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Abstract. In this paper we seek to provide greater automation for formal deduc-
tive verification tools working with continuous and hybrid dynamical systems.
We present an efficient procedure to check invariance of conjunctions of poly-
nomial equalities under the flow of polynomial ordinary differential equations.
The procedure is based on a necessary and sufficient condition that characterizes
invariant conjunctions of polynomial equalities. We contrast this approach to an
alternative one which combines fast and sufficient (but not necessary) conditions
using differential cuts for soundly restricting the system evolution domain.

1 Introduction

The problem of reasoning about invariant sets of dynamical systems is of fundamental
importance to verification and modern control design [3,22,28,26]. A set is an invariant
of a dynamical system if no trajectory can escape from it. Of particular interest are
safety assertions that describe states of the system which are deemed safe; it is clearly
important to ensure that these sets are indeed invariant.

Hybrid systems combine discrete and continuous behavior and have found appli-
cation in modelling a vast quantity of industrially relevant designs, many of which are
safety-critical. In order to verify safety properties in hybrid models, one often requires
the means of reasoning about safety in continuous systems. This paper focuses on de-
veloping and improving the automation of reasoning principles for a particular class
of invariant assertions for continuous systems – conjunctions of polynomial equalities;
these can be used, e.g. to assert the property that certain values (temperature, pressure,
water level, etc.) in the system are maintained at a constant level as the system evolves.

In practice, it is highly desirable to have the means of deciding whether a given set
is invariant in a particular dynamical system. It is equally important that such methods
be efficient enough to be of practical utility. This paper seeks to address both of these
issues. The contributions of this paper are twofold:

• It extends differential radical invariants [11] to obtain a characterization of invari-
ance for algebraic sets under the flow of algebraic differential equations. It also
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introduces an optimized decision procedure to decide the invariance of algebraic
sets.

• It explores an approach combining deductively less powerful rules [15,27,17,25]
using differential cuts [23] to exploit the structure of the system to yield efficient
proofs even for non-polynomial systems. Furthermore, differential cuts [23] are
shown to fundamentally improve the deductive power of Lie’s criterion [15].

The two approaches to proving invariance of conjunctive equational assertions explored
in this paper are complementary and aim at improving proof automation—deductive
power and efficiency—in deductive formal verification tools. The detailed proofs of all
presented results are available in [12].

Content. In Section 2, we recall some basic definitions and concepts. Section 3 in-
troduces a new proof rule to check the invariance of a conjunction of polynomial equa-
tions along with an optimized implementation. Section 4 presents another novel ap-
proach to check invariance of a conjunction; it leverages efficient existing proof rules
together with differential cuts and differential weakening. An automated proof strategy
that builds on top of this idea is given in Section 5. The average performance of these
different approaches is assessed using a set of 32 benchmarks (Section 6).

2 Preliminaries

Let x = (x1, . . . , xn) : Rn, and x(t) = (x1(t), . . . , xn(t)), where xi : R → R,
t 7→ xi(t). The ring of polynomials over the reals will be denoted by R[x1, . . . , xn].
We consider autonomous3 differential equations described by polynomial vector fields.

Definition 1 (Polynomial Vector Field). Let pi, 1 ≤ i ≤ n, be multivariate polynomi-
als in the polynomial ring R[x]. A polynomial vector field, p, is an explicit system of
ordinary differential equations with polynomial right-hand side:

dxi
dt

= ẋi = pi(x), 1 ≤ i ≤ n . (1)

One important problem is that of checking the invariance of a variety (or algebraic
set), with evolution domain constraints H; that is, we ask whether a polynomial con-
junction h1 = 0 ∧ · · · ∧ hr = 0, initially true, holds true in all reachable states that
satisfy the evolution domain constraints. The problem is equivalent to the validity of
the following formula in differential dynamic logic [22]:

(h1 = 0 ∧ · · · ∧ hr = 0)→ [ẋ = p&H](h1 = 0 ∧ · · · ∧ hr = 0) (2)

where [ẋ = p&H]ψ is true in a state xι if the postcondition ψ is true in all states
reachable from xι—satisfying H—by following the differential equation ẋ = p for
any amount of time as long as H is not violated. For simplicity, for a polynomial h in
x, we write h = 0 for h(x) = 0.

3 Autonomous means that the rate of change of the system over time depends only on the sys-
tem’s state, not on time. Non-autonomous systems with time dependence can be made au-
tonomous by adding a new state variable to account for the progress of time.
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Geometrically, the dL formula in Eq. (2) is true if and only if the solution x(t) of
the initial value problem (ẋ = p, x(0) = xι), with hi(xι) = 0 for i = 1, . . . , r, is a
real root of the system h1 = 0, . . . , hr = 0 as long as it satisfies the constraints H .

The algebraic counterpart of varieties are ideals. Ideals are sets of polynomials that
are closed under addition and external multiplication. That is, if I is an ideal, then for all
h1, h2 ∈ I , the sum h1 + h2 ∈ I; and if h ∈ I , then, qh ∈ I , for all q ∈ R[x1 . . . , xn].

We will use ∇h to denote the gradient of a polynomial h, that is the vector of its
partial derivatives

(
∂h
∂x1

, . . . , ∂h∂xn

)
. The Lie derivative of a polynomial h along a vector

field p is defined as follows (the symbol “·” denotes the scalar product):

Lp(h)
def
= ∇h · p =

n∑
i=1

∂h

∂xi
pi . (3)

Higher-order Lie derivatives are: L(k+1)
p (h) = Lp(L

(k)
p (h)), where L

(0)
p (h) = h.

3 Characterizing Invariance of Conjunctive Equations

In this section we give an exact characterization of invariance for conjunctions of poly-
nomial equalities under the flow of algebraic differential equations. The characteriza-
tion, as well as the proof rule, generalize our previous work which handles purely equa-
tional invariants of the form h = 0 without considering evolution domains.

The differential radical invariants proof rule DRI [11, Theorem 2] has been shown
to be a necessary and sufficient criterion for the invariance of equations of the form
h = 0:

(DRI)
h = 0→

∧N−1
i=0 L

(i)
p (h) = 0

h = 0→ [ẋ = p] h = 0
. (4)

The order N ≥ 1 denotes the length of the chain of ideals 〈h〉 ⊆ 〈h,Lp(h)〉 ⊆ · · ·
which reaches a fixed point after finitely many steps by the ascending chain property
of Noetherian rings. Thus, the order N is always finite and computable—using Göbner
Bases [4]—for polynomials with rational coefficients. The premise of the proof rule
DRI is a real quantifier elimination problem and can be solved algorithmically [5].

A naı̈ve approach to prove invariance of a conjunction h1 = 0 ∧ · · · ∧ hr = 0,
without evolution domain constraints, is to use the proof rule DRI together with the
following sum-of-squares equivalence from real arithmetic:

h1 = 0 ∧ · · · ∧ hr = 0 ≡R

r∑
i=1

h2i = 0 . (5)

Sums-of-squares come at the price of doubling the polynomial degree, thereby increas-
ing the complexity of checking the premise (Section 3.2 discusses the link between
polynomial degree and the complexity of DRI-based proof rules). Instead, we present
an extension of the proof rule DRI that exploits the underlying logical structure of
conjunctions. For a conjunction of equations h1 = 0∧· · ·∧hr = 0, the orderN is gen-
eralized to the length of the chain of ideals formed by all the polynomials h1, . . . , hr
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and their successive Lie derivatives:

I = 〈h1, . . . , hr〉 ⊆ 〈h1, . . . , hr,Lp(h1), . . . ,Lp(hr)〉 ⊆ 〈h1, . . . ,L(2)
p (hr)〉 · · · (6)

Theorem 2 (Conjunctive Differential Radical Characterization). Let h1, . . . , hr ∈
R[x] and let H denote some topologically open evolution domain constraint. Then, the
conjunction h1 = 0 ∧ · · · ∧ hr = 0, is invariant under the flow of the vector field p,
subject to the evolution constraint H , if and only if

H `
r∧
j=1

hj = 0→
r∧
j=1

N−1∧
i=1

L(i)
p (hj) = 0 . (7)

where N denotes the order of the conjunction.

Here ` is used, as in sequent calculus, to assert that whenever the constraint H (an-
tecedent) is satisfied, then at least one (in this case, the only) formula to the right of
` is also true. The proof is in the companion report [12]. When the evolution domain
constraints are dropped (H = True) and r = 1 (one equation), one recovers exactly the
statement of [11, Theorem 2] which characterizes invariance of atomic equations. Intu-
itively, Theorem 2 says that on the invariant algebraic set, all higher-order Lie deriva-
tives of each polynomial hi must vanish. It adds however a crucial detail: checking
finitely many—exactly N—higher-order Lie derivatives is both necessary and suffi-
cient. The theorem does not check for invariance of each conjunct taken separately,
rather it handles the conjunction simultaneously. The order N is a property of the ideal
chain formed by all the polynomials and their Lie derivatives. If Ni denotes the order
of each atom hi taken separately, then one can readily see that

N ≤ max
i
Ni . (8)

The equality does not hold in general: consider for instance h1 = x1, h2 = x2 and
p = (x2, x1). Since L

(2)
p (hi) = hi, for i = 1, 2, we have N1 = N2 = 2. However,

〈x1, x2〉 = 〈h1, h2〉 ⊆ 〈h1, h2,Lp(h1),Lp(h2)〉 = 〈x1, x2, x2, x1〉 = 〈x1, x2〉,

which means that N = 1. This example highlights one of the main differences between
this work and the characterization given in [16, Theorem 24], where the criterion is
given by

H `
r∧
j=1

hj = 0→
r∧
j=1

Nj−1∧
i=1

L(i)
p (hj) = 0 . (9)

The computation of each order Nj requires solving Nj ideal membership problems.
One can appreciate the difference with the criterion of Theorem 2 which only requires
N ideal membership checks for the entire conjunction. In the worst case, when N =
Nk = maxiNi, Theorem 2 performs

∑r
j=1,j 6=kNj fewer ideal membership checks

compared to the criterion of Eq. (9). A smaller order N confers an additional benefit
of reducing the cost of quantifier elimination—discussed in Section 3.2—by bringing
down both the total number of polynomials and their maximum degree.
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Remark 3. The order N in Theorem 2 can be reduced further at the prohibitive cost4 of
computing the real radicals of the ideals in Eq. (6). Ideally, one should also account for
H when computing N . When H is an algebraic set, its generators should be appended
to the ideal 〈h1, . . . , hr〉. We leave the semi-algebraic case for future work.

Using Theorem 2, the differential radical invariant proof rule DRI [11] generalizes
to conjunctions of equations with evolution domain constraints as follows:

(DRI∧)
H `

(∧r
j=1 hj = 0

)
→
∧r
j=1

∧N−1
i=1 L

(i)
p (hj) = 0(∧r

j=1 hj = 0
)
→ [ẋ = p&H]

(∧r
j=1 hj = 0

) . (10)

Next, we implement the proof rule DRI∧ and discuss its theoretical complexity.

3.1 Decision Procedure

To check the validity of the premise in the proof rule DRI∧, one needs to compute
the order N and to decide a purely universally quantified sentence in the theory of
real arithmetic. These two tasks do not have to be performed in that precise order. We
present an algorithm that computes N on the fly while breaking down the quantifier
elimination problem into simpler sub-problems.

Algorithm 1 implements the proof rule DRI∧. The algorithm returns True if and
only if the candidate is an invariant. The variable Ň strictly increases and converges,
from below, toward the finite unknown order N . It is therefore a decision procedure for
the invariance problem with conjunctive equational candidates.

At each iteration of the while loop it checks whether a fixed point of the chain of
ideals has been reached, implying Ň = N . To this end, it computes a Gröbner basis
(GB) of the ideal I (line 2), containing the polynomials hi as well as their respective
higher-order Lie derivatives up to the derivation order Ň − 1. Then it enters a fore-
ach loop (line 8), where it computes the Ň th order Lie derivatives and their respective
reductions (or remainders) (LieD) by the Gröbner basis GB. All Lie derivatives with
non-zero remainders are stored in the list LD (line 12). If the list is empty, then all Ň th
Lie derivatives are in the ideal I: the fixed point of the chain of ideals is reached, and
Ň = N . This also means that True can be returned since all prior quantifier elimination
calls returned True. Otherwise, the outermost while loop (line 5) needs to be executed
one more time after increasing Ň (line 20). Before re-executing the while loop, how-
ever, we make sure that the premise of the proof rule DRI∧ holds up to Ň . Since in this
case, we know that Ň < N , if the quantifier elimination fails to discharge the premise
of the proof rule DRI∧ at Ň , then we do not need to go any further as the invariance
property is already falsified.

The while loop decomposes the right hand side of the implication in Eq. (10) along
the conjunction

∧N−1
i=1 : the ith iteration checks whether the conjunction

∧r
j=1 L

(i)
p hj

vanishes. The main purpose of the foreach loop in line 16 is to decompose further the

4 The upper bound on the degrees of the generators of the real radical of an ideal I is d2
O(n2)

[20], where d is the maximum degree of the generators of I .



156 K. Ghorbal, A. Sogokon, and A. Platzer

Algorithm 1: Checking invariance of a conjunction of polynomial equations.
Data: H (evolution domain constraints), p (vector field), x (state variables)
Data: h1, . . . , hr (conjunction candidate)
Result: True if and only if h1 = 0 ∧ . . . ∧ hr = 0 is an invariant of [ẋ = p&H]

1 Ň ← 1
2 I← {h1, . . . , hr} // Elements of the chain of ideals
3 L← {h1, . . . , hr} // Work list of polynomial to derive
4 symbs← Variables[p, h1, . . . , hr]
5 while True do
6 GB← GröbnerBasis[I, x]
7 LD← {} // Work list of Lie derivatives not in I
8 foreach ` in L do
9 LieD← LieDerivative[`, p, x]

10 Rem← PolynomialRemainder[LieD, GB, x]
11 if Rem 6= 0 then
12 LD← LD ∪ LieD

13 if LD = {} then
14 return True

15 else
16 foreach ` in LD do
17 if QE[∀ symbs (H ∧ h1 = 0 ∧ · · · ∧ hr = 0→ ` = 0)] 6= True then
18 return False

19 I← GB ∪ LD
20 Ň ← Ň + 1
21 L← LD

conjunction
∧r
j=1 using the logical equivalence a→ (b ∧ c) ≡ (a→ b) ∧ (a→ c) for

any boolean variables a, b, and c. This leads to more tractable problems of the form:

H `
r∧
j=1

hj = 0→ L(i)
p (hj) = 0 . (11)

Observe that the quantifier elimination problem in line 17 performs a universal closure
for all involved symbols—state variables and parameters— denoted by symbs and
determined once at the beginning of the algorithm using the procedure Variables
(line 4). Besides, the quantifier elimination problem in line 17 can be readily adapted
to explicitly return extra conditions on the parameters to ensure invariance of the given
conjunction. When the algorithm returns False, any counterexample to the quantifier
elimination problem of line 17 can be used as an initial condition for a concrete coun-
terexample that falsifies the invariant.
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3.2 Complexity

Algorithm 1 relies on two expensive procedures: deciding purely universally quantified
sentences in the theory of real arithmetic (line 17) and ideal membership of multivariate
polynomials using Gröbner bases (line 6). We discuss their respective complexity.

Quantifier elimination over the reals is decidable [29]. The purely existential frag-
ment of the theory of real arithmetic has been shown to exhibit singly exponential time
complexity in the number of variables [1]. Theoretically, the best bound on the com-
plexity of deciding a sentence in the existential theory of R is given by (sd)O(n), where
s is the number of polynomials in the formula, d their maximum degree and n the num-
ber of variables [1]. However, in practice this has not yet led to an efficient decision
procedure, so typically it is much more efficient to use partial cylindrical algebraic de-
composition (PCAD) due to Collins & Hong [5], which has running time complexity
doubly-exponential in the number of variables.

Ideal membership of multivariate polynomials with rational coefficients is complete
for EXPSPACE [18]. Gröbner bases [4] allow membership checks in ideals generated by
multivariate polynomials. Significant advances have been made for computing Gröbner
bases [9,10] which in practice can be expected to perform very well. The degree of
the polynomials involved in a Gröbner basis computation can be very large. Theoreti-
cally, a Gröbner basis may contain polynomials with degree 22

d

[19]. The degrees of
all the polynomials involved are bounded by O(d2

n

) [8]. Gröbner bases are also highly
sensitive to the monomial order arranging the different monomials of a multivariate
polynomial (see, e.g., [6, Chapter 2] for formal definitions). The Degree Reverse Lexi-
cographic (degrevlex) order gives (on average) Gröbner bases with the smallest total
degree [2], although there exist known examples (cf. Mora’s example in [14]) for which,
even for the degrevlex monomial ordering, the (reduced) Gröbner basis contains a
polynomial of total degree O(d2). Finally, the rational coefficients of the generators of
Gröbner bases may become involved (compared to the rational coefficients of the orig-
inal generators of the ideal), which can have a negative impact on the running time and
memory requirements.

3.3 Optimization

The theoretical complexity of both the quantifier elimination and Gröbner bases algo-
rithms suggests several opportunities for optimization for Algorithm 1. The maximal
degree of the polynomials appearing in H is assumed to be fixed. We can reduce the
polynomial degrees in the right-hand side of the implication in Eq. (11) as follows: by
choosing a total degree monomial ordering (e.g. degrevlex), the remainder Rem has
at most the same total degree as LieD; replacing LieD by Rem serves to reduce (on
average) the cost of calling a quantifier elimination procedure. Lem. 4 proves that sub-
stituting LieD by its remainder Rem in line 17 does not compromise correctness.

Lemma 4. Let q be the remainder of the reduction of the polynomial s by the Gröbner
basis of the ideal generated by the polynomials h1, . . . , hr. Then,

h1 = 0 ∧ · · · ∧ hr = 0→ s = 0 if and only if h1 = 0 ∧ · · · ∧ hr = 0→ q = 0 .
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The same substitution reduces the Gröbner basis computation cost since it attempts to
keep a low maximal degree in all the polynomials appearing in the generators of the
ideal I. Lem. 5 shows that it is safe to perform this substitution: the ideal I remains
unchanged regardless of whether we choose to construct the list LD using LieD or
Rem.

Lemma 5. Let q be the remainder of the reduction of the polynomial s by the Gröbner
basis of the ideal generated by the polynomials h1, . . . , hr. Then,

〈h1, . . . , hr, s〉 = 〈h1, . . . , hr, q〉 .

Although this optimization reduces the total degree of the polynomials involved, the
coefficients of the remainder q may get more involved than the coefficients of the origi-
nal polynomial s. In [12], we give an example featuring the Motzkin polynomial where
such problem occurs. In Section 6 we give an empirical comparison of the optimized—
as detailed in this section—versus the unoptimized version of Algorithm 1.

4 Sufficient Conditions for Invariance of Equations

The previous section dealt with a method for proving invariance which is both necessary
and sufficient for conjunctions of polynomial equalities. Given the proof rule DRI∧, it is
natural to ask whether previously proposed sufficient proof rules are still relevant. After
all, theoretically, DRI∧ is all that is required for producing proofs of invariance in this
class of problems. This is a perfectly legitimate question; however, given the complexity
of the underlying decision procedures needed for DRI∧ it is perhaps not surprising that
one will eventually face scalability issues. This, in turn, motivates a different question
- can one use proof rules (which are perhaps deductively weaker than DRI∧) in such a
way as to attain more computationally efficient proofs of invariance?

Before addressing this question, this section will review existing sufficient proof
rules which allow reasoning about invariance of atomic equational assertions. In Fig. 1,
DI= shows the equational differential invariant [23] proof rule. The condition is suffi-
cient (but not necessary) and characterizes polynomial invariant functions [23,25]. The
premise of the Polynomial-consecution rule [27,17], P-c in Fig. 1, requires Lp(h) to be
in the ideal generated by h. This condition is also only sufficient and was mentioned as
early as 1878 [7]. The Lie proof rule gives Lie’s criterion [15,21,25] for invariance of
h = 0 and characterizes smooth invariant manifolds. The rule DW is called differential
weakening [24] and covers the trivial case when the evolution constraint implies the in-
variant candidate; in contrast to all other rules in the table, DW can work with arbitrary
invariant assertions.

Unlike the necessary and sufficient condition provided by the rule DRI (see Eq. (4)),
all the other proof rules in Figure 1 only impose sufficient conditions and may thus fail
at a proof even in cases when the candidate is indeed an invariant.

The purpose of all the rules shown in Figure 1, save perhaps DW, is to show in-
variance of atomic equations. However, in general, one faces the problem F → [ẋ =
p & H]C, where F is a formula defining a set of states where the system is initial-
ized, and C is the post-condition where the system always enters after following the
differential equation ẋ = p as long as the domain constraint H is satisfied.
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(DI=)
H ` Lp(h) = 0

(h = 0)→ [ẋ = p & H](h = 0)
(P-c)

H ` Lp(h) ∈ 〈h〉
(h = 0)→ [ẋ = p & H](h = 0)

(Lie)
H ` h = 0→ (Lp(h) = 0 ∧∇h 6= 0)

(h = 0)→ [ẋ = p & H](h = 0)
(DW)

H ` F

F → [ẋ = p &H ]F

Fig. 1: Proof rules for checking the invariance of h = 0 w.r.t. the vector field p: DI= [25,
Theorem 3], P-c [27, Lemma 2], Lie [21, Theorem 2.8], DW [24, Lemma 3.6]

One way to prove such a statement is to find an invariant I which is true initially
(i.e. F → I), is indeed an invariant for the system (I → [ẋ = p & H]I), and implies
the post-condition (I → C). These conditions can be formalized in the proof rule [26]

(Inv)
F → I I → [ẋ = p &H ]I I → C

F → [ẋ = p &H ]C
.

In this paper we consider the special case when the invariant is the same as the post-
condition, so we can drop the last clause and the rule becomes

(Inv)
F → C C → [ẋ = p &H ]C

F → [ẋ = p &H ]C
.

In the following sections, we will be working in a proof calculus, rather than consid-
ering a single proof rule, and will call upon this definition in the proofs we construct.

5 Differential Cuts and Lie’s Rule

When considering a conjunctive invariant candidate h1 = 0∧ h2 = 0∧ · · · ∧ hr = 0, it
may be the case that each conjunct considered separately is an invariant for the system.
Then, one could simply invoke the following basic result about invariant sets to prove
invariance of each atomic formula individually.

Proposition 6. Let S1, S2 ⊆ Rn be invariant sets for the differential equation ẋ = p,
then the set S1 ∩ S2 is also an invariant.

Corollary 7. The proof rule

(∧Inv)
h1 = 0→ [ẋ = p &H ]h1 = 0 h2 = 0→ [ẋ = p &H ]h2 = 0

h1 = 0 ∧ h2 = 0→ [ẋ = p &H ](h1 = 0 ∧ h2 = 0)
(12)

is sound and may be generalized to accommodate arbitrarily many conjuncts.

Of course, one still needs to choose an appropriate proof rule from Figure 1 (or
DRI) in order to prove invariance of atomic equational formulas. For purely polyno-
mial problems it would be natural to attempt a proof using DRI first, but in the presence
of transcendental functions, one may need to resort to other rules. In general however,
even if the conjunction defines an invariant set, the individual conjuncts need not them-
selves be invariants. If such is the case, one cannot simply break down the conjunctive
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assertion using the rule ∧Inv and prove invariance of each conjunct individually. In this
section, we explore using a proof rule called differential cut (DC) to address this issue.

Differential cuts were introduced as a fundamental proof principle for differential
equations [23] and can be used to (soundly) strengthen assumptions about the system
evolution.

Proposition 8 (Differential Cut [23]). The proof rule

(DC)
F → [ẋ = p]C F → [ẋ = p & C]F

F → [ẋ = p]F
,

where C and F denote quantifier-free first-order formulas, is sound.

Remark 9. The rule ∧Inv may in fact be derived from DW, Inv, and DC.

One may appreciate the geometric intuition behind the rule DC if one realizes that
the left branch requires one to show that the set of states satisfying C is an invariant
for the system initialized in any state satisfying F . Thus, the system does not admit any
trajectories starting in F that leaveC and hence by addingC to the evolution constraint,
one does not restrict the behavior of the original system.

Differential cuts may be applied repeatedly to the effect of refining the evolution
constraint with more invariant sets. It may be profitable to think of successive differen-
tial cuts as showing an embedding of invariants in a system.

There is an interesting connection between differential cuts and embeddings of in-
variant sub-manifolds, when used with the proof rule Lie. To develop this idea, let us
remark that if one succeeds at proving invariance of some h1 = 0 using the rule Lie in
a system with no evolution constraint, one shows that h1 = 0 is a smooth invariant sub-
manifold of Rn. If one now considers the system evolving inside that invariant manifold
and finds some h2 = 0 which can be proved to be invariant using Lie with h1 = 0 act-
ing as an evolution constraint, then inside the manifold h1 = 0, h2 = 0 defines an
invariant sub-manifold (even in cases when h2 = 0 might not define a sub-manifold
of the ambient space Rn). One can proceed using Lie in this way to look for further
embedded invariant sub-manifolds. We will illustrate this idea using a basic example.

Example 10 (Differential cut with Lie). Let the system dynamics be p = (x1,−x2).
This system has an equilibrium at the origin, i.e. p(0) = 0. Consider an invariant
candidate x1 = 0 ∧ x1 − x2 = 0. One cannot use Lie directly to prove the goal

x1 = 0 ∧ x1 − x2 = 0→ [ẋ = p] (x1 = 0 ∧ x1 − x2 = 0).

Instead, DC can be used to cut by x1 = 0, which is an invariant for this system
provable using Lie. The left branch of DC is proved as follows:

*(R)
x1 = 0 ∧ x1 − x2 = 0→ x1 = 0

*(R)
x1 = 0→ x1 = 0 ∧ (1 6= 0)

(Lie)
x1 = 0→ [ẋ = p] x1 = 0

(Inv)
x1 = 0 ∧ x1 − x2 = 0→ [ẋ = p & x1 = 0] x1 = 0
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x1

x
2

x1

x
2

Fig. 2: System invariant x1 = 0 (left) used in a differential cut to show that the intersection at
the origin (right) is an invariant.

One can also prove that x1 = x2 is a invariant under the evolution constraint x1 = 0:

*
(DW)

x1 = 0→ [ẋ = p & x1 = 0] x1 = 0

*
(R)

x1 = 0 ` x1 − x2 = 0→ x1 + x2 = 0 ∧ (1 6= 0 ∨ −1 6= 0)
(Lie)

x1 − x2 = 0→ [ẋ = p & x1 = 0] x1 − x2 = 0
(∧Inv)

x1 = 0 ∧ x1 − x2 = 0→ [ẋ = p & x1 = 0] (x1 = 0 ∧ x1 − x2 = 0)

Using these two sub-proofs to close the appropriate branches, the rule DC proves

x1 = 0 ∧ x1 − x2 = 0→ [ẋ = p ] (x1 = 0 ∧ x1 − x2 = 0).

While this example is very simplistic, it provides a good illustration of the method be-
hind differential cuts. We used DC to restrict system evolution to an invariant manifold
x1 = 0 using Lie and then used Lie again to show that x1−x2 = 0 defines an invariant
sub-manifold inside x1 = 0. This is illustrated in Fig. 2.

It is also worth noting that the choice of conjunct for use in the differential cut was
crucial. Had we initially picked x1−x2 = 0 to act as C in DC, the proof attempt would
have failed, since this does not define an invariant sub-manifold of R2 (see Fig. 2).

Let us now remark that by employing DC, we proved invariance of a conjunction which
could not be described by an atomic equational assertion which is provable using the
rule Lie, or by using Lie to prove invariance of each conjunct after breaking down
the conjunction with the rule ∧Inv. It has previously been shown that differential cuts
increase the deductive power of the system when used in concert with differential in-
variants [23,26,25]. We prove that the same is true for differential cuts with Lie. Indeed,
differential cuts serve to address some of the limitations inherent in both DI= and Lie.

Theorem 11. The deductive power of Lie together with DC is strictly greater than
that of Lie considered separately. We write this as DC + Lie � Lie.

Proof. In Example 10 we demonstrate the use of Lie together with DC to prove in-
variance of a conjunction of polynomial equalities which is not provable using Lie
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alone. To see this, suppose that for the system in Example 10 there exists some real-
valued differentiable function g(x) whose zero level set is precisely the origin, i.e.
(g(x) = 0) ≡ (x = 0). Then, for all x ∈ R2 \ {0} this function evaluates to g(x) > 0
or g(x) < 0 (by continuity of g(x)) and 0 is thus the global minimum or global max-
imum, respectively. In either case, g(x) = 0 =⇒ ∇g(x) = 0 is valid, which cannot
satisfy the premise of Lie. �

Similar to the embedding of invariants observed when combining differential cuts
with Lie proof rule, we briefly explore an intriguing connection between the use of
differential cuts together with DI= and higher integrals of dynamical systems.

The premise of the rule DI= establishes that h(x) is a first integral (i.e. a constant
of motion) for the system in order to conclude that h = 0 is an invariant. More general
notions of invariance have been introduced to study integrability of dynamical systems.
For instance, h(x) is a second integral if Lp(h) = αh, where α is some function; this
is also sufficient to conclude that h = 0 is an invariant. Let us remark that in a purely
polynomial setting, such an h ∈ R[x] is known as a Darboux polynomial [13,7] and
the condition corresponds to ideal membership in the premise of P-c. Going further,
a third integral is a function h(x) that remains constant on some level set of a first
integral g(x) [13, Section 2.6], i.e. Lp(h) = αg where g is a first integral and α is
some function. These ideas generalize to higher integrals (see [13, Section 2.7]).

Example 12 (Deconstructed aircraft [25] - differential cut with DI=). Consider the sys-
tem ẋ = p = (−x2, x3,−x2) and consider the invariant candidate x21 +x22 = 1∧x3 =
x1. One cannot use DI= directly to prove the goal

x21 + x22 = 1 ∧ x3 = x1 → [ẋ = p] (x21 + x22 = 1 ∧ x3 = x1) .

We can apply DC to cut by x1 = x3, which is a first integral for the system and is thus
provable using DI=. The left branch of DC is proved as follows:

*(R)
x21 + x22 = 1 ∧ x3 = x1 → x3 = x1

*(R) −x2 = −x2(DI=)
x3 = x1 → [ẋ = p]x3 = x1

(Inv)
x21 + x22 = 1 ∧ x3 = x1 → [ẋ = p]x3 = x1

For the right branch of DC we need to show that x21 + x22 = 1 is an invariant under the
evolution constraint x3 = x1. This is again provable using DI=:

*
(DW)

x3 = x1 → [ẋ = p & x3 = x1] x3 = x1

*
(R)

x3 = x1 ` −2x1x2 + 2x2x3 = 0
(DI=)

x2
1 + x2

2 = 1→ [ẋ = p & x3 = x1] x
2
1 + x2

2 = 1
(∧Inv)

x2
1 + x2

2 = 1 ∧ x3 = x1 → [ẋ = p & x3 = x1] (x
2
1 + x2

2 = 1 ∧ x3 = x1)

We can now construct a proof of invariance for the conjunction using DC.
Note that in this example, we have only ever had to resort to the rule DI= for

showing invariance of an equational candidate. We first showed that x3 − x1 is an
invariant function (first integral) for the system. After restricting the evolution do-
main to the zero set of the first integral, x3 − x1 = 0, we proved that the polyno-
mial x21 + x22 − 1 is conserved in the constrained system. In this example we have
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Lp(x21 + x22 − 1) = −2x1x2 + 2x2x3 = 2x2(x3 − x1), where (x3 − x1) is a first
integral of the system. Thus, x21 + x22 − 1 is in fact a (polynomial) third integral.

5.1 Proof Strategies using Differential Cuts

Differential cuts can be used to search for a proof of invariance of conjunctive equa-
tional assertions. This involves selecting some conjunct hi = 0 to cut by (that is use
it as C in DC). If the conjunct is indeed an invariant, it will be possible to strengthen
the evolution domain constraint and proceed in a similar fashion by selecting a new
C from the remaining conjuncts until a proof is attained. A formal proof of invariance
using differential cuts can be quite long and will repeatedly resort to proof rules such
as (∧Inv) (Eq. (12)) and DW (Fig. 1), which is used to prune away conjuncts that have
already been added to the evolution domain constraint.

Our proof strategy iteratively selects a conjunct with which to attempt a differential
cut as a recursive function (DCSearch, elaborated in [12]). Before calling this function,
the conjuncts are put into ascending order with respect to the number of variables ap-
pearing in the conjunct. For purely polynomial problems, the ordering is also ascending
with respect to the total degree of the polynomials. The aim of this pre-processing step
is to ensure that conjuncts which are potentially less expensive to check for invariance
are processed first (see Section 3.2). There is in general no easy way of selecting the
“right” proof rule for showing invariance of atomic equations; a possible, albeit not very
efficient, solution would be to iterate through all the available proof rules. This would
combine their deductive power, but could also lead do diminished performance. In prac-
tice, selecting a good proof rule for atomic invariants is very much a problem-specific
matter. We have implemented DCSearch to use the proof rule DI= before trying Lie.

5.2 Performance and Limitations

Unlike with purely automated methods, such as DRI∧, knowledge about the system
is often crucial for differential cuts to be effective; however, this knowledge can some-
times be used to construct proofs that are more computationally efficient. We have iden-
tified an example—detailed in [12]—with 13 state variables which defeats the current
implementation of DRI∧ and which is easily provable using differential cuts together
with both DI= and Lie (solved quickly by running DCSearch). Though very much an
artificial problem, it demonstrates that structure in the problem can sometimes be ex-
ploited to yield efficient proofs using DC. This is especially useful for large systems
with many variables where the structure of the problem is well-understood. Addition-
ally, we see that a combination of proof rules (DI=,Lie,DC) can be both helpful and
efficient.

While differential cuts can serve to increase the deductive power of sufficient proof
rules, there are invariant conjunctions of equalities for which applying DC on the con-
juncts given in the problem will altogether fail to be fruitful. This is due to DCSearch
relying on the fact that at least some of the conjuncts considered individually are invari-
ants for the system, which may not be the case even if the conjunction is invariant.
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Fig. 3: Empirical performance comparison of different proof rules and strategies. The total num-
ber of problems solved each in at most ts (log scale) is given in the x-axis for each method.

6 Experiments

In this section, we empirically compare the performance of three families of proof
rules for checking the invariance of conjunctions: (1) DRI-related proof rules includ-
ing SoSDRI (DRI plus sum-of-squares rewriting), DRI∧ as well as their optimized
versions as detailed in Section 3.3, (2) DCSearch: the differential cut proof search pre-
sented in Section 5.1, and (3) the Liu et al. procedure [16] applied to a conjunction of
equalities.

We do not consider domain constraints, i.e. H = True. The running time for each
proof rule as well as the dimension, the different degrees of the candidates and the vec-
tor fields, of the used set of benchmarks can be found in the companion report [12].
In Fig. 3, the pair (k, t) in the plot of a proof rule P reads: the proof rule P solved k
problems each in less than t seconds. The set of benchmarks contains 32 entries com-
posed of equilibria (16), singularities (8), higher integrals (4) and abstract examples (4).
The examples we used in our benchmarks originate from a number of sources - many
of them come from textbooks on Dynamical Systems; others have been hand-crafted
to exploit sweetspots of certain proof rules. For instance, we constructed Hamiltonian
systems, systems with equilibria and systems with smooth invariants of various poly-
nomial degrees. The most involved example has 13 state variables, a vector field with
a maximum total degree of 291 and an invariant candidate with total degree of 146. It
should be noted that these benchmarks are not necessarily representative, but neverthe-
less, an important first step towards a more comprehensive empirical analysis we hope
to pursue.

One can clearly see that for the considered set of examples, the proof rule DRI∧ is
much more efficient on average compared to SoSDRI as it solves 31—out of 32—in
less than 0.1s each. The optimization discussed in Section 3.3 yields a slight improve-
ment in the performance of both SoSDRI and DRI∧. Notice that its benefit is clearer in
SoSDRI as the involved polynomials have large degrees. In most examples, both DRI∧
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and DRI∧-OPT are very efficient. However, the optimized version was able to falsify,
in 1.2s, an invariant whereas the unoptimized version, as well as all the other proof
rules, timed out after 60s. We also noticed for another example—featuring the Motzkin
polynomial—that SoSDRI-OPT timed out whereas SoSDRI was able to check the in-
variance in 15s. When we investigated this example, it turned out that the rational
coefficients of the remainder gets complicated compared to the original polynomial be-
fore reduction. For this particular example, the optimized version was able to prove the
invariance in 300s which is 20 times slower than the unoptimized version. For a third
example, all DRI-related proof rules timed out after 60s in one example which was
discharged by DCSearch in less than 6s. (cf. [12] for more details about those different
examples).

7 Related Work

In this paper we focus on checking invariance of algebraic sets under the flow of poly-
nomial vector fields. For similar techniques used to automatically generate invariant
algebraic sets we refer the reader to the discussion in [11].

Nagumo’s Theorem [3], proved by Mitio Nagumo in 1942, characterizes invari-
ant closed sets—a superset of algebraic sets—of locally Lipschitz-continuous vector
fields—a superset of polynomial vector fields. The geometric criterion of the theorem
is however intractable. The analyticity of solutions of analytic vector fields—a superset
of polynomial vector fields—also gives a powerful, yet intractable, criterion to reason
about invariant sets. In [28], the authors attempted to define several special cases ex-
ploiting either Nagumo’s theorem or the analyticity of solutions, to give proof rules for
checking invariance of (closed) semi-algebraic sets under the flow of polynomial vec-
tor fields. Liu et al. in [16] also used analyticity of solutions to polynomial ordinary
differential equations and extended [28] using the ascending chain condition in Noethe-
rian rings to ensure termination of their procedure; they gave a necessary and sufficient
condition for invariance of arbitrary semi-algebraic sets under the flow of polynomial
vector fields and proved the resulting conditions to be decidable.

We develop a purely algebraic approach where the ascending chain condition is
also used but without resorting to local Taylor series expansions. As in [16], we require
finitely many higher-order Lie derivatives to vanish; what is different, however, is the
definition of the finite number each characterization requires: in [16], one is required to
compute orders Ni of each atom hi and to prove that all higher-order Lie derivatives
of hi, up to order Ni − 1, vanish. We state a weaker condition as we only require that
all higher-order Lie derivatives of hi up to order (N − 1), for all i, vanish. A straight-
forward benefit of our characterization is the immediate reduction of the computational
complexity as discussed in Section 3 and shown empirically in Section 6.

Zerz and Walcher [30] have previously considered the problem of deciding invari-
ance of algebraic sets in polynomial vector fields; they gave a sufficient condition for
checking invariance of algebraic sets which can be seen as one iteration of Algorithm 1.
Therefore, Section 3 generalizes their work by providing a complete characterization of
invariant algebraic sets in polynomial vector fields.
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8 Conclusion

We have introduced an efficient decision procedure (DRI∧) for deciding invariance of
conjunctive equational assertions for polynomial dynamical systems. We have explored
the use of the differential cut rule both as a means of increasing the deductive power of
existing sufficient proof rules and also as a way of constructing more computationally
efficient proofs of invariance.

The empirical performance we observe in the optimized implementations of DRI
and DRI∧ is very encouraging and we are confident that a proof strategy in a deduc-
tive formal verification system should give precedence to these methods. However, cer-
tain problems fall out of scope of these rules. For instance, when the problems involve
transcendental functions, or still take unreasonably long time to prove. We leave these
interesting questions for future work.
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premier degré. Bulletin des Sciences Mathématiques et Astronomiques 2(1), 151–200 (1878)
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