time reference increases, all clock ref-
erences keep their value (the time of last reset does not change), and no event a∈A
must occur. Due to convexity, the invariant only needs to be checked at the end of
the time delay (it inductively holds at the beginning (4)). The disjunction of these
formulas expresses a (nondeterministic) transition choice (3). The automaton starts

6

Kemper and Platzer

ea(s, a, ϕ, Y, s′)
def= st−1 ∧ s′t ∧ at−1 ∧ ϕt−1 ∧ (zt−1 = zt) (1)∧

x6∈Y

(xt−1 = xt) ∧
∧

x∈Y

(xt = zt)

ed(s)
def= st−1 ∧ st ∧ (zt−1 ≤ zt) ∧

∧
x∈X

xt−1 = xt ∧
∧

a∈A

¬at−1 (2)

ϕE(A) def=
∨

(s,a,ϕ,Y,s′)∈E

ea(s, a, ϕ, Y, s′) ∨
∨

s∈S

ed(s) (3)

ϕi(A) def= (s0)0 ∧
∧

s0 6=s̃∈S

(¬~s0) ∧ (z0 = 0) ∧
∧

x∈X

(x0 = 0) (4)

ϕS(A) def=
∧

s,s′∈S,s≺s′
¬(st ∧ s′t) (5)

ϕA(A) def=
∧

a,a′∈A∪{τ},a≺a′
¬(at−1 ∧ a′t−1) (6)

ϕI(A) def=
∧

s∈S

(¬st−1 ∨ I(s)t−1) (7)

ϕ(A) def= ϕS(A) ∧ ϕA(A) ∧ ϕE(A) ∧ ϕi(A) ∧ ϕI(A) (8)

ϕ(A)k
def=

∧
1≤j≤k

ϕ(A)j/t (9)

Fig. 3. Representation (8) and k-unfolding (9) of TA: transitions (1), (2), (3), initial conditions (4), mutual
exclusion constraints (5), (6), invariants (7).

in its initial state s0, with all initial clock values equal to zero (4). Furthermore, the
automaton is in only one state at a time (mutual exclusion of state variables (5))
with at most one event (6) (≺ denotes an arbitrary but fixed order on S and A∪{τ},
respectively), to prevent ϕ(A) from following multiple transitions simultaneously.
The invariant of the actual state has to hold at any time ((7), where I(s′)t denotes
the localisation of I(s′), cf. Section 3.1).

Example 3.2 [Representation] Consider the four transitions of the TRAIN au-
tomaton depicted in Fig. 4(a) (with names abbreviated). The representation of
these transitions is shown in Fig. 4(b).

out fa

nbin

ap

x := 0 nr
1 < x < 3

go

ex
x < 5

(a) Transitions

(outt−1∧ fat ∧ apt−1 ∧ (zt−1=zt) ∧ (xt=zt))

∨ (fat−1 ∧ nbt ∧ nrt−1 ∧ (1<zt−1−xt−1<3)∧ (zt−1=zt) ∧ (xt−1=xt))

∨ (nbt−1 ∧ int ∧ got−1 ∧ (zt−1=zt) ∧ (xt−1= xt))

∨ (int−1 ∧ outt∧ ext−1 ∧ (zt−1−xt−1<5) ∧ (zt−1=zt) ∧ (xt−1= xt))

(b) Transition Representation

Fig. 4. Representation: Running Example

3.3 Unfolding for Bounded Model Checking

In order to represent the reachability problem of BMC in logic, the formula rep-
resentation ϕ(A) is unfolded, i.e., instantiated for all steps 1 to bound k. The

7

Kemper and Platzer

resulting formula ϕ(A)k is called k-unfolding of A, and defined in (9) (ψj/t denotes
the localisation of ψ—cf. Section 3.1—with t replaced by j).

Intuitively, a satisfying interpretation (or model) of ϕ(A)k corresponds to a trace
of A of length k, i.e., to one possible behaviour of A for the first k steps (Section 3.6).
BMC amounts to conjoining ϕ(A)k with ρk

def= s0∨s1∨ . . .∨sk, then A|=k¬EFs holds
iff the conjunction is unsatisfiable.

3.4 Parallel Systems

In this section, we introduce a linear-size logical representation of systems of TA
without forming the exponential cross product (Def. 2.2).

Within a parallel real-time system, automata perform joint broadcast synchro-
nisation on visible events (6=τ): if event a occurs, every automaton Ai with a∈Ai

(“knowing about a”) has to execute a transition labelled with a, or do a zero-delay
step (“nothing”) if a6∈A. If, instead, event τ occurs, automata may decide to ex-
ecute either a transition labelled with τ or to do a zero-delay step. Delay steps
with delay d>0 have to be executed synchronously by all automata. The product
representation is just the conjunction of the individual representations, where (6)
is understood to be defined globally for the union of all events, since at any point
in time, only one event may occur.

3.5 Discussion

Propositional formulas as an intermediate representation have several advantages:
most importantly, our approach can use high-performance SAT solving technology
for verification. Secondly, it generalises easily to other transition-based systems like
hybrid automata [5]. Once a translation into formulas (“frontend”) is defined, the
same abstraction refinement framework (“backend”) can be reused.

Moreover, our representation is specifically tailored for SAT solving technology.
In addition to providing conjunctive normal form (CNF) whenever possible, observe
that (5) and (6) are binary clauses, which are very efficient (the 2-SAT problem is
polynomial since binary clauses do not increase the breadth of the search space).
Formula (7) also corresponds to a set of binary clauses, whereas (4) gives rise to
unit clauses. Note that it is immediate to adapt our representation to logarithmic
encoding of states and events. Using an encoding of addition with carry in propo-
sitional logic, mutual exclusion can be expressed with a linear number of clauses
by saying that true state variables add up to one. However, despite this theoret-
ical advantage, it is not obvious which variant to prefer in practice, since—unlike
the linear representation—(5) restricts to binary clauses. While by the disjunctive
nature of transition choices, (3) is not in CNF, it can be directly transformed to
short CNF when introducing new symbols. For parallel systems, our logical repre-
sentation avoids the exponential product construction and is linear in the number
of automata.

8

Kemper and Platzer

TraceA,k Mod(ϕ(A)k)

A ϕ(A)k

�

ϕ

tr Mod
ς

ζ

Fig. 5. Correctness of Representation

3.6 Correctness

For the representation ϕ(A) to be faithful (i.e., exhibit the same behaviour as A),
every model of ϕ(A)k has to correspond to a trace of length k, and vice versa. This
is captured formally in the following theorem (see [8] for a formal proof):

Theorem 3.3 (Correctness of representation) The TA representation is cor-
rect, i.e., the diagram in Fig. 5 commutes 6 .

Here, the commutative property expresses that models of ϕ(A)k have a bijective
correspondence to traces of the original TA A, denoted by correspondance maps ζ
and ς: the trace ζ(ς(t)) of the model ς(t) belonging to some trace t ∈ TraceA,k

again is t (i.e., ζ(ς(t)) = t), and the model ς(ζ(m)) of a trace ζ(t) belonging to some
model m ∈ Mod(ϕ(A)k) again is m (i.e., ς(ζ(σ)) = σ).

4 Abstraction

In this section, we present a simple, fast but nevertheless powerful uniform ab-
straction technique specifically tailored to work on logical formulas: abstraction by
merging omission (MO). By removing constraints which are considered irrelevant
to the particular safety property, MO yields an over-approximation.

4.1 Abstraction by Merging Omission

The basic idea of MO is to reduce the system complexity by decreasing the num-
ber of symbols in ϕ(A) while retaining as much information about the transition
characteristics as possible (the abstract formula is weaker than ϕ(A), though). It is
defined for formulas in negation normal form (NNF), which already holds for ϕ(A)
(guards can be transformed to NNF easily). In the sequel, let A=(A,S, s0, X, I, E)
a TA, let Σ=A∪S the set of propositional letters (states and events, without in-
dices); the set of real variables (clock references) is X. To illustrate the effect of
abstraction on the different syntactical categories, we define it in terms of a state
event mapping γ (called map of merging) on Σ and of a clock abstraction set AS
(called set of omission).

Definition 4.1 [Abstraction by merging omission] Let F a formula in NNF with
propositional letters in Σ and real variables in X. Let AS⊆Φ(X)∪X a set not con-
taining compound formulas, and let γ:Σ→Σ′ a mapping to some set Σ′ of proposi-
tional letters, with Σ∩Σ′=∅. The abstraction by merging omission of F with respect
to AS and γ is defined by applying transformation α; it is depicted in Fig. 6.

6 A diagram is commutative [12] iff, between each two nodes in the diagram, following every path yields
the same result. For instance, Mod(ϕ(A)) = ς(tr(A)) or ζ(Mod(ϕ(A))) = tr(A).

9

Kemper and Platzer

α(L) =

L if cont(L) ∩ (AS ∪ Σ) = ∅
γ(L) if cont(L) ∩ Σ 6= ∅, L positive
true otherwise

(10)

α(F ∧G) = α(F) ∧ α(G)
α(F ∨G) = α(F) ∨ α(G)

Here, F and G are formulas in NNF, L is a literal, and cont(L) is the set of
atomic formulas and variables occurring in L.

Fig. 6. Abstraction by Merging Omission

Lifting α to the presence of localisations is straightforward: γ and AS are under-
stood oblivious to indices in the NNF of ϕ(A), such that indices directly carry over
to ϕ(A)k unchanged (defining different abstractions for different steps is possible
using the same definition of α but we consider it to be less useful).

MO uniformly captures abstraction on propositional letters and on real vari-
ables or atomic predicates about these (and thus is able to abstract all symbols
defined in Section 3.1). The map γ is the identity for symbols not meant to be
abstracted. States (or events) with the same image, however, are merged. In
this way, α performs a quick variant of existential abstraction [4], but exploits the
structural relationships of clocks and TA. Further, α is homomorphic with respect
to {∧,∨}, which proves the equality of α(ϕ(A)k) and α(ϕ(A))k (except for speed
of computing the abstraction, where α(ϕ(A))k is superior).

Observe that—unlike negative clock constraints—α always maps negative propo-
sitional letters to true. In general, this is necessary, since ¬s does not allow to
conclude ¬u in case of a merge γ(r)=γ(s)=u. For our setting, it is more efficient
to regenerate those parts of ϕ(A)k that contain negative propositional variables (in
particular (5) and (6)) after applying α, anyway.

4.2 Running Example

Consider the formula presented in Fig. 4(b). If x∈AS, MO substitutes all (atomic)
subformulas containing x by true, and the formula finally simplifies to

(outt−1 ∧ fat ∧ apt−1 ∧ (zt−1 = zt)) ∨ (nbt−1 ∧ int ∧ got−1 ∧ (zt−1 = zt))

∨ (fat−1 ∧ nbt ∧ nrt−1 ∧ (zt−1 = zt)) ∨ (int−1 ∧ outt ∧ ext−1 ∧ (zt−1 = zt))

Note that even though clock x is abstracted, it imposes restrictions on traces
which can be retained: between subsequent events approach and exit, clock val-
ues may increase by at most 5. This information can be added to the controller
automaton to constrain its behaviour and thus increase efficiency (see Section 5.5).

4.3 Correctness

For α to yield a correct over-approximation, every finite trace of the concrete sys-
tem A (represented by a model of ϕ(A)k, see Theorem 3.3) has to be reproducible in

10

Kemper and Platzer

the abstract case, which is established by the following lemma (see [8] for a formal
proof).

Lemma 4.2 (Abstraction by weakening) The abstraction MO yields a conser-
vative approximation, that means α(F) is weaker than F in the sense that the im-
plication F → α(F) is valid (true in all models).

In order to relate our logical abstraction refinement approach to abstraction on
TA, and emphasise the structural relationships, we prove a stronger correctness
result than the one expressed by Lemma 4.2. For this, we use a homomorphic
correspondence between concrete and abstract system [4].

Definition 4.3 [Homomorphism of traces] Let A and Ã be TA, with X̃⊆X, let
γ:S∪A→S̃∪Ã a surjection. A function hT :TraceA→TraceÃ is called a homomor-
phism of traces iff for each trace t∈TraceA, there is a trace h(t)=t̃∈TraceÃ such
that (a) for i≥0, the i-th configurations (si, νi) and (s̃i, ν̃i) in t and t̃, respectively,
satisfy: γ(si)=s̃i, and νi and ν̃i agree on common variables, and (b) for i≥1, the
i−th steps (si−1, νi−1)

ai→(si, νi) and (s̃i−1, ν̃i−1)
ãi→(s̃i, ν̃i) satisfy: γ(ai)=ãi (accord-

ingly for finite traces).

From an algebraic perspective, the stronger result even follows immediately from
Lemma 4.2 as a key property, since α works locally and, thus, retains the formula
structure of (9).

Theorem 4.4 (Correctness of abstraction) MO, as defined in Def. 4.1, yields
a correct over-approximation on trace sets.

TraceA,k Mod(ϕ(A)k) Mod(ϕ(Ã)k) TraceÃ,k

A ϕ(A)k ϕ(Ã)k Ã
� ⊆ 	

i
ii

iii

ϕ α ϕ

tr Mod Mod tr
ς

ζ

⊆
ζ

ς
hT

Fig. 7. Strong Correctness of Abstraction

To prove the existence of a homomorphism between concrete and abstract traces
(see [8] for details), the upper part of Fig. 7 is shown to be a commutative diagram,
such that—by composition—the existence of hT is a direct consequence. The idea
of this proof is as follows: As α retains the form of (9), there is some automaton Ã
of the same representation ϕ(Ã)k = α(ϕ(A)k) (up to logical equivalence). Thus,
the subdiagrams of Fig. 7 marked (i) and (iii) commute according to Theorem 3.3.
The subdiagram marked (ii) commutes according to Lemma 4.2, as every model
of ϕ(A)k is a model of α(ϕ(A)k). Hence, the whole diagram commutes.

4.4 Discussion

Thanks to the uniform nature of α, we generally do not have to distinguish between
separate treatments of state abstraction, event abstraction, and clock abstraction.

11

Kemper and Platzer

On a logical level, these are just arbitrary symbols that happen to represent different
automata concepts. In particular, the algebraic view even permits to conclude
from the strong correctness result that there is a corresponding effective abstraction
technique on TA (as opposed to logical formulas) that produces Ã (the above proof
of Ã is simple but non-constructive). Yet, proving that such a technique is correct
(and even stating it) will be more complicated and much less uniform than what
our embedding in logic has been able to express (Fig. 7 illustrates the interplay of
logical abstractions and abstractions on automata).

Thus, we strike a good balance between universality and efficiency: every ab-
straction α satisfying Lemma 4.2 has already been proven correct in our framework,
which makes it a powerful technique. Due to the purely syntactic definition, it is
very efficient, though.

5 Abstraction Refinement

In this section, we present our general abstraction refinement methodology, fol-
lowing the general abstraction refinement paradigm [4]: (1) Generate the initial
abstraction, (2) model check the abstract system, and, if required, (3) refine the
abstraction (cf. Fig. 1). We discuss how to detect spurious counterexamples, and
what kind of information can be derived from spurious counterexamples for finding
an adequate refinement.

5.1 Generating Initial Abstractions

If there is no additional knowledge about the system, the initial abstraction simply
removes all symbols contained in Φ(X)∪X from ϕ(A), and merges all symbols in S
to a single one (we refer to [4] for improved techniques), thereby collapsing to a
single trivial state (accordingly for A). Yet, the next iterations of refinement will
quickly discover more relevant parameters.

5.2 Model Checking the Abstract System

After abstraction, α(ϕ(A))k ∧ ρk is checked for satisfiability. If it is unsatisfiable,
the system is safe within bound k (Section 3.3 and 4.3).

If, instead, the SAT solver returns a satisfying model (which corresponds to a
counterexample trace according to Theorem 3.3), let π the conjunction of variable
assignments according to this model. This abstract counterexample needs to be
concretised, i.e., translated back to the terminology of the concrete system, and
checked for feasibility, which amounts to a satisfiability check of ϕ(A)k∧ρk∧π. For
states s, s′ ∈ S with γ(s) = γ(s′) = u, we further add the concretising constraint
u → s ∨ s′ to π, which expresses that A either is in state s or s′ whenever π is in u
(accordingly for events or more states).Hence, the single abstract counterexample
trace corresponds to (possibly several) traces of A that are characterised by form-
ing the disjunction of the preimage of γ for states and events. Observe that the
clock constraints remain unchanged during this process, since the values for clocks
are either unknown from the abstract counterexample (if dropped, i.e., in AS) or
unchanged. As π is highly restrictive (it singles out only one abstract path) the

12

Kemper and Platzer

abstract counterexample guides the search through the concrete system with a very
narrow focus and is highly efficient (Section 5.5).

If ϕ(A)k∧ρk∧π is satisfiable, this yields a concrete counterexample to the prop-
erty. Otherwise, π is spurious and the abstraction has to be refined (see Section 5.3).

5.3 Refining Abstractions

We use Craig interpolants (e.g. [9]) provided by the SAT solver (FOCI) to identify
ill-abstracted parameters. A Craig interpolant for an inconsistent pair of formulas
(A,B) is a formula C that is implied by A (prefix of C), inconsistent with B (suffix
of C) and refers only to common symbols of A and B. C is thus a joint over-
approximation of A and an under-approximation of ¬B.

After stratifying ϕ(A)k, π and ρk (i.e., aligning formulas along the unfolding
depth k to which they belong), we derive an interpolant for every partition into
prefix and suffix. By this, we obtain a sequence of strong interpolants (refer to [8]
for details), such that there is a last interpolant G 6=false. By definition, the prefix
of a false interpolant is unsatisfiable. Hence, the corresponding prefix of π represents
a trace that is non-concretisable in A. In case there is an interpolant G̃=true, we
can even rule out the subtrace represented by those formulas between G̃ and G,
as true interpolants express that there is no information whatsoever to carry over
from the trace prefix up to this index. Furthermore, when P denotes the set of
all symbols subject to abstraction, we know that at least one of the symbols in
IA

def= cont(G)∩P has been inadequately abstracted.
Hence, there are two choices for refinement: (a) refine a symbol from IA, or

(b) rule out the counterexample trace represented by the prefix of G by adding
a corresponding conjunction (CEGAR in [4]). Although (a) is reasonable (cf. Sec-
tion 5.1), premature refinement with (a) slows down overall verification by collapsing
to the concrete system too soon. Strategy (b), on the other hand, is very simple,
but leads to a large number of spurious counterexamples as long as the essential
parameters have been inadequately abstracted.

We have identified the following fully automatic heuristic as a compromise be-
tween these alternatives: after refining a parameter (a), a fixed number of traces
(fractions of the unrolling depth k have turned out to be most promising) is ruled
out by (b) before refining the next symbol according to (a). Further optimisations
include keeping track of all counterexamples found so far and refine symbols in IA

first that occur most frequently. Similarly, as a clean-up strategy, counterexamples
added by (b) can be removed once their signature has been covered by subsequent
refinements according to (a).

5.4 Running Example

For simplicity, let the map of merging γ be the identity, and let the set of omis-
sions AS contain clock y (singleton). The parts of the GATE and CONTROLLER
automaton depicted in Fig. 8 show this situation, where it is possible to reach state
opening∧slow train (and thus also the error state). Concretising this trace, how-
ever, is not possible, as within the corresponding part of Fig. 2, always y≤v holds
(which avoids synchronising on near before going from closing to down), and the

13

Kemper and Platzer

GATE:

up closing

downopening

CONTROLLER:

no train train approaching gate closing

slow train

lower

τ
raise

approaching, v:=0 lower, v≤1
near
v≥2

Fig. 8. Refinement: Running Example

Example in Strategy 8 Complete Run Hereof: SAT solver calls Hereof: Last Iteration
Section 2 1/2k 16 : 889 14 : 594 8 : 163
Section 4.2 1/2k 16 : 631 14 : 334 7 : 866
Section 2 1/3k 15 : 651 13 : 081 5 : 445
Section 4.2 1/3k 16 : 957 14 : 439 6 : 423
Section 2 1/4k 11 : 312 9 : 665 6 : 665
Section 4.2 1/4k 11 : 063 9 : 451 6 : 279

Table 1
Preliminary Experimental Results for TGC example

SAT solver returns a sequence of interpolants. We know that the last interpolant
G 6=false will contain clock y 7 (cf. Section 5.3: AS is singleton, thus only y can
cause the spurious counterexample), and thus y has to be refined.

Note: when verifying larger systems, these do not collapse to the concrete sys-
tem, but our approach correctly identifies the abstractable parameters.

5.5 Preliminary Experimental Results

Some preliminary experimental results are depicted in Tab. 1. Starting from the
initial abstraction described in Section 5.1, Tab. 1 shows that our overall abstraction
refinement technique is very quick since the predominant run-time is spent on (ex-
ternal) SAT solver calls (≥83%). The efficiency gains of our abstraction refinement
framework are pointed out by the observation that the last iteration—i.e., when all
relevant parameters (all but clock x) have been identified by our refinement—needs
a disproportional amount of time. Hence, the first runs for “abstraction discovery”
are quick in comparison. Strengthening α using inferred information (Section 4.2)
leads to at least a slightly improved performance. Tab. 1 also shows that efficienty
depends on the chosen heuristic.

6 Conclusions and Future Work

Within the context of this paper, we have presented a SAT-based approach for
abstraction refinement model checking of parallel systems of TA.

We have defined an embedding of bounded model checking for systems of TA into
propositional logic with linear arithmetic, and introduced a uniform logic-based ab-
straction for clocks, states, and events. This logical representation directly benefits
from state-of-the-art techniques of SAT solvers, and allows a linear-size representa-
tion of parallel composition.

In addition to having proven correctness of representation and abstraction, we
carefully identify the algebraic and logical principles underlying our abstraction

7 For example, the interpolant could contain the constraint (zt−yt≥2), expressing the fact that clock y has
to be greater than 2 in step t for this trace to be concretisable.
8 Strategy denotes the number of traces in relation to unrolling depth k to be ruled out before refining the
next parameter

14

Kemper and Platzer

refinement approach. We expect those structural relationships to provide a mod-
ular framework for generalising aspects of our work to other scenarios (like hybrid
automata) without having to start from scratch.

Besides those generalisations, future work includes performance comparisons
of our implementation on case studies, and an analysis of the effect of choosing
a logarithmic encoding for states (state abstraction is slightly more involved in
that case, though). The overall performance might be improved using a SAT solver
that is tailored towards bounded model checking with pseudo-boolean constraints or
isomorphy inference. Moreover, we intend to examine different settings for balancing
counter-example guided abstraction refinement versus refinement based on Craig
interpolants.

As a general philosophy, we propose to extend our investigation of the alge-
braic relationships underlying current research about model checking in order to
(a) properly identify the structural principles, and (b) build a stable framework for
generalisations to more advanced verification problems, e.g. [5].

Acknowledgement

Earlier versions of this work have benefited from discussions with members of
AVACS, particularly Ernst-Rüdiger Olderog, Martin Fränzle, Henning Dierks, An-
dreas Podelski and Andrey Rybalchenko.

References

[1] Alur, R., Timed automata., in: N. Halbwachs and D. Peled, editors, CAV, LNCS 1633 (1999), pp. 8–22.

[2] Audemard, G., A. Cimatti, A. Kornilowicz and R. Sebastiani, Bounded model checking for timed
systems., in: D. Peled and M. Y. Vardi, editors, FORTE, LNCS 2529 (2002), pp. 243–259.

[3] Clarke, E., A. Biere, R. Raimi and Y. Zhu, Bounded model checking using satisfiability solving., Formal
Methods in System Design 19 (2001), pp. 7–34.

[4] Clarke, E., O. Grumberg, S. Jha, Y. Lu and H. Veith, Counterexample-guided abstraction refinement
for symbolic model checking., J. ACM 50 (2003).

[5] Henzinger, T., The theory of hybrid automata., in: LICS, 1996, pp. 278–292.

[6] Henzinger, T., R. Jhala, R. Majumdar and K. McMillan, Abstractions from proofs., in: N. D. Jones
and X. Leroy, editors, POPL (2004), pp. 232–244.

[7] Jhala, R. and K. McMillan, Interpolant-based transition relation approximation., in: CAV, 2005, pp.
39–51.

[8] Kemper, S., “SAT-based Verification for Abstraction Refinement,” Master’s thesis, University of
Oldenburg (2006).
URL http://csd.informatik.uni-oldenburg.de/~skript/pub/diplom/kemper06.pdf

[9] McMillan, K., An interpolating theorem prover., Theor. Comput. Sci. 345 (2005), pp. 101–121.

[10] Moskewicz, M., C. Madigan, Y. Zhao, L. Zhang and S. Malik, Chaff: Engineering an efficient SAT
solver., in: DAC, 2001, pp. 530–535.

[11] Platzer, A., Towards a hybrid dynamic logic for hybrid dynamic systems, in: P. Blackburn, T. Bolander,
T. Braüner, V. de Paiva and J. Villadsen, editors, Proc., LICS International Workshop on Hybrid Logic,
Seattle, USA, ENTCS, 2006.

[12] Taylor, P., “Practical Foundations of Mathematics,” Cambridge University Press, 1999.

15

http://csd.informatik.uni-oldenburg.de/~skript/pub/diplom/kemper06.pdf

	Introduction
	Preliminaries
	Representation of Timed Automata
	Overview: The Fundamental Concepts
	Transition Relation
	Unfolding for Bounded Model Checking
	Parallel Systems
	Discussion
	Correctness

	Abstraction
	Abstraction by Merging Omission
	Running Example
	Correctness
	Discussion

	Abstraction Refinement
	Generating Initial Abstractions
	Model Checking the Abstract System
	Refining Abstractions
	Running Example
	Preliminary Experimental Results

	Conclusions and Future Work
	Acknowledgement
	References

