
Automating Verification of

Cooperation, Control, and Design in

Traffic Applications ⋆

Werner Damm1,2, Alfred Mikschl1, Jens Oehlerking1, Ernst-Rüdiger Olderog1,
Jun Pang1, André Platzer1, Marc Segelken2, and Boris Wirtz1

1 Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118,
26111 Oldenburg, Germany

2 OFFIS, Escherweg 2, 26121 Oldenburg, Germany

Abstract. We present a verification methodology for cooperating traffic
agents covering analysis of cooperation strategies, realization of strate-
gies through control, and implementation of control. For each layer, we
provide dedicated approaches to formal verification of safety and stability
properties of the design. The range of employed verification techniques
invoked to span this verification space includes application of pre-verified
design patterns, automatic synthesis of Lyapunov functions, constraint
generation for parameterized designs, model-checking in rich theories,
and abstraction refinement. We illustrate this approach with a variant
of the European Train Control System (ETCS), employing layer specific
verification techniques to layer specific views of an ETCS design.

1 Introduction

Our society at large depends on the transportation sector to meet the increased
demands on mobility required for achieving sustained economic growth. Major
initiatives such as ERTRAC3, eSAFETY4 and the car2car consortium in auto-
motive, ACARE5 in avionics, and ERRAC6, ETCS/ERMTS7 in rail drive stan-
dards for inter-vehicle and vehicle to infra-structure cooperation, are thriving to
push safety by enforcing cooperation principles between traffic agents.

Automatic collision avoidance systems form an integral part of such systems,
with domain specific variants ranging from fully automatic protection to partial
automation combined with warning/alerting, to warning combined with direc-
tives. For example, in the automotive domain, based on pre-crash sensing, close

⋆ This work was partly supported by the German Research Council (DFG) as part of
the Transregional Collaborative Research Center “Automatic Verification and Anal-
ysis of Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.org/).

3 European Road Transport Research Advisory Council (www.ertrac.org)
4 http://ec.europa.eu/information_society/activities/esafety/
5 Advisory Council for Aeronautics Research in Europe (www.acare4europe.com/)
6 European Rail Research Advisory Council (www.errac.com/)
7 European Rail Traffic Management System (www.ertms.com)

distance warnings are automatically displayed, and hydraulic pressure for the
braking system is built up, reducing the response time to a driver’s reaction to
such warnings. Full automation using brake-by-wire/steer-by-wire technology is
technically feasible, and has been demonstrated early in research vehicles, e.g.,
within the California Path project. Anticipated future traffic scenarios include
communication between cars and cars, and roadside infrastructure to guide co-
ordinated maneuvers for collision avoidance. We use as running example in this
paper a variant of the European Train Control System standard, which provides
collision avoidance through a fully automated coordinated movement of trains,
based on information obtained from track-side infrastructure called Radio Block
Centers (RBC). An RBC is responsible for monitoring the position of all trains in
its track segment, and provides authorities for trains to freely move ahead until
so-called End-of-Authority points (EoA) are reached. As soon as the on-board
Automatic Train Protection system ATP detects that a train risks to move be-
yond the current EoA, the ATP system takes control of the train’s speed and
enforces a braking curve leading to a complete stop of the train ahead of the
EoA. Under ETCS level 3, EoAs are moved ahead by the RBCs, as soon as it
has gained safe knowledge of the fact that the train ahead has reached a safe
distance to the successor train. This “moving block principle”, where each train
is protected by an envelope surrounding and moving with the train, contrasts
to classical interlocking principles, where tracks are partitioned statically into
blocks, and trains are guaranteed exclusive access to blocks by interlocking pro-
tocols. Our running application is an extension of the moving block principle to
include rail-road crossings, see Section 2 for more details.

In the avionics domain, the Traffic Alert and Collision Avoidance System
(TCAS) provides directives to pilots how to avoid a near-collision situation us-
ing combined ascend/descent maneuvers, or through recently investigated “go-
around” maneuvers, see [22].

This paper provides a formal verification methodology addressing such ap-
plication classes. Specifically, we provide dedicated verification methods for es-
tablishing safety and stability requirements for three key design layers:

1. The cooperation layer addresses inter-vehicle (and infrastructure) coopera-
tion, where traffic-agents and infrastructure elements negotiate and agree on
maneuvers executed jointly to enforce safety while optimizing throughput.

2. The control layer focuses on the design of control-laws implementing the suit
of maneuvers supported by a traffic agent.

3. The design layer focuses on the implementation of control-laws through dig-
ital controllers.

Jointly, the techniques presented here combine to a holistic system verification
approach, ensuring that system-level requirements are guaranteed by the imple-
mentation of control-laws supporting the maneuver capabilities of cooperating
traffic agents.

Technically, the verification methodology rests on techniques for the veri-
fication of hybrid systems developed by the large-scale foundational research

project AVACS (www.avacs.org) on automatic verification and analysis of com-
plex systems. The range of employed verification techniques invoked to span
this verification space includes application of pre-verified design patterns, auto-
matic synthesis of Lyapunov functions, constraint generation for parameterized
designs, model-checking in rich theories, and abstraction refinement.

The verification of the correctness of collision avoidance system has been
studied extensively, e. g., within the PATH project [36], by Leveson [31], Sas-
try et al. [53], Lynch et al. [32], Clarke [47], and Damm et al. [14] for various
versions of the TCAS system, or by Peleska et al. [24] and Damm et al. [6]
for train system applications. Sastry et al. presents in [53] a general approach
of developing such distributed hybrid systems. More recently, R-Charon [30], a
semi-conservative extension of Charon [1, 2] has been proposed for modular spec-
ification and dynamic reconfiguration of large distributed hybrid system based
on hybrid automata.

This paper is structured as follows. We give a sufficiently detailed presen-
tation of the variant of the ETCS level 3 protocol used as running example in
Section 2. As unifying underlying formal model we use communicating hybrid
automata presented in Appendix A. Section 3 describes the overall verification
methodology as well as the underlying assumptions for each modelling layer.
Section 4 shows how a pre-verified design pattern for collision avoidance pro-
tocols can be instantiated for our ETCS application. The focus of Section 5 is
on generating constraints on design parameters for collision avoidance protocols
ensuring collision freedom. Sections 6 and 7 discuss automatic verification meth-
ods for proving stability and safety, respectively, using as running example the
drive train controller for maintaining the operator selected speed. Both sections
discuss the local control as well as the design layer. We finally wrap by pointing
out directions for further work in Section 8.

2 Extending ETCS Level 3 for Rail-Road Crossings

In this section we describe the model of a train system running under a variant
of the ETCS level 3 protocol. We have extended the protocol to deal with the
protection of track segments before a train gets access to enter this segment. As
an example of an unsafe element inside a track segment we have chosen a rail road
crossing. To be able to evaluate the different aspects of an embedded system we
have developed a dynamic system model extended with different control levels.
The system dynamics are modelled in Matlab-Simulink and the control parts of
the ETCS protocol are modelled in Stateflow. The model of the dynamics consists
of three parts. The first is the mechanical transmission, which converts the input
torque into the angular velocities of the wheels. The second part consists of
the outer conditions, used to produce the present train velocity. This velocity
depends on the angular velocity of the wheels, the present adhesion between
wheel and track, and other losses such as air resistance, rolling resistance etc.
The third part of the model contains the control part of the ETCS protocol and
communicates to the crossing station and to the radio control block.

2.1 Mechanical Transmission

The mechanical transmission consists of the engine which is coupled directly
on the driven wheel where the dynamics of the shaft are neglected. The train
dynamic contains the engine dynamics, the brake dynamics and the block which
calculates the present velocity of the train as a function of the friction force and
the angular momentum between the wheel-track system. The block produces the
values of the present torque on a driven wheel Tw , the angular velocity of the
wheel ωw and the present velocity of the train v .

The angular momentum of the engine is modelled as a function of the drive
current (I) as the controlled variable, and the present angular velocity of the
engine (ω). The is and ws are constants and the tn and ωmax are parameters.

Tw = min(is · ω + tn · I , ws · ω + ws · ωmax · I) (1)

The drive current is driven by a PI controller with the desired velocity and
the present velocity as input.

I (v , vd) = Pd · (vd − v) + Td ·

∫

(vd − v)dt (2)

To limit the maximum acceleration additional parts have been added. If the
current acceleration (a) exceeds the max acceleration (max acc) the difference
of them is multiplied by a scaling factor and then subtracted from the drive
current. Equation 2 can then be rewritten to:

I (v , vd) =

{

Pd · (vd − v) + Td ·
∫

(vd − v)dt : a ≤ amax

Pd · (vd − v) + Td ·
∫

(vd − v)dt − (a − amax) · alimit : a > amax

(3)
The dependency of the angular velocity ω and the toque is given by the

formula

ω =

∫ t

0

Tω − Rw · (Fe + Fb)

I
dt (4)

where I is the moment of inertia of the rotating mass of the engine and the driven
wheel, Fe is the resistance force of the environment, Rw denotes the radius of
the wheel and Fb describes the braking force. The present velocity is calculated
in the same way

v =

∫ t

0

Ft − Fe − Fb

m
dt (5)

where m is the mass of the train and Ft the traction force induced from the
wheel into the track. The traction force is calculated by

Ft =
Tw

Rw

· µa (6)

where µa denotes the adhesion coefficient between wheel and track.

2.2 Outer Losses

The outer losses are summarized in the resistance force Fe based on air resistance
and roll resistance.

Fe = Fair + Fr + m · g · sinφ (7)

The term m · g · sinφ is the loss due to the lateral slope angle φ of the rail. The
roll resistance is described by the formula

Fr = m · cr (8)

where m is the total mass of the train and cr the velocity independent roll
resistance coefficient. The air resistance is described by

Fair = cair
1 · v2 + cair

2 · v (9)

The coefficient cair
1 depends on the density of air, the cross section of the train

and such things, the coefficient cair
2 describes aerodynamic phenomenon which

cannot be described as functions of v2.

2.3 Brake

The main goal of this brake model is to bring up the train model in a non-moving
state and not to study the brake behaviour in detail. For this reason the brake
model is very simple. The brake model consists of two kinds of brake systems:
an eddy current brake and an emergency brake. An eddy current brake consists
of an electromagnetic shoe where the electromagnetic force is controlled by the
brake current. The change of the magnetic field caused by the speed difference
between the brake and the adjacent rail induces an eddy current in the rail. This
eddy current leads to a resistance force which depends on the current and the
speed difference. In high speed region (v ≥ 20 m/s) the resistance force is nearly
linear to the speed difference. The resistance force tends to zero if the speed
difference becomes zero. Therefore we need an additional brake mechanism for
the low speed region. These two brake systems work as the service brake for
the train model. For the emergency case there exists an additional brake called
emergency brake. This brake is typically an electromagnetic rail brake. Both
brake types, the eddy current brake and the electromagnetic rail brake, work
directly between the train and the rail and do not depend on friction between
the wheels and the train. This simplifies the brake model. The brake force Fb is
modelled by

Fb = (Ib · v + (voffset − v)) · sbsc + ebc (10)

where Ib is the brake current to control the service brake, v is the present velocity
of the train and voffset is a constant to ensure brake force if the present velocity
is close to zero. The constant sbsc is a scaling factor for sufficient brake force.
The emergency brake is modelled as a constant and denoted by ebc . Deceleration
is controlled through setting a proper brake current using a PI controller. The

input of this controller is the present deceleration of the train and the coefficient
for a comfortable deceleration of the service brake.

Ib = Pb · (
d v

dt
− ad

sb) + Tb

∫ t

0

d v

dt
− ad

sb dt (11)

We have presented here a sufficient precise description of the dynamical sys-
tem. The equations are kept simple to get a linear system. The model can be
extended mostly and a more detailed description can be found in [54].

2.4 ETCS Control Part

We consider a train system which is under the control of a variant of the ETCS
level 3 protocol. The ETCS level 3 provides collision avoidance through a fully
automated, decentralized interlocking scheme where the trains are moving in
safe blocks. These blocks are controlled track-side by radio block centers (RBC)
which are control centers to supervise and control train movements in a terri-
tory with radio based train control. One RBC is responsible for a fixed number
of track segments and the trains currently on these track segments. The RBC
grants movement authorities for trains to freely move ahead until so called end
of movement authority (EoA) points. At each time there exist a certain EoA
for each train, which is typically the end of a track segment, the position of a
possibly unsafe point (e.g., a rail-road crossing), or the end of a train driving
ahead. The granted movement authority defines a safety block surrounding the
train. It is a moving block system which means that the signaling system will
clear the track behind a train continuously.

This protocol is completely modelled in Stateflow and consists mainly of
four states running in parallel. The rbc req state shown in detail in Fig. 1 is
responsible for the communication to the RBC. The rbc req state is entered in

rbc_send

get_n_seg{rbc_c_pos:=p;rbc_c_eoa:=rbc_eoa;rbc_t_id:=ml.t_id;}
/ev_rbc_req;

/ev_rbc_req;
after(ml.send_delay*10,time)[before(ml.max_send_delay*10,time)]

rbc_req

ev_rbc_ack[before(ml.send_delay*10,time)]/ev_calc;
rbc_wait

after(ml.max_send_delay*10,time)/ev_brake;

[mode==1]{rbc_c_pos:=p;,rbc_t_id:=ml.t_id;}/ev_rbc_req;

init

1

2 3 54

Fig. 1. RBC communication control part

the init state. This state will be left by taking the transition 1 only if the variable
mode is equal to 1 which means that this train is under the supervision of the

ETCS. After enabling this transition and before entering the destination state
rbc send, the variables rbc c pos and rbc t id will be set to the current position p
of the train and to the specific id of the requesting train. By taking this transition
a request for a new EoA will be sent to the RBC and a timer will be started by
entering the rbc send state. After the time interval of a normal transmit action
but before the upper bound of transmit actions has been reached, the request will
be transmitted again. This behaviour is modelled in the transition on top 2 of
the rbc send state. If no message arrived before the maximum send delay period
is reached the service brake will be initialized by taking the transition 3 and
generating a brake event ev brake which will be consumed in the moved state in
Fig. 6. If an acknowledge arrived before the max send delay the transition 4 will
be enabled and an ev calc event is generated, leading to the destination rbc wait
state. This state will be left after consuming a get n seg event and enabling the
transition 5 to the rbc send state. This transition is a model of a request for
travelling to a new track segment after the current EoA which will be sent to the
RBC. The parameters of this request are the current train position rbc c pos,
the current EoA rbc eoa of the train and the train id t id. The RBC will then
calculate the new EoA with respect to the current train position of train t id,
the current EoA of this train and the current positions of possible other trains
moving ahead.

The second state is the com cross state (Fig. 2) containing the communica-
tion model between the train and a rail-road crossing. If an ev com cross event

init

x_com_point

safe

unsafe

ec_com_cross/ev_lock;
[p>x_c && safe==0]/ev_brake

[p<x_c && safe==1 &&c_m==0]{c_m:=1;}/get_n_seg;

[p>x_p]/ev_unlock;

com_cross

1

2 3 4

Fig. 2. Level crossing communication control part

is consumed the transition 1 will be taken and a lock request will be sent to
the rail-road crossing. If the level crossing has transmitted the safe state mes-
sage before the train has reached the start-of-communication-point-to-rbc x c,
the transition 4 is taken, generating a request for a new EoA to the RBC. The
variable c m will be set to 1 which means that this train has already sent a
lock message to the rail-road crossing. The new state is the safe state. If the
train is behind the start-of-communication-to-rbc point and receives an unsafe

message from the rail-road crossing the transition 4 is enabled and the service
brake will be initiated by an ev brake event. The unsafe state will only be left
by switching off the automatic mode of this train. The safe state will be left if
the train position is behind the position of the rail-road crossing and an unlock
message is sent to the rail-road crossing 2 . The new state is the init state and
this train is ready to initiate a new request to a rail-road crossing.

ev_calc/xcross:=ml.is_xcross(p):,
x_p:=ml.cross_p(p);,x_m:=0;,c_m:=0;

init

brake_point/
entry:x_b:=rbc_eoa−1.1*v^2/(2*ml.b);,
x_c:=x_b−2.1*max_send_delay*v;,
x_c_x:=x_c−2.1*(ml.x_time*v+ml.max_send_delay*v);

ev_halt

ev_reset/get_n_seg;
[xcross==1 && p>x_c_x && x_m==0]{x_m:=1}/ev_comm_cross;

[xcross==0 && p>=x_c && p<x_b && c_m==0]{c_m:=1}/get_n_seg;

[xcross==0 && p<x_b && p<x_c]/ev_drive

[xcross==1 && p<x_b && p<x_c && p<x_c_x]/ev_drive;

[p>=x_b]/ev_brake;

calc_brake_point

1

2

3

4

9

6

7

8

Fig. 3. Monitoring of safe motion

The main calculations to guarantee the safe motion of the train are done in
the third state calc brake point shown in Fig. 3. The three variables x b, x c and
x c x are updated every time the brake point state is entered. To guarantee that
the train stops before reaching the EoA, the train has to initialize the service
brake some distance in front of the EoA. This distance depends on the current
velocity of the train and the deceleration induced by the service brake. The point
to initialize the service brake (x b) is dynamically calculated every time step by

x b = EoA −
1.1 · v2

2 · b
(12)

where v is the actual velocity of the train and b is the typical deceleration of
the service brake. The factor 1.1 guarantees a 10% safety margin. Typically, the
train should not stop at every EoA, so the train has to ask the RBC for a new
EoA before reaching the actual EoA. For comfort reason the new EoA should be
received before the train has switched to the braking mode so the request has
to be sent early enough in time before reaching the service brake initialization
point x b. The train will travel the distance p = v · t in time t with the velocity
v . The delay for the request of the new EoA is two times the maximal send delay
to the RBC plus the response time to serve this request. The point to initialize
the request for the new EoA can then be calculated by

x c = x b − 2.1 · max send delay · v (13)

In case that the EoA is a rail-road crossing the train has to lock the rail-road
crossing before the train will reach this point. The train has to initiate a lock
request to the rail-road crossing and the rail-road crossing has to lock the crossing
and acknowledge the lock request. After receiving a safe message the train can
send a request for a new EoA to the RBC. The point to initialize a lock request
to a level crossing is calculated by

x c x = x c − 2.1 · (x time + max send delay) · v (14)

The time to set up the rail-road crossing in a safe state is stored in the x time
variable. These three points (x b, x c and x c x) are updated every time the
brake point state is entered. A spatial view of this scenario is shown in Fig. 4, and

����������������������������

����������������

���������
���������
���������
���������

v

EoA

SB

Train

RBC

ST

x_c x_bp

CS afterCS

Fig. 4. Radio-based train control

a snapshot of the dynamical behaviour can be seen in Fig. 5. After explaining
the main ideas to guarantee a safe motion, we continue to discuss Fig. 3. The
transition 1 is enabled after receiving an end-of-authority message from the
RBC. By taking this transition the two variables which count the messages to
the RBC and to the rail-road crossing are initialized to 0. The variable xcross
picks up the information if a rail-road crossing is just in front of the current
position p of the train. The position of the rail-road crossing itself is stored in
the x p variable. The information of the rail-road crossing is read out of the track
data dictionary. If there is no rail-road crossing ahead and the current position
of the train is before the point to initialize the service brake and before the
point to initialize an EoA-request the transition 9 will be taken and an ev drive
event is generated to switch into the driving mode of the train. In case there is a
rail-road crossing ahead the transition 8 will be enabled. If the train has passed
the point to send an EoA-request to the RBC but in front of the x b point the
transition 3 will be taken and a get n seg event is generated to initialize the
request of a new EoA. If there is a rail-road crossing ahead and the train has
passed the x c x point a lock request is generated by the ev com cross event
released by the transition 4 . If the train has passed the x b point the transition
7 is enabled which leads to the service brake mode by the ev brake event. In

0 1000 2000 3000 4000 5000
−200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

time

di
st

an
ce

end of authority
communication to RBC
communication to level crossing
current position of train

Fig. 5. Snapshot of dynamic calculations

case of an emergency halt indicated by the ev halt event the brake point state
will be left by enabling the transition 6 to the halt state.

The supervision of the velocity of the train is modelled in the fourth state
labelled move (Fig. 6). The previous value of the desired speed is set to 0 on
entering the default init state and stored in the o v d variable. The drive mode
is switched on by receiving the ev drive event enabling the transition 1 and the
variable d c (for drive control) is set, the desired speed at the current position
of the train is read out of the track data dictionary and stored in v d and the
slope of the current track segment is stored in the variable slope. The destination
state is change.

– If the current desired speed is different from the previous value the transi-
tion 2 is enabled and this change is signalled through a reset on the c v d
variable, state switch and the transition 3 . The new value of the current
desired speed is stored in the move state.

– If there is no change in the desired speed, the transition 4 is enabled and
the move state is entered.

– If a brake event (ev brake) occurs in the change state, the transition 12 is
enabled, the drive mode is switched off (d c = 0), the service brake mode is
switched on (sb c = 1) and finally the init brake state is entered.

init/
entry:o_c_d:=0;

change

move/
entry:o_v_d:=v_d;

[c_v_d==0]
/c_v_d:=1;

[sb_c==1 && v>1.5*v_d]

/d_c:=0;,sb_c:=0;,eb_c:=0;

ev_drive
/v_d:=ml.req_speed(p);,
slope:=ml.req_slope(p);

init_brake/
during:v_s:=sqrt(1.1*rbc_eoa−p)*2*ml.b/1.1;

1 2

3

4

5

6

7

8

9

move

[o_v_d~=v_d]/c_v_d:=0;
switch

[o_v_d==v_d]

[v<v_d]/d_c:=1;,sb_c:=0;

[v>=v_d && v<1.05*v_d]/d_c:=0;

[v>1.1*v_d && sb_c==0]{d_c:=0;}/sb_c:=1;

cont

ev_brake{d_c:=0;}/sb_c:=1;

[v>1.1*v_s]{sb_c:=0;}
/eb_c:=1;ev_halt;

[v<=v_s]{sb_c:=0;}

ev_brake{d_c:=0;}/sb_c:=1;

slope:=ml.req_slope(p);
ev_drive{d_c:=1;}/v_d:ml.req_speed(p);,

10

11

12

13

halt

Fig. 6. Speed control

After reading the desired speed the current speed of the train is supervised in
the move state.

– If the current velocity of the train is below the desired value the transition
8 is enabled, the drive mode is set, and the service brake mode is switched
off.

– If the current velocity is equal or greater than the desired velocity but not
greater than 5% of the desired velocity the transition 7 is taken and the
drive mode is switched off.

– If the speed is greater than 10% of the desired speed and the service brake
mode is not active, the mode is switched from driving mode to the the service
brake mode by activating the transition 6 .
The destination state in all three cases is the cont state. This state is left
either by receiving an ev drive event taking the transition 13 to the change
state and updating the slope and the desired speed variable or receiving an
ev brake event 10 and switching to the init brake state.

– If in the move state the service break mode is active and the current speed
is greater than 50% of the desired speed, then the emergency brake mode is
switched on by taking the transition 5 to the halt state.

While in the init brake state, the braking curve is supervised by updating the
speed v s at the current position. If the current speed is lower than this calculated
speed the service brake is switched off 11 and the speed is supervised in state
change. If the current speed is above the braking curve the emergency brake is
switched on 9 and the halt state is entered.

The monitoring of the current velocity and the monitoring of the current
EoA are done in parallel every time step.

3 A Verification Methodology for Cooperating Traffic

Agents

This section proposes a verification methodology supporting current industrial
practice in designing complex safety critical systems. We aim to exploit the typ-
ical layered structure in a model based design process of such systems to decom-
pose the overall verification problem of establishing collision freedom of traffic
agents into sub-verification problems which are within the range of automatic
verification tools for subclasses of hybrid systems. While jointly the different sec-
tions of this paper will demonstrate the feasibility of this approach, we do not
provide a consistent theory, but rather open a research direction which so far has
gained little attention: the challenge of bridging the gap between design layers
of safety critical systems. This gap is a direct consequence of the roles models of
cooperating systems situated at different layers play in design processes:

– Models at the cooperation layer are focusing on how agents agree in find-
ing strategies to resolve possible hazardous situations potentially leading to
a collision, and demonstrating that such strategies are indeed capable of
avoiding the collision. Strategies at this design level define trajectories to be
followed by traffic agents, such as circular go-around, changing lanes, decel-
erating until a safe distance is achieved. The realization of such strategies
is delegated to subsequent design steps – strategies are described directly in
terms of dynamic models assuming direct control of speed and acceleration,
and undisturbed immediate knowledge of location, speed, and acceleration.

– Models at the control layer provide a first step towards realization of strate-
gies, in separating between control and plant, identifying sensors and ac-
tuators, and developing control laws ensuring stability and safety of such
strategies. The focus at this stage is on getting the control laws right – typi-
cally assuming an ideal execution engine, which provides immediate visibility
of sensor changes and impact of actuator settings, in a dense time model.

– Models at the design layer must deal with the inherent limitations of digi-
tal implementations of controllers. This includes the limited observability of
the planned at defined sampling points, discretization errors, delayed impact

of actuator settings, physical distribution of sensors, controllers, and actu-
ators, as well as addressing diagnostic and fault-tolerance. Idealized control
laws must be made robust, in the sense that stability and safety must be
guaranteed in spite of such impurities.

While such a layered approach is highly beneficial for a separation of concerns
in design processes, the inherent differences between models situated at different
layers make it a challenge to provide semantic bridges between these, as would
be required for a complete verification methodology spanning all three levels.

Indeed, models at the control layer would hardly be able to exactly realize
the trajectories prescribed by strategies at the cooperation layer. While highly
elaborated plant models are available, e.g., capturing car dynamics, control de-
signers typically work with simplified models which have been proven to be
practically sufficient for validating stability and safety. Such simplified models
ignore higher-order effects and use linear approximations whenever reasonably
possible, trading exactness for simulation speed. Similarly, the induced limita-
tions of digital control (cf. [3]) make it impossible for digital controllers to enforce
the plant dynamics of control models; rather, robustness is designed into digital
controllers to “sufficiently” approximate such dynamics.

Industrial design processes cater for these gaps, e.g., by enforcing design for
robustness, re-validating stability and safety at each layer, in particular ensuring
complete traceability of safety requirements throughout all design steps, and by
rapid prototyping. Extensions to Matlab-Simulink such as the Jitterbug [10]
allow for an early assessment of the impact of design level impurities on control-
strategies.

However, as argued in Section 8, theoretical approaches to cover multi-layered
designs, such as refinement and compositional reasoning, fail to provide semantic
bridges across this design space, due to their inability to support the degree of de-
viations between models tolerated by industrial design processes. We thus leave
the development of a theoretical approach building on compositional extensions
of robust refinement to future research, and focus in this paper on a verifica-
tion methodology which adds mathematical rigor to industrial approaches to
bridge the gap between design layers. Specifically, we enhance established prac-
tices of providing full traceability for safety requirements in offering techniques
of assigning responsibility of derived safety requirements jointly guaranteeing
collision freedom to subsystems, and provide formal verification techniques tai-
lored to the particularities of model classes at each level, to formally verify such
delegated safety requirements. Regarding stability of local control, as well as
stability of design models, we provide automated formal techniques establishing
various notions of stability. The remainder of this section outlines the overall
approach, which is then refined in individual sections.

Our verification methodology addresses the cooperation layer by formalizing
design patterns for collision avoidance as a proof rule reducing collision free-
dom to locally dischargeable safety requirements on individual subsystems of
the involved traffic agents. The design patterns builds on the following central
concepts (see Section 4):

– Each agents is seen enclosed in a safety envelope, which must not be entered
by other agents;

– A criticality function measures for each configuration of the (physical) state
of involved agents its closeness to collisions;

– Thresholds of this function are chosen taking into account the dynamics of
traffic agents to initiate negotiations on agreeing on strategies, as well as on
their initiation;

– Strategies are reducing criticality of the agents state.

These design patterns have been proven to be expressive enough to cover rail,
automotive, as well as avionics applications. A key feature of our approach to the
verification of the coordination level is the capability to automate the generation
of candidate criticality functions for linear strategies, by using linear matrix
inequality (LMI) solvers to instantiate parameters in a suitably chosen quadratric
generic form for candidate criticality functions taking into account the dynamics
of the strategies. Moreover, the application of the design pattern generates safety
requirements for the subsystem of the traffic agents responsible for inter-agent
communication as well as strategy realization.

Such safety requirements are discharged at the control-level using symbolic
reachability analysis (see Section 7). We have tuned the verification algorithms
to cater for control models with non-trivial discrete control (e.g., resulting from
the interaction between inter-agent coordination and control). This calls for a
fully symbolic representation of the hybrid system state space in reachability
analysis – in contrast to the explicit representation of discrete states used in hy-
brid system verification tools such as PHAVer [21], Checkmate [49], HyperTech
[27]. The key to achieve this are recent results to lift techniques for compact
discrete state space representations based on And-Inverter Graphs to the theory
of linear arithmetic (Lin-AIGs) required to deal with hybrid system verifica-
tion. The current prototype of our verification engine [11] uses substitution in
backward image computation along jumps, providing for linear guards and lin-
ear expressions in assignments, and Loos-Weispfennig quantifier elimination for
backward image computations at flows, and redundancy elimination for sets of
linear-constraints, assuming linear hybrid automata. Future work will lift this
extension to include plant models supporting linear differential equations. To
cater for the transition to design models, we re-verify the safety requirements
allocated to this subsystem, now using an abstraction refinement approach ad-
dressing discrete time reachability analysis for models with linear dynamics [48].

Stability of control models is demonstrated using LMI based candidate gen-
eration for Lyapunov functions for hybrid systems with linear differential equa-
tions, developed in [41]. As discussed in Section 6, we also show that stability
can be re-proven after discretizing the system model with a given sampling rate,
resulting in a discrete-time hybrid system with linear difference equations. This
allows for the identification of safe sampling rates maintaining stability, which
can in turn be used for discrete-time reachability analysis.

Jointly, these techniques allow a formal verification of stability and safety
properties, with traceability of requirements from the coordination layer to de-
sign models.

4 Verification of the Cooperation Layer

In [13] we proposed a rule that decomposes the proof of the global property
of collision avoidance of two traffic agents into simpler properties with the aim
that they can be automatically verified. In this section we give a summary of
this proof rule and show that an important ingredient of this rule, the criticality
function, can indeed be found automatically. This is illustrated with the train
case study.

4.1 A Design Pattern for Collision Avoidance

Proving the global safety property of collision freedom for a collection of traffic
agent is extremely difficult because each traffic agent is (modelled by) a hybrid
system with a number of (discrete) modes and a different continuous dynamics
in each mode. To break down the complexity of this verification task we exploit
that traffic agents typically cooperate using a certain pattern of operation modes
that can be described as a generic phase-transition diagram shown in Fig. 7.

RECOVERY

NEGOTIATING

FAR

CORRECTING

(1)

(3)

(2)

(4)

(5)

FAILSAFE

φF

φN

Fig. 7. Phase-transition diagram for proof rule

The phase FAR collects all controller modes that are not pertinent to collision
avoidance. The protocol may only be in phase FAR if it is known to the con-
troller that the two agents are “far apart”. Determining conditions for entering

and leaving phase FAR is thus safety critical. The NEGOTIATION phase is ini-
tiated as soon as the agents might evolve into a potentially hazardous situation.
Within the negotiation phase the two agents determine the set of maneuvers to
be performed. The CORRECTING phase is entered when matching correcting
modes have been identified. During this phase, maneuvers associated with the
correcting modes will cause the distance between traffic agents to increase, even-
tually allowing them to reenter the FAR phase. For instance, TCAS distinguishes
maneuvers like “descent”, “maintain level”, and “climb” for aircrafts.

The cycle of transitions numbered (1) to (3) in the diagram thus characterizes
successful collision avoidance maneuvers. Other phases and transitions shown in
Fig. 7 increase the robustness of the protocol, by providing recovery actions in
case of failures (e.g., disturbed communication channels) in the NEGOTIATION
phase, and can only be offered by agents with fail-safe states (like trains). For
instance, in its RECOVERY phase a train may initiate a braking maneuver to
avoid a collision with a preceding train.

Stipulating the pattern in Fig. 7, we proposed a generic proof rule that de-
composes the global safety proof of collision freedom (for the case of two traffic
agents) into a number of simpler properties that involve only parts or limited
aspects of the agent system. The proof rules employs two key concepts: a safety
envelope surrounding each traffic agent and a criticality function providing an
abstract measure of the distance between the traffic agents. The rule states that
for all traffic agents A and all criticality functions cr satisfying the verification
conditions VC of the rule, collision freedom is guaranteed:

A |= VC ⇒ A |= ¬ collision

where cr may occur in VC but not in the collision predicate. In an application
we have to show that the verification conditions VC are satisfied by the concrete
traffic agents A0 and the concrete criticality function cr0 substituted for cr :

A0 |= VC[cr0/cr]

Thus the proof rule, when instantiated with A0 and cr0, yields the desired prop-
erty of collision freedom:

A0 |= ¬ collision.

In Subsection 4.3 we show that criticality is a Lyapunov-like function and that
(for certain dynamics) the concrete function cr0 can be discovered automatically.

Formalization. Now we outline the formalisation of the approach as given in
[13]. A traffic agent A is represented as the parallel composition of a plant P and
a controller C , in symbols A = P || C . Each of these components is modelled
by a hybrid automaton H = (M,Var ,Rd ,Rc,m0, Θ) defining trajectories

π = (M̂ , (X̂)X∈Var)

where M̂ : Time → M and X̂ : Time → R for X ∈ Var . For details see Appendix
A and for an example see Fig. 9.

To specify behavioural properties over time of hybrid automata and state the
verification conditions of our proof rule for collision freedom, we use the State
Transition Calculus [56], an extension of the Duration Calculus (DC) [57]. In DC,
real-time interval properties of system observables obs , which are interpreted as
functions obsI : Time → Data, can be expressed and proven. For example,

2(⌈M = NEG⌉ ⇒ ⌈acc = 0⌉)

expresses that in every interval (2) if the mode observable M has the value NEG
(for negotiating) throughout this interval (⌈M = NEG⌉) then the observable acc
(for acceleration) is zero throughout this interval (⌈acc = 0⌉).

The State Transition Calculus can additionally express properties of instan-
taneous transitions. For example, ↑ M = NEG is true at t ∈ Time if then the
truth value of the assertion M = NEG switches from false to true. In DC, this
can be expressed as ⌈¬(M = NEG)⌉; ⌈M = NEG⌉ which is to hold in an in-
terval surrounding t . The chop operator ; is applied at time t and expresses the
concatenation of two intervals where ⌈¬(M = NEG)⌉ holds in the first one and
⌈M = NEG⌉ in the second one.

It can be defined that a hybrid automaton H is a model of a formula F ,
abbreviated as H |= F .

Correcting Modes. For each controller Ci we stipulate a set COR(Ci) of
correcting maneuvers. Then we assume a relation

MATCH ⊆ COR(C1) × COR(C2)

of matching modes characterizing which pairs of maneuver are claimed to re-
solve hazardous states. For each pair (m1,m2) ∈ MATCH there is an activation
condition characterized by a state assertion Φ(m1,m2). Activation conditions of
maneuvers must observe the following constraints:

– timely activation: the activation of the maneuvers occurs early enough to
guide the traffic agents to a safe state using the associated control laws.

– completeness : for each possible approach to a hazardous state there is at
least one matching pair of correcting modes whose activation condition is
enabled in time.

For ground-based traffic agents like trains there is a special class of corrective
modes, enforcing a complete stop of the traffic agent, thus reaching a fail-safe
state. We refer to such corrective modes as recovery modes and assume that there
is a single matching pair (r1, r2) of recovery modes.

Let Φstart be the disjunction of all activation conditions of these modes:

Φstart ⇔ Φ(r1, r2) ∨
∨

(m1,m2)∈MATCH
Φ(m1,m2).

Intuitively, if any of these conditions becomes true, a hazardous state has been
reached, which can compensated by the associated matching pair of correcting
modes. By completeness of the set of activation conditions, Φstart thus charac-
terizes all hazardous states.

The flexibility of having multiple matching correcting modes entails the need
for a negotiation phase, in which agents agree on which pair of maneuvers is to
be activated. The design of this phase has to address the following critical issues:

– limited time window : the decision must be reached within a certain time
∆N , catering for latencies occurred by inter-agent communication, as well
as local computation times to perform the selection.

– timely activation: the activation of the negotiation phase must be early
enough to guarantee timely activation of the chosen maneuvers.

– adequacy of selection: the negotiation phase may only choose among such
matching pairs whose activation condition is known to become activated.

We cater in our generic scheme for the latter two items by the concept of warnings
“announcing” that the activation condition for a matching pair will become true
in ∆C time units, with ∆N < ∆C . The warning ΦN causing the initiation of
the negotiation phase should thus be given as soon as it is known that the agent
will in ∆C time units hit one of these activation conditions. Formally, this is
expressed as follows: ΦN ⇔ pre(∆C , Φstart).

Safety Envelopes. We define collision freedom as maintaining disjointness of
safety envelopes associated with each traffic agent. A safety envelope of an agent
is a vicinity. Formally, safety envelopes are convex subspaces of R3 surrounding
the current position, whose extent can depend on the valuation of plant variables.

Definition 1. The safety envelope of an agent A = P ‖C is a continuous piece-
wise differentiable function

SEA : RVar(P) → P(R3),

which is a convex subset of R3 including the current position. Given a run π,
and a point in time t, the current safety envelope is given by SE(π(t)).

Two traffic agents A1 and A2 are collision free if in all trajectories of the com-
posed traffic system A1 ‖A2 the safety envelopes associated with A1 = C1 ‖P1

and A2 = C2 ‖P2 have an empty intersection.

Definition 2. Consider a run π of A1 ‖A2. The state assertion collision holds
in π at time t ∈ Time if SEA1

(π(t)) ∩ SEA2
(π(t)) 6= ∅. The two-agent system

A1 ‖A2 is collision free if A1 ‖A2 |= ⌈¬collision⌉, i.e. if for all runs of A1 ‖A2

and all intervals ¬collision holds.

Criticality. A central notion is that of criticality of plant states. Given valua-
tions σ1 and σ2 of the plant variables of P1 and P2, respectively, the criticality
cr(σ1, σ2) measures the “distance” of (σ1, σ2) from unsafe states. A key property
of such a criticality function is the separation of safe and unsafe states, in the
following sense: whenever the criticality of plant states is below a fixed threshold
csafe the plant state is safe.

Formally, a criticality measure for given traffic agents A1 = P1 ‖C1 and
A2 = P2 ‖C2 is a continuous piecewise differentiable function

cr : RVar(P1) × RVar(P2) → R≥0

satisfying the implication cr(σ1, σ2) < csafe ⇒ SEA1
(σ1) ∩ SEA2

(σ2) = ∅.

A Proof Rule for Collision Freedom. For two cooperating traffic agents
A1 = C1 ‖P1 and A2 = C2 ‖P2 the proof rule of [13] has the form

(VC 1), . . . , (VC 18)
C1 ‖P1 ‖C2 ‖P2 |= ⌈¬collision⌉

where the verification conditions (VC 1) . . . (VC 18) require only verification
tasks of the following types:

(A) off-line analysis of the dynamics of the plant in fixed modes,
(B) mode invariants for C1 ‖C2,
(C) real-time properties for Cj ,
(D) local safety properties, i.e., hybrid verification tasks for Cj ‖Pj .

In the following we give a flavour of these verification conditions.

Criticality and safety. Our approach to establishing collision freedom is to re-
duce this to an analysis of the criticality of the system. The criticality measure
separates safe from unsafe states: here a constant csafe of type R>0 represents the
level of criticality below which the two travel agents are safe, i.e., in no danger
of a collision. The following type A verification condition checks this property.

(VC 1) Safety

Th(R) |= cr < csafe ⇒ ¬ collision

This yields P1 ‖P2 |= ⌈cr < csafe⌉ ⇒ ⌈¬ collision⌉.

Phase-transition diagram. It is straightforward to generate verification condi-
tions enforcing compliance of the concrete protocol to the phase-transition sys-
tem of Fig. 7. To this end, the phases far away, negotiating, correcting, recovery
and fail-safe of the controllers Ci are represented as disjoint subsets FAR(Ci),
NEG(Ci), COR(Ci), REC (Ci), FSA(Ci) ⊆ Mi of the set of modes. When spec-
ifying the behaviour of the controllers Ci in DC, we use FAR(Ci) as a shorthand

for M (Ci) ∈ FAR(Ci) and analogously for the other phases. Then we check the
following simple type B verification condition.

(VC 2) Controllers observe phase-transition diagram. For i = 1, 2

Ci |=0 Φphase(Ci)

Thus the controllers satisfy the above phase constraints from the start. Here
Φphase(Ci) is a conjunction of formulae of the following type:

Initial phase: ⌈⌉ ∨ ⌈FAR(Ci)⌉; true for i = 1, 2
Phase sequencing: ⌈FAR(Ci)⌉ −→ ⌈FAR(Ci) ∨ NEG(Ci)⌉ for i = 1, 2

. etc

Warnings. The following type A verification condition checks that each trajec-
tory leading from a plant state without warning to a collision must cross an
activation condition of one of the correcting modes, i.e., it checks whether the
set of provided maneuvers is complete.

(VC 4) Completeness of maneuvers.

P1 ‖P2 |= (⌈¬φN ⌉; true) ∧ (⌈¬collision⌉; ↑ collision) ⇒ 3 ↑ Φstart

The activation conditions for maneuvers must be chosen in such a way that crit-
icality is below the critical threshold when maneuvers become enabled, leading
to the following type A verification condition.

(VC 5) During warning period criticality is still low.

Th(R) |= ∀ δ ≤ ∆C : (acc1 = acc2 = 0 ∧ ↑pre(δ, Φstart) ⇒ cr < csafe)

This yields P1 ‖P2 |= (⌈acc1 = acc2 = 0⌉ ∧ ℓ = ∆C ; ↑ Φstart) ⇒ ⌈cr < csafe⌉.
In particular, this ensures that maneuvers are not activated too late.

Negotiation phase. The negotiation phase must be initiated as soon as a first
warning occurs. Recall that this event is represented by ΦN becoming true. The
following type B verification condition checks this.

(VC 6) Initiating negotiating phase. For i = 1, 2

Ci ‖P1 ‖P2 |= ⌈FAR(Ci)⌉
↑ΦN

−−−→ ⌈NEG(Ci)⌉

Note that both controllers enter their negotiating phase simultaneously when
the trigger ↑ φN occurs.

The following type D verification condition guarantees that pre(∆C , Φstart),
the warning to start maneuvers according to Φstart , was raised early enough. If
the traffic agents changed their speeds during negotiation and selection (sub-)
phase, the calculations of the warning would be wrong.

(VC 11) No acceleration during negotiation and selection. For i = 1, 2

Ci ‖Pi |= ⌈NEG(Ci) ∨ SEL(Ci)⌉ ⇒ ⌈acci = 0⌉

The last type C verification condition for the negotiation phase checks, that
indeed negotiation is completed within the given time window of length ∆N .

(VC 12) Negotiation completes in time.

C1 ‖C2 |= ⌈NEG(C1) ∨ NEG(C2)⌉ ⇒ ℓ ≤ ∆N

where ∆N < ∆C . Thus both controllers have left their negotiating phase after
at most ∆N time units.

Adequacy. The following type A verification condition ensures that the critical-
ity does not increase when collision avoidance maneuvers are activated. Note
that these are part of the hybrid automata resulting from the restriction of the
controller to the selected correcting mode.

(VC 15) Adequacy of matching modes. For all (m1,m2) ∈ MATCH

C1 ↾ m1 ‖P1 ‖C2 ↾ m2 ‖P2 |=

↑ Φ(m1,m2); true ⇒ ∀ c ∈ R≤0 : ⌈cr ≤ c⌉ −→ ⌈cr ≤ c⌉

For the recovery maneuver, a similar verification conditions additionally requires
that after a suitable braking time t depending on their speeds at the start of the
maneuver, the traffic agents have come to a complete halt.

Far away phase. The following type B verification conditions enforces that the
correcting phase can be left in favour of the phase far away only when there is
no warning that new correcting maneuvers have to start in ∆C time.

(VC 17) Termination of maneuvers. For i = 1, 2 and φF ⇔ ¬φN

Ci ‖P1 ‖P2 |= ⌈COR(Ci)⌉
↑ΦF

−−−→ ⌈FAR(Ci)⌉

Fail-safe state. The following type B verification condition ensures that the
recovery maneuver is concluded by entering the fail-safe state, when the agent
has come to a complete stop. By (VC 2), each traffic agent stays in this state.
We require that in this state the traffic agent does not change its position, and
that the criticality does not increase.

(VC 18) Fail-safe state. For i = 1, 2

Ci ‖Pi |= ⌈REC (Ci)⌉
↑(spdi=0)
−−−−−−→ ⌈FSA(Ci) ∧ spdi = 0⌉

Ci ‖P1 ‖P2 |=
∀ c ∈ R≥0 : ⌈FSA(Ci) ∧ spdi = 0 ∧ cr ≤ c⌉ −→ ⌈spdi = 0 ∧ cr ≤ c⌉.

In [13] the following was shown.

Theorem 1 (Soundness). The verification conditions (VC 1),. . . ,(VC 18)
together imply

C1 ‖P1 ‖C2 ‖P2 |= ⌈¬collision⌉ ,

i.e., the proof rule for collision freedom is sound.

4.2 Case Study: Movement Authority

Let us revisit the ETCS train control introduced in Subsection 2.4. However, in-
stead of using Matlab-Simulink and Stateflow as modelling techniques, we shall
now represent the scenario more abstractly by time-dependent observables and
hybrid automata. We consider one train moving along a track and communi-
cating with a radio block center (RBC) that grants movement authorities to
the train. At each moment of time there is a certain end of movement authority
(EoA) for the train because after the EoA a critical section begins, which may be
a rail-road crossing or a track segment occupied by a preceding train (cf. Fig. 4).

We start from domains Position = R≥0 with typical element p for the posi-
tion of the train on the track, Speed = R≥0 with typical element v for the speed
of the train, and Acc = R with typical element a for the acceleration of the train.
Let vmax denote the maximal speed of the train and −b the braking force of the
train, represented as a negative acceleration, i.e., with −b < 0. The current end
of authority for the train is modelled by an observable

EoA : Time → Position

which is maintained by the RBC. We require

∀ t1, t2 ∈ T ime : t1 ≤ t2 ⇒ EoA(t1) ≤ EoA(t2).

The critical section CS behind the EoA is represented by an interval of positions

[CS .s ,CS .e] ⊆ Position

starting at CS .s and ending at CS .e, with a fixed positive length CS .e −CS .s .
A predicate describing all positions after the critical section is

afterCS : Position → B with ∀ p ∈ Position : afterCS (p) ⇔ CS .e ≤ p.

When the train approaches the current EoA it has to start talking to the RBC
to get permission to extend the EoA. The distance relative to EoA where start
talking has to be initiated is modelled by a function

ST : Speed × Time → Position

depending on the train’s speed, the maximal time delay needed to communicate
with the RBC, and implicitly on the fixed braking force −b. If the permission is
not granted by the RBC the train has to start braking with the braking force −b.
The distance relative to EoA where the braking has to be initiated is modelled
by a function

SB : Speed → Position

depending on the train’s speed and implicitly on the fixed braking force −b.
These positions and distances are illustrated in Fig. 4. We require

∀ v ∈ Speed , ∆ ∈ Time : ST (v , ∆) ≥ SB(v).

Safety. For the train’s safety envelope SETrain(p) we choose an extension around
its current front position p which encompasses the length of the train, indepen-
dent of mode and speed:

SETrain(p) = [p − LT , p] ⊆ Position

where LT is the length of the train. The critical section’s safety envelope depends
on the position of the EoA:

SECS =

{

∅ if CS .e < EoA
[CS .b,CS .e] otherwise

The choice of ∅ as the extension of the safety envelope caters for the case that
the RBC has granted an extension of the EoA beyond the critical section. This
permits the train to pass the critical section without safety violation.

We define inCS (p) ⇔ CS .s ≤ p ≤ CS .e + LT . The predicate inCS describes
all positions where the safety envelopes of the train and the critical section
overlap, i.e.,

SETrain(p) ∩ SECS 6= ∅ ⇔ inCS (p) ∧ EoA ≤ CS .e.

Thus collision freedom is equivalent to inCS (p) ⇒ CS .e < EoA, i.e., whenever
the front position p is in the critical section, the EoA has been extended beyond
the critical section.

Traffic agents. The scenario movement authority is modeled as a system MA
with two traffic agents:

MA = Train ‖RBC,

one train consisting of plant and controller interacting with an RBC consisting
of a controller only. Fig. 8 shows how these agents are represented by real-valued
variables pos (position), spd (speed), acc (acceleration) and EoA (end of author-
ity), and which (other) variables the four components share for communication
with each other.

We assume that the train plant has knowledge of its position on the track
and controls its speed depending on requests from the train controller. It will
react to speed control commands from the train controller. Thus we consider the
variables below. We do not distinguish between the (syntactic) variables of the
automaton and the corresponding trajectories in runs. So we take for the type
of a variable the type of its time-dependent trajectory, and we permit variables
with discrete ranges without explicitly coding them in reals.

Variables: Train plant

input sc : Time → {Keep,Brake} (speed control)

output pos : Time → Position (position of the train)

spd : Time → Speed (speed of the train)

acc : Time → Acc (acceleration of the train)

spdpos

Train Controller RBC Controller
EoA

OK

extEoA EoA

Train Plant

spd

pos

acc

sc

Fig. 8. Communication between train and RBC

For the dynamics of the train we assume the continuous transition relations
pos• = spd and spd• = acc and the invariants −b ≤ acc and spd ≤ vmax . Here
we are interested only in the change of speed during braking:

acc =

{

0 if sc = Keep ∨ (sc = Brake ∧ spd = 0)

−b if sc = Brake ∧ spd > 0

The train controller monitors the position and speed of the train. When
approaching the current end of authority EoA (guarding a critical section) it
requests for an extension from the RBC by sending an extEoA signal. If the
RBC sends a signal OK the controller requests the train plant to keep the
(desired) speed. If the RBC does not reply in time and instead the train passes
the position SB the controller forces the train plant to brake. Thus the train
controller has the following time dependent variables.

Variables: Train controller

input pos : Time → Position (position of the train)

spd : Time → Speed (speed of the train)

EoA : Time → Position (current EoA)

OK : Time → B (EoA is extended)

local CS .s : Time → Position (begin of critical section)

output extEoA : Time → B (request to extend EoA)

sc : Time → {Keep,Brake} (speed control)

Modes: Far, Appr, SafeAppr, Braking, FailSafe

The dynamics of the train controller is described by the automaton in Fig. 9.
Initially, the controller is in the mode Far. When the predicate ΦN abbrevi-

afterCS(pos) /

sc := Keep

OK

(spd=0)

Far

Braking

FailSafe

SafeAppr

sc = Brakesc = Keep

sc = Brake

sc = Keep
sc := Keep, extEoA := tt

true / sc := Keep,

Φ

sc := Brake

sc = Keep

Appr

CS.s := EoA

 /

ΦN /

Fig. 9. Train controller

ating pos ≥ EoA − ST (spd , ∆C) becomes true the controller switches to the
mode Appr. On occurrence of a signal OK the controller switches to the mode
SafeAppr indicating that the train can safely approach the critical section. In
this mode the train continues to keep its speed. If the predicate Φ abbreviating
pos ≥ EoA−SB(spd) becomes true the controller switches to the mode Braking
where it forces the train to brake until a complete stop. If the train’s speed is
zero, the controller enters the mode FailSafe. In the terminology of Fig. 7, the
mode Appr is the phase NEGOTIATION , SafeAppr is CORRECTING , and
Braking is RECOVERY .

The RBC is modelled only as far as the communication concerning the exten-
sion of EoA is concerned. It outputs of current EoA to the train and if requested
to extend it by an extEoA signal may grant an OK signal. Thus the RBC con-
troller has the following time dependent variables.

Variables: RBC controller

input extEoA : Time → B (request to extend EoA)

local x : Time → Time (clock)

output EoA : Time → Position (current EoA)

OK : Time → B (EoA is extended)

Modes: Idle, Check, Unsafe

The dynamics of this simplified RBC controller is described by the automaton
in Fig. 10. The expression update(EoA) abbreviates an assignment of a new,
larger value to the variable EoA. The clock x with upper bound ε in mode
Check models the maximum delay it takes for the RBC to answer the request
for extending the EoA.

����

��

����������������������������������

��������������������������������

true / OK := tt, update(EoA)
EoA = 0

true / OK := ff

= 0EoA

Idle
extEoA / OK := ff, x := 0

Unsafe

true / OK := ff

Check
x = 1

εx <

Fig. 10. RBC controller

4.3 Automatic Discovery of the Criticality Functions

It is critical for a system according to Fig. 7 that a recovery maneuver will always
lead into a fail-safe state without violating any safety constraints. To ensure this,
recovery needs to be initiated in time, so that potentially hazardous situations
can be avoided. For the train example given in the previous sections, we will now
demonstrate how to determine states which lead to a safe recovery maneuver.
In this particular case we will ensure that the train will always come to a stop
before an end-of-authority point associated with a critical section. In particular,
we will construct a predicate Φ guaranteeing that the train system is safe in the
sense that no critical section can be passed, unless the RBC sent the signal OK
to the train passing it. In other words, once the train system enters the Braking
mode, the safety condition pos ≤ EoA will not be violated and the train will
come to a stop in the FailSafe mode — braking is always initiated in time.

We will now show that the criticality function in the verification conditions
from Subsection 4.1 can be seen of an instance from a generic class Lyapunov-
like functions. Methods for synthesis of Lyapunov functions can then be adapted
to automatically compute a suitable criticality function. Since contour lines of
the function can be used to separate reachable and non-reachable states, we call
this class Lyapunov-like boundary functions.

Definition 3. Let x (t) ∈ Rn be a hybrid system’s state vector (the vector of
the valuations of all variables 8) at time t. Given a set of initial states vectors
S ⊆ Rn and a set of unsafe state vectors U ⊆ Rn , a Lyapunov-like boundary
function of the hybrid system is a function V : Rn → R, such that:

– for all runs of the system and all reachable states x ∈ Rn :

V •(x) := dV
dx

dx
dt

≤ 0

– ∃ k ∈ R : (x ∈ S ⇒ V (x) < k) ∧ (x ∈ U ⇒ V (x) > k)

The function V has Lyapunov-like properties, as it will never increase through-
out the evolution of any trajectory due to the condition V •(x) ≤ 0, which forces
the function’s time derivative to be non-positive. Furthermore, there exists a
contour line, given by the points x with V (x) = k , such that the possible initial
states S lie on one side of this line, while the unsafe states U lie on the other (see
Fig. 11). Due to the Lyapunov-like property it is then impossible for a trajectory
beginning in the set of initial states to cross into the unsafe region, as this would
require an increase of V (x).

S
U

V(x)<k

V(x)>k

Fig. 11. Criticality function contour line with initial set S and unsafe set U

Since such a Lyapunov-like criticality function is a variant of a Lyapunov
function, computational approaches for Lyapunov function synthesis can be
adapted for this case. For instance, linear matrix inequalities can be employed
to automatically compute a suitable quadratic V , and then the maximal k such
that x ∈ U ⇒ V (x) > k . The computation procedure is very similar to the one
that will be described in detail in Section 6.

Such a Lyapunov-like boundary function is a special case of a criticality
function as described in Subsection 4.1. The function V can be used as criticality
function cr and the contour line value k represents the maximal admissible
criticality value csafe . Setting cr = V and csafe = k , the verification condition
(VC 1) is fulfilled since (x ∈ U ⇒ V (x) > k) implies (x ∈ U ⇒ V (x) ≥ k),
which is equivalent to (VC 1) by contraposition. For condition (VC 5), in the

8 For the ease of mathematical treatment, the state of the system is represented as a
vector of real numbers, instead of a function σ : Var → R like in Subsection 4.1.

case of δ = 0, the set S assumes the role of pre(0, Φstart). The condition x ∈ S
means that x is an admissible state vector for initiating the maneuver, which
is equivalent to the requirement that the variables at time of initiation fulfill
pre(0, Φstart). If δ > 0, a backward reachability computation is needed to show
that V (x) < k for the entire negotiation period. Since verification condition
(VC 5) requires an acceleration of zero during negotiation, this simplifies the
computation. Condition (VC 15) is implied by the Lyapunov-like condition
V •(x) ≤ 0 stating that V cannot increase over time.

Therefore, a criticality function as needed in (VC 1), (VC 5) and (VC 15)
can be computed automatically, using methods for Lyapunov function synthesis.
The dynamics for the given tuple of maneuvers is needed as an input, as is
the set of unsafe states. Condition (VC 4) needs to be checked separately,
since a Lyapunov-like function does not guarantee that the set {x | V (x) < k}
is always entered before a trajectory can pass into the unsafe region U . It is
then possible to synthesize a Lyapunov-like boundary function (serving as the
criticality function) and a contour line value k (serving as the maximal admissible
criticality level) such that initiating the maneuver with criticality lower than k
guarantees safety. Each admissible set of initial state vectors S for the maneuver
corresponds to a possible safe condition for the maneuvers.

For the rail-road crossing case study, will now employ Lyapunov-like bound-
ary functions to identify a safe guard Φ, such that pos ≤ EoA is always guaran-
teed. Therefore we put U = {pos > EoA}. As Φ is not given, but to be derived,
we define Φ := V (x) < k . All states with this property are separated from U by
the contour line V (x) = k .

Since a system can potentially have many admissible criticality functions,
this even holds for any state within a contour line of any criticality function
with respect to the same unsafe region U . Therefore, we are not restricted to
one function, but can use many. The predicate Φ is then the disjunction of the
predicates Vi(x) < k for all such criticality functions Vi and associated contour
line values ki . Using many criticality functions instead of one can result in a
weaker, and therefore less conservative, predicate Φ.

For the case study, it was sufficient to use just one criticality function, as
the use of several functions brought no significant improvement. As a result we
obtained the following criticality function cr and boundary value csafe :

cr = 0.0014616 ∗ (pos − EoA + 2000)2 + spd2 (15)

csafe = 5846.445 (16)

Figure 12 shows the position of the train in meters before the EoA point
on the horizontal axis and its velocity in m/s on the vertical axis. The shaded
set of states is safe set {x | Vi(x) < ki}. Initiating the braking within this
set guarantees that the unsafe region to the right of the vertical line cannot be
entered. For this particular example, where the speed is decreasing at a fixed rate,
this implies an eventual transition to the FailSafe phase, without breaching any
safety requirements. Furthermore, assuming a maximal speed vmax = 76.46m/s ,
condition (VC 4) is also fulfilled, since system trajectories could not enter the

unsafe region without first passing through the ellipsoid. Any predicate Φ which
evaluates to false everywhere outside this set is admissible as a guard for the
transition between the Appr and Braking modes.

−2000 −1500 −1000 −500 0

0

10

20

30

40

50

60

70

80

EoA−pos

sp
d

Fig. 12. Safe region for initiating the braking

5 Parameterized Verification of the Cooperation Layer

In this section, we present results for verifying parameterized instances of traffic
protocols. On the one hand, system safety in systems like ETCS crucially de-
pends on the right choice of parameter values. For instance, whether a train can
keep its speed safely depends on the relationship of EoA to the current veloc-
ity v and maximum braking power b. If these values are imbalanced then the
train protocol is no longer guaranteed to avoid crashes. Hence, it is utterly im-
portant to analyze and discover safety constraints between such parameters or
state variables and adjust design parameters in accordance with those parametric
constraints.

On the other hand, once those constraints have been discovered, all instances
of the traffic scenario that satisfy the parametric safety constraints can be ver-
ified at once. Generally, safety statements do not only hold for a particular
setting but generalise to a broader range of possibilities. For instance, train con-
trol is not only safe for a particular initial speed v ≤ 10 and a specific braking
force b = 0.1 with remaining EoA-distance of 5km. Instead, the system remains
safe for all choices of parameters that satisfy a corresponding constraint. Using
our techniques from [43, 45, 44, 46], all such instances of the system can be ver-
ified at once, and the required safety constraints on the free parameters can be
discovered.

5.1 Parameterized Hybrid Systems

Parameters naturally arise from the degrees of freedom of how a part of the
system can be instantiated or how a controller can respond to input. They in-
clude both external system parameters like the braking force b of a train, and
design parameters of internal choice like SB , i.e., when to start braking before
approaching EoA in order to ensure that the train cannot possibly run into an
open gate or preceeding train.

The major challenge in dealing with symbolic parameters is that they lead
to nonlinearities: Even comparably simple flow constraints like 2b(EoA − p) be-
come nonlinear when b is considered as a symbolic parameter rather than in-
stantiated with some specific value like 0.1.

To handle parameters, we follow a fully symbolic deductive approach. We
have introduced a logic, dL, for verifying hybrid systems with parameters and a
corresponding verification calculus [43]. It generalizes dynamic logic from the dis-
crete case [23] to hybrid systems. Our dL calculus can be used both for verifying
correctness statements about parametric hybrid systems and for deriving con-
straints on their free parameters that are required for safety [43]. Thus, with dL,
it is possible to zoom in to a subset of the system, typically at the coordination
layer, and find safety constraints for the parameters.

5.2 Technical Approach: Differential Logic

To illustrate how our techniques for parameterized hybrid systems work, we
provide a short survey of the dL principles. The full details of the theory behind
dL are reported in [43, 45, 44, 46].

The logic dL provides modal formulae like [MA]φ, which express that all
runs of the parametric hybrid system MA (see Subsection 4.2) lead to states
which satisfy some safety constraint φ. Further, such formulae can be combined
propositionally, by quantifiers, or modalities [β] about other automata β. With
this, safety of parametric hybrid systems can be stated as formulae in the logic
dL, for instance:

b > 0 ∧ ǫ ≥ 0 ⇒ [MA](p ≤ EoA) . (17)

This dL formula states that all runs of the hybrid system MA are such that the
train position p remains within the movement authority EoA, provided that the
braking force b is non-zero and the maximum reaction-cycle-time is some ǫ ≥ 0.
Both symbols, b and ǫ, are train model parameters and given externally. Their
values depend on the specific characteristics of the actual train and should be
handled symbolically for a thorough analysis of all trains. From the perspective of
a single train automaton, EoA can also be considered as an external parameter.
In the full system MA, which involves trains and RBCs, it can also be considered
as a state variable instead.

Using the dL calculus, such a formula can be analyzed systematically in order
to find out if it holds or under which parameter constraints the system is safe. For
instance, for the safety constraint (17), the dL calculus reveals that the system is

only safe when the initial velocity does not exceed the braking capabilities and
the control parameters are chosen in accordance with the movement authorities,
speed, and reaction times.

To make our calculus compositional and simplify its step-wise symbolic pro-
cessing principle, we use a textual notation of hybrid automata as hybrid pro-
grams [43]. As hybrid automata [25] can be embedded in hybrid programs by a
simple canonical construction [43], we identify hybrid automata and their cor-
responding program rendition, here. With this embedding, parametric safety
statements can be easily expressed using dL formulae of the form (17) and ana-
lyzed in the dL calculus.

Given a safety statement like (17), the dL calculus performs a symbolic anal-
ysis of the parametric hybrid system and identifies safety constraints on the free
parameters. Figure 13 contains a corresponding abbreviated proof outline for
a part of the system analysis in the dL calculus. At this point, we only want
to remark that the proof starts at the bottom with the full MA controller and
splits into sub-goals that symbolically analyze a part of the ETCS behavior each.
For instance, the left branch analyzes the train behavior in the recovery mode,
the right branch investigates acceleration cases, see [43] for details. The calculus
works by successive symbolic decomposition of the system, which can be under-
stood to follow a symbolic case analysis. As a basis, our implementation uses an
integration of the KeY prover [5, 4] with quantifier elimination in Mathematica
for arithmetic reasoning about the continuous dynamics.

. . . ⊢ v2 ≤ 2b(EoA−p)

. . . ⊢ . . .
ψ, EoA−p<SB ⊢ [a :=−b][drive]ψ
ψ,EoA−p<SB ⊢ [recover][drive]ψ

. . . ⊢ SB ≥ v2

2b + εv . . .
. . . ⊢ . . .

ψ, EoA−p≥SB ⊢ [a≤amax][drive]ψ
ψ,EoA−p≥SB ⊢ [accel][drive]ψ

ψ ⊢ [nego][drive]ψ
ψ ⊢ [MA]ψ

⊢ ψ ⇒ [(MA)∗](p ≤ EoA)

Fig. 13. Proof outline for ETCS protocol in dL

5.3 Analysis of Parameters in ETCS Protocol Phases

In the dL calculus, we can derive constraints on the parameters for a safe opera-
tion of train control. These parameters are limits in the ideal-world model of the
coordination level, hence, general engineering principles advise using additional
safety margins to compensate for inaccuracies and disturbances.

From an analysis of the braking behavior in recovery mode, we can auto-
matically determine a controllability constraint for the train, see [43]. If the
following constraint is violated, no safe control of the train is possible at all,

because its speed exceeds the braking power b for the remaining movement au-
thority EoA − p:

v2 ≤ 2b(EoA − p) . (18)

Assuming that condition (18) holds, it remains to show that the particular train
control choices maintain safety. Especially, the controllers must maintain (18)
invariably during all possible driving behavior.

The two most crucial control parameters for the cooperation protocol MA
in ETCS are ST and SB . Both are design parameters of internal choice by the
controllers and, thus, need an adequate instantiation to ensure safety. The pa-
rameter ST determines when the train enters negotiation mode to ensure that
it can get an EoA-extension from the RBC before reaching EoA. The control
parameter SB is the safety distance at which the speed supervision needs to ini-
tiate braking when no positive EoA extension has occurred yet (recovery mode).
Both parameters are formulated as points on the track in terms of distances from
EoA (see Fig. 4).

The parameter SB is a very important safety parameter that needs to be
chosen adequately such that the train can guarantee to remain within its move-
ment authority, regardless of the behavior of other traffic agents like preceeding
trains or gates at critical sections as mediated by the RBC agent. Especially,
if SB is chosen right, the system remains safe, whatever the outcome of the
RBC communication may be.

The safety constraint for parameter SB can be derived from an analysis of
the hybrid program rendition of the MA-automata using a proof of the form in
Fig. 13, see [43] for details. In addition, the underlying RBC and train models
bridge the gap from cooperation layer models to design layer models as they take
maximum controller response times into account. Similar to the notion of lazy
hybrid automata [51], we account for the fact that controller implementations
react with a processing delay and that the effect of actuators like brakes can be
delayed as well.

An acceleration a ≤ amax is permitted in case EoA−p ≥ SB , when adaptively
choosing SB depending on the current speed v and the parameters of maximum
braking force b and maximum speed supervision response time ǫ in accordance
with the following constraint:

SB ≥
v2

2b
+

(amax

b
+ 1

)(amax

2
ε2 + εv

)

. (19)

This constraint expresses that it is only safe to keep on driving when the control-
lability constraint (18) is maintained even after a maximal acceleration of amax

during a maximum period of ǫ time units. In particular, constraint (19) makes
the controllability constraint (18) inductive.

Observe that constraint (19) is a refined and parameterized version of the (12)
(remember that xb is the point on the track corresponding to the distance SB
from EoA). The actual symbolic constraints in (19) identify what needs to be
captured by the 10% safety margin in (12). It also clearly identifies under what
conditions a 10% safety margin is sufficient. Likewise, constraint (19) explains the

shape of the safety region given in Fig. 12 and gives insights about a systematic
symbolic generalization of the numerical criticality function in (15). It identifies
fully symbolic constraints as opposed to specific real numbers that only hold for
a particular scenario.

Parameter ST is a liveness parameter. Depending on the expected maximum
RBC communication latency L, which again is a parameter for the train analysis,
it ensures that the RBC can still respond in time before the train needs to
decelerate. That is, when the train enters negotiation at ST , it does not need
to brake unless an EoA extension cannot be granted by the RBC within L at
all. For instance, an RBC may not be able to grant an EoA extension despite
an early request because other traffic agents occupy the track segment beyond
EoA.

Constraints on the parameter ST can be derived [45] from an analysis of a
single negotiation and correction phase. A proof yields the following necessary
constraint depending on the expected maximum RBC communication latency L:

ST ≥ Lv +
v2

2b
. (20)

Again, (20) corresponds to a version of (13) that has been synthesized from the
system model deductively.

The constraints (19) and (20) can be used to find out how dense a track can
be packed with trains in order to maximize throughput without endangering
safety, and how early a train needs to start negotiation in order to minimize the
risk of having to reduce speed when the MA is not extendable in time.

6 Proving Stability of Local Control and Design Models

Stability is a property of a dynamic system that subsumes its ability to with-
stand, and eventually compensate for, outside disturbances that affect a system.
For a local closed-loop control system, this is a very desirable property, because
stability ensures that the controller is actually able to keep the controlled param-
eter close to the desired value. Furthermore, if one requires asymptotic stability,
there cannot be any undamped oscillations or cyclic behavior in the closed-loop
system. For instance, one would expect from a speed controller for a train, that
it forces the speed to converge toward a desired value, without producing need-
less cycles of acceleration and deceleration. Very little controller activity should
be needed, once the train is close to this desired speed. In this section, we will
apply methods based on the concept of Lyapunov-functions [35] to the speed
controller of the train model from Section 2. Lyapunov functions are functions
that map each system state onto a nonnegative real value. For every run of the
system, the sequence of values this function attains is required to be decreasing,
eventually converging to zero at the desired control point. If a function with
these properties is found, then the system is asymptotically stable. We will detail
how methods for automatic computation of these functions can be applied to a
model of a speed controller.

Definition 4. Consider a continuous-time dynamic system with state vector
x ∈ Rn . Let x (t), t ≥ 0, denote its state at time t during a run of the system.
The system is called globally asymptotically stable if the following two properties
hold for all possible runs:

a) ∀ ǫ > 0 ∃ δ > 0 ∀ t ≥ 0 : || x (0) ||< δ ⇒|| x (t) ||< ǫ (stability)
b) t → ∞ ⇒ x (t) → 0 (global attractivity)

If a) and b) hold only on a bounded set containing 0, the system is called locally
asymptotically stable.

Without loss of generality we assume that the origin of the continuous state
space Rn is the equilibrium point all trajectories converge to. If one wants to
show asymptotic stability with respect to a different equilibrium – as is the case
in the drive train example – the state space of the hybrid system can simply be
“shifted” to move this point into the equilibrium.

Intuitively, the stability property guarantees that there is an upper bound on
how far the system can stray from the equilibrium point, depending on its initial
state. Moreover, the global attractivity property tells us that the system will
eventually converge to the equilibrium point. Together, this implies that there
is an upper bound on the temporary change of state a disturbance can cause,
relative to the size of the disturbance, and that eventually the system will have
compensated for the disturbance.

We will consider hybrid systems with a finite number of discrete modes. With
each mode m, we associate an affine differential equation x • = Amx + bm with
Am ∈ Rn×n , bn ∈ Rn for describing the continuous evolution of the system’s
state variables. A possible transition between a pair of modes m1 and m2 is given
as a quantifier-free first-order predicate over the continuous variables. No discrete
updates of continuous variables are allowed. We also allow for an invariant in
each mode, given by a quantifier-free first-order predicate9 on the continuous
variables. The system may only stay in a mode while its invariant is satisfied.
We assume that the system does not exhibit Zeno or blocking behavior, so that
all trajectories are continuous and unbounded in time (cf. Appendix A).

Since the state space of such a hybrid system is Rn×M, the cartesian product
of the continuous and discrete state (mode) space, one is usually interested in
local stability. The invariants specify which continuous states can be active with
which modes – combinations violating the invariants need not be considered.
Therefore the stability property is local as defined by the invariants. Further-
more, we only expect the continuous variables to converge, but for all permissible
initial hybrid states (x (0),m(0)).

For systems of this kind, local asymptotic stability can be shown with the
help of a common Lyapunov function. It is defined as follows (see [29, 9]).

9 In principle, any quantifier-free predicate over the continuous variables is admissible
for mode transitions or invariants. If the resulting invariant set is not a convex poly-
hedron, it will need to be over-approximated for the actual computation, increasing
conservativeness.

Definition 5. Consider a hybrid system with state vector x ∈ Rn and mode
m ∈ M, where M is the finite set of modes. Assume that the dynamics in mode
m are given as x • = fm(x) and that the invariant belonging to mode m is the
predicate Im . A (common) Lyapunov function for this system is then a function
V : Rn → R such that:

a) V (x) = 0 if x = 0 and V (x) > 0 otherwise

b) for all m: V
•
m(x) := dV

dx
(x)fm(x) < 0 if 0 6= x � Im

c) 0 � Im ⇒ V
•
m(0) = 0

d) V (x) → ∞ when || x ||→ ∞

A Lyapunov function maps each state of the system onto a nonnegative
real number, such that the value of the function is decreasing at all times for
all possible trajectories, eventually converging to zero at the origin of the state
space. Condition a) enforces a global minimum of V at 0. Conditions b) and
c) imply that V is decreasing over time in every mode, whenever its invariant

is true, except at the equilibrium, where V
•
m(0) = 0 for all applicable modes.

Condition d) is needed to enforce the stability property a) in Definition 4.

Theorem 2 ([9]). Consider a hybrid system as in Definition 5. The existence of
a common Lyapunov function for such a system implies local asymptotic stability
for all initial hybrid states that are covered by at least one invariant.

There are also refinements to the common Lyapunov function approach, us-
ing piecewise continuous functions instead [9, 28, 42, 16]. This allows the use of
different functions for each mode. However, for the train controller application
in this paper, this extension was not necessary. Lyapunov functions can be found
automatically via numerical optimization [28, 42, 16]. We will demonstrate this
on the following example from the train control context.

6.1 The Drive Train Subsystem

The proof techniques outlined above will now be applied to the drive train part
of the train model from Section 2. The drive train is generally active in the
Far phase of the system when no full braking action is imminent. In this part
of the system, the actual velocity of the train should be kept in line with the
desired velocity, in the presence of outside disturbances. Furthermore, a change
of desired velocity should result in an adequate convergence of the actual velocity
towards this new value.

This is achieved by closed-loop control of the drive train via a PI-Controller,
i.e. a linear controller with proportional and integral part. This controller takes
the difference between current and desired velocity as an input and outputs a
current that is used to accelerate/decelerate the train.

In Equations 2-8, all constants and parameters have been instantiated with
sensible values, to represent a concrete drive train system. Braking force is as-
sumed constant, as is the environment force Fe . All these equations have then

f(v,s,v0)<max_acc f(v,s,v0)<max_acc
and g(v,s,v0)>f(v,s,v0) and f(v,s,v0)>g(v,s,v0)

g(v,s,v0)>f(v,s,v0)
v−v0<k2*v0 and
f(v,s,v0)>g(v,s,v0)

f(v,s,v0)>g(v,s,v0)

g(v,s,v0)>f(v,s,v0)

v’=max_acc

s’=v−v0

v’=g(v,s,v0)

s’=v−v0s’=v−v0

v’=f(v,s,v0)

s’=v−v0

v’=brake_dec

Max_acceleration

Motor_2Motor_1

f(v,s,v0)=−1.679*(v−v0)
 −0.0008*s−0.307*v0 −0.000024*s−0.0015*v0

g(v,s,v0)=−0.1995*(v−v0)

f(v,s,v0)>max_acc
f(v,s,v0)>max_acc

v−v0>k1*v0

v−v0<k2*v0 and

Brake

v−v0>k1*v0

Fig. 14. Hybrid automaton of drive train subsystem

been collapsed into a set of two differential equations per mode, through elim-
ination of superfluous variables and exploitation of variable dependency. The
functions f an g are therefore the representation of Equations 2-8 for these fixed
values. The three relevant unknowns that remain in the drive train model given
in Fig. 14 are the desired speed v0, the actual speed v and the integral value
in Equation 2, denoted as s . Since Equation 2 describes dynamics modelled as
the minimum of two affine functions (Equation 1), there are two correspond-
ing modes, Motor 1 and Motor 2, in the closed-loop hybrid system, each with
affine dynamics. The mode Max acceleration is used to model the cutoff at max-
imum acceleration in Equation 3. If the current speed is far beyond the desired
speed, we activate the brakes, which are assumed to produce constant negative
acceleration. This is represented by mode Brake.

6.2 Synthesizing Lyapunov Functions

To compute a function V that fulfills the conditions in Definition 5, we use a
fixed parameterized function template: quadratic functions of the form V (x) =
xTPx ,P ∈ Rn×n . In this representation, the parameters are isolated in the
symmetric matrix P . This means we have to compute matrix entries for P , such
that conditions a) to d) are satisfied.

As detailed in [28, 42], this can be done with the help of linear matrix in-
equalities [8], as long as the differential equations for all modes are affine. Linear

matrix inequalities are optimization problems with constraints given as definite-
ness constraints on matrices. They will be formally defined in the following.
Phrasing the problem to find an adequate P as a linear matrix inequality allows
the use of convex optimization software like CSDP [7] to identify suitable matrix
entries.

Definition 6. A matrix P ∈ Rn×n is called positive semidefinite if xTPx ≥ 0
for all x ∈ Rn . This is also denoted P � 0. For given matrices M1, . . . ,Mj ∈
Rn×n , a linear matrix inequality is a problem of the form:

Find x1, . . . , xj ∈ R such that x1M1 + . . .+ xjMj � 0.

Define I as the n × n identity matrix. The problem of finding a Lyapunov
function as in Definition 5 corresponds to the following linear matrix inequality
[42]. Find P , µi

m such that:

P � α ∗ I

∀m ∈ M : AT
mP + PAm −

∑

i

µ
i
m Q i

m + I � 0

The matrices Q i
m ∈ Rn are the result of the so-called S-procedure [55]. They are

computed a priori from the invariants Im such that Im ⇒ xTQ i
mx ≥ 0 for all i .

The details of this computation, which only involves basic algebra in the case of
polytopic invariants, can be found in [42].

f(x)

x

(a) Convex function (b) Convex set

Fig. 15. Convex set and function

Intuitively, this linear matrix inequality can be visualized as follows. Figure
15(b) shows an illustration of the parameter space of the Lyapunov function can-
didate. Note that the parameter space will generally be high-dimensional (for
example 10 dimensions in case of 4 continuous variables, plus the S-procedure
variables µi

m), so the parameter space for an actual system can not be repre-
sented visually in a meaningful way. Each linear matrix inequality constraint
bounds the set of feasible Lyapunov functions with a convex (that is, “curving
inward”, see Fig. 15(a)) constraint, resulting in a convex solution set. Each point

in this solution set corresponds to one admissible Lyapunov function for the
system, and identifying one is a convex feasibility problem, which can be solved
with standard nonlinear optimization software [7]. Additionally, it is possible to
identify an optimal feasible point, with respect to a convex constraint. This is
for instance used to maximize the volume of the ellipsoid or the value of k in
Section 4. One can also use this to obtain an estimate on the convergence rate
of an asymptotically stable system [42]. As opposed to linear optimization, the
optimum will not generally lie on the edge of the feasible set – therefore interior
point algorithms [40] are used. Here the convexity of the solution set can be
exploited.

6.3 Stability of the Drive Train with Continuous-Time Controller

For the drive train with continuous controller, as described above, the solver
CSDP [7] gives the following solution

P =

[

0.0021 0.0021
0.0021 8.4511

]

leading to a Lyapunov function

V (v − v0, s) = 0.0021 ∗ s2 + 0.0042 ∗ (v − v0) ∗ s + 8.4511 ∗ (v − v0)
2.

The contour lines of V are visualized in Fig. 16. These contour lines are only
passed “outside-in” by all trajectories, resulting in convergence to the center,
which represents v − v0 = 0 and s = 0. Therefore, the velocity v will converge to
the desired velocity v0 and the integral value s of the PI-controller will converge
to 0.

The existence of this Lyapunov function is sufficient to prove global asymp-
totic stability for the drive train system. Using the YALMIP [33] frontend under
Matlab, this computation took around 0.65 seconds. The problem consists of 17
scalar constraints and 6 three-by-three matrix inequality constraints, on a total
of 23 scalar variables. Therefore, the convex search space visualized in Fig. 15(b)
is 23-dimensional and bounded by 17 + 6 = 23 constraint surfaces.

6.4 Stability of the Discretized Drive Train

For a time-discretized version of the drive train, stability can be shown in a very
similar manner. The discrete-time system is obtained by choosing an appropriate
sampling rate. Too slow sampling might destroy stability, while too fast sampling
increases the computational cost for proving safety properties (see Section 7).
For linear/affine dynamics, the discretized system can then be computed through
the matrix exponential eAτ , where τ is the sampling rate and A the matrix
representing the dynamics (i.e., x • = Ax).

For such a discrete-time hybrid system with dynamics given as difference
equations, asymptotic stability can be shown using the same methods as for the

s

v−
v0

−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000 4000 5000
−100

−80

−60

−40

−20

0

20

40

60

80

100

Fig. 16. Lyapunov function contour lines

continuous case [16]. Again a (slightly different) set of LMIs can be obtained
and solved through convex optimization. For instance, for a sampling rate of 0.1
seconds, the following Lyapunov function was obtained:

V (v − v0, s) = 0.0105 ∗ s2 + 0.0172 ∗ (v − v0) ∗ s + 6.0591 ∗ (v − v0)
2

6.5 Stability of the Sampled-Data Drive Train

Stability analysis of discrete-time hybrid systems can also be used to shed light
on stability properties of sampled-data systems, that is control loops with con-
tinuous plant and discrete controller. In this case sensor measurements are sent
to the controller in periodic intervals. The actuators will also periodically receive
updates from the controller.

In case of linear plant dynamics, stability analysis can be conducted on a
purely discrete-time system which is obtained by also discretizing the plant via
zero-order-hold discretization. This procedure is lossless in case of a non-hybrid
linear plant because the state of the plant at each sampling instant can be
exactly computed from its state at the previous sampling instant and the current
controller output. If the plant is hybrid, but with linear dynamics, the dynamics
can still be discretized exactly, but the switches are possibly inexact. With the
absence of so-called “grazing switches” [15], it is usually possible to approximate
the sampled system closely enough.

For the drive train system, we have performed this kind of analysis for a fixed
sampling rate (0.1 seconds) and a discrete controller obtained by a textbook dis-
cretization method for linear systems (zero-pole matching transformation [17]).
The resulting sampled-data system consists of the continuous-time drive train
dynamics given in Subsection 2.1 and the discretized controller, and it can still
be proven stable by this method.

7 Proving Safety of Local Control and Design Models

In this section, we present our approach of model checking safety properties of
local control and design models of the example. We first outline our general
methods for verification of hybrid systems with non-trivial discrete behaviour
(Subsections 7.1 and 7.3); then we build both continuous-time and discrete-time
models of the system based on its Matlab-Simulink description and show model
checking results of these models (Subsections 7.2 and 7.4).

7.1 Model Checking Hybrid Systems with Large Discrete State
Spaces

We have proposed an approach for verification of hybrid systems, which con-
tain large discrete state spaces and simple continuous dynamics given as con-
stants [11] (methods dealing with richer dynamics, e.g., given as differential
inclusions, are currently under development). Large discrete state space arise
naturally in industrial hybrid systems, due to the need to represent discrete in-
puts, counters, sanity-check bits, possibly multiple concurrent state machines
etc, which typically jointly with properties of sensor values determine the selec-
tion of relevant control laws. Thus this non-trivial discrete behavior cannot be
treated by considering discrete states one by one as in tools based on the notion
of hybrid automata. We have developed a model checker dealing with ACTL
properties for this application class.

...

...

...

...

dp

c1 cm

φ1 φk

q1 qj

d1

mapping between
first-order conditions
and bool. variables

boolean domain variables

continuous domain variables

Represented first-order
predicates

FO conditions

AIG

Fig. 17. The Lin-AIG structure

Representation of state-sets. In our setting, the state-sets of hybrid systems
consist of both discrete states, represented by Boolean formulas, and continuous
regions, represented by a Boolean combination of linear constraints. We use an
extension of And-Inverter-Graphs [39] with linear constraints (Lin-AIGs) as a
compact representation format (see Fig. 17). In Lin-AIGs Boolean formulas are
represented by Functionally Reduced And-Inverter Graphs (FRAIGs), which are
basically Boolean circuits consisting only of AND gates and inverters. In contrast
to BDDs, FRAIGs are not a canonical representation for Boolean functions, but
they are “semi-canonical” in the sense that every node in the FRAIG represents
a unique Boolean function. To be able to use FRAIGs to represent continuous
regions, we introduce a set of new (Boolean) constraint variables Q as encodings
for linear constraints, where each occurring linear constraint is represented by
some qℓ ∈ Q as illustrated in Fig. 17. Thus we arrive at state-sets encoded by
Boolean formulas over Boolean variables and Q , together with a mapping of Q
into linear constraints.

Step computation. Our model checker can handle continuous-time models, which
contains both discrete transitions and continuous flows. Discrete transitions are
given in the form of guarded assignments, while continuous flows are given in the
form of modes, which define the evolution of continuous variables by constants.
For each mode there is a boundary condition, the mode is left as soon as the
boundary condition is satisfied.

For checking an invariance property, the model checker performs a symbolic
backward reachability analysis, to ensure that no state in the complement of the
property is reachable from the initial state set. The key achievement lies in the
capability of reducing this backward analysis to pure substitution. It can be done
easily for discrete transitions as detailed in [12]. The capability of representing
as well the effect of continuous flows through substitution rests on our ability
to perform pre-image computations for arbitrary Boolean combinations of linear
constraints using the Loos-Weispfenning quantifier elimination method [34]. In
contrast to other verification methods for hybrid systems, this allows us to handle
non-convex polyhedra directly [11]. Note that during each step computation new
linear constraints can be introduced, thus the set Q is dynamically updated.

Example 1 (Discrete transitions). Assume that we want to check an invariance
property ¬FAIL, stating that the failure state can never be reached. In the
model, one discrete transition can set the Boolean variable FAIL to true:

REC ∧ (v ≤ 0.0) ∧ (p > EoA) → FAIL := true;

The transition says that if currently the cooperation protocol is in the REC
phase, the train has come to a stop, and the position of the train is beyond
the end of authority point (EoA), then the system reports a failure. One back-
ward step computation of such transition leads to the following state-set (after
optimizations in Lin-AIGs): ¬FAIL ∧ ¬(REC ∧ v ≤ 0.0 ∧ ¬(p <= EoA)).

Example 2 (Continuous flows). The pre-image of the state-set in the previous
example under the mode with continuous evolution v• = 0.0 ∧ p• = vd and
boundary condition p < EoA − ST (start talking) will remain the same.

Fix-point detection. We need to perform subsumption checks to detect whether
a fixpoint has been reached during model checking. In our approach, since linear
constraints enter the state-set descriptions, one has to check implications between
two state-set representations. We use HySAT [18] for this purpose.

Optimizations. Using efficient methods for keeping the state-set representation
as compact as possible is the key point for our approach. This is achieved by
integration of different techniques, ranging from purely Boolean methods to (in-
creasingly) exploiting knowledge about linear constraints.

– We use inexpensive methods such as simulation, test-vector generation, de-
tection of implications between linear constraints, and propagation of learned
implications to simulation vectors to identify inequivalent Lin-AIG nodes.

– We use HySAT [18] for reducing the size of the Lin-AIG representation by
detecting equivalent Lin-AIG nodes, which is applied only to candidates
obtained by inexpensive methods.

– We extract “don’t cares” from conflicts of calls of HySAT to remove re-
dundant linear constraints in the state set representations. This allows us
to restructure Lin-AIGs based on internal node equivalences modulo “don’t
cares”, and to achieve new compact representation as a Boolean combination
of a minimal subset of the original set of linear constraints.

We have demonstrated [12, 11] that the tuned combination of these deeply inte-
grated methods leading to significant performance improvements.

7.2 Continuous-Time Models and Verification Results

The models of the system mainly consists of two parts: (1) a cooperation protocol
between the train and the rail-road crossing for collision avoidance, (2) a speed
supervision of the train. Compared to its original description in Matlab-Simulink,
we have made some simplifications.

The cooperation protocol. The protocol distinguishes a number of phases as
shown in Fig. 7. Additionally, we add one more transition from the RECOVERY
phase: If the train stops in front of the crossing, and the position of the train is
beyond the end of authority point (EoA), then a FAILURE phase is entered. The
safety property of collision freedom is equivalent to prove that this FAILURE
phase of the cooperation protocol can never be entered.

The speed supervision. Figure 6 gives an overview of the train speed control.
Here, we summarize the modes and the switching conditions between them in
our models, as derived from Fig. 6. For each segment of the track, there is a

pre-defined desired train speed. The modes for driving the train are decided by
the relation of the desired speed vd and the current speed v . In the NormalMove
mode (v < vd ≤ 1.05 · v), the train is driven under a PI controller. Once the
condition 1.05 · vd < v ≤ 1.1 · vd holds, the train switches to the mode MotorOff,
where the drive force for the train becomes zero, and the train decelerates on
a constant −0.05m/s2. From the MotorOff mode, the train can re-enter the
NormalMove mode as soon as v ≤ vd . If the difference between vd and v is large,
the mode EmergencyBraking (ServiceBraking) will be entered if v ≥ 1.5·vd , (v ≥
1.1 ·vd ∧ v ≤ 1.5 ·vd) from the NormalMove mode. In modes EmergencyBraking
and ServiceBraking, the train decelerates on constants −3.0m/s2 and −1.0m/s2,
respectively. During ServiceBraking, the mode NormalMove (MotorOff) is re-
entered if v ≤ vd (1.05 · vd < v ≤ 1.1 · vd). There is one special case when the
train enters the EmergencyBraking mode. Since the train is desired to stop, it
is not possible to re-enter the modes NormalMove and MotorOff. Constants in
the conditions are derived from the Matlab-Simulink model.

Approximations. Currently, our model checker only supports models with dy-
namics given by constants. In the train example, the dynamics v• in mode Nor-
malMove (controlled by a PID controller) relies on the difference between vd and
v (see Fig. 6), and the evolution for the position p is normally defined as p• = v .
Therefore, both v• and p• are linear if v is a variable. So the train system cannot
be described and checked directly by our approach. We need to have an over-
approximation of the train’s behavior using the method developed in [26]. First,
the mode NormalMove is split into a set of sub-modes, we define accelerations
v• as constants, depending the relation between v and vd . Second, for each mode
defined in the previous section (together with sub-modes for NormalMove), we
divide the speed into several regions, and use this information to safely over-
approximate the evolution of the position p• by its possible maximal changing
rate. Therefore, the number of modes depends on the concrete approximation.
The constraints on the speed and the desired speed and the constraints whether
the train has reached the positions EoA−ST (start-talking) or EoA−SB (start-
braking), are treated as the boundary conditions for each mode. An appropriate
mode is selected depending the phase of the cooperation protocol, current ve-
locity v and its relation to vd . For instance, if vd ≥ 1.5 · v , 30.0 ≤ v ≤ 40.0, and
the cooperation protocol is in the FAR phase, then the speed controller of the
train will choose a mode with v• = 2.0 (a fast acceleration) and p• = 40.0 (the
maximal changing rate of p). The condition vd ≥ 1.5 · v and 30.0 ≤ v ≤ 40.0
will be part of the boundary condition for such mode. The condition whether the
crossing is secured is treated as a discrete input. The decisions in the cooperation
protocol constitute discrete transitions in the model.

Experimental results. The safety property for the models is that the FAIL phase
can never been entered, i.e., the train comes to a complete stop in front of the
crossing if it is not secured. For the continuous-time models, we have successfully
proven the given safety invariant for a model with 16 modes in 376 seconds. The
final state set representation contained 3906 Lin-AIG nodes with 2358 linear

constraints. During model checking, up to 7798 Lin-AIG nodes were used, 36683
HySAT calls occurred and 2582 redundant linear constraints were removed. Ex-
periments are performed on a PC with an AMD Opteron Processor with 2.6
GHz and 16 GB RAM.

7.3 Iterative Abstraction Refinement for Step-Discrete Linear
Hybrid Systems

Alternatively, an iterative abstraction refinement approach called ω-Cegar [48] is
being developed with the focus on open-loop systems, exploiting the characteris-
tics of huge discrete state spaces by ruling out comprehensive classes of spurious
counterexamples for subsequent iterations, so that counterexamples with com-
mon reasons of invalidity cannot occur again. With the incremental construction
of an omega-automaton and its parallel composition with a course abstraction
of the model, all runs containing already detected reasons of being invalid are
excluded. Since the reasons are fully independent from the discrete behavior, the
approach converges fast also for huge discrete state spaces.

The implementation is currently restricted to step-discrete linear hybrid mod-
els being represented as a discrete transition graph where the transitions are
guarded by linear constraints (guard expressions) and extended with linear trans-
formations (computations) on the set of continuous variables. This corresponds
exactly to the semantics of linear reactive systems being modeled in industrial
contexts based on CASE-tools, where executable target code can be generated
from. Thanks to an appropriate compiler and the realization of the algorithm on
a symbolic representation level, the procedure can be applied to the generated
C code of such models even for very large systems.

Initial abstraction. To verify a property ϕ, the procedure starts by creating an
initial abstraction A0 of a hybrid automaton H by removing all guard expressions
and computations on continuous items, but fully preserving the discrete structure
of the model. This entails a translation of ϕ to a new property ϕ̂ to hold for
some corresponding states in A0.

Analysis phase. A0 can be analyzed by any finite state model checker being able
to generate a counterexample π̂. The counterexample π̂ consisting of a sequence
of discrete states is analyzed by projecting it to the hybrid automaton H to
retrieve the corresponding guard expressions and computations (regulation laws)
that have to be fulfilled or performed in H , respectively, for π̂ to be a valid
counterexample. For linear hybrid automata, this analysis consists of solving
conjunctions of linear constraints directly derived from the projected regulation
laws. The result of this analyzation is either a valid sequence of valuations of
continuous state variables or a generalized conflict (ρ1, ρ2, . . . , ρk) consisting of
a minimized sequence of partial regulation laws for which no solution exists in
the corresponding conjunctive formula.

Since such conflicts are fully independent of the discrete state sequence they
occurred with, there is a high probability that they apply to many other frag-

ments of the discrete transition system as well, especially for huge discrete state
spaces combined with only few regulation laws exhibited by the model.

Construction of ω-automaton. Thus we follow a strategy of completely ruling
out generalized conflicts by constructing an ω-automaton AC that accepts all
runs not containing any known conflict as a subsequence. Considering partial
regulation laws as atomic characters and C as the set of all previously detected
generalized conflicts, the behavior of AC can be described by an LTL formula:

AC |= ¬F
∨

(ρ1,ρ2,...,ρk)∈C

(ρ1 ∧ X(ρ2 ∧ X(... ∧ Xρn))) (21)

Instead of using standard algorithms to translate LTL formulae to Büchi-auto-
mata, we apply an efficient automaton construction algorithm dedicated to the
structure of LTL formulae as presented above, resulting in rather small automata,
especially in comparison to general Büchi-automata construction algorithms [50].

Abstraction refinement. A parallel composition A = A0 × AC ensures that any
(infinite) run not accepted by AC cannot be exhibited by A. With AC being
incrementally extended to not accept conflicts found in subsequent model check-
ing iterations, we get a sequence A1,A2, . . . ,An of refined abstract transition
systems, where the model checker can finally prove that either Ak |= ϕ̂ from
which can be concluded that H |= ϕ or that a counterexample π̂ violates ϕ with
π̂ having a valid projection to a path π in H as computed in the analysis phase.

Remarks. The finite state model checker used to verify the abstract system in
each iteration can be freely exchanged even in between iterations. Thus, advan-
tages of different technologies can be combined by

1. starting with (faster) bounded model checking (BMC) while counterexam-
ples within the given bound can be generated and

2. switching to unbounded model checking (e.g., CTL model checker) if no
counterexamples within a given bound k are found anymore.

This way computation times of iteration cycles can be kept short while being
able to prove if a property ϕ holds for a model (certification). However, since
the approach is a semi-decision one, affirmation of properties might fail even by
using unbounded model checkers.

The restriction to step-discrete linear hybrid models is due to the imple-
mentation only and does not follow from the approach. Currently, only safety
properties can be verified. An extension to CTL-formulae is possible with the
limitation, that valid infinite counterexamples cannot be confirmed as such.

7.4 Discrete-Time Modes and Verification Results

Our abstraction-refinement approach deals with step-discrete linear hybrid sys-
tems modelled as discrete transition graphs, in which assignments and transition

Proof dimensions regulation laws conflicts iterations | π | AC time

¬(v = 0 ⇒ p ≤ EoA) 0+10 34 31 15 ∄ 3 3 min

Table 1. It shows: number of continuous dimensions (inputs+state-based), number
of exhibited regulation laws/generalized partial regulation laws, number of conflicts,
iterations, final path length, size of AC in terms of statebits, and total runtime.

guards may use linear arithmetical expressions, this subsumes the capability to
describe the evolvement of plant variables by linear equations. Hence, the approx-
imations in Subsection 7.2 are not necessary. The discrete-time models of our ex-
ample can be derived from the Matlab-Simulink model with a given sampling rate
δ. The discrete transitions for the cooperation protocol and for mode-switchings
in the speed supervision are encoded exactly the same as in the continuous-time
models (see Subsection 7.2). In this part, we focus on time-discretization of the
plant behavior. Our main assumption is that the acceleration of the train during
a discrete time step keeps unchanged. If the train is in the modes of MotorOff,
EmergencyBraking and ServiceBraking, the velocity and position of the train
can be simply updated by v ′ = v + δ · a and p′ = p + v · δ + a · δ2/2, where
a is the constant deceleration for those modes. If the train is in the Normal-
Move mode, the formulas for computing acceleration are given in the form of
f and g in Fig. 14. Hence, we can calculate the train’s new acceleration using
a′ = c1 ·(v−vd)+c2 ·s+c3 ·vd at each discrete time step (c1, c2, c3 are constants
in Fig. 14). Updates of the velocity and position can be done in the same way
as for other modes. Here, s denotes the integration part of the PI controller (see
Equation (2)), and it is accumulated at each step by s ′ = s + (vd − v̄) · δ, where
v̄ = v + a · δ denotes the average velocity during the time interval δ.

Table 1 shows statistical data of the application of the ω-Cegar approach to
a central part of the train system presented in Section 2: to prove that the train
always stops before the crossing if it is not secured. The property was certified
within 3 minutes and only 15 iterations by first using BMC (Prover-CL V5.0.6)
for the iterations and switching to an unbounded model checker (VIS Version
2.0) to finally prove the unreachability on the refined model, which consisted of
16 state bits.

8 Conclusion and Future Work

Industrial design processes for cooperating traffic agents exploit a layered design
structure to separate concerns in addressing cooperation strategies, control de-
sign, and design implementation. We have provided a verification methodology
covering these design steps, where safety and stability properties resulting from
the overall safety objective of collision freedom are traced to design entities at
all levels, and have provided layer specific verification approaches to establish
such derived safety and stability requirements at each layer. The feasibility of
the approach has been established using a variation of the ETCS level 3 protocol
enforcing collision freedom of trains following the moving block principle.

Theoretical approaches to cover multi-layered designs, such as refinement
and compositional reasoning, fail to provide semantic bridges across this design
space, in particular due to their inability to support the degree of deviations
between models tolerated by industrial design processes. Horizontal composition
theories provide the semantic foundation for compositional verification, deducing
properties of composed systems in terms of their constituents. Vertical composi-
tion theories exploit the layered structure of designs, allowing to abstract from
design aspects manifest at lower levels when verifying safety properties such
as collision freedom for a “higher” level model.10 Vertical composition theories
typically built on refinement relations.

Of particular relevance to our application domain are approaches for refine-
ment and compositional verification of hybrid systems. Compositional verifica-
tion techniques for hybrid systems have only recently being investigated, e.g.,
in [37, 38]. Frehse [19] provides an assume-guarantee based approach for hybrid
systems which do not share variables. The restriction to event-based communi-
cation is reasonable for controller models; however, as soon as closed loop models
are considered, plant models will typically share system states; in particular, for
collision avoidance protocols, it is exactly the shared physical state space which
is subject to the analysis. The extension to shared variables provided in [20]
requires unique statically assigned owners of shared variables – only owners are
allowed to write on shared variables.

Frehse’s approach only addresses refinement of specifications. For hybrid sys-
tems with shared variables, the notions of refinements presented do not track
continuous evolutions, but only require matching continuous states at end-points
of continuous evolutions. Stauner [51, 52] studies more general notions of refine-
ment, which in particular aim at bridging the gap between local control and
design models. The key concepts of using bounded perturbations to provide
room for discretization and inter-sampling errors in the transition to design mod-
els are promising. Systematic methods are proposed for constructing a discrete
time model refining the relaxed local control model under certain conditions are
provided. However, a general notion of refinement, applicable to design mod-
els not constructed using Stauner’s approach, is not given. Since design models
also must cater for additional aspects such as fault-tolerance and diagnosis, a
general theory for refinement between design models and local control models is
desirable. Additionally, a compositional extension of this framework is needed.

We plan to elaborate our research along multiple dimensions. First, we will
extend the model at the cooperation layer emphasizing the dynamic aspect of
traffic applications, in which traffic agents enter and leave “interaction areas”,
and lift the technique of reducing collision freedom to arguments on criticality
functions and local control properties to this richer semantic setting. Secondly,
while we demonstrated the scalability of our AIG based verification methods
to linear hybrid automata with large discrete state spaces (e.g., to a flap con-
troller with 220 discrete states [11]), future work will address support for plant

10 We assume that the cooperation layer is “higher” than the local control layer, which
in turn is “higher” than the design layer.

dynamics governed by linear differential equations. Thirdly, we plan to research
into robust refinement relations and non-standard semantics of hybrid automata
to extend compositional refinement techniques to a theory providing semantic
bridges across the layered design space of cooperating traffic agents.

References

1. R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular specification of hybrid
systems in CHARON. In Proc. 9th Workshop on Hybrid Systems: Computation

and Control, volume 1790 of LNCS, pages 6–19. Springer, 2000.

2. R. Alur, R. Grosu, I. Lee, and O. Sokolsky. Compositional modeling and refinement
for hierarchical hybrid systems. Journal of Logic and Algebraic Programming, 68(1-
2):105–128, 2006.

3. A. Balluchi, L. Benvenuti, S. Engell, T. Geyer, K. Johansson, F. Lamnabhi-
Lagarrigue, J. Lygeros, M. Morari, G. Papafotiou, A. Sangiovanni-Vincentelli,
F. Santucci, and O.Stursberg. Hybrid control of networked embedded systems.
European Journal on Control, Fundam. Issues in Control, 11(4-5):478–508, 2006.

4. B. Beckert, M. Giese, R. Hähnle, V. Klebanov, P. Rümmer, S. Schlager, and P. H.
Schmitt. The KeY System 1.0 (deduction component). In F. Pfenning, editor,
Proc. 21st Intern. Conf. on Automated Deduction, LNCS. Springer, 2007.

5. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented

Software: The KeY Approach, volume 4334 of LNCS. Springer, 2007.

6. J. Bohn, W. Damm, J. Klose, A. Moik, and H. Wittke. Modeling and validat-
ing train system applications using Statemate and live sequence charts. In Proc.

Conference on Integrated Design and Process Technology. Society for Design and
Process Science, 2002.

7. B. Borchers. CSDP, a C library for semidefinite programming. Optimization

Methods and Software, 10(1):613–623, 1999.

8. S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities

in System and Control Theory. SIAM, 1994.

9. M. S. Branicky. Multiple Lyapunov functions and other analysis tools for switched
and hybrid systems. IEEE Transactions on Automatic Control, 43(4), April 1998.

10. A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K. Arzén. How does control
timing affect performance? IEEE Control Systems Magazine, 23(2):16–30, 2003.

11. W. Damm, S. Disch, H. Hungar, S. Jacobs, J. Pang, F. Pigorsch, C. Scholl, U. Wald-
mann, and B. Wirtz. Exact state set representations in the verification of linear
hybrid systems with large discrete state space. Technical report, AVACS, 2007.

12. W. Damm, S. Disch, H. Hungar, J. Pang, F. Pigorsch, C. Scholl, U. Waldmann, and
B. Wirtz. Automatic verification of hybrid systems with large discrete state space.
In Proc. 4th Symposium on Automated Technology for Verification and Analysis,
volume 4218 of LNCS, pages 276–291. Springer, 2006.

13. W. Damm, H. Hungar, and E.-R. Olderog. Verification of cooperating traffic agents.
International Journal of Control, 79(5):395 – 421, May 2006.

14. W. Damm, G. Pinto, and S. Ratschan. Guaranteed termination in the verification
of LTL properties of non-linear robust discrete time hybrid systems. International

Journal of Foundations of Computer Science, 18(1):63–86, 2007.

15. V. Donde and I. A. Hiskens. Shooting methods for locating grazing phenomena in
hybrid systems. Intern. Journal of Bifurcation and Chaos, 16(3):671–692, 2006.

16. G. Feng. Stability analysis of piecewise discrete-time linear systems. IEEE Trans-

actions on Automatic Control, 47(7):1108–1112, 2002.
17. G. F. Franklin, J. D. Powell, and M. Workman. Digital Control of Dynamic Sys-

tems. Pearson International, 1998.
18. M. Fränzle and C. Herde. HySAT: An efficient proof engine for bounded model

checking of hybrid systems. Formal Methods in System Design, 30(3):179–198,
2007.

19. G. Frehse. Compositional verification of hybrid systems with discrete interaction
using simulation relations. In Proc. 13th IEEE Conference on Computer Aided

Control Systems Design. IEEE Computer Society, 2004.
20. G. Frehse. Compositional Verification of Hybrid Systems using Simulation Rela-

tions. PhD thesis, Radboud Universiteit Nijmegen, 2005.
21. G. Frehse. PHAVer: Algorithmic verification of hybrid systems past HyTech. In

Proc. 8th Workshop on Hybrid Systems: Computation and Control, volume 3414 of
LNCS, pages 258–273. Springer, 2005.

22. G. Hager. European ACAS operational evaluation – Final report. Technical Report
EEC Report No. 316, Eurocontrol, 1997.

23. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
24. A. E. Haxthausen and J. Peleska. Formal development and verification of a dis-

tributed railway control system. IEEE Transactions on Software Engineering,
26(8):687–701, 2000.

25. T. A. Henzinger. The theory of hybrid automata. In Proc. 11th IEEE Symposium

on Logic in Computer Science, pages 278–292. IEEE Computer Society, 1996.
26. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear

hybrid systems. IEEE Transactions on Automatic Control, 43(5):540–554, 1998.
27. T. A. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Toi. Beyond HyTech:

Hybrid systems analysis using interval numerical methods. In Proc. 3rd Workshop

on Hybrid Systems: Computation and Control, volume 1790 of LNCS, pages 130–
144. Springer, 2000.

28. M. Johansson and A. Rantzer. Computation of piecewise quadratic Lyapunov
functions for hybrid systems. IEEE Transactions on Automatic Control, 43, 1998.

29. H. K. Khalil. Nonlinear Systems. Prentice-Hall, 2nd edition, 1996.
30. F. Kratz, O. Sokolsky, G. J. Pappas, and I. Lee. R-Charon, a modeling language

for reconfigurable hybrid systems. In Proc. 9th Workshop on Hybrid Systems:

Computation and Control, volume 3927 of LNCS, pages 392–406. Springer, 2006.
31. N. G. Leveson. Safeware: System Safety and Computers. Addison-Wesley, 1995.
32. C. Livadas, J. Lygeros, and N. A. Lynch. High-level modeling and analysis of

TCAS. Proceedings of IEEE – Special Issue on Hybrid Systems: Theory & Appli-

cations, 88(7):926–947, 2000.
33. J. Lofberg. YALMIP: a toolbox for modeling and optimization in Matlab. In IEEE

Intern. Symp. Computer Aided Control Systems Design, pages 284–289, 2004.
34. R. Loos and V. Weispfenning. Applying linear quantifier elimination. The Com-

puter Journal, 36(5):450–462, 1993.
35. M. A. Lyapunov. Problème général de la stabilité du movement. Ann. Fac. Sci.

Toulouse, 9:203–474, 1907. (Translation of a paper published in Comm. Soc. Math.
Kharkow, 1893, reprinted Ann. Math. Studies No. 17, Princeton Univ. Press, 1949).

36. J. Lygeros, D. N. Godbole, and S. S. Sastry. Verified hybrid controllers for auto-
mated vehicles. IEEE Transactions on Automatic Control, 43(4):522–539, 1998.

37. N. A. Lynch, R. Segala, and F. W. Vaandrager. Hybrid I/O automata revisited.
In Proc. 4th Workshop on Hybrid Systems: Computation and Control, volume 2034
of LNCS, pages 403–417. Springer, 2001.

38. N. A. Lynch, R. Segala, and F. W. Vaandrager. Hybrid I/O automata. Information

and Computation, 185(1):105–157, 2003.
39. A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton. FRAIGs: A unifying

representation for logic synthesis and verification. Technical report, EECS Dept.,
UC Berkeley, 2005.

40. Y. Nesterov and A. Nemirovskii. Interior Point Polynomial Algorithms in Convex

Programming. SIAM, 1994.
41. J. Oehlerking, H. Burchardt, and O. Theel. Fully automated stability verification

for piecewise affine systems. In Proc. 10th Workshop on Hybrid Systems: Compu-

tation and Control, volume 4416 of LNCS, pages 741–745. Springer, 2007.
42. S. Pettersson. Analysis and Design of Hybrid Systems. PhD thesis, Chalmers

University of Technology, Gothenburg, 1999.
43. A. Platzer. Differential dynamic logic for verifying parametric hybrid systems. In

N. Olivetti, editor, Proc. 16th TABLEAUX, LNCS. Springer, 2007.
44. A. Platzer. Differential logic for reasoning about hybrid systems. In Proc. 10th

Workshop on Hybrid Systems: Computation and Control, volume 4416 of LNCS,
pages 746–749. Springer, 2007.

45. A. Platzer. A temporal dynamic logic for verifying hybrid system invariants. In
Proc. International Symposium on Logical Foundations of Computer Science, vol-
ume 4514 of LNCS, pages 457–471. Springer, 2007.

46. A. Platzer. Towards a hybrid dynamic logic for hybrid dynamic systems. In
P. Blackburn, T. Bolander, T. Braüner, V. de Paiva, and J. Villadsen, editors,
Proc. LICS Intern. Workshop on Hybrid Logic, ENTCS, 2007.

47. A. Platzer and E. Clarke. The image computation problem in hybrid systems
model checking. In Proc. 10th Workshop on Hybrid Systems: Computation and

Control, volume 4416 of LNCS, pages 473–486. Springer, 2007.
48. M. Segelken. Abstraction and counterexample-guided construction of omega-

automata for model checking of step-discrete linear hybrid models. In Proc. 19th

Conference on Computer Aided Verification, LNCS. Springer, 2007.
49. B. I. Silva, K. Richeson, B. H. Krogh, and A. Chutinan. Modeling and verifica-

tion of hybrid dynamical system using CheckMate. In Proc. 4th Conference on

Automation of Mixed Processes, 2000.
50. F. Somenzi and R. Bloem. Efficient Büchi Automata from LTL Formulae. In Proc.

12th Conf. on Computer Aided Verification, volume 1855 of LNCS, pages 248–263.
Springer, 2000.

51. T. Stauner. Systematic Development of Hybrid Systems. PhD thesis, Technische
Universität München, 2001.

52. T. Stauner. Discrete-time refinement of hybrid automata. In Proc. 5th Interna-

tional Workshop on Hybrid Systems: Computation and Control, volume 2289 of
LNCS, pages 407–420. Springer, 2002.

53. C. Tomlin, G. J. Pappas, and S. S. Sastry. Conflict resolution for air traffic man-
agement: A case study in multi-agent hybrid systems. IEEE Transactions on

Automatic Control, 43(4):509–521, 1998.
54. D. Wende. Fahrdynamik des Schienenverkehrs. Teubner, 2003.
55. V. Yakubovich. S-procedure in nonlinear control theory. Vestnik Leningrad Uni-

versity, pages 62–71, 1971.
56. C. Zhou and M. Hansen. Duration Calculus: A Formal Approach to Real-Time

Systems. Springer-Verlag, 2004.
57. C. Zhou, C. Hoare, and A. Ravn. A calculus of durations. Information Processing

Letters, 40(5):269–276, 1991.

Appendix

A Communicating Hybrid Automata

For the sake of completeness, we include from [13] the description of communi-
cating hybrid automata which we use as a model for cooperating traffic agents
in this paper. We assume that the signature of the real numbers is given with
function and predicate symbols like 0, 1,+, ·, <,= interpreted on the domain R
in the usual way. (Real-valued) expressions, Boolean expressions, and first-order
formulas over this signature are defined as usual. By Th(R) we denote the theory
of the real numbers, i.e., the set of all first-order formulas that hold in R.

Definition 7 (Hybrid Automaton). A hybrid automaton is a tuple H =
(M,Var ,Rd ,Rc,m0, Θ) where

1. M is a finite set of modes, with typical element m ∈ M and with a distin-
guished mode observable M ranging over M,

2. Var is a set of variables ranging over the set R of real numbers. Typical
elements of Var are X ,Y . Var is partitioned into disjoint sets of input, local
and output variables: Var = Var in ∪ Var loc ∪ Varout, where local variables
cannot be accessed by other hybrid automata in a parallel composition (see
Subsection A.2),

3. m0 ∈ M is the initial mode,
4. Θ is a mapping that associates with each mode m ∈ M a local invariant

Θ(m), which is a quantifier-free first-order formula over Var,
5. Rd is the discrete transition relation with elements (m, ↑ Φ,A,m ′) called

transitions, which are graphically represented as m
↑Φ/A
−−−→ m ′, where

– m,m ′ ∈ M,
– the trigger ↑Φ guarding the transition describes the event that a quantifier-

free formula Φ over Var becomes true,
– A is a (possibly empty) set of (disjoint) assignments of the form X := e

with X ∈ Var loc ∪ Varout and e an expression over Var.
6. Rc is the continuous transition relation, i.e., a mapping that associates with

each mode m ∈ M and each variable X ∈ Var loc ∪ Varout an expression
Rc(m)(X) over Var, which is taken as the right-hand side of the differential
equation X • = Rc(m)(X) describing the evolution of X over time while H
is in mode m.

Valuations or states of the variables in Var are given by functions σ : Var → R.
A valuation σ assigning to each variable X the value vX ∈ R is denoted by
σ = {X 7→ vX | X ∈ Var}. For a valuation σ and a set of assignments A let
A(σ) : Var → R denote the update of σ according to A defined by

A(σ) = {X 7→ σ(e) | ∃ e : X := e ∈ A} ∪ {X 7→ σ(X) | ¬ ∃ e : X := e ∈ A}.

For a valuation σ and a formula Φ let σ |= Φ denote that σ satisfies Φ.
We require of the discrete transition relation that the execution of one tran-

sition does not immediately enable a further transition.

Definition 8 (Transition Separation). The discrete transitions in a hybrid
automaton H are separated, if for any two transitions (m1, ↑ Φ1,A1,m

′
1) and

(m2, ↑Φ2,A2,m
′
2) in Rd of H with m ′

1 = m2 the following condition holds:

∀ σ : Var → R : (σ |= Φ1 ⇒ A1(σ) 6|= Φ2) .

Separation implies that at any given point in time during a run, at most one
discrete transition fires. Thus our models have dense time but not superdense
time, where a sequence of discrete transitions is permitted to fire at one instant
in time.

Discrete variables may be included into hybrid automata according to our
definition via an embedding of their value domain into the reals, and associating
a derivative of constantly zero to them (locals and outputs). Timeouts are easily
coded via explicit local timer variables with a derivative taken from {−1, 0, 1}.

Note that this general model subsumes both controller and plant models,
by choosing the set of variables appropriately and enforcing certain modeling
restrictions. For our plant models, we require the absence of discrete transitions.
This entails that plant variables only evolve continuously and cannot be changed
by discrete jumps. This is convenient for the formulation of our approach but
not essential.

Definition 9 (Restriction). For a hybrid automaton H and a mode m ∈ M
let the restriction H ↾m be defined as H, but with the mode fixed to m. Formally,
this is the following hybrid automaton:

H ↾ m = ({m},Var ,Rd ↾ m,Rc ↾ m,m, Θ ↾ m)

where Rd ↾ m = {(m, ↑Φ,A,m ′) ∈ Rd | m = m ′} and Rc ↾ m and Θ ↾ m are the
restrictions of the mappings Rc and Θ to the singleton set {m}.

A.1 Behaviour

We will in the definition of runs of a hybrid automaton interpret all transitions
as urgent, i.e., a mode will be left as soon as the triggering event occurs. This
can either be the expiration of a time-out or a condition (e.g., on the plant
sensors) becoming true. Valid runs also avoid Zeno behavior and time-blocks,
i.e., each run provides a valuation for each positive point in time. We did not
take provisions to ensure the existence of such a run, nor the property that each
initial behavior segment can be extended to a full run. Such might be added via
adequate modeling guidelines (e.g., by including the negation of an invariant as
trigger condition on some transition leaving the mode). As these properties are
not essential to the purpose of this paper we left them out.

We now give the formal definition of runs of a hybrid automaton H capturing
the evolution of modes and the real-valued variables over time. To this end, we
consider the continuous time domain Time = R≥0 of non-negative reals, for the

mode observable M a function M̂ : Time → M, and for every variable X ∈ Var a

corresponding function X̂ : Time → R describing for each time point t ∈ Time
the current mode M̂ (t) ∈ M and the current value X̂ (t) ∈ R, respectively.

Further on, for X̂ and 0 < t ∈ Time we define the previous value of X̂ at t by
prev(X̂ , t) = limu→t (X̂ (u)). Satisfaction of a condition containing prev entails
that the respective limes does exist.11

Definition 10 (Runs of a Hybrid Automaton). A run of a hybrid automa-
ton H= (M, Var, Rd , Rc, m0, Θ) is a tuple of trajectories

π =
(

M̂ , (X̂)X∈Var

)

,

with M̂ : Time → M and X̂ : Time → R for X ∈ Var, iff

∃ (τi)i∈N ∈ TimeN : τ0 = 0 ∧ ∀ i ∈ N : τi < τi+1,

a strictly increasing sequence of discrete switching times, satisfying the following
conditions:

1. non-Zeno: ∀ t ∈ Time ∃ i ∈ N : t ≤ τi
2. mode switching times: ∀ i ∈ N ∀ t ∈ [τi , τi+1) : M̂ (t) = M̂ (τi)
3. continuous evolution:

∀ i ∈ N ∀ t ′ ∈ [τi , τi+1) ∀X ∈ Var loc ∪ Varout : σ |= X • = Rc(M̂ (τi))(X)

where σ is the valuation σ = {X • 7→ dX̂ (t)
dt

(t ′)} ∪ {Y 7→ Ŷ (t ′) | Y ∈ Var}.

Thus in σ the variable X • gets the value of the derivative of the function X̂
at t ′ and all other variables Y ∈ Var get the value of the function Ŷ at t ′.

4. invariants: ∀ t ∈ Time : {X 7→ X̂ (t) | X ∈ Var} |= Θ(M̂ (t))
5. urgency:

∀ i ∈ N ∀ t ∈ [τi , τi+1) ∀ (m, ↑Φ,A,m ′) ∈ Rd we have that

M̂ (t) = m ⇒ {X 7→ X̂ (t) | X ∈ Var} 6|= Φ

6. discrete transition firing: ∀ i ∈ N we have that

(M̂ (τi+1) = M̂ (τi) ∧ ∀ X ∈ Var loc ∪ Varout : X̂ (τi+1) = prev(X̂ , τi+1))

∨

(∃ (m, ↑Φ,A,m ′) ∈ Rd : M̂ (τi) = m ∧ M̂ (τi+1) = m ′ ∧

∃ σ ∈ Var → R : ∀ X ∈ Var loc ∪ Varout :

σ(X) = prev(X̂ , τi+1) ∧ σ |= Φ

∧ ∀ X ∈ Var in : X̂ (τi+1) = σ(X)

∧ ∀ X ∈ Var loc ∪ Varout : X̂ (τi+1) = A(σ)(X))

11 In fact, our definition of a run implies that these limits do exist for all local and
output variables in any run.

For a run π =
(

M̂ , (X̂)X∈Var

)

of H and t ∈ Time let π(t) denote the state

π(t) = {M 7→ M̂ (t)} ∪ {X 7→ X̂ (t) | X ∈ Var}.

assigning to the mode observable M and the all variables X ∈ Var the values in
the run π at time t.

The time sequence (τi)i∈N identifies the points in time, at which mode-
switches may occur, which is expressed in Clause (2). Only at those points dis-
crete transitions (having a noticeable effect on the state) may be taken. On the
other hand, it is not required that any transition fires at some point τi , which
permits to cover behaviors with a finite number of discrete switches within the
framework above. Our simple plant models with only one mode provide exam-
ples. As usual, we exclude zeno behavior (in Clause (1)). As a consequence of
the requirement of transition separation, after each discrete transition some time
must elapse before the next one can fire. Clause (3) forces all local and output
variables (whose dynamics is constrained by the set of differential equations as-
sociated with this mode) to actually obey their respective equation. Clause (4)
requires, for each mode, the valuation of continuous variables to meet the local
invariant while staying in this mode. Clause (5) forces a discrete transition to
fire when its trigger condition becomes true. The effect of a discrete transition
is described by Clause (6). Whenever a discrete transition is taken, local and
output variables may be assigned new values, obtained by evaluating the right-
hand side of the respective assignment using the previous value of locals and
outputs and the current values of the input. If there is no such assignment, the
variable maintains its previous value, which is determined by taking the limit of
the trajectory of the variable as t converges to the switching time τi+1. Values
of inputs may change arbitrarily. They are not restricted by the clauses, other
that they obey mode invariants and contribute to the satisfaction of discrete
transitions when those fire.

A.2 Parallel Composition

The parallel composition of two such hybrid automata H1 and H2 presupposes
the typical disjointness criteria for modes, local variables, and output variables.
Output variables of H1 which are at the same time input variables of H2, and
vice versa, establish communication channels with instantaneous communica-
tion. Those variables establishing communication channels become local vari-
ables of H1 ‖H2 (in addition to the local variables of H1 and H2), for other
variable sets we simply take the union of those not involved in communication.
Modes of H1 ‖H2 are the pairs of modes of the component automata. One may
define the set of runs of H as those tuples of trajectories which project to runs
of H1 and H2, respectively. It is not always possible to give a hybrid automaton
for H1 ‖H2, because of problems with cycles of instantaneous communications.
Therefore, we impose the following additional condition on the composability of
hybrid automata.

Definition 11 (Composable Hybrid Automata). Let two hybrid automata
Hi , i = 1, 2, with discrete transition relations Rd

i , i = 1, 2, be given. For a
pair of transitions si = (mi , ↑ Φi ,Ai ,m

′
i) ∈ Rd

i , i = 1, 2, the transition s1 is
unaffected by s2, if each variable for which there is an assignment in A2 appears
neither in Φ1 nor in A1 (on any of the right-hand sides).

The two transition relations are composable, if for each pair of transitions
si ∈ Rd

i , i = 1, 2, either s1 is unaffected by s2 or vice versa.

Composability establishes essentially a direction on instantaneous communi-
cations – communications may have an immediate effect on the output and thus
the partner automaton, but they must not immediately influence the originator
of the information. Assuming composability, the rest of the construction of the
parallel composition automaton is rather standard.

For a mode (m1,m2), the associated invariant condition is the conjunction
of the invariance conditions associated with m1 and m2. Similarly, the set of
differential equations governing the continuous evolution while in mode (m1,m2)
is obtained by simply conjoining the set of differential equations attached to m1

and m2, respectively – note that the disjointness conditions on variables assure,
that this yields a consistent set of differential equations. Finally, the discrete
transition relation consists of the following transitions:

1. ((m1,m2), Φ1 ∧ A1(Φ2),A1 ∪ A1(A2), (m
′
1,m

′
2))

for each pair of transitions si = (mi , ↑Φi ,Ai ,m
′
i) ∈ Rd

i , i = 1, 2 where s1 is
unaffected by s2,

2. ((m1,m2), Φ1

∧

{¬A1(Φ2) | Φ2 trigger in Rd
2 },A1, (m

′
1,m2))

for each (m1, ↑Φ1,A1,m
′
1) ∈ Rd

1 , and
3. transitions of the forms (1) and (2) with the role of H1 and H2 interchanged,

where A(Φ) denotes the substitution into Φ of e for v for each assignment X :=
e ∈ A, and A1(A2) denotes the substitution of the assignments of A1 into the
right-hand terms of A2.

Composability ensures that the simultaneous transitions of Clause (1) indeed
capture the combined effect of both transitions. The separation of transitions in
the resulting automaton is inherited from separation in the component automata
by the way single-automata transitions (Clause (2)) are embedded.

