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Abstract
We prove the completeness of an axiomatization for differential
equation invariants. First, we show that the differential equation
axioms in differential dynamic logic are complete for all algebraic
invariants. Our proof exploits differential ghosts, which introduce
additional variables that can be chosen to evolve freely along new
differential equations. Cleverly chosen differential ghosts are the
proof-theoretical counterpart of dark matter. They create new hy-
pothetical state, whose relationship to the original state variables
satisfies invariants that did not exist before. The reflection of these
new invariants in the original system enables its analysis.

We then show that extending the axiomatization with existence
and uniqueness axiomsmakes it complete for all local progress prop-
erties, and further extension with a real induction axiom makes it
complete for all real arithmetic invariants. This yields a parsimo-
nious axiomatization, which serves as the logical foundation for
reasoning about invariants of differential equations. Moreover, our
approach is purely axiomatic, and so the axiomatization is suitable
for sound implementation in foundational theorem provers.

Keywords differential equation axiomatization, differential dy-
namic logic, differential ghosts

1 Introduction
Classically, differential equations are studied by analyzing their
solutions. This is at odds with the fact that solutions are often much
more complicated than the differential equations themselves. The
stark difference between the simple local description as differential
equations and the complex global behavior exhibited by solutions
is fundamental to the descriptive power of differential equations.

Poincaré’s qualitative study of differential equations crucially
exploits this difference by deducing properties of solutions directly
from the differential equations. This paper completes an important
step in this enterprise by identifying the logical foundations for
proving invariance properties of polynomial differential equations.

We exploit the differential equation axioms of differential dy-
namic logic (dL) [13, 15]. dL is a logic for deductive verification of
hybrid systems that are modelled by hybrid programs combining
discrete computation (e.g., assignments, tests and loops), and con-
tinuous dynamics specified using systems of ordinary differential
equations (ODEs). By the continuous relative completeness theo-
rem for dL [13, Theorem 1], verification of hybrid systems reduces
completely to the study of differential equations. Thus, the hybrid
systems axioms of dL provide a way of lifting our findings about
differential equations to hybrid systems. The remaining practical
challenge is to find succinct real arithmetic system invariants; any
such invariant, once found, can be proved within our calculus.

LICS’18, Jul 9-12 , 2018, Oxford, UK
2018.

To understand the difficulty in verifying properties of ODEs, it
is useful to draw an analogy between ODEs and discrete program
loops.1 Loops also exhibit the dichotomy between global behavior
and local description. Although the body of a loop may be simple, it
is impractical for most loops to reason about their global behavior
by unfolding all possible iterations. Instead, the premier reasoning
technique for loops is to study their loop invariants, i.e., properties
that are preserved across each execution of the loop body.

Similarly, invariants of ODEs are real arithmetic formulas that
describe subsets of the state space from which we cannot escape by
continuously following the local dynamics specified by the ODEs.
The three basic dL axioms for reasoning about such invariants
are: (1) differential invariants, which prove simple invariants by
analyzing their local (Lie) derivatives, (2) differential cuts, which
refine the state space with additional provable invariants, and (3)
differential ghosts, which add differential equations for new ghost
variables to the existing system of differential equations.

We may relate these reasoning principles to their discrete loop
counterparts: (1) corresponds to loop induction and analysis of the
loop body, (2) corresponds to progressive refinement of the loop
guards, and (3) corresponds to adding discrete ghost variables to
remember intermediate program states. At first glance, differential
ghosts seem counter-intuitive: they increase the dimension of the
system, and should be adverse to analyzing it! However, just as dis-
crete ghosts [11] allow the expression of new relationships between
variables along execution of a program, differential ghosts that suit-
ably co-evolve with the ODEs crucially allow the expression of new
relationships along solutions to the differential equations. Unlike
the case for discrete loops, differential cuts strictly increase the
deductive power of differential invariants for proving invariants of
ODEs; differential ghosts further increase this deductive power [14].

This paper has the following contributions:

1. We show that all algebraic invariants, i.e., where the invari-
ant set is described by a formula formed from finite conjunc-
tions and disjunctions of polynomial equations, are provable
using only the three ODE principles outlined above.

2. We introduce two axioms internalizing the existence and
uniqueness theorems for solutions of differential equations.
We show that they suffice for reasoning about all local progress
properties of ODEs for all real arithmetic formulas.

3. We introduce a real induction axiom that allows us to reduce
invariance to local progress. The resulting calculus can prove
all real arithmetic invariants of differential equations.

Just as discrete ghosts can make a program logic relatively com-
plete [11], our first completeness result shows that differential
ghosts do the same for algebraic invariants in dL. We extend the

1In fact, this analogy can be made precise: dL also has a converse relative completeness
theorem [13, Theorem 2] that reduces ODEs to discrete Euler approximation loops.
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result to larger classes of hybrid programs, including, e.g., loops
that switch between multiple different ODEs.

We note that there already exist prior, complete procedures for
checking algebraic, and real arithmetic invariants of differential
equations [7, 9]. Our result identifies a list of axioms that serve as a
logical foundation fromwhich these procedures can be implemented
as derived rules. This logical approach allows us to precisely un-
derstand the underlying properties of differential equations that
are needed for invariance reasoning. Our axiomatization is also not
limited to invariance properties, and other qualitative properties
such as local progress can also be proved with the axiomatization.

Finally, our axioms are a list of concrete formulas without any
side conditions. This is crucial tomake our axiomatization amenable
to sound implementation and verification in foundational theorem
provers [3, 6] using dL’s uniform substitution calculus [15], and is
in stark contrast to previous highly schematic procedures [7, 9].

Some of our results appear in a previous technical report [16].We
take a more elegant axiomatization here, which gives significantly
simpler correctness proofs.

2 Background
This section briefly reviews the relevant continuous fragment of dL,
and establishes the notational conventions that we will use in this
paper. We refer readers to the literature [13, 15] and AppendixA
for a complete exposition of dL, including its discrete fragment.

2.1 Syntax
Terms in dL are generated by the following grammar, where x is a
variable, and c is a rational constant:

e ::= x | c | e1 + e2 | e1 · e2

These terms correspond to polynomials over the variables under
consideration. For the purposes of this paper, we write x to refer to
a vector of variables x1, . . . ,xn , and we use p(x),q(x) to stand for
polynomial terms over these variables. When the variable context
is clear, we write p,q without arguments instead. Vectors of polyno-
mials are written in bold p, q, with pi , qi for their i-th components.

The formulas of dL are given by the following grammar, where
∼ is a comparison operator =, ≥, >, and α is a hybrid program:

ϕ ::= e1 ∼ e2 | ϕ1∧ϕ2 | ϕ1∨ϕ2 | ϕ1 → ϕ2 | ¬ϕ | ∀x ϕ | ∃x ϕ | [α]ϕ | ⟨α⟩ϕ
By appropriately normalizing terms, it is enough to assume that
all the formulas of the form e1 ∼ e2 have 0 on the right-hand side.
We write p ≳ 0 if there is a free choice of ≳ between ≥ or >. We

define p ≲ 0
def
≡ −p ≳ 0, where ≲ stands for ≤ or <, and ≳ is

correspondingly chosen. Other logical connectives, such as↔ can
be defined similarly. We write P(x),Q(x) for first-order formulas of
real arithmetic, i.e., formulas not containing the modal connectives.
We drop the dependency on x when the variable context is clear.
The modal formula [α]ϕ is true iff ϕ is true after all transitions of
α , and its dual ⟨α⟩ϕ is true iff ϕ is true after some transition of α .

Hybrid programs α allow us to express both discrete and contin-
uous dynamics. We shall primarily use the continuous fragment2:

α ::= · · · | x ′ = f (x)&Q

We write x ′ = f (x)&Q for an autonomous vectorial ODE system
in variables x1, . . . ,xn where the RHS of the system for each xi is

2We only consider weak-test dL, where Q is a first-order formula of real arithmetic.

-2 0 2

-1

0

1

Figure 1. A visualization of αe . The red dashed circleu2+v2 = 1 is
approached by solutions from all points except the origin. Both the
circle and the blue region u2 ≤ v2 + 3

2 are invariants of the system.

a polynomial term fi (x). The evolution domain constraint Q is a
formula of real arithmetic, which restricts the set of states in which
we are allowed to continuously evolve. When Q ≡ true, we write
x ′ = f (x). We will use the following system, which is visualized in
Fig. 1 as a running example:

αe
def
≡ u ′ = −v + u(1 − u2 −v2),v ′ = u +v(1 − u2 −v2)

Following our analogy in Section 1, solutions of x ′ = f (x) must
continuously (locally) follow its RHS, f (x).We visualize this in Fig. 1
with directional arrows corresponding to the RHS of αe evaluated
at points on the plane. Even though the RHS of αe are polynomials,
its solutions, which must locally follow the arrows, already exhibit
complex global behavior. In Fig. 1, we see, e.g., that all points (except
the origin) globally evolve towards the unit circle.

2.2 Semantics
A state ω : V → R assigns a real value to each variable in the
(finite) set V. We may let V = {x1, . . . ,xn } since we only need to
consider the variables occurring in differential equations x ′ = f (x).
Hence, we shall also write states as n-tuples ω : Rn where the i-th
component is the value of xi in that state.

Terms are given the usual interpretation in first-order real arith-
metic with respect to a state. We write ω[[e]] for the valuation of
term e in state ω. The semantics of comparison operations and
logical connectives (except the modal ones) are also defined in the
standard way. We write [[ϕ]] for the set of states in which ϕ is true.
For example, ω ∈ [[e1 ≤ e2]] iff ω[[e1]] ≤ ω[[e2]], and ω ∈ [[ϕ1 ∧ϕ2]]
iff ω ∈ [[ϕ1]] and ω ∈ [[ϕ2]].

Hybrid programs are interpreted as transition relations, [[α]] ⊆
Rn × Rn , between states. In particular, the transition semantics of
a system of ODEs is defined as:

(ω,ν ) ∈ [[x ′ = f (x)&Q]] iff there is T ≥ 0 and a function
φ : [0,T ] → Rn with φ(0) = ω,φ(T ) = ν ,φ |= x ′ = f (x)&Q

The φ |= x ′ = f (x)&Q condition checks that φ is indeed a solution
of the system x ′ = f (x), and that φ(ζ ) ∈ [[Q]] for all ζ ∈ [0,T ].
Given any such solution φ, we may restrict its interval of definition
to obtain a truncation φ |ζ : [0, ζ ] → Rn , where φ |ζ (τ )

def
= φ(τ ) for

all τ ∈ [0, ζ ]. Since all such truncations are themselves solutions,
we also have (ω,φ(ζ )) ∈ [[x ′ = f (x)&Q]] for all ζ ∈ [0,T ].

Finally, ω ∈ [[[α]ϕ]] iff for all states ν such that (ω,ν ) ∈ [[α]], ϕ
is true in ν . Dually, ω ∈ [[⟨α⟩ϕ]] iff there exists a state ν , where
(ω,ν ) ∈ [[α]] and ϕ is true in ν .

2
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Formulas P , where the formula P → [x ′ = f (x)&Q]P is valid,
are called invariants of the system x ′ = f (x)&Q . Unfolding the
semantics above, this means that from any initial state ω ∈ [[P]],
any solution φ from ω, which does not leave the evolution domain
[[Q]], stays in [[P]] for its entire duration.

Returning to Fig. 1, we immediately identify several invariants.
The unit circle, u2 + v2 = 1, is an equational invariant because
the direction of flow on the circle is always tangential to the circle.
The region described by u2 ≤ v2 + 3

2 is also invariant. This is not
immediately obvious, however, and requires a careful proof. The
equilibrium point at the origin is also trivially invariant.

2.3 Differentials and Lie Derivatives
The Lie derivative of a polynomial p along x ′ = f (x) is:

Lf (x )(p)
def
=

∑
xi

∂p

∂xi
fi (x) = ∇p · f (x)

For polynomial differential equations and polynomialsp,Lf (x )(p) is

also a polynomial. We shall write
.
p for Lf (x )(p), because x

′ = f (x)

will be clear from the context. We use Lf (x )(·) only when consid-
ering Lie derivation as an operator. Note that Lf (x )(·) satisfies the
familiar sum and product rules of differentiation.

A calculus for reasoning about differential equations must suit-
ably handle Lie derivatives. The uniform substitution calculus [15]
for dL uses the differential, (p)′, and differential variables x ′. As
the notation suggests, (p)′ is closely related to

.
p. By the differential

lemma [15, Lemma 35], along solutions to the system x ′ = f (x),
the value of the differential, (p)′, coincides exactly with that of the
Lie derivative

.
p. This is internalized in dL by the differential effect

axiom DE, and axioms for computing derivatives by axioms for
differentials c ′,x ′,+′,·′ [15, Lemmas 36-37]. Crucially, these axioms
allow Lie derivation to be performed purely syntactically and me-
chanically. For this paper, we work directly with the Lie derivatives.
Under the hood, the computation of these Lie derivatives is done
using differentials and DE, as we show in AppendixA.2.

We write
.
p
(i) for the i-th Lie derivative of p along x ′ = f (x),

where higher Lie derivatives are defined by iterating the Lie deriva-
tion operator. By the aforementioned closure property of polyno-
mials under derivation, all of the higher Lie derivatives of p exist,
and are also polynomials in the indeterminates x .

.
p
(0) def
= p,

.
p
(i+1) def

= Lf (x )(
.
p
(i)
),

.
p

def
=

.
p
(1)

2.4 Axiomatization
The reasoning principles for differential equations in dL are stated
as axioms in its uniform substitution calculus [15, Figure 3]. For ease
of presentation in this paper, we shall work with a sequent calculus
presentation, with derived rule versions of these principles. The
derivation of these rules from the axioms is shown in AppendixA.2.

We assume a standard classical sequent calculuswith all the usual
rules for manipulating logical connectives and sequents, e.g.,∨L,∃R,
and cut. Since we are only reasoning about a single succedent, we
gather all additional context in the antecedents as Γ. In addition,
because the theory of first-order real arithmetic is decidable [2],
we assume access to such a decision procedure, and we label steps
with R whenever they follow as a consequence of first-order real
arithmetic. We write ∗ to indicate a completed (closed) derivation.

Theorem 2.1 (Differential equation axiomatization [15]). The fol-
lowing sound proof rules derive from the axioms of dL:

dI=
Γ,Q ⊢ p = 0 Q ⊢

.
p = 0

Γ ⊢ [x ′ = f (x)&Q]p = 0

dI≳
Γ,Q ⊢ p ≳ 0 Q ⊢

.
p ≥ 0

Γ ⊢ [x ′ = f (x)&Q]p ≳ 0
(where ≳ is either ≥ or >)

dC
Γ ⊢ [x ′ = f (x)&Q]C Γ ⊢ [x ′ = f (x)&Q ∧C]P

Γ ⊢ [x ′ = f (x)&Q]P

dW
Q ⊢ P

Γ ⊢ [x ′ = f (x)&Q]P

dG
Γ ⊢ ∃y [x ′ = f (x),y′ = a(x) · y + b(x)&Q]P

Γ ⊢ [x ′ = f (x)&Q]P

Differential invariants (dI) reduces questions about invariance of
p = 0,p ≳ 0 to questions about their respective Lie derivatives. In
this way, it reduces a global invariance property (along solutions of
the ODE) to a question about its local Lie derivatives. We have only
shown two instances (dI=,dI≳) of the more general dI rule [15] that
we will need for this paper. These instances internalize the mean
value theorem3 (see AppendixA.2). Differential cut (dC) asserts
that if we can separately prove that the systems never leaves C
while staying in Q (the left premise), then we may additionally
assume C when proving the postcondition P (the right premise).

Once we have sufficiently enriched the evolution domain using
dI,dC, differential weakening (dW) allows us to remove the ODEs,
and instead prove the postcondition P directly from the evolution
domain constraint Q . In the same vein, the following derived rule
and axiom from dL will be useful to manipulate postconditions:

M[·]
ϕ2 ⊢ ϕ1 Γ ⊢ [α]ϕ2

Γ ⊢ [α]ϕ1
[·]∧ [α](ϕ1 ∧ϕ2) ↔ [α]ϕ1 ∧ [α]ϕ2

The M[·] monotonicity rule allows us to strengthen the postcon-
dition to ϕ2 if it implies ϕ1. The [·]∧ axiom allows us to prove
conjunctive postconditions separately.

Even if dC increases the deductive power over dI, the deductive
power increases even further [14] with the differential ghosts rule
dG. It allows us to add a fresh variable y to the system of equations.
The main soundness restriction of dG is that the new ODE must be
linear4 in y. This restriction is enforced by ensuring that a(x),b(x)
do not mention y. For our purposes, we will allow y to be vectorial,
i.e. we allow the existing differential equations to be extended by a
system that is linear in a vector of variables y. In this setting, a(x)
(resp. b(x)) is a matrix (resp. vector) of polynomials in x .

As mentioned, adding auxiliary differential ghost variables us-
ing dG crucially allows us to express new relationships between
variables along the differential equations. The next section shows
how dG can be used along with the rest of the rules to prove a class
of invariants satisfying Darboux-type properties. We exploit this
increased deductive power in full in later sections.

3 Darboux Polynomials
This section illustrates the use of dG in proving invariance prop-
erties involving Darboux polynomials [5]. A polynomial p is a

3Note that for rule dI≳ , we only require
.
p ≥ 0 even for the p > 0 case.

4Linearity prevents the newly added equation from unsoundly restricting the duration
of existence for solutions to the differential equations.
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Darboux polynomial for the system x ′ = f (x) iff it satisfies the
polynomial identity

.
p = дp for some polynomial cofactor д.

3.1 Darboux Equalities
We first recall the following useful notion from algebraic geometry:

Definition 3.1 (Ideal [2]). The ideal generated by the polynomials
p1, . . . ,ps ∈ R[x] is defined as the set of polynomials5:

(p1, . . . ,ps )
def
= {Σsi=1дipi : дi ∈ R[x]}

Let us assume that p satisfies the Darboux polynomial identity
.
p = дp. Taking Lie derivatives on both sides, we get:

.
p
(2)
=Lf (x )(

.
p) = Lf (x )(дp) = Lf (x )(д)p + Lf (x )(p)д

=
.
дp +

.
pд = (

.
д + д2)p ∈ (p)

By repeatedly taking Lie derivatives, it is easy to see that all higher
Lie derivatives of p are contained in the ideal (p). Now, let us con-
sider an initial state ω where p evaluates to ω[[p]] = 0, then we
have:

ω[[
.
p]] = ω[[дp]] = ω[[д]] · ω[[p]] = 0

Similarly, because every higher Lie derivative of a Darboux poly-
nomial is contained in the ideal generated by p, all of them are
simultaneously 0 in state ω. Thus, it should be the case6 that p = 0
stays invariant along solutions to the ODE starting at ω. The ques-
tion is how to prove it axiomatically.

In the first derivation below, we give a proof of invariance for
p = 0 using dG. We explain the derivation in detail as it further
illustrates the use of the surrounding proof calculus.

Lemma 3.2 (Darboux equalities are differential ghosts). The proof
rule for Darboux equalities derives from dG (and dI):

dbx
Q ⊢

.
p = дp

p = 0 ⊢ [x ′ = f (x)&Q]p = 0

Proof. Let 1○ denote the use of the premise of dbx, and 2○ abbreviate
the right premise in the following derivation.

p=0 ⊢ [x ′ = f (x ), y′ = −дy &Q ]py=0 2○
[·]∧,∧Rp = 0, y , 0 ⊢ [x ′ = f (x ), y′ = −дy &Q ](y , 0 ∧ py = 0)
M[·],∃R p = 0 ⊢ ∃y [x ′ = f (x ), y′ = −дy &Q ]p = 0
dG p = 0 ⊢ [x ′ = f (x )&Q ]p = 0

In the first dG step, we introduce a new ghost variabley satisfying a
carefully chosen differential equation y′ = −дy as a counterweight.
Next, ∃R allows us to pick an initial value for y. We simply pick
any y , 0. We then observe that in order to prove p = 0, it suffices
to prove the stronger invariant y , 0∧py = 0, so we use the mono-
tonicity rule M[·] to strengthen the postcondition. Next, [·]∧,∧R
lets us prove each conjunct in the new postcondition separately.

Continuing on the left premise:

∗

Rp = 0 ⊢ py = 0
1○

∗

R ⊢ дpy − дyp = 0
cut Q ⊢

.
py − дyp = 0

dI p = 0 ⊢ [x ′ = f (x ), y′ = −дy &Q ]py = 0

We use dI to prove the equational invariantpy = 0; its left premise is
a consequence of real arithmetic. On the right premise, we compute
the Lie derivative of py using the usual product rule as follows:

Lf (x ),−дy (py) = Lf (x ),−дy (p)y + pLf (x ),−дy (y) =
.
py − дyp

5R[x ] denotes the ring of polynomials in indeterminates x .
6This requires the solutions to the ODEs to be analytic, which is the case here.

0 0.2 0.4 0.6 0.8 1

1

2

3

Figure 2. The differential ghost z′ = z (in orange) balances out
y′ = −y (in blue) so that the value ofyz (the red dotted line) remains
constant at 1. The horizontal axis tracks the evolution of time.

We complete the derivation by cutting in the premise of dbx ( 1○).
Note that our choice of differential ghost y′ = −дy was precisely
chosen so that the final arithmetic step closes trivially.

The remaining premise 2○ is:

y , 0 ⊢ [x ′ = f (x),y′ = −д(x)y &Q]y , 0
Its proof continues using a second ghost z′ = дz:

∗
R ⊢ −(дy)z + y(дz) = 0
dI yz = 1 ⊢ [x ′ = f (x ), y′ = −дy, z′ = дz &Q ]yz = 1

M[·],∃R y , 0 ⊢ ∃z [x ′ = f (x ), y′ = −дy, z′ = дz &Q ]y , 0
dG y , 0 ⊢ [x ′ = f (x ), y′ = −дy &Q ]y , 0

This derivation is similar to the one for the previous premise. In
the M[·],∃R step, we observe that if y , 0 initially, then there exists
z such that yz = 1. Moreover, yz = 1 is sufficient to imply y , 0 in
the postcondition. The differential ghost z′ = дz is chosen so that
yz = 1 can be proved invariant along the differential equation. □

Fig. 2 illustrates the effect of the second ghost in the proof above
for д = −1, where y = 1, z = 1 initially. Although y decays ex-
ponentially towards y = 0, the ghost z balances this by growing
exponentially so that yz stays constant at its initial value 1.

3.2 Darboux Inequalities
Using a variation of the derivation proving Lemma 3.2, we can also
derive invariant inequality properties for Darboux polynomials
using dG. In fact, we will only require that p satisfies a Darboux
inequality

.
p ≥ дp for some cofactor polynomial д.

Lemma 3.3 (Darboux inequalities are differential ghosts). The
proof rule for Darboux inequalities derives from dG (and dI,dC):

dbx≳
Q ⊢

.
p ≥ дp

p ≳ 0 ⊢ [x ′ = f (x)&Q]p ≳ 0
(where ≳ is either ≥ or >)

Proof Summary (See Appendix C). The derivation is similar to the
one used for Lemma 3.2; we use the same first choice of differential
ghost y′ = −дy. However, instead of y , 0 ∧ py = 0, we prove a
stronger sign condition on y, namely y > 0∧py ≳ 0. Consequently,
in the second differential ghost step, we use z′ = д

2 z and prove the
invariant yz2 = 1, which implies y > 0. □

Example 3.4 (Proving continuous properties in dL). Returning to
the running example, we show that the unit circle u2 +v2 − 1 = 0
is an equational invariant for αe . This follows by an immediate
application of dbx with cofactor −2(u2 +v2):

dbx

R
∗

⊢ Lαe (u
2 + v2 − 1) = −2(u2 + v2)(u2 + v2 − 1)

u2 + v2 − 1 = 0 ⊢ [αe ]u2 + v2 − 1 = 0
4
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By a similar derivation with dbx≳, we can show that the disk
u2 +v2 − 1 ≳ 0 and its complement are inequational invariants.

These derivations demonstrate the clever use of differential
ghosts. In fact, we have already exceeded the deductive power
of dI,dC because the formula y > 0→ [y′ = −y]y > 0 is valid but
not provable with dI,dC alone but needs a dG [14]. It is a simple
consequence of dbx≳, since the polynomial y satisfies the Darboux
equality .

y = −y with cofactor −1. We can intuitively see why this is
difficult from Fig. 2; y evolves exponentially towards y = 0, i.e., we
get closer to violating the postcondition y > 0 along the solution.

4 Algebraic Invariants
We now consider polynomials that are not Darboux for the given
differential equations, but instead satisfy a differential radical prop-
erty [7] with respect to its higher Lie derivatives. Let дi be cofactor
polynomials, we assume that p satisfies the polynomial identity:

.
p
(N )
=

N−1∑
i=0

дi
.
p
(i) (1)

Following the intuition from Section 3.1, we again take Lie deriva-
tives on both sides of the equation:

.
p
(N+1)

=Lf (x )(
.
p
(N )
) = Lf (x )(

N−1∑
i=0

дi
.
p
(i)
) =

N−1∑
i=0
Lf (x )(дi

.
p
(i)
)

=

N−1∑
i=0

(
.
дi

.
p
(i)
+ дi

.
p
(i+1))

∈ (p,
.
p, . . . ,

.
p
(N−1)

)

In the last step, ideal membership follows by observing that, by (1),
.
p
(N ) is contained in the ideal generated by the lower Lie derivatives.
By repeatedly taking Lie derivatives on both sides, we again see
that

.
p
(N )
,
.
p
(N+1)

, . . . are all contained in the ideal (p,
.
p, . . . ,

.
p
(N−1)

).
Thus, if we start in state ω where ω[[p]],ω[[

.
p]], . . . ,ω[[

.
p
(N−1)

]] all
simultaneously evaluate to 0, then p = 0 (and all of its higher Lie
derivatives) must stay invariant along solutions to the ODE.

This section shows how to axiomatically prove this invariance
property using (vectorial) dG. We shall see at the end of the section
that this allows us to prove all true algebraic invariants.

4.1 Vectorial Darboux Equalities
We first derive a vectorial generalization of the Darboux rule dbx,
which will allow us to derive the rule for algebraic invariants as a
special case by exploiting a vectorial version of (1). Let us assume
that the n-dimensional vector of polynomials p satisfies the vec-
torial polynomial identity .

p = Gp, where G is an n × n matrix of
polynomials, and .

p denotes component-wise Lie derivation of p.
Similarly, let ω[[p]] be the vector where (ω[[p]])i

def
= ω[[pi ]]. In

states ω where ω[[p]] = 0, we have ω[[pi (x)]] = 0 for all i , and
therefore, ω[[ .p]] = ω[[Gp]] = 0.

Lemma 4.1 (Vectorial Darboux equalities are vectorial ghosts).
The vectorial Darboux proof rule derives from vectorial dG.

vdbx
Q ⊢

.
p = Gp

p = 0 ⊢ [x ′ = f (x)&Q]p = 0

Proof. Let G be an n × n matrix of polynomials, and p be an n-
dimensional vector of polynomials satisfying the premise of vdbx.

First, we develop a proof that we will have occasion to use re-
peatedly. This proof adds an n-dimensional vectorial ghost y such
that the vanishing of the scalar product, i.e., p · y = 0, is a provable
invariant. In the derivation below, we have suppressed the initial
choice of values for y. 1○ denotes the use of the premise of vdbx.
In the dC step, we mark the remaining open premise with 2○.

2○

1○

∗

RQ ⊢ Gp · y −Gp · y = 0
RQ ⊢ Gp · y − p ·GT y = 0

cut Q ⊢
.
p · y − p ·GT y = 0

dI p · y = 0 ⊢ [x ′ = f (x ), y′ = −GT y&Q ]p · y = 0
dCp = 0 ⊢ ∃y [x ′ = f (x ), y′ = −GT y&Q ]p = 0
dGp = 0 ⊢ [x ′ = f (x )&Q ]p = 0

The open premise 2○ now includes p ·y = 0 in the evolution domain:

2○ p = 0 ⊢ [x ′ = f (x), y′ = −GT y&Q ∧ p · y = 0]p = 0

The proof thus far is similar to the first ghost step in dbx. Unfor-
tunately, for n > 1, the postcondition p = 0 does not follow from
the evolution domain constraint p ·y = 0 even when y , 0, because
p · y = 0 merely implies that p and y are orthogonal, not that p is 0.

The idea is to repeat the above proof sufficiently often to obtain
an entire matrix Y of differential ghost variables such that both
Yp = 0 and det(Y ) , 0 can be proved invariant.7 The latter implies
that Y is invertible, so that Yp = 0 implies p = 0.

We obtain the matrix Y by repeating n times the derivation
above on the premise 2○, using dG to add n copies of the ghost
vectors, y1, . . . , yn , each satisfying the system y′i = −G

T yi . As we
have seen above, each of these ghost vectors satisfies the provable
invariant yi ·p = 0. We write this concisely as a system of equations:

Y︷                              ︸︸                              ︷©«
y11 y12 . . . y1n
y21 y22 . . . y1n
...

...
. . .

...

yn1 yn2 . . . ynn

ª®®®®¬

p︷   ︸︸   ︷©«
p1
p2
. . .

pn

ª®®®¬ = 0

Using dI,[·]∧, we prove:

p=0 ⊢ [x ′ = f (x), y′1 = −G
T y1, . . . , y′n = −G

T yn &Q]
n∧
j=1

yj · p=0

which we summarize using the above matrix notation as:

3○ p = 0 ⊢ [x ′ = f (x),Y ′ = −YG &Q]Yp = 0

because when Y ′ is the component-wise derivative of Y , all the
differential ghost equations are summarized as Y ′ = −YG.8 Now
that we have the invariant Yp = 0 from 3○, it remains to show the
invariance of det(Y ) > 0 to complete the proof.

Since Y only contains yi j variables, det(Y ) is a polynomial term
in the variables yi j . These yi j are ghost variables that we have
introduced, and so we are free to pick their initial values. For con-
venience, we shall pick initial values forming the identity matrix
Y = I, so that det(Y ) = det(I) = 1 > 0 is true initially.

7For a square matrix of polynomials Y , we write det(Y ) for its determinant, YT for
its transpose, adj(Y ) for its adjugate, and tr(Y ) for its trace.
8This can be seen explicitly by examining the entries on both sides of the differential
equations: Y ′i j = (yi j )

′ = −(GT yi )j = −
∑n
k=1G

T
jkyik = −

∑n
k=1Gk jyik =

−
∑n
k=1 yikGk j = −(YG)i j .
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In order to show that det(Y ) > 0 is an invariant, we first observe
the following critical polynomial identity:

.
det(Y ) = tr(adj(Y )

.
Y ) = tr

(
adj(Y )(−YG)

)
= − tr

(
(YT adj(Y ))G

)
= − tr

(
det(Y ) IG

)
= − tr (G) det(Y )

The first equality is Liouville’s formula [21, §15.III], and the others
are properties of linear algebra. We take Lie derivatives with respect
to the extended system of equations x ′ = f (x),Y ′ = −YG.

Thus, det(Y ) is a Darboux polynomial over the variablesyi j , with
polynomial cofactor − tr(G). Therefore, this is a valid deduction:

4○ dbx≳
Q ⊢

.
det(Y ) = − tr(G) det(Y )

det(Y )>0 ⊢ [x ′ = f (x),Y ′ = −YG &Q] det(Y )>0

Putting 3○ and 4○ together allows us to complete the derivation
for the invariance of p = 0. We start with the dG step, and abbreviate
the ghost matrix as above.

p = 0 ⊢ ∃Y [x ′ = f (x ), Y ′ = −YG &Q ]p = 0
p = 0 ⊢ ∃y1, . . . , yn [x ′ = f (x ), y′1 = −GT y1, . . . , y′n = −GT yn &Q ]p = 0

dGp = 0 ⊢ [x ′ = f (x )&Q ]p = 0

Now, we carry out the rest of the proof as outlined above.
∗

RQ ∧ Yp=0 ∧ det(Y )>0 ⊢ p=0
dW 4○ p=0 ⊢ [x ′ = f (x ), Y ′ = −YG &Q ∧ Yp=0 ∧ det(Y )>0]p=0
dC 3○ p=0, det(Y )>0 ⊢ [x ′ = f (x ), Y ′ = −YG &Q ∧ Yp = 0]p=0
dC p=0, det(Y )>0 ⊢ [x ′ = f (x ), Y ′ = −YG &Q ]p=0
cut p=0, Y = I ⊢ [x ′ = f (x ), Y ′ = −YG &Q ]p=0
∃R p=0 ⊢ ∃Y [x ′ = f (x ), Y ′ = −YG &Q ]p=0

The order of the differential cuts 3○ and 4○ is irrelevant. □

Since det (Y ) , 0 is invariant, we can view the n×n ghost matrix
Y in the proof of vdbx as a basis matrix for Rn that continuously
evolves along the differential equations. To see what Y does geo-
metrically, let p0 be the initial values of p, and Y = I initially. With
our choice of Y , we can show, using a variation of 3○ in the proof
of vdbx, that Yp=p0 is invariant. Thus, the evolution of Y balances
out the evolution of p, so that p remains constant with respect
to the evolving basis Y . This generalizes the intuition illustrated
in Fig. 2 to the n-dimensional case. Crucially, differential ghosts let
us express this time-varying change of basis purely syntactically.

4.2 Differential Radical Invariants
We now return to polynomials p satisfying property (1), and show
how to prove p = 0 invariant using an instance of vdbx.

Theorem4.2 (Differential radical invariants are vectorial Darboux).
The differential radical invariant proof rule derives from vdbx (which
in turn derives from vectorial dG).

dRI
Γ,Q ⊢

∧N−1
i=0

.
p
(i)
= 0 Q ⊢

.
p
(N )
=
∑N−1
i=0 дi

.
p
(i)

Γ ⊢ [x ′ = f (x)&Q]p = 0

Proof Summary (See Appendix C). This follows from vdbx with:

G =

©«

0 1 0 . . . 0

0 0
. . .

. . .
...

...
...
. . .

. . . 0
0 0 . . . 0 1
д0 д1 . . . дN−2 дN−1

ª®®®®®®®®¬
, p =

©«
p
.
p
(1)

...
.
p
(N−1)

ª®®®®®¬

The matrix G has 1 on its superdiagonal, and the дi cofactors in
the last row. The left premise of dRI is used to show p = 0 initially,
while the right premise is used to show the premise of vdbx. □

4.3 Completeness for Algebraic Invariants
Algebraic formulas are formed from finite conjunctions and disjunc-
tions of polynomial equations. We may, however, restrict attention
to a single equation p = 0 because all algebraic formulas can be
normalized to this form using the real arithmetic equivalences:

p = 0 ∧ q = 0↔ p2 + q2 = 0, p = 0 ∨ q = 0↔ pq = 0

The key insight behind completeness of dRI is that higher Lie
derivatives stabilize. Since the polynomials R[x] form a Noetherian
ring, for every polynomial p and differential equation x ′ = f (x),
there is a smallest natural number N≥1 called order [7, 9, 10] where:

.
p
(N )
=

N−1∑
i=0

дi
.
p
(i)

This N is computable by successive ideal membership checks [7].
Thus, a suitable order at which the right premise of dRI proves

always exists for any polynomial p.9 We call the succedent in the
remaining left premise of dRI the differential radical formula.

Definition 4.3 (Differential radical formula). The differential rad-
ical formula

.
p
(∗)
= 0 of a polynomial p with order N and Lie

derivatives with respect to x ′ = f (x) is defined to be:

.
p
(∗)
= 0

def
≡

N−1∧
i=0

.
p
(i)
= 0

We write
.
p
(−∗)
= 0 when the Lie derivatives are taken with respect

to x ′ = −f (x) instead.

The completeness of dRI can be proved semantically [7]. How-
ever, using the extensions developed in Section 5, we derive the
following characterization for algebraic invariants axiomatically.

Theorem 4.4 (Algebraic invariant completeness). Let Q be a real
arithmetic formula that characterizes an open set. The following is a
derived axiom in dL:

DRI [x ′ = f (x)&Q]p = 0↔
(
Q →

.
p
(∗)
= 0

)
Proof Summary (See Appendix B.1). The “←" direction follows by
an application of dRI (whose right premise closes immediately for
any Q). The “→" direction relies on the existence and uniqueness
of solutions to differential equations, which are internalized as
additional axioms in Section 5. □

For the proof of Theorem 4.4, we emphasize that additional ax-
ioms are only required for syntactically deriving the “→" direction
(completeness) of DRI. Hence, the base dL axiomatization with
differential ghosts is complete for proving properties of the form
[x ′ = f (x)&Q]p = 0 because dRI reduces all such questions to
Q →

.
p
(∗)
= 0, which is a formula of real arithmetic, and hence,

decidable. The same applies for our next result, which is a corollary
of Theorem 4.4, but applies beyond the continuous fragment of dL.
9Our derivation shows that it is sound to additionally assume Q when proving ideal
membership of

.
p
(N )

. However, since the order ofp exists evenwithout this assumption,
our rule may also be seen as an optimization that helps reduce the number of Lie
derivatives p that need to be considered.
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Corollary 4.5 (Test-free decidability). Let α be a hybrid program
without tests or evolution domain constraints (see Appendix B.1), and
P be an algebraic formula. There is a (computable) polynomial q such
that the equivalence [α]P ↔ q = 0 is derivable in dL.

Proof Summary (See Appendix B.1). By structural induction on α ,
using Theorem 4.4 for the differential equations case. □

5 Extended Axiomatization
In this section, we present the axiomatic extensions that we will use
for the rest of this paper. Without loss of generality, we assume that
the system of differential equations, x ′ = f (x), already contains
t ′ = 1, which makes t act as a clock to track the passage of time.
Such a clock variable can always be added using dG if necessary.

5.1 Existence, Uniqueness, and Continuity
The differential equations considered in this paper have polynomial
right-hand sides, which are smooth and analytic. In particular, they
satisfy the premises of the Picard-Lindelöf theorem [21, §10.VI],
which guarantees that for any initial stateω ∈ Rn , a unique solution
of the systemx ′ = f (x), i.e.φ : [0,T ] → Rn withφ(0) = ω, exists for
some non-empty time intervalT > 0. Moreover, the solution φ may
be extended (uniquely) to its maximal open interval of existence [21,
§10.IX]. The solution φ(ζ ) is, by definition, differentiable, and hence
continuous with respect to ζ .

Lemma 5.1 (Existence, uniqueness and continuity). The following
axioms are sound. In Cont, t0 is a fresh variable (not in x , f (x) or p).

Uniq
⟨x ′ = f (x)&Q1⟩P1 ∧ ⟨x

′ = f (x)&Q2⟩P2
→ ⟨x ′ = f (x)&Q1 ∧Q2⟩(P1 ∨ P2)

Cont t = t0 →
(
p > 0→ ⟨x ′ = f (x)&p > 0⟩t , t0

)
Proof Summary (See Appendix A.3). Uniq internalizes uniqueness,
while Cont internalizes continuity and existence of solutions. □

Axiom Uniq can be intuitively read as follows. Suppose that we
had two solutions φ1,φ2 respectively staying in evolution domains
Q1,Q2 and whose endpoints satisfy P1, P2. Then one of φ1 or φ2 is
a prefix of the other, and therefore, the prefix stays in the evolution
domain Q1 ∧Q2, and satisfies P1 ∨ P2 at its endpoint.

Axiom Cont uses the clock variable t to express a notion of local
progress for differential equations. Intuitively, it says that from the
current time t0, the system can locally progress to some different
time t , t0 by following the differential equations while staying
in the open set of states characterized by p > 0. This notion can
be encoded in dL in several ways. We have used a clock variable
for simplicity. For emphasis, we use the following syntax for local
progress within domain Q :〈

x ′ = f (x)&Q
〉
◦
def
≡ ⟨x ′ = f (x)&Q⟩t , t0

For the remaining derivations in this paper, we only encounter
⟨x ′ = f (x)&Q⟩◦ when we have an assumption t = t0. In this case,
where ω[[t]] = ω[[t0]], the modality has the following semantics:

ω ∈ [[
〈
x ′ = f (x)&Q

〉
◦]] iff there is a function φ : [0,T ] → Rn

with T > 0,φ(0) = ω,φ(T ) = ν ,φ |= x ′ = f (x)&Q

This resembles a continuous version of the next modality ◦ of
temporal logic. For brevity, we directly use ⟨x ′ = f (x)&Q⟩◦, and

drop t = t0 from the antecedents, e.g., with this derived rule:

cont
∗

p > 0 ⊢ ⟨x ′ = f (x)&p > 0⟩◦
To make use of Uniq and Cont, it will be useful to derive rules

and axioms that allow us to work directly in the diamond modality,
rather than the box modality that we have used so far.

Corollary 5.2 (Derived diamond modality rules and axioms). The
following derived rules and axioms are sound for dL:

⟨·⟩dR
Γ ⊢ [x ′ = f (x)&R]Q Γ ⊢ ⟨x ′ = f (x)&R⟩P

Γ ⊢ ⟨x ′ = f (x)&Q⟩P

⟨·⟩dRW
R ⊢ Q Γ ⊢ ⟨x ′ = f (x)&R⟩P

Γ ⊢ ⟨x ′ = f (x)&Q⟩P

&∧
⟨x ′ = f (x)&Q ∧ R⟩P

↔ ⟨x ′ = f (x)&Q⟩P ∧ ⟨x ′ = f (x)&R⟩P

Proof Summary (See Appendix A.4). The ⟨·⟩dR rule derives from the
diamond version of the dL refinement axiom that underlies dC; if
we never leave Q when staying in R (its left premise), then any
solution staying in R for its entire duration (its right premise) must
also stay in Q for its entire duration (its conclusion).

The rule ⟨·⟩dRW follows from ⟨·⟩dR by simplifying its left premise
with dW. The equivalence &∧ follows from ⟨·⟩dRW for the “→"
direction, while the “←" direction is an instance of Uniq by setting
P1, P2 to P , and Q1,Q2 to Q,R respectively. □

5.2 Real Induction
We state a symmetric version of the real induction principle [4].

Definition 5.3 (Inductive subset [4]). The subset S ⊆ [a,b] is
called an inductive subset of the interval [a,b] with reals a ≤ b iff:

1. a ∈ S
2. If a ≤ x < b and x ∈ S , then [x ,x + ϵ] ⊆ S for some 0 < ϵ
3. If a < x ≤ b and x ∈ S∁, then [x − ϵ,x] ⊆ S∁ for some 0 < ϵ ,

where we write S∁ for the complement [a,b] \ S .

Proposition 5.4 (Real induction principle [4]). The subset S ⊆
[a,b] is inductive if and only if S = [a,b].

Crucially, this induction principle can be lifted to invariance
properties for differential equations. For brevity, we present the
axiom for systems without evolution domain constraints, leaving
the general version to AppendixA.3.

Lemma 5.5 (Real induction). The following real induction axiom
and its corresponding derived rule are sound (t0 is fresh).

RInd [x ′ = f (x)]P ↔ P ∧ [x ′ = f (x)]∀t0 (t = t0 →

(P →
〈
x ′ = f (x)& P

〉
◦) ∧ (¬P →

〈
x ′ = −f (x)&¬P

〉
◦)
)

rInd
P ⊢ ⟨x ′ = f (x)& P⟩◦ ¬P ⊢ ⟨x ′ = −f (x)&¬P⟩◦

P ⊢ [x ′ = f (x)]P

Proof Summary (See Appendix A.3). The RInd axiom follows from
the real induction principle and the Picard-Lindelöf theorem. The
rInd rule derives from RInd with dW. □

RInd reduces invariance of P to local progress of P and local
progress backwards of ¬P . Rule rInd shows what this principle
buys us: instead of a global invariance property on the ODEs, its
premises only require reasoning about local progress properties.
These properties can be proved using Cont,Uniq, as we show next.
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6 Semialgebraic Invariants
Throughout this section, we will let Q ≡ true to simplify notation
sinceQ is not central to our remaining discussion.10 Any first-order
formula of real arithmetic, P , characterizes a semialgebraic set, and
by quantifier elimination [2] may equivalently be written as a finite,
quantifier-free formula (pi j ,qi j are polynomials):

P ≡
M∧
i=0

(m(i)∨
j=0

pi j = 0 ∨
n(i)∨
j=0

qi j > 0
)

(2)

We therefore refer to P as a semialgebraic formula, and the first step
in our invariance proofs for semialgebraic P will be to apply the
rInd rule, yielding premises of the form (modulo sign changes and
negation): P ⊢ ⟨x ′ = f (x)& P⟩◦.

6.1 Local Progress
Our objective shall be to derive local progress rules of the form

Γ ⊢ R
Γ, P ⊢ ⟨x ′ = f (x)& P⟩◦

where R is a formula of real arithmetic, computable from the form
of P . We proceed in cases, starting from the simplest forms of P .

6.1.1 Atomic Equations

Let P ≡ p = 0. By Theorem 4.4,
.
p
(∗)
= 0 is a sufficient condition

for p = 0 to be invariant. It is also a sufficient condition for local
progress, i.e., we have the derived rule:

⟨·⟩dRI
Γ ⊢

.
p
(∗)
= 0

Γ,p = 0 ⊢ ⟨x ′ = f (x)&p = 0⟩◦
which derives using cont and the trivial arithmetic fact 1 > 0:

Γ ⊢
.
p
(∗)
= 0

dRIΓ ⊢ [x ′ = f (x )&1 > 0]p = 0
∗

R,cont ⊢ ⟨x ′ = f (x )&1 > 0⟩◦
⟨·⟩dR Γ, p = 0 ⊢ ⟨x ′ = f (x )&p = 0⟩◦

6.1.2 Strict Open Inequalities
Let P ≡

∨n
i=0 qi > 0. Topologically, this case is easy, because a

continuous solution that starts in an open set must locally stay in
that open set. Indeed, the derivation here uses continuity, and does
not need any premises. We have collapsed the multiple (similar)
cases arising from ∨L into a single case, indexed by i . In the ⟨·⟩dRW
step, we used the tautology qi > 0→

∨n
i=0 qi > 0.

∗
cont qi > 0 ⊢ ⟨x ′ = f (x )&qi > 0⟩◦
⟨·⟩dRW qi > 0 ⊢

〈
x ′ = f (x )&

∨n
i=0 qi > 0

〉
◦

∨L Γ,
∨n
i=0 qi > 0 ⊢

〈
x ′ = f (x )&

∨n
i=0 qi > 0

〉
◦

We summarize with the following derived rule:

conto
∗

Γ,
∨n
i=0 qi > 0 ⊢

〈
x ′ = f (x)&

∨n
i=0 qi > 0

〉
◦

6.1.3 Mixed Equality and Strict Inequality
The interesting case arises with P ≡ p = 0 ∨ q > 0. The inequality
pe ≥ 0,pe

def
= v2 − u2 + 3

2 in our running example can be written
in this form, because of the arithmetic equivalence p ≥ 0 ↔ p =
0 ∨ p > 0. We first note a simple reduction using ∨L:

Γ, p = 0 ⊢ ⟨x ′ = f (x )&p = 0 ∨ q > 0⟩◦
∗

⟨·⟩dRW,contq > 0 ⊢ . . .
∨L Γ, p = 0 ∨ q > 0 ⊢ ⟨x ′ = f (x )&p = 0 ∨ q > 0⟩◦

10The case of arbitrary semialgebraic Q can be found in Appendix B.

One possibility for dealing with the open (left) premise is to use
⟨·⟩dRI. However, this does not provide necessary conditions in
general. In our example, this would require us to show

.
pe
(∗)
= 0,

i.e., points satisfying pe = 0 locally stay on pe = 0. From Fig. 1,
this is clearly false because the arrows at pe = 0 point inwards, i.e.,
towards pe > 0. More generally, the open premise requires us to
find conditions where we start on p = 0, but locally enter q > 0 for
any q. However, the disjunction in the evolution domain is not easy
to work with in dL. We remove it with the following observations:

Proposition 6.1. Let r = p2, then
∧n
i=0

.
p
(i)
= 0→

∧n+1
i=0

.
r
(i)
= 0

is a consequence of real arithmetic.

Proof. Since r = p2, applying the Leibniz rule yields that .r (k ) equals:

k∑
i=0

(
k

i

)
.
p
(k−i) .

p
(i)
= p

.
p
(k)
+

k−1∑
i=0

(
k

i

)
.
p
(k−i) .

p
(i)
=

k−1∑
i=0

(
k

i

)
.
p
(k−i) .

p
(i)

The last equality follows by the assumption p = 0 (recall that n ≥ 0).
Now, consider 0 ≤ k ≤ n+ 1. By assumption, for 0 ≤ i < k ,

.
p
(i)
= 0,

and therefore the remaining term in the sum is also 0. In other
words, r = 0, .r = 0, . . . , .r (n+1) = 0. □

Corollary 6.2. Let r = p2n for any n ≥ 1, p = 0 →
∧n
i=0

.
r
(i)
= 0

is a consequence of real arithmetic.

Proof. By repeated squaring, and applying Proposition 6.1. □

Using Corollary 6.2, we note that by choosing r = p2n for suffi-
ciently large n ≥ 1, we have the following derivation11:

Γr ⊢ ⟨x ′ = f (x )&q ≥ r ⟩◦
⟨·⟩dRW Γr ⊢ ⟨x ′ = f (x )& r = 0 ∨ q > 0⟩◦
⟨·⟩dRWΓ, r = 0, . . . , .

r (n) = 0 ⊢ ⟨x ′ = f (x )&p = 0 ∨ q > 0⟩◦
cut Γ, p = 0 ⊢ ⟨x ′ = f (x )&p = 0 ∨ q > 0⟩◦

The first ⟨·⟩dRW step, uses the arithmetic equivalence p = 0↔
p2n = 0. In the second ⟨·⟩dRW step, we observe that since r =
p2n ≥ 0, we have q ≥ r ≥ 0 which implies r = 0 ∨ q > 0 as
required. We abbreviate the antecedents Γ extended with the r =
0, . . . , .r (n) = 0 assumptions as Γr . The disjunction in the evolution
domain constraint has been changed to a single weak inequality.
We work on this inequality with the following derived rules:

Lemma 6.3 (Local progress). These rules derive from cont,dI,dC.

lp>
Γ ⊢ q > r

Γ ⊢ ⟨x ′ = f (x)&q ≥ r ⟩◦

lp≥
Γ ⊢ q ≥ r Γ,q = r ⊢

〈
x ′ = f (x)& .

q ≥
.
r
〉
◦

Γ ⊢ ⟨x ′ = f (x)&q ≥ r ⟩◦

Proof. lp> derives from lp≥ , because q > r implies q ≥ r , but
contradicts q = r (in the right premise of lp≥). To derive lp≥ , let us
denote the use of its left (resp. right) premise by 1○ (resp. 2○). We
start using 1○ immediately, and then perform a simple arithmetic
case split on the left. In the q > r case, we apply cont and ⟨·⟩dRW
to close the premise. The remaining premise arising from the q = r
case is abbreviated with 3○.

11With a more careful analysis in Proposition 6.1, we actually only need to pick r =
p2(O (logn)) to achieve the same conclusion.
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1○
3○

∗
cont q > r ⊢ ⟨x ′ = f (x )&q > r ⟩◦
⟨·⟩dRWΓ, q > r ⊢ ⟨x ′ = f (x )&q ≥ r ⟩◦

R,∨LΓ, q ≥ r ⊢ ⟨x ′ = f (x )&q ≥ r ⟩◦
cut Γ ⊢ ⟨x ′ = f (x )&q ≥ r ⟩◦

On 3○, we continue by cutting in second premise of lp≥ . This
allows us to use ⟨·⟩dR, and subsequently finish the proof using dI.

2○

∗
dI q = r ⊢ [x ′ = f (x )& .

q ≥
.
r ]q ≥ r

⟨·⟩dRq = r,
〈
x ′ = f (x )& .

q ≥
.
r
〉
◦ ⊢ ⟨x ′ = f (x )&q ≥ r ⟩◦

cutΓ, q = r ⊢ x ′ = f (x )q ≥ r

□

Observe that lp≥ allows us to pass from reasoning about local
progress for q ≥ r to local progress for their Lie derivatives .

q ≥
.
r

whilst accumulating q = r in the antecedent. It is clear, then, that
we can iterate application of the rule from the initial premise until
we eventually apply lp> :

Γ ⊢ q ≥ r
Γ, q = r ⊢

.
q ≥

.
r

Γ, q = r, . . . ⊢
.
q(k ) >

.
r (k )

lp> . . .

.

.

.
lp≥ Γ, q = r ⊢

〈
x ′ = f (x )& .

q ≥
.
r
〉
◦

lp≥ Γ ⊢ ⟨x ′ = f (x )&q ≥ r ⟩◦

Gathering the succedents of the open premises above, we can in-
stead directly prove the following formula from antecedents Γ:

q ≥ r ∧
(
q = r →

.
q ≥

.
r
)
∧
(
q = r ∧

.
q =

.
r →

.
q
(2)
≥

.
r
(2))

∧ . . .

∧
(
q = r ∧

.
q =

.
r ∧ · · · ∧

.
q
(k−1)

=
.
r
(k−1)

→
.
q
(k )
>

.
r
(k ))

Working in antecedents Γ def
= Γr with r = p2(k+1), we may equiva-

lently prove this formula where all of the Lie derivatives of r are
set to 0 instead. Moreover, a sensible choice of k is N − 1, where N
is the order of q. Recall that if q, .q, . . . , .q(N−1) are simultaneously
zero, then all higher Lie derivatives of q are also 0. This motivates
the following definition that summarizes the above intuition:

Definition 6.4 (Progress formula). The progress formula
.
q
(∗)
> 0

for a polynomial q with order N is defined as the following formula,
where the Lie derivatives are computed with respect to x ′ = f (x):
.
q
(∗)
> 0

def
≡ q ≥ 0 ∧

(
q = 0→ .

q ≥ 0
)
∧
(
q = 0 ∧ .

q = 0→ .
q
(2)
≥ 0

)
∧ . . .

∧
(
q = 0 ∧ .

q = 0 ∧ · · · ∧ .
q
(N−2)

= 0→ .
q
(N−1)

> 0
)

We write .
q
(−∗)
> 0 when taking Lie derivatives with respect to

x ′ = −f (x) instead.

Putting everything together, we have the following derivation
where the first cut proves .

q
(∗)
> 0 from Γ, and the second cut

extends Γ to Γr using p = 0:

Γ ⊢
.
q(∗) > 0

∗

lp≥ ,lp> Γr ,
.
q(∗) > 0 ⊢ ⟨x ′ = f (x )&q ≥ r ⟩◦

cut,⟨·⟩dRWΓ, p = 0, .
q(∗) > 0 ⊢ ⟨x ′ = f (x )&p = 0 ∨ q > 0⟩◦

cut Γ, p = 0 ⊢ ⟨x ′ = f (x )&p = 0 ∨ q > 0⟩◦

We summarize with the following derived rule:

lp=∨>
Γ ⊢

.
q
(∗)
> 0

Γ,p = 0 ⊢ ⟨x ′ = f (x)&p = 0 ∨ q > 0⟩◦

6.1.4 Semialgebraic Case
We now consider the general normal form for semialgebraic P .

Lemma 6.5 (Semialgebraic local progress). Let P be a semialge-
braic formula in normal form (2). The following rule derives from dL
extended with Cont,Uniq.

lpR
Γ ⊢

∧M
i=0

( ∨m(i)
j=0

.
pi j
(∗)
= 0 ∨

∨n(i)
j=0

.
qi j
(∗)
> 0

)
Γ, P ⊢ ⟨x ′ = f (x)& P⟩◦

Proof Summary (See Appendix C). We decompose P using ∧L,&∧.
Axiom Uniq is crucially used in &∧. This yields premises with dis-
junctive conditions. We prove local progress for these disjuncts
using conto ,⟨·⟩dRI,lp=∨> , and then lift the result to the full disjunc-
tion using ⟨·⟩dRW. □

6.2 Proving Semialgebraic Invariants
Let semialgebraic P be written in the normal form (2), and let ¬P
also be written in the same normal form:

¬P ≡
N∧
i=0

( a(i)∨
j=0

ri = 0 ∨
b(i)∨
j=0

si j > 0
)

(3)

We summarize our results with the following derived rule.

Theorem 6.6 (Semialgebraic invariants). For semialgebraic P , with
normal forms (2) and (3), the following rule (with two premises) is
sound and derives from the dL calculus extended with RInd,Cont,Uniq.

sAI

P ⊢
M∧
i=0

(m(i)∨
j=0

.
pi j
(∗)
= 0 ∨

n(i)∨
j=0

.
qi j
(∗)
> 0

)
¬P ⊢

N∧
i=0

( a(i)∨
j=0

.
ri j
(−∗)
= 0 ∨

b(i)∨
j=0

.
si j
(−∗)
> 0

)
P ⊢ [x ′ = f (x)]P

Proof. Straightforward application of lpR,rInd. □

6.3 Completeness for Semialgebraic Invariants
The completeness of the sAI rule was proved in [9]. Their proof
makes crucial use of the fact that solutions to polynomial ODE
systems are analytic. Our derivations in this section shows that
the sAI proof rule can be derived in a purely syntactic manner
within the dL calculus. This leads to the following completeness
theorem, which applies for all semialgebraic (i.e., first-order real
arithmetic) formulas P , because quantifier elimination [2] allows
us to equivalently rewrite P to normal form with rule R.

Theorem 6.7 (Semialgebraic invariant completeness). Let P be a
semialgebraic formula. The dL calculus is complete for invariance
properties of the form P ⊢ [x ′ = f (x)]P .

In Appendix B, we show a more general version of Theorem 6.7
that also handles semialgebraic evolution domains. This crucially
relies on the fact that we can characterize local progress properties
for semialgebraic formulas using Cont,Uniq, see TheoremB.5.

It is important to note the difference between Theorem 4.4 and
Theorem 6.7. In the former, we may decide [x ′ = f (x)&Q]p = 0
from any set of (non-modal) premises Γ. This is not the case for
Theorem 6.7 (or its generalized version), as the completeness result
is limited to conclusions of the form P ⊢ [x ′ = f (x)]P . Therefore,
some work still has to be done to find such an invariant P .
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7 Related Work
We focus our discussion on work related to deductive verification
of hybrid systems. We refer readers interested in the basic theories
of ODEs [21], real analysis [4], and real algebraic geometry [2] to
the respective cited texts. Orthogonal to our work is the question
of how invariants can be efficiently generated. We refer readers
to the literature [7, 9, 17, 18]. Although these methods are usually
phrased in the language of hybrid automata [1], their core reasoning
principles (for ODEs) may also be expressed as proof rules [8].

Proof Rules for Invariants. An overview of proof rules for in-
variance of algebraic and semialgebraic sets can be found in [8].
The soundness and completeness theorems for dRI,sAI were first
shown in [7] and [9] respectively. There are numerous other sound,
but incomplete, proof rules for deductive verification along an ODE
system [17, 20]. In their original presentation, dRI and sAI, are algo-
rithmic procedures for checking invariance, requiring e.g., checking
ideal membership for all polynomials in the semialgebraic decom-
position. This makes them very difficult to implement soundly as
part of a small, trusted axiomatic core, such as the implementa-
tion of dL in KeYmaera X [6]. We instead show that these rules
can be derived from a small set of axiomatic principles. Although
we also leverage ideal computations, they are only used as part
of derived rules. With the aid of a theorem prover, derived rules
can be implemented as tactics, that crucially remain outside the
soundness-critical axiomatic core.

Deductive Power and Proof Theory. The derivations shown in
this paper are fully general, which is necessary for completeness
of the resulting derived rules. However, many simpler classes of
invariants can be proved using simpler derivations. This is where
a study of the deductive power of various sound, but incomplete,
proof rules [8] comes into play. If we know that an invariant of
interest is of a simpler class, then we could simply use the proof
rule that is complete for that class. This intuition is echoed in [14],
which studies the relative deductive power of differential invariants
(dI) and differential cuts (dC). Our first result shows, in fact, that dL
with dG is already complete for algebraic invariants. Other proof-
theoretical studies of dL [13] reveal surprising correspondences
between its hybrid, continuous and discrete aspects in the sense
that each aspect can be axiomatized completely relative to any
other aspect. Our Corollary 4.5 is a step in this direction.

8 Conclusion and Future Work
The first part of this paper demonstrates the impressive deductive
power of differential ghosts: they prove all algebraic invariants and
Darboux inequalities. We leave open the question of whether their
deductive power extends to larger classes of invariants. The second
part of this paper introduces extensions to the base dL axiomatiza-
tion, and shows how they can be used together with the existing
axioms to prove all real arithmetic invariants syntactically. The
real induction principle is crucially used to reduce global invari-
ance properties to local progress properties. In contrast to local
progress, global liveness properties are tricky because solutions of
differential equations may blow up in finite time. Indeed, existing
liveness rules [12, 19] require the side assumption that solutions ex-
ist for sufficient duration. An avenue of future work is to investigate
calculi for liveness without the need for these conditions.

It is instructive to examine the mathematical properties of solu-
tions and terms that underlie our axiomatization. In summary:

Axiom Property
dI Mean value theorem
dC Prefix-closure of solutions
dG Picard-Lindelöf
Cont Existence of solutions
Uniq Uniqueness of solutions
RInd Completeness of R

The soundness of our axiomatization, therefore, easily extends to
term languages beyond polynomials, e.g., continuously differen-
tiable terms satisfy the above properties. We may, of course, lose
completeness and decidable arithmetic in the extended language,
and we leave further exploration of these issues to future work.
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A Differential Dynamic Logic Axiomatization
We work with the uniform substitution calculus presented in [15].
The calculus is based on the uniform substitution inference rule:

US
ϕ

σ (ϕ)

The uniform substitution calculus requires a few extensions to
the syntax and semantics presented in Section 2. Firstly we extend
the term language with differential terms (e)′ and k-ary function
symbols f , where e1, . . . , ek are terms. The formulas are similarly
extended with k-ary predicate symbols P and predicationals C:

e ::= · · · | (e)′ | f (e1, . . . , ek )

ϕ ::= · · · | P(e1, . . . , ek ) | C(ϕ)

The grammar of dL programs is as follows (a is a program symbol):

α ::= a | x := e | ?ϕ | x ′ = f (x)&Q | α1 ∪ α2 | α1;α2 | α∗

We refer readers to [15] for the complete, extended semantics.
Briefly, for each variable x , there is an associated differential vari-
able x ′, and states map all of these variables (including differential
variables) to real values; we write S for the set of all states. The
semantics also requires an interpretation I for the uniform sub-
stitution symbols. The term semantics, Iω[[e]], gives the value of
e in state ω and interpretation I . The formula semantics, I [[ϕ]], is
the set of states where ϕ is true in interpretation I , and the transi-
tion semantics of hybrid programs I [[α]] is given with respect to
interpretation I . The transition semantics for x ′ = f (x) requires:

(ω,ν ) ∈ [[x ′ = f (x)&Q]] iff there is T ≥ 0 and a function

φ : [0,T ] → S with φ(0) = ω on {x ′}∁,φ(T ) = ν , and
I ,φ |= x ′ = f (x)&Q

The I ,φ |= x ′ = f (x)&Q condition checks that φ(ζ ) ∈ I [[x ′ =

f (x) ∧ Q]], φ(0) = φ(ζ ) on {x ,x ′}∁ for 0 ≤ ζ ≤ T , and, if T > 0,
then dφ(t )(x )

dt (ζ ) exists, and is equal to φ(ζ )(x ′) for all 0 ≤ ζ ≤ T . In
other words, φ is a solution of the differential equations x ′ = f (x)
that stays in the evolution domain constraint. It is also required
to hold all variables other than x ,x ′ constant. Most importantly,
the values of the differential variables x ′ is required to match the
valuation of the RHS of the differential equations along the solution.
We refer readers to [15, Definition 7] for further details.

The calculus allows all of the axioms (cf. [15, Figures 2 and 3])
to be stated as concrete instances, which are then instantiated by
uniform substitution. In this appendix, we take the same approach:
all of our (new) axioms will be stated as concrete instances as well.
We will need to be slightly more careful, and write down explicit
variable dependencies for all the axioms. To make this paper self-
contained, we state all of the axioms used in the paper and the
appendix. However, we only provide justification for derived rules
and axioms that are not already justified in [15].

A.1 Base Axiomatization
The following are the base axioms and proof rules for dL from [15,
Figure 2].

Theorem A.1 (Base axiomatization [15]). The following are sound
axioms and proof rules for dL.

[:=] [x := f ]P(x) ↔ P(f )

[?] [?P]R ↔ (P → R)

[∪] [a1 ∪ a2]P(x) ↔ [a1]P(x) ∧ [a2]P(x)

[; ] [a1;a2]P(x) ↔ [a1][a2]P(x)

[∗] [a∗]P ↔ P ∧ [a][a∗]P

⟨·⟩ ⟨a⟩P(x) ↔ ¬[a]¬P(x)

K [a](P1 → P2) → ([a]P1 → [a]P2)

I [a∗](P → [a]P) → (P → [a∗]P)

G
P(x)

[a]P(x)

In our sequent calculus, we instantiate these axioms using uni-
form substitution, and then use congruence reasoning for equiva-
lences (and equalities). All of the substitutions that we require are
admissible [15, Definition 19]. Note that G above is presented as a
Hilbert-style rule. In our sequent calculus formulation, we use it
by discarding the context, because if ϕ is valid, then it must also be
true after running any program α :

G
⊢ ϕ

Γ ⊢ [α]ϕ

The [·]∧ axiom derives using G,K. For the “→ ” direction (the
case for [α]ϕ2 in the succedent is symmetric):

∗

ϕ1 ∧ ϕ2 ⊢ ϕ1
G,→R ⊢ [α ](ϕ1 ∧ ϕ2 → ϕ1)
cut,K [α ](ϕ1 ∧ ϕ2) ⊢ [α ]ϕ1

In the “← ” direction we use K twice:
∗

ϕ2, ϕ1 ⊢ ϕ1 ∧ ϕ2
G,→R ⊢ [α ](ϕ2 → ϕ1 → ϕ1 ∧ ϕ2)
cut,K [α ]ϕ2 ⊢ [α ](ϕ1 → ϕ1 ∧ ϕ2)
cut,K [α ]ϕ1, [α ]ϕ2 ⊢ [α ](ϕ1 ∧ ϕ2)

The M[·] rule derives using G,K as well. Note that applying K
produces two premises.

ϕ2 ⊢ ϕ1
G,→R Γ ⊢ [α ](ϕ2 → ϕ1) Γ ⊢ [α ]ϕ2

K Γ ⊢ [α ]ϕ1

The following is the familiar loop induction rule.

loop
ϕ ⊢ [α]ϕ

ϕ ⊢ [α∗]ϕ

It derives from the induction axiom I and G.
ϕ ⊢ [α ]ϕ

G,→R ⊢ [α ∗](ϕ → [α ]ϕ)
cut,I ϕ ⊢ [α ∗]ϕ

A.2 Differential Equation Axiomatization
The following are axioms for differential equations and differ-
entials from [15, Figure 3]. Note that x is a vector of variables
x1,x2, . . . ,xn , x ′ is the corresponding vector of differential vari-
ables x ′1,x

′
2, . . . ,x

′
n , and f (x) is a vector of n-ary function symbols

f1(x), f2(x), . . . , fn (x).
11
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Theorem A.2 (Differential equation axiomatization [15]). The fol-
lowing are sound axioms of dL.

DW [x ′ = f (x)&Q(x)]Q(x)

DI=
(Q(x) → [x ′ = f (x)&Q(x)](p(x))′ = 0)
→ ([x ′ = f (x)&Q(x)]p(x) = 0↔ [?Q(x)]p(x) = 0)

DI≳
(Q(x) → [x ′ = f (x)&Q(x)](p(x))′ ≥ 0)
→ ([x ′ = f (x)&Q(x)]p(x) ≳ 0↔ [?Q(x)]p(x) ≳ 0)

DE
[x ′ = f (x)&Q(x)]P(x ,x ′)

↔ [x ′ = f (x)&Q(x)][x ′:=f (x)]P(x ,x ′)

c ′ (f )′ = 0

x ′ (x)′ = x ′

+′ (f (x) + д(x))′ = (f (x))′ + (д(x))′

·′ (f (x) · д(x))′ = (f (x))′ · (д(x)) + (f (x)) · (д(x))′

Syntactic derivation under differential equations is performed
using the DE axiom along with the axioms for working with dif-
ferentials c ′,x ′,+′,·′ [15, Lemmas 36-37], and the assignment ax-
iom [′:=] for differential variables. We label the exhaustive use of
the differential axioms as e ′. The following derivation is sound for
any polynomial term p (where

.
p is the polynomial term for the Lie

derivative of p). We write ∼ for a free choice between = and ≳:

⊢ [x ′ = f (x )&Q ]
.
p ∼ 0

e ′ ,[′:=],R ⊢ [x ′ = f (x )&Q ][x ′:=f (x )](p)′ ∼ 0
DE ⊢ [x ′ = f (x )&Q ](p)′ ∼ 0

The e ′,[′:=],R step first performs syntactic Lie derivation on p, and
then additionally uses R to rearrange the resulting term into

.
p

as required. To see this more concretely, we perform the above
derivation with a polynomial from the running example.

Example A.3 (Using syntactic derivations). Let pe
def
= v2 −u2 + 3

2 ,
unfolding the Lie derivative, we have:

Lαe (pe ) =
∂pe
∂u
(−v + u(1 − u2 −v2)) +

∂pe
∂v
(u +v(1 − u2 −v2))

= −2u(−v + u(1 − u2 −v2)) + 2v(u +v(1 − u2 −v2))

= 4uv + 2(1 − u2 −v2)(v2 − u2) =
.
pe

Now, we may perform the above derivation:

⊢ [αe ]
.
pe ∼ 0

R ⊢ [αe ]2v(u + v(1 − u2 − v2)) − 2u(−v + u(1 − u2 − v2)) ∼ 0
[′:=] ⊢ [αe ][u′:= − v + u(1 − u2 − v2)][v ′:=u + v(1 − u2 − v2)]2vv ′ − 2uu′ ∼ 0
e ′ ⊢ [αe ][u′:= − v + u(1 − u2 − v2)][v ′:=u + v(1 − u2 − v2)](pe )′ ∼ 0
DE ⊢ [αe ](pe )′ ∼ 0

Note that we needed the R step to rearrange the result from syn-
tactically differentiating pe to match the expression

.
pe for the Lie

derivative. Since the two notions must coincide under the ODEs,
this rearrangement step is always possible.

We prove generalized versions of axioms from [15]. These are
the vectorial differential ghost axioms (DG and DG∀)12 which were
proved only for the single variable case, and the differential modus
ponens axiom, DMP, which was specialized for differential cuts.

12Wedo not actually need DG∀ in this paper.We prove it for completeness, because [15]
proves a similar axiom.

Lemma A.4. The following axioms are sound. Note that y is an
m-dimensional vector of variables, y′ is its corresponding vector of
differential variables, and a(x) (resp. b(x)) is am×m matrix (resp.m-
dimensional vector) of function symbols.

DG
[x ′ = f (x)&Q(x)]P(x)

↔ ∃y [x ′ = f (x), y′ = a(x) · y + b(x)&Q(x)]P(x)

DG∀
[x ′ = f (x)&Q(x)]P(x)

↔ ∀y [x ′ = f (x), y′ = a(x) · y + b(x)&Q(x)]P(x)

DMP
[x ′ = f (x)&Q(x)](Q(x) → R(x))

→ ([x ′ = f (x)&R(x)]P(x) → [x ′ = f (x)&Q(x)]P(x))

Proof. In this proof, we useω for the initial state, and ν for the state
reached at the end of a continuous evolution. The valuations for
matrix and vectorial terms are applied component-wise.

We first prove vectorial DG and DG∀. Our proof is specialized to
the case of linear (inhomogeneous) systems. We only need to prove
the “→” direction for DG∀, because ∀yϕ implies ∃yϕ over the reals,
and so we get the “→” direction for DG from the “→” direction of
DG∀. Conversely, we only need to prove the “←” direction for DG,
because the “←” direction for DG∀ follows from it.
“→” We need to show the RHS of DG∀ assuming its LHS. Let ωd

y
be identical to ω except where the values for y are replaced
with any initial values d ∈ Rm . Consider any solution φy :
[0,T ] → S where φy(0) = ωy on {x ′, y′}∁, φy(T ) = ν , and
I ,φy |= x ′ = f (x), y′ = a(x) · y + b(x)&Q(x).
Define φ : [0,T ] → S satisfying:

φ(t)(z)
def
=

{
φy(t)(z) z ∈ {y, y′}∁

ω(z) z ∈ {y, y′}

In other words, φ is identical to φy except it holds all of
y, y′ constant at their initial values in ω. Observe that by
construction, φ(0) = ω on {x ′}∁, and moreover, because y
is fresh i.e., not mentioned in Q(x), f (x), by coincidence for
terms [15, Lemma 10], we have that:

I ,φ |= x ′ = f (x)&Q(x)

Therefore, φ(T ) ∈ I [[P(x)]] from the LHS of DG∀. Since φ(T )
coincides with φy(T ) = ν except on {y, y′} and y is fresh,
by coincidence for formulas [15, Lemma 11] we also have
ν = φy(T ) ∈ I [[P(x)]] as required.

“←” We need to show the LHS of DG assuming its RHS. Consider
a solution φ : [0,T ] → Swhere φ(0) = ω on {x ′}∁, φ(T ) = ν ,
and I ,φ |= x ′ = f (x)&Q(x). Let φa (t)

def
= Iφ(t)[[a(x)]], and

φb (t)
def
= Iφ(t)[[b(x)]] be the valuation of a(x),b(x) along

φ respectively. Recall that φa : [0,T ] → Rm × Rm and
φb : [0,T ] → Rm .
By [15, Definition 5], φa (t) = I (a)

(
I (φ(t))(x)

)
, where I (a) is

continuous (and similarly for φb (t)). Since φ is a continuous
function in t , both φa (t),φb (t) are compositions of continu-
ous functions, and are thus, also continuous functions in t .
Consider them-dimensional initial value problem:

y′ = φa (t)y + φb (t), y(0) = ω[[y]]

By [21, Chapter IV, Theorem 14.VI], there exists a unique
solutionψ : [0,T ] → Rm for this system that is defined on
the entire interval [0,T ]. Therefore, we may construct the

12
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extended solution φy satisfying:

φy(t)(z)
def
=


φ(t)(z) z ∈ {y, y′}∁

ψ (t)(z) z ∈ y
dψ (t )(w )

dt z = w ′ ∈ y′

By definition, φy(0) = ω on {x ′, y′}∁, and by construc-
tion and coincidence for formulas [15, Lemma 11], I ,φy |=
x ′ = f (x), y′ = a(x) · y + b(x)&Q(x). Thus, we haveφy(T ) ∈
I [[P(x)]] from the RHS of DG. Since φ(T ) coincides with
φy(T ) except on y, y′, again by coincidence for formulas [15,
Lemma 11] we have ν = φ(T ) ∈ I [[P(x)]] as required.

We now prove DMP. Consider an initial state ω satisfying both
negative premises of DMP, i.e.,

1○ ω ∈ I [[[x ′ = f (x)&Q(x)](Q(x) → R(x))]], and
2○ ω ∈ I [[[x ′ = f (x)&R(x)]P(x)]]

We need to show ω ∈ I [[[x ′ = f (x)&Q(x)]P(x)]], i.e., for any so-
lution φ : [0,T ] → S where φ(0) = ω on {x ′}∁, and I ,φ |=
x ′ = f (x)&Q(x), we have φ(T ) ∈ I [[P(x)]]. By definition, we have
φ(t) ∈ I [[Q(x)]] for t ∈ [0,T ], but by 1○, we also have that φ(t) ∈
I [[Q(x) → R(x)]] for all t ∈ [0,T ]. Therefore, φ(t) ∈ I [[R(x)]] for all
t ∈ [0,T ], and hence, I ,φ |= x ′ = f (x)&R(x). Thus, by 2○, we have
φ(T ) ∈ I [[P(x)]] as required. □

Using the axiomatization from TheoremA.2 and LemmaA.4, we
now derive all of the rules shown in Theorem 2.1.

Proof of Theorem 2.1. For each rule, we show a derivation from the
dL axioms. The open premises in these derivations correspond to
the open premises for each rule.
dW We apply DMP and obtain two premises corresponding to

the two formulas on the left of its implications. The right
premise closes using DW. The left premise uses G, which
leaves the open premise of dW.

Q ⊢ P
G,→R Γ ⊢ [x ′ = f (x )&Q ](Q → P )

∗
DWΓ ⊢ [x ′ = f (x )& P ]P

DMP Γ ⊢ [x ′ = f (x )&Q ]P

dI= This rule follows from the DI= axiom, and also using the
equivalence between Lie derivatives and differentials within
the context of the ODEs.

Γ, Q ⊢ p = 0
[?],→R Γ ⊢ [?Q ]p = 0

Q ⊢
.
p = 0

dW,→R Γ, Q ⊢ [x ′ = f (x )&Q ]
.
p = 0

DE,e ′ ,R Γ, Q ⊢ [x ′ = f (x )&Q ](p)′ = 0
cut,DI= Γ, [?Q ]p = 0 ⊢ [x ′ = f (x )&Q ]p = 0

cut Γ ⊢ [x ′ = f (x )&Q ]p = 0

dI≳ The derivation is similar to the previous case, using DI≳
instead of DI=.

dC We cut in a premise with the postconditionQ → (Q∧C). We
reduce this postcondition to C by M[·] because C → (Q →
(Q ∧C)) is a valid formula. The right premise after the cut
is abbreviated by 1○.

Γ ⊢ [x ′ = f (x )&Q ]C
M[·]Γ ⊢ [x ′ = f (x )&Q ](Q → (Q ∧C)) 1○

cut Γ ⊢ [x ′ = f (x )&Q ]P

Continuing on 1○ we use DMP to refine the domain con-
straint, which leaves open the remaining premise of dC:

Γ ⊢ [x ′ = f (x )&Q ∧C]P
DMPΓ, [x ′ = f (x )&Q ](Q → (Q ∧C)) ⊢ [x ′ = f (x )&Q ]P

dG This follows by rewriting the RHS with (vectorial) DG.
Γ ⊢ ∃y [x ′ = f (x ), y′ = a(x ) · y + b(x )&Q ]P

DGΓ ⊢ [x ′ = f (x )&Q ]P

□

We note, additionally, that dI= can be derived directly from DI≳,
using [·]∧, and the real arithmetic equivalence p = 0↔ p ≥ 0∧p ≤
0. We refer readers to [15, Theorem 38] for a proof of soundness of
DI≳, which relies on the mean value theorem. Briefly, consider any

solution φ : [0,T ] → S, and let φp (t)
def
= Iφ(t)[[p]] be the valuation

of p along φ. We may, without loss of generality, assumeT > 0, and
φp (0) ≳ 0. By the assumption on the left of the implication in DI≳,
(p(x))′ ≥ 0, which, by the differential lemma [15, Lemma 35], means
that dφp (t )

dt (ζ ) ≥ 0 for 0 ≤ ζ ≤ T . By the mean value theorem, we

have φp (T ) = φp (0) +
dφp (t )
dt (ζ )(T − 0) for some 0 < ζ < T . Since

φp (0) ≳ 0,T > 0, and dφp (t )
dt (ζ ) ≥ 0, we therefore have φp (T ) ≳ 0

as required. We can, conversely, obtain a version of the mean value
theorem in dL:

Corollary A.5 (Mean Value Theorem). The following analogue of
the mean value theorem is a derived axiom:

MVT p ≥ 0 ∧ ⟨x ′ = f (x)&Q⟩p < 0→ ⟨x ′ = f (x)&Q⟩(p)′ < 0

Proof. This follows immediately by taking contrapositives, dualiz-
ing with ⟨·⟩, and then applying DI≳.

∗
DI≳ [?Q ]p ≥ 0, [x ′ = f (x )&Q ](p)′ ≥ 0 ⊢ [x ′ = f (x )&Q ]p ≥ 0
cut,[?] p ≥ 0, [x ′ = f (x )&Q ](p)′ ≥ 0 ⊢ [x ′ = f (x )&Q ]p ≥ 0
¬L,¬R,⟨·⟩ p ≥ 0 ∧ ⟨x ′ = f (x )&Q ⟩p < 0 ⊢ ⟨x ′ = f (x )&Q ⟩(p)′ < 0

□

Intuitively, this version of the mean value theorem asserts that
if p changes sign from p ≥ 0 to p < 0 along a solution, then its Lie
derivative must have been negative somewhere along the solution.

A.3 Extended Axiomatization
We re-state the axioms shown in Section 5 as concrete instances
and prove their soundness. Consequently, the axioms of Section 5
follow as uniform substitution instances.

For these proofs, we will often need to take truncations of solu-
tions. Let φ : [0,T ] → S be a solution, we define the truncation of
φ to a smaller interval as φ |t : [0, t] → S, which is identical to φ on
the interval [0, t], for 0 ≤ t ≤ T . For any solution φ : [0,T ] → S,
we write φ([a,b]) ∈ I [[P]] to mean φ(ζ ) ∈ I [[P]] for all a ≤ ζ ≤ b.
We use φ((a,b)) instead when the interval is open, and similarly for
the half-open cases. For example, if φ obeys the evolution domain
constraint Q on the interval [0,T ], we write φ([0,T ]) ∈ I [[Q]]. We
will only use this notation when [a,b] is a subinterval of [0,T ].

As we did in Section 5, we assume that the system of differential
equations, x ′ = f (x), already contains t ′ = 1, which makes t act as
a clock that tracks the passage of time.

A.3.1 Existence, Uniqueness, and Continuity
Weprove soundness for concrete versions of the axioms in Lemma 5.1.

LemmaA.6 (Existence, Uniqueness and Continuity). The following
axioms are sound.
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Uniq
⟨x ′ = f (x)&Q1(x)⟩P1(x) ∧ ⟨x

′ = f (x)&Q2(x)⟩P2(x)
→ ⟨x ′ = f (x)&Q1(x) ∧Q2(x)⟩(P1(x) ∨ P2(x))

Cont t = t0 → (p(x) > 0→ ⟨x ′ = f (x)&p(x) > 0⟩t , t0)

Proof. For the ODE system x ′ = f (x), the RHSes, when interpreted
as functions on x are continuously differentiable. Therefore, by
the Picard-Lindelöf theorem [21, §10.VI], from any state ω, there
is an interval [0,τ ),τ > 0 on which there is a unique, continuous
solution φ : [0,τ ) → S with φ(0) = ω. Moreover, the solution may
be uniquely extended in time (to the right), up to its maximal open
interval of existence [21, §10.IX].

We first prove axiom Uniq. Consider an initial state ω, satisfying
both conjuncts on the left of the implication in Uniq. Expanding
the definition of the diamond modality, this means that there exists
two solutions from ω, φ1 : [0,T1] → S, φ2 : [0,T2] → S where
I ,φ1 |= x ′ = f (x)&Q1(x), I ,φ2 |= x ′ = f (x)&Q2(x), with φ(T1) ∈
I [[P1]] and φ(T2) ∈ I [[P2(x)]].

Now let us first assume T1 ≤ T2. Since both φ1,φ2 are solutions
starting from ω, the uniqueness of solutions implies that φ1(t) =
φ2(t) for t ∈ [0,T1]. Therefore, since φ2([0,T2]) ∈ I [[Q2(x)]] and
T1 ≤ T2, we have I ,φ1 |= x ′ = f (x)&Q1(x) ∧Q2(x). Since φ1(T ) ∈
I [[P1(x)]], which implies φ1(T ) ∈ I [[(P1(x) ∨ P2(x))]], we therefore
have ω ∈ I [[⟨x ′ = f (x)&Q1(x) ∧Q2(x)⟩(P1(x) ∨ P2(x))]].

The case for T2 < T1 is similar, except now we have φ2(T ) ∈
I [[P2(x)]]. In either case, we have the required RHS of Uniq:

ω ∈ I [[⟨x ′ = f (x)&Q1(x) ∧Q2(x)⟩(P1(x) ∨ P2(x))]]

Next, we prove axiom Cont. Consider an arbitrary initial state ω,
with ω ∈ [[p(x) > 0]] and ω ∈ [[t = t0]]. In other words, we initially
have ω(t) = ω(t0).

By the existence theorem, there is a solution φ : [0,τ ) → S, of
the system x ′ = f (x), with φ(0) = ω except on {x ′}∁ and τ > 0.
Since t ′ = 1 and t0 is held constant in the system of equations, the
valuation of t satisfies φ(ζ )(t) = ω(t0) + ζ along this solution.

When viewed as a function on x , I [[p(x)]] is a continuous function
from Rn → R (recall that x is shorthand for x1, . . . ,xn ). Moreover,
the set I [[p(x) > 0]] is topologically open. Hence, viewing ω(x) as
a point in Rn , there exists ϵ > 0 such that all points d in the open
ball, ∥d − ω(x)∥ < ϵ , also satisfy I [[p(d)]] > 0. In terms of states,
this implies that all states ν where ∥ν (x) − ω(x)∥ < ϵ also satisfy
ν ∈ I [[p(x) > 0]].

Moreover, the solution φ(ζ ) is by definition, differentiable, and
hence continuous about ζ = 0 for x1, . . . ,xn , which implies, for
a sufficiently small 0 < δ < τ , that ∥φ([0,δ ])(x) − φ(0)(x)∥ < ϵ .
Hence, φ([0,δ ]) ∈ I [[p(x) > 0]], and so the truncated solution φ |δ
satisfies I ,φ |δ |= x ′ = f (x)&p(x) > 0. Finally, since φ |δ (δ )(t) =
ω(t0) + δ > ω(t0) = φ |δ (δ )(t0), we have φ |δ (δ ) ∈ I [[t , t0]], and so
ω ∈ I [[⟨x ′ = f (x)&p(x) > 0⟩t , t0]] as required. □

From the proof for Cont, it is clear that we may also write t >
t0 in its postcondition. In fact, the choice t ′ = 1 was made for
convenience: we only need some way to encode local progress. We
also have used t ′ = −1, or even t ′ = c for any constant c , 0.

A.3.2 Real Induction
We prove the symmetric real induction principle stated in Proposi-
tion 5.4. Variants of this principle can be found in [4].

Proof of Proposition 5.4. In the “⇐=” direction, if S = [a,b], then S
is inductive by definition. For the “=⇒” direction, let S ⊆ [a,b] be
inductive, i.e., we have:

1○ a ∈ S
2○ If a ≤ x < b and x ∈ S , then [x ,x + ϵ] ⊆ S for some 0 < ϵ
3○ If a < x ≤ b and x ∈ S∁, then [x − ϵ,x] ⊆ S∁ for some 0 < ϵ ,

where we write S∁ for the complement [a,b] \ S .
Suppose that S , [a,b], so that the set S∁ is non-empty. Let x be

the infimum of S∁, and note that x ∈ [a,b] since [a,b] is left-closed.
We consider various cases for x .

1. Case x = a. By properties 1○ and 2○, [x ,x + ϵ] ⊆ S, ϵ > 0, so
x + ϵ is a greater lower bound of S∁ than x , contradiction.

2. Case a < x ,x ∈ S . If x = b, then S = [a,b], contradiction.
Otherwise, a < x < b, then by 2○, [x ,x + ϵ] ⊆ S, ϵ > 0, so
x + ϵ is a greater lower bound of S∁ than x , contradiction.

3. Case a < x ,x ∈ S∁. By 3○, there is [x − ϵ,x], ϵ > 0, but then
x − ϵ ∈ S∁, so x is not a lower bound of S∁, contradiction.

□

We now restate and prove a generalized, concrete version of the
real induction axiom given in Lemma 5.5. This strengthened version
includes the evolution domain constraint. We have removed the
syntactic abbreviation in Section 5 for a precise statement here.

Lemma A.7. The following real induction axiom is sound.

RInd& [x ′ = f (x)&Q(x)]P(x) ↔

(Q(x) → P(x)) ∧ [x ′ = f (x)&Q(x)]∀t0
(
t = t0 →(

P(x) ∧ ⟨x ′ = f (x)&Q(x)⟩t , t0 →

⟨x ′ = f (x)& P(x)⟩t , t0
)
∧(

¬P(x) ∧ ⟨x ′ = −f (x)&Q(x)⟩t , t0 →

⟨x ′ = −f (x)&¬P(x)⟩t , t0
) )

Proof. We shall label the conjuncts after ∀t0
(
t = t0 → . . .

)
under

the box modality on the RHS as follows:

P(x) ∧ ⟨x ′ = f (x)&Q(x)⟩t , t0 → ⟨x
′ = f (x)& P(x)⟩t , t0 ( a○)

¬P(x) ∧ ⟨x ′ = −f (x)&Q(x)⟩t , t0 → ⟨x
′ = −f (x)&¬P(x)⟩t , t0

( b○)
Consider an initial state ω, we prove both directions of the axiom
separately.
“→” Assume that ⋆○ω ⊨ [x ′ = f (x)&Q(x)]P(x). Ifω ∈ I [[Q(x)]],

then consider the solution of duration 0 which stays inQ(x).
By assumption ⋆○, this solution is required to satisfy P(x) at
its endpoint, which is identical to ω except on {x ′}∁, and so
by coincidence for formulas [15, Lemma 11], ω ∈ I [[P(x)]].
Thus, ω ∈ I [[Q(x) → P(x)]].
Next, we prove the conjunction ( a○ ∧ b○) under the box
modality. Consider any solution φ : [0,T ] → S starting
from ω with I ,φ |= x ′ = f (x)&Q(x). We may also assume
φ(T ) ∈ I [[t = t0]].
For conjunct b○ we need to show:

φ(T ) ∈ I [[¬P(x) ∧ . . .→ . . .]]

However, by assumption ⋆○, we must have φ(T ) ∈ I [[P(x)]],
and therefore this conjunct is trivially true.
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For the remaining conjunct a○, we additionally assume that:

φ(T ) ∈ I [[P(x) ∧ ⟨x ′ = f (x)&Q(x)⟩t , t0]]

As we did in the proof of soundness for Cont, we identify
t as the clock variable with initial value t0. Unfolding the
diamond modality, there is another solutionψ : [0,τ ] → S
starting from φ(T ) with ψ (τ ) ∈ I [[t , t0]]. We also have
I ,ψ |= x ′ = f (x)&Q(x). Note that ψ (0) = φ(T ) exactly
rather than just on {x ′}∁, because both of these states must
have the appropriate values for the differential variables.
We now need to show:

φ(T ) ∈ I [[⟨x ′ = f (x)& P(x)⟩t , t0]]

We shall directly show:

I ,ψ |= x ′ = f (x)& P(x)

In particular, sinceψ already satisfies the requisite differen-
tial equations and ψ (τ ) ∈ I [[t , t0]], it is sufficient to show
that it stays in the evolution domain for its entire duration,
i.e.,ψ ([0,τ ]) ∈ I [[P(x)]].
Let 0 ≤ ζ ≤ τ and consider the concatenated solution Φ :
[0,T + ζ ] → S defined by:

Φ(t)
def
=

{
φ(t) t ≤ T

ψ (t −T ) t > T

Since ψ must uniquely extend φ [21, §10.IX], the concate-
nated solution Φ is a solution starting from ω, it solves the
system x ′ = f (x), and it stays in Q(x) for its entire duration.
Hence, by ⋆○, Φ(T + ζ ) = ψ (ζ ) ∈ I [[P(x)]] as required.

“←” Assume that the RHS of the equivalence is true in state
ω. If ω < I [[Q(x)]] then we are done, because there are no
solutions that stay in Q(x) and so the box modality on the
LHS is trivially satisfied. Otherwise, consider an arbitrary
solution φ : [0,T ] → S starting from ω such that I ,φ |=
x ′ = f (x)&Q(x). We need to show φ([0,T ]) ∈ I [[P(x)]]. We
will do this by showing that the subset {ζ : φ(ζ ) ∈ I [[P(x)]]}
is an inductive subset of [0,T ].
1○ We have ω = φ(0) except on {x ′}∁ and ω ∈ I [[Q(x)]].

By the assumption ω ∈ I [[Q(x) → P(x)]], we have ω ∈
I [[P(x)]]. Thus, φ(0) ∈ I [[P(x)]] by coincidence for formu-
las [15, Lemma 11].

2○ Now, consider 0 ≤ ζ < T , and suppose φ(ζ ) ∈ I [[P(x)]].
We need to show φ([ζ , ζ + ϵ]) ∈ I [[P(x)]] for some ϵ > 0.
For notational simplicity, let t0

def
= φ(ζ )(t), we instantiate

the box modality on the RHS with φ |ζ , and the quantifier
with t0. We therefore, have φ(ζ ) ∈ I [[ a○]].
Observe that since ζ < T , we may consider the solution
that starts from stateφ(ζ ), i.e.,ψ : [0,T −ζ ], whereψ (τ ) def=
φ(τ + ζ ), and we have I ,ψ |= x ′ = f (x)&Q(x). We also
have T − ζ > 0, and therefore, ψ (T − ζ ) ∈ I [[t , t0]] by
viewing t as the clock variable. In other words, we have
φ(ζ ) ∈ I [[⟨x ′ = f (x)&Q(x)⟩t , t0]]. Therefore, we may
discharge the implication in a○ to obtain:

φ(ζ ) ∈ I [[⟨x ′ = f (x)& P(x)⟩t , t0]]

Unfolding the diamondmodality, gives us a solution, which
by uniqueness, yields a truncation ofψ ,ψ |ϵ , for some ϵ > 0
which starts from φ(ζ ) and satisfiesψ |ϵ ([0, ϵ]) ∈ I [[P(x)]].

Now, by definition,ψ |ϵ (τ ) is equal toφ(τ+ζ ) for 0 ≤ τ ≤ ϵ ,
which implies φ([ζ , ζ + ϵ]) ∈ I [[P(x)]] as required.

3○ In this case, we consider 0 < ζ ≤ T , and suppose φ(ζ ) ∈
I [[¬P(x)]]. We need to show φ([ζ − ϵ, ζ ]) ∈ I [[¬P(x)]] for
ϵ > 0. This is essentially symmetric to 2○ by the fact that
time-reversed solutions of differential equations satisfy the
negated system x ′ = −f (x). Note that we have t ′ = −1
here. We let t0

def
= φ(ζ )(t), and instantiate the RHS to

obtain φ(ζ ) ∈ I [[ b○]].
Since 0 < ζ , let us considerψ : [0, ζ ], where

ψ (τ )(z)
def
=

{
φ(ζ − τ )(z) z ∈ {x ′}∁

−φ(ζ − τ )(z) z ∈ {x ′}

In other words, ψ is the time-reversed solution starting
from φ(ζ ) and following the system x ′ = −f (x). Note that
in the case for z ∈ {x ′}, we have explicitly negated the
signs of the differential variables alongψ . This is needed
to ensure that the differential variables match the RHS of
x ′ = −f (x). By a similar argument to the previous case,ψ
is a witness for φ(ζ ) ∈ I [[⟨x ′ = −f (x)&Q(x)⟩t , t0]], and
thus, from the implication in b○ we have:

φ(ζ ) ∈ I [[⟨x ′ = −f (x)&¬P(x)⟩t , t0]]

By uniqueness, this gives a truncationψ |ϵ , for some ϵ > 0,
which starts (backwards) fromφ(ζ ) and satisfiesψ |ϵ ([0, ϵ]) ∈
I [[¬P(x)]]. This gives us φ([ζ − ϵ, ζ ] ∈ I [[¬P(x)]] as re-
quired.

□

We shall work with the following derived real induction rule
(with two premises). It derives directly from RInd& using dW. The
derived rule rInd follows as a special case, where we ignore the
antecedents involving the evolution domain Q .

rInd&

t = t0,Q,
〈
x ′ = f (x)&Q

〉
◦, P ⊢

〈
x ′ = f (x)& P

〉
◦

t = t0,Q,
〈
x ′ = −f (x)&Q

〉
◦,¬P ⊢

〈
x ′ = −f (x)&¬P

〉
◦

P ⊢ [x ′ = f (x)&Q]P

A.4 Diamond Modality Rules and Axioms
We derive the rules and axioms from Corollary 5.2, along with an
additional derived rule that is used in the appendix.

Corollary A.8 (Derived diamond modality rules and axioms). In
addition to the derived rules and axioms in Corollary 5.2, the following
derived rule is sound:

M⟨·⟩
Γ ⊢ [α](ϕ2 → ϕ1) Γ ⊢ ⟨α⟩ϕ2

Γ ⊢ ⟨α⟩ϕ1

Proof (includes proof of Corollary 5.2). For each rule, we show a deriva-
tion from the dL axioms. The open premises in these derivations
correspond to the open premises for each rule.
⟨·⟩dR This follows by dualizing with the ⟨·⟩ axiom.

Γ ⊢ ⟨x ′ = f (x )&R ⟩P

Γ ⊢ [x ′ = f (x )&R]Q
DMP,DWΓ, [x ′ = f (x )&Q ]¬P ⊢ [x ′ = f (x )&R]¬P
⟨·⟩,¬R,¬L Γ, ⟨x ′ = f (x )&R ⟩P ⊢ ⟨x ′ = f (x )&Q ⟩P

cut Γ ⊢ ⟨x ′ = f (x )&Q ⟩P

⟨·⟩dRW This follows from ⟨·⟩dR by simplifying its left premise with
dW.

15



1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

LICS’18, Jul 9-12 , 2018, Oxford, UK André Platzer and Yong Kiam Tan

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

&∧ This follows from ⟨·⟩dRW for the “→" direction, because
Q ∧ R → Q and Q ∧ R → R are both valid formulas. The
“←" direction is an immediate instance of Uniq by setting
P1, P2 to P , and Q1,Q2 to Q,R respectively.

M⟨·⟩ This follows from K by dualizing its inner implication with
the ⟨·⟩ axiom.

Γ ⊢ [α ](ϕ2 → ϕ1) Γ ⊢ ⟨α ⟩ϕ2
⟨·⟩,K Γ ⊢ ⟨α ⟩ϕ1

□

B Completeness for Semialgebraic Invariants
and Evolution Domain Constraints

This section gives the full completeness arguments for dRI and sAI.
With the extended axiomatization, we may prove the completeness
direction of dRI and (most of) sAI within dL. We take this syntactic
approach here to demonstrate the versatility of the dL calculus. We
refer the readers to other presentations [7, 9] for purely semantical
completeness arguments. As usual, we will assume that x ′ = f (x)
already contains a clock equation t ′ = 1. We will, however, need to
make more use of this specific choice here.

We start with the following definition due to [9], which summa-
rizes the formulas in the premises of sAI. It lifts the progress and
differential radical formulas for single polynomials to the general
case of an arbitrary semialgebraic formula written in normal form.

Definition B.1 (Semialgebraic progress formula). The semialge-

braic progress formula
.
P
(∗)

for a semialgebraic formula P written
in normal form (2) is defined as follows:

.
P
(∗) def
≡

M∧
i=0

(m(i)∨
j=0

.
pi j
(∗)
= 0 ∨

n(i)∨
j=0

.
qi j
(∗)
> 0

)
We write

.
P
(−∗)

when taking Lie derivatives with respect to x ′ =
−f (x) instead.

We note that the syntactic form of semialgebraic progress for-
mula for P depends on the choice of normal form. This choice will

always be made clear in the context when we refer
.
P
(∗)
.

We first make the following useful observation on various re-
arrangements of the progress and differential radical formulas for
polynomials:

Proposition B.2. Let N be the order of q. The following are valid
equivalences on the progress and differential radical formulas.

.
q
(∗)
> 0↔q > 0 ∨ (q = 0 ∧ .

q > 0)
∨ . . .

∨
(
q = 0 ∧ .

q = 0 ∧ · · · ∧ .
q
(N−2)

= 0 ∧ .
q
(N−1)

> 0
)

¬(
.
q
(∗)
= 0) ↔ .

q
(∗)
> 0 ∨

.
(−q)

(∗)
> 0

¬(
.
q
(∗)
> 0) ↔

.
(−q)

(∗)
> 0 ∨ .

q
(∗)
= 0

Proof. All of these equivalences follow immediately by unfolding
the definitions of the progress and differential radical formulas,
applying logical rearrangements and real arithmetic identities. □

The latter two equivalences are particularly important, as we
show in the next proposition.

Proposition B.3. Let P be in normal form:

P ≡
M∧
i=0

(m(i)∨
j=0

pi j = 0 ∨
n(i)∨
j=0

qi j > 0
)

¬P can be put in a normal form:

¬P ≡
N∧
i=0

( a(i)∨
j=0

ri j = 0 ∨
b(i)∨
j=0

si j > 0
)

for which we additionally have the valid equivalence:

¬(
.
P
(∗)
) ↔

.
(¬P)

(∗)

Proof. We start by applying negating P (in normal form), and ap-
plying the arithmetic identities p , 0 ↔ p > 0 ∨ −p > 0 and
q ≤ 0↔ −q > 0 ∨ q = 0 to obtain the valid formula:

¬P ↔
M∨
i=0

(m(i)∧
j=0
(pi j > 0 ∨ −pi j > 0) ∧

n(i)∧
j=0
(−qi j > 0 ∨ q = 0)

)
︸                                                                    ︷︷                                                                    ︸

ϕ

Expanding and negating the progress formula for P , we have the
valid equivalence:

¬

M∧
i=0

(m(i)∨
j=0

.
pi j
(∗)
= 0 ∨

n(i)∨
j=0

.
qi j
(∗)
> 0

)
↔

M∨
i=0

(m(i)∧
j=0
¬

.
pi j
(∗)
= 0 ∧

n(i)∧
j=0
¬

.
qi j
(∗)
> 0

)
The RHS of this equivalence can be rewritten with the latter two
equivalences from Proposition B.2 to obtain the following formula,
which we label asψ :

ψ
def
≡

M∨
i=0

(m(i)∧
j=0

( .
pi j
(∗)
> 0 ∨

.
(−pi j )

(∗)
> 0

)
∧

n(i)∧
j=0

( .
(−qi j )

(∗)
> 0 ∨ .

qi j
(∗)
= 0

) )
Observe that ϕ,ψ have the same disjunctive normal form shape.
We distribute the outer disjunction over the inner conjunctions in
ϕ to obtain the following valid equivalence, whose RHS is a normal
form for ¬P (for some indices N ,a(i),b(i) and polynomials ri j , si j ):

¬P ↔
N∧
i=0

( a(i)∨
j=0

ri j = 0 ∨
b(i)∨
j=0

si j > 0
)

We distribute the disjunction in ψ following the same syntactic
steps taken in ϕ to obtain the following valid equivalence:

ψ ↔
N∧
i=0

( a(i)∨
j=0

.
ri j
(∗)
= 0 ∨

b(i)∨
j=0

.
si j
(∗)
> 0

)
By rewriting with the equivalences derived so far, and using the
above normal form for ¬P , we have the required, valid equivalence:

¬(
.
P
(∗)
) ↔

.
(¬P)

(∗)

□
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B.1 Algebraic Invariants
We now derive axiom DRI from Theorem 4.4.

Proof of Theorem 4.4. In the “←” direction, we use dRI, by setting N
to the order of p, so that the succedent of its left premise is exactly
.
p
(∗)
= 0. The right premise closes by real arithmetic, since N is the

order of p, it must, by definition satisfy the identity (1).

∗

→LQ →
.
p
(∗)
= 0, Q ⊢

.
p
(∗)
= 0

∗

R ⊢
.
p
(N )
=
∑N−1
i=0 дi

.
p
(i )

dRI Q →
.
p
(∗)
= 0 ⊢ [x ′ = f (x )&Q ]p = 0

For the “→” direction, we first reduce to the contrapositive
statement by logical manipulation. An application of ⟨·⟩ turns the
negated box modality in the succedent to a diamond modality.
Finally, by Proposition B.2, we equivalently rewrite the negated
differential radical formula in the antecedents. We refer to the open
premise with 1○.

Q,
( .
p
(∗)

> 0 ∨
.
(−p)

(∗)

> 0
)
⊢ ⟨x ′ = f (x )&Q ⟩p , 0

R Q, ¬(
.
p
(∗)
= 0) ⊢ ⟨x ′ = f (x )&Q ⟩p , 0

⟨·⟩ Q, ¬(
.
p
(∗)
= 0) ⊢ ¬[x ′ = f (x )&Q ]p = 0

[x ′ = f (x )&Q ]p = 0 ⊢ Q →
.
p
(∗)
= 0

Since Q characterizes an open, semialgebraic set, by the finite-
ness theorem [2, Theorem 2.7.2] for open semialgebraic sets,Q may
be written as follows (qi j are polynomials):

Q ≡
M∧
i=0

m(i)∨
j=0

qi j > 0

Thus, we have the following derivation. As usual, we have collapsed
similar cases (indexed by i) after the &∧,∧L step. All the premises
close using conto .

∗

conto t = t0,
∨m(i )
j=0 qi j > 0 ⊢

〈
x ′ = f (x )&

∨m(i )
j=0 qi j > 0

〉
◦

&∧,∧Lt = t0,
∧M
i=0

∨m(i )
j=0 qi j > 0 ⊢

〈
x ′ = f (x )&

∧M
i=0

∨m(i )
j=0 qi j > 0

〉
◦

R t = t0, Q ⊢ ⟨x ′ = f (x )&Q ⟩◦

We are now ready to continue from 1○. In the first step, we
introduce a clock variable satisfying t = t0 initially using dG,∃R.
Next, using the derivation above, we cut in local progress forQ . We

then use ∨L to case split on the disjunction
.
p
(∗)
> 0 ∨

.
(−p)

(∗)
> 0.

The resulting premises are labelled 2○ and 3○.
2○ 3○

∨L t = t0, ⟨x ′ = f (x )&Q ⟩◦,
.
p
(∗)

> 0 ∨
.
(−p)

(∗)

> 0 ⊢ ⟨x ′ = f (x )&Q ⟩p , 0
cut t = t0, Q,

.
p
(∗)

> 0 ∨
.
(−p)

(∗)

> 0 ⊢ ⟨x ′ = f (x )&Q ⟩p , 0
dG,∃R Q ∧

( .
p
(∗)

> 0 ∨
.
(−p)

(∗)

> 0
)
⊢ ⟨x ′ = f (x )&Q ⟩p , 0

Continuing on 2○, because we already have
.
p
(∗)
> 0 in the an-

tecedents, using lp=∨> , we may cut ⟨x ′ = f (x)& t = t0 ∨ p > 0⟩◦.
Now, by an application of &∧, we combine the two local progress
formulas in the antecedent.

⟨x ′ = f (x )&Q ∧ (t = t0 ∨ p > 0)⟩◦ ⊢ ⟨x ′ = f (x )&Q ⟩p , 0
&∧ ⟨x ′ = f (x )&Q ⟩◦, ⟨x ′ = f (x )& t = t0 ∨ p > 0⟩◦ ⊢ ⟨x ′ = f (x )&Q ⟩p , 0

cut,lp=∨> t = t0, ⟨x ′ = f (x )&Q ⟩◦,
.
p
(∗)

> 0 ⊢ ⟨x ′ = f (x )&Q ⟩p , 0

Next, because

R︷                    ︸︸                    ︷
Q ∧ (t = t0 ∨ p > 0) → Q , we use ⟨·⟩dRW to strengthen

the evolution domain constraint in the succedent. This allows us
to use M⟨·⟩, whose right premise closes trivially. Removing the
syntactic abbreviation for ◦ allows us to close the premise using

dW, because we have t = t0 ∨ p > 0 in the domain constraint R.
∗

R R ⊢ (t , t0 → p , 0)
dW ⊢ [x ′ = f (x )&R](t , t0 → p , 0)
M⟨·⟩ ⟨x ′ = f (x )&R ⟩◦ ⊢ ⟨x ′ = f (x )&R ⟩p , 0
⟨·⟩dRW⟨x ′ = f (x )&R ⟩◦ ⊢ ⟨x ′ = f (x )&Q ⟩p , 0

The remaining premise 3○ follows similarly, except that the progress

formula
.
(−p)

(∗)
> 0 enables the cut ⟨x ′ = f (x)& t = t0 ∨ −p > 0⟩◦.

It leads to the same conclusion of p , 0 in the postcondition. □

We now prove Corollary 4.5 using the characterization of alge-
braic invariants of ODEs from Theorem 4.4. The test-free fragment
of dL programs is generated by the following grammar, where we
have omitted tests, and evolution domain constraints:

α ::= x := e | x ′ = f (x) | α1 ∪ α2 | α1;α2 | α∗

Proof of Corollary 4.5. Firstly, since P is algebraic, it is equivalent
to a formula p = 0 for some polynomial p so we may, without loss
of generality, assume that it is written in this form.

We proceed by structural induction on the form of test-free α ,
and show that for some (computable) polynomial q, we can derive
the equivalence [α]p = 0↔ q = 0 in dL.
• Case x ′ = f (x). By Theorem 4.4, since the set of all states
(i.e., the evolution domain true) is open, by DRI, we have
the derived equivalence [x ′ = f (x)]p = 0↔

.
p
(∗)
= 0. Let N

be the order of p so that
.
p
(∗)
= 0 expands to

∧N−1
i=0

.
p
(i)
= 0.

Let q def
=

∑N−1
i=0 (

.
p
(i)
)2 so that we have the valid arithmetic

equivalence
.
p
(∗)
= 0↔ q = 0. Rewriting with this derives

the desired equivalence, [x ′ = f (x)]p = 0↔ q = 0.
• Case x := e . By [:=], [x := e]p(x) = 0 ↔ p(e) = 0. As a
composition of polynomials, p(e) is a polynomial.
• Case α1 ∪ α2. By [∪], [α1 ∪ α2]p = 0↔ [α1]p = 0 ∧ [α2]p =
0. By the induction hypothesis on α1,α2, we may derive
[α1]p = 0 ↔ q1 = 0 and [α2]p = 0 ↔ q2 = 0 for some
polynomials q1,q2. Moreover, q1 = 0∧q2 = 0↔ q21+q

2
2 = 0

is a valid formula of real arithmetic. Rewriting with the
derived logical equivalences yields the derived equivalence:
[α1 ∪ α2]p = 0↔ q21 + q

2
2 = 0.

• Case α1;α2. By [; ], [α1;α2]p = 0 ↔ [α1][α2]p = 0. By the
induction hypothesis on α2, we derive [α2]p = 0↔ q2 = 0.
By rewriting with this equivalence, we derive [α1;α2]p =
0↔ [α1]q2 = 0. Now, by the induction hypothesis on α1, we
derive [α1]q2 = 0↔ q1 = 0 for some q1. Rewriting with the
derived logical equivalences yields the derived equivalence
[α1;α2]p = 0↔ q1 = 0.
• Case α∗. This case relies on the fact that the polynomial ring
R[x] (and Q[x]) over a finite number of indeterminates x is
a Noetherian domain, which implies that every ascending
chain of ideals is finite. We first construct the following
sequence of polynomials qi :

q0
def
= p, qi+1

def
= fi

where fi is the polynomial satisfying the derived equiva-
lence fi ↔ [α]qi = 0 obtained by applying the induction
hypothesis on α with postcondition qi = 0.
Since the ring of polynomials over the (finite set) of variables
mentioned in α or p is Noetherian, the following chain of
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ideals is finite:

(q0) ⊂ (q0,q1) ⊂ (q0,q1,q2) ⊂ . . .

Thus, there is some smallest k such that qk satisfies the
following polynomial identity, with polynomial cofactors дi :

qk =
k−1∑
i=0

дiqi

We claim that
∧k−1
i=0 qi = 0 ↔ [α∗]p = 0 is derivable.

Since we also have the valid equivalence
∑k−1
i=0 q2i = 0 ↔∧k−1

i=0 qi = 0, this claim yields the derived equivalence [α∗]p =
0↔

∑k−1
i=0 q2i = 0, as required. We show both directions of

the claim separately.
“→” We strengthen the postcondition of the box modality to∧k−1

i=0 qi = 0 (recall that q0
def
= p, so

∧k−1
i=0 qi = 0→ p = 0

is valid), and prove it as a loop invariant. By an application
of [·]∧ followed by ∧R, we may split the postcondition to
its constituent conjuncts (indexed by 0 ≤ i ≤ k − 1). We
observe that, by construction, we can equivalently replace
each [α]qi with qi+1.∧k−1

i=0 qi = 0 ⊢ qi+1 = 0∧k−1
i=0 qi = 0 ⊢ [α ]qi = 0

∧R∧k−1
i=0 qi = 0 ⊢

∧k−1
i=0 [α ]qi = 0

[·]∧∧k−1
i=0 qi = 0 ⊢ [α ]

∧k−1
i=0 qi = 0

loop∧k−1
i=0 qi = 0 ⊢ [α ∗]

∧k−1
i=0 qi = 0

M[·]∧k−1
i=0 qi = 0 ⊢ [α ∗]p = 0

The open premises where 0 ≤ i < k − 1 close trivially
because qi = 0 is already in the antecedent. The final case
where i = k − 1 is where we need to show qk = 0 in
the succedent. However, because we have the polynomial
identity qk =

∑k−1
i=0 дiqi , the final premise also closes by

a cut and real arithmetic.
∗

R∧k−1
i=0 qi = 0 ⊢

∑k−1
i=0 дiqi = 0

∗

R ⊢ qk =
∑k−1
i=0 дiqi

cut ∧k−1
i=0 qi = 0 ⊢ qk = 0

“←” This direction is straightforward using k times the iter-
ation axiom [∗] together with [·]∧. By construction, we
may replace the antecedents with qi , which gives us the
required implication.

∗

q0 = 0 ∧ q1 = 0 ∧ q2 = 0 ∧ · · · ∧ qk−1 = 0 ⊢
∧k−1
i=0 qi = 0

p = 0 ∧ [α ]p = 0 ∧ [α ][α ]p = 0 ∧ · · · ⊢
∧k−1
i=0 qi = 0

[∗],[·]∧ · · ·
[∗],[·]∧ p = 0 ∧ [α ]p = 0 ∧ [α ][α ][α ∗]p = 0 ⊢

∧k−1
i=0 qi = 0

[∗],[·]∧ p = 0 ∧ [α ][α ∗]p = 0 ⊢
∧k−1
i=0 qi = 0

[∗] [α ∗]p = 0 ⊢
∧k−1
i=0 qi = 0

□

B.2 Local Progress
Fixing a normal form (2) for P , the following axiom derives from
dL extended with Cont,Uniq.

lpR→ t = t0 ∧ P ∧
.
P
(∗)
→

〈
x ′ = f (x)& P

〉
◦

This follows by a direct application of lpR, whose premise closes

because the succedent is exactly
.
P
(∗)
.

lpR

∗

t = t0 ∧
.
P
(∗)

⊢
∧M
i=0

( ∨m(i )
j=0

.
pi j
(∗)
= 0 ∨

∨n(i )
j=0

.
qi j
(∗)

> 0
)

t = t0 ∧ P ∧
.
P
(∗)

⊢ ⟨x ′ = f (x )& P ⟩◦

Note that we have explicitly included t = t0 here, although it
was left implicit in the antecedents when we derived lpR. We now
derive a converse implication.

Lemma B.4 (Semialgebraic local progress, converse implication).
Let P be a semialgebraic formula in normal form (2). The following
axiom derives from dL extended with Cont,Uniq.

lpR← t = t0 ∧
〈
x ′ = f (x)& P

〉
◦ →

.
P
(∗)

Proof. By Proposition B.3, there is a normal form for ¬P , i.e.,

¬P ≡
N∧
i=0

( a(i)∨
j=0

ri j = 0 ∨
b(i)∨
j=0

si j > 0
)

where we additionally have the valid equivalence:

¬(
.
P
(∗)
) ↔

.
(¬P)

(∗)

We first reduce to the contrapositive statement by logical manipu-
lation, and then use the above normal form to rewrite the negation
in the antecedents. We refer to the open premise with 1○.

t = t0,
.
(¬P )

(∗)

⊢ ¬⟨x ′ = f (x )& P ⟩◦
R t = t0, ¬(

.
P
(∗)

) ⊢ ¬⟨x ′ = f (x )& P ⟩◦

t = t0 ∧ ⟨x ′ = f (x )& P ⟩◦ ⊢
.
P
(∗)

We have the following valid equivalence, where the RHS is a normal
form for ¬P ∨ t − t0 = 0. It is obtained by distributing t − t0 = 0
over the conjunction in ¬P :

¬P ∨ t − t0 = 0↔
N∧
i=0

( a(i)∨
j=0

ri j = 0 ∨ t − t0 = 0 ∨
b(i)∨
j=0

si j > 0
)

The progress formula for ¬P ∨ t − t0 = 0 in this normal form is:

N∧
i=0

( a(i)∨
j=0

.
ri j
(∗)
= 0 ∨

.
(t − t0)

(∗)
= 0

b(i)∨
j=0

.
si j
(∗)
> 0

)
Now, we consider the polynomial t − t0. Since t ′ = 1, the first
Lie derivative of t − t0 is 1, which gives the valid equivalence

.
(t − t0)

(∗)
= 0 ↔ false because the LHS contains an unsatisfiable

conjunct 1 = 0. Rewriting with this equivalence yields the valid

equivalence
.

(¬P ∨ t − t0 = 0)
(∗)
↔

.
(¬P)

(∗)
.

We therefore, have the following derivation, whose conclusion
we label 2○. In the first cut step, we use the valid implication t =
t0 → ¬P ∨ t − t0 = 0. We then use the equivalence above to replace
the progress formula in the antecedents before closing with lpR→.

∗

lpR→t = t0, ¬P ∨ t − t0 = 0,
.

(¬P ∨ t − t0 = 0)
(∗)

⊢ ⟨x ′ = f (x )&¬P ∨ t − t0 = 0⟩◦
R t = t0, ¬P ∨ t − t0 = 0,

.
(¬P )

(∗)

⊢ ⟨x ′ = f (x )&¬P ∨ t − t0 = 0⟩◦
cut t = t0,

.
(¬P )

(∗)

⊢ ⟨x ′ = f (x )&¬P ∨ t − t0 = 0⟩◦

We may now complete the derivation from 1○. We first cut in 2○
using the derivation above. Next, we combine the evolution domain
constraints using &∧.

⟨x ′ = f (x )& (¬P ∨ t − t0 = 0) ∧ P ⟩◦ ⊢ false
&∧⟨x ′ = f (x )&¬P ∨ t − t0 = 0⟩◦, ⟨x ′ = f (x )& P ⟩◦ ⊢ false
¬R 2○ ⟨x ′ = f (x )&¬P ∨ t − t0 = 0⟩◦ ⊢ ¬⟨x ′ = f (x )& P ⟩◦
cut t = t0,

.
(¬P )

(∗)

⊢ ¬⟨x ′ = f (x )& P ⟩◦
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We continue by dualizing with ⟨·⟩, and finish the proof with dW
and arithmetic.

⟨·⟩,¬L

dW

R
∗

(¬P ∨ t − t0 = 0) ∧ P ⊢ t = t0
⊢ [x ′ = f (x )& (¬P ∨ t − t0 = 0) ∧ P ]t = t0
⟨x ′ = f (x )& (¬P ∨ t − t0 = 0) ∧ P ⟩◦ ⊢ false

□

The above proof used the following valid equivalence where P
is in normal form, and we normalize P ∨ t − t0 = 0 by distributing
t − t0 over the outer conjunction in P :

.
(P ∨ t − t0 = 0)

(∗)
↔

.
P
(∗)

(4)

This equivalence allows us to give a complete characterization of
local progress for semialgebraic formulas.

Theorem B.5 (Semialgebraic local progress completeness). Let P
be a semialgebraic formula in normal form (2). The following axiom
derives from dL extended with Cont,Uniq.

lpR↔ t = t0 →
( .
P
(∗)
↔

〈
x ′ = f (x)& P ∨ t = t0

〉
◦
)

Proof. We derive both directions separately. In both cases, (4) is
used crucially. First in the “←” direction, we use lpR← and (4).

lpR←

R
∗

.
(P ∨ t = t0)

(∗)

⊢
.
P
(∗)

t = t0, ⟨x ′ = f (x )& P ∨ t = t0 ⟩◦ ⊢
.
P
(∗)

For the “→” direction, we first use (4) to rewrite the progress for-
mula in the antecedents. However, since t = t0, we cut in P ∨ t = t0,
which allows us to complete the proof with lpR→.

R

cut

lpR→
∗

t = t0, P ∨ t = t0,
.

(P ∨ t = t0)
(∗)

⊢ ⟨x ′ = f (x )& P ∨ t = t0 ⟩◦

t = t0,
.

(P ∨ t = t0)
(∗)

⊢ ⟨x ′ = f (x )& P ∨ t = t0 ⟩◦

t = t0,
.
P
(∗)

⊢ ⟨x ′ = f (x )& P ∨ t = t0 ⟩◦

□

B.3 Proving Semialgebraic Invariants with Semialgebraic
Evolution Domain Constraints

As a consequence of lpR←, we now have the following general
version of sAI, which also handles the evolution domain constraints.

Theorem B.6 (Semialgebraic invariants with semialgebraic do-
mains). For semialgebraic Q, P ,¬Q,¬P , all written in normal form,
the following rule (with two stacked premises) is sound and derives
from the dL calculus extended with RInd&,Cont,Uniq.

sAI&

t = t0, P ,Q,
.
Q
(∗)
⊢

.
P
(∗)

t = t0,¬P ,Q,
.
Q
(−∗)
⊢

.
(¬P)

(−∗)

P ⊢ [x ′ = f (x)&Q]P

Proof. This follows directly from rInd&, by rewriting the progress
condition in the antecedents of its premises with lpR←, and proving
their succedents using lpR→. □

B.4 Completeness for Semialgebraic Invariants with
Semialgebraic Evolution Domain Constraints

We now prove the completeness theorem for sAI&, from which
Theorem 6.7 follows as a special case. This proof uses a mix of a
syntactic derivation, and a minor semantic argument. The semantic
part of this argument is straightforward. The essential idea is that
solutions of the differential equations x ′ = f (x) are the reversed
solutions of x ′ = −f (x) and vice-versa. This property underlies
the “there and back again" axiom for dL which equivalently ex-
presses properties of differential equations with evolution domain
constraints in terms of properties of forwards and backwards differ-
ential equations without evolution domain constraints [13]. We can
also internalize this property with the differential adjoints axiom,
as we do in [16]. Consequently, it is possible to prove a form of the
completeness theorem purely syntactically, however, we omit the
additional formal development for this paper.

Theorem B.7 (Semialgebraic invariant completeness with semial-
gebraic domains). Let P ,Q be semialgebraic formulas. The dL calcu-
lus is complete for invariance properties of the form:

P ⊢ [x ′ = f (x)&Q]P

Proof. We may, without loss of generality, assume that P ,Q (and
¬P ,¬Q) are equivalently rewritten into appropriate normal forms
when necessary by an application of rule R. To show that the cal-
culus is complete, we shall prove that the premises of sAI& are
necessary, i.e., if there are states that do not satisfy the premises of
sAI&, then the conclusion P ⊢ [x ′ = f (x)&Q]P is not valid.

Using the characterization of local progress, we first derive the
following valid formula (labelled 1○):

t = t0 ∧ P ∧Q ∧
.
Q
(∗)
∧ ¬(

.
P
(∗)
) → ⟨x ′ = f (x)&Q⟩¬P

In the first step, we apply Proposition B.3. This is followed by using
lpR↔ on ¬P , and lpR→ on Q . Note that we only use lpR→ on Q
and not lpR↔.

R

lpR↔

lpR→

&∧
⟨x ′ = f (x )&Q ∧ (¬P ∨ t = t0)⟩◦ ⊢ ⟨x ′ = f (x )&Q ⟩¬P

⟨x ′ = f (x )&¬P ∨ t = t0 ⟩◦, ⟨x ′ = f (x )&Q ⟩◦ ⊢ ⟨x ′ = f (x )&Q ⟩¬P

t = t0, Q,
.
Q
(∗)

, ⟨x ′ = f (x )&¬P ∨ t = t0 ⟩◦ ⊢ ⟨x ′ = f (x )&Q ⟩¬P

t = t0, Q,
.
Q
(∗)

,
.
(¬P )

(∗)

⊢ ⟨x ′ = f (x )&Q ⟩¬P

t = t0, P, Q,
.
Q
(∗)

, ¬(
.
P
(∗)

) ⊢ ⟨x ′ = f (x )&Q ⟩¬P

The remainder of the derivation is similar to what we did for al-

gebraic invariants. Since

R︷                ︸︸                ︷
Q ∧ (¬P ∨ t = t0) → Q , we use ⟨·⟩dRW

to strengthen the evolution domain constraint in the succedent.
This allows us to use M⟨·⟩, whose right premise closes trivially.
Removing the syntactic abbreviation for ◦ allows us to close the
premise using dW, because we have ¬P ∨ t = t0 in the domain
constraint R.

∗
R R ⊢ (t , t0 → ¬P )
dW ⊢ [x ′ = f (x )&R](t , t0 → ¬P )
M⟨·⟩ ⟨x ′ = f (x )&R ⟩◦ ⊢ ⟨x ′ = f (x )&R ⟩¬P
⟨·⟩dRW⟨x ′ = f (x )&R ⟩◦ ⊢ ⟨x ′ = f (x )&Q ⟩¬P

Now, let ω be a state which falsifies the left premise of sAI&, i.e.,

ω ∈ I [[t = t0 ∧ P ∧ Q ∧
.
Q
(∗)
]], but ω < I [[

.
P
(∗)
]]. By unfolding the

semantics, we have ω ∈ I [[¬(
.
P
(∗)
)]], and therefore, since 1○ is valid

in all states, we have ω ∈ I [[⟨x ′ = f (x)&Q⟩¬P]]. In other words, ω
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falsifies the conclusion of sAI&. Hence, the left premise of sAI& is
necessary.

Similarly, let ν be a state which falsifies the right premise of

sAI&, i.e., ν ∈ I [[t = t0,¬P ,Q,
.
Q
(−∗)
]], but ν < I [[

.
(¬P)

(−∗)
]]. By a

similar argument with 1○ (appropriately instantiated), we have:

ν ∈ I [[⟨x ′ = −f (x)&Q⟩P]]

This does not immediately falsify the conclusion of sAI&. Instead,
by definition, there is a solution φ : [0,T ] → S, of the system
x ′ = −f (x), with φ(0) = ν except on {x ′}∁, where φ(T ) ∈ I [[P]].

We claim that φ(T ) falsifies the conclusion of sAI&. Let us con-
sider the time-reversed solutionψ :

ψ (τ )(z)
def
=

{
φ(T − τ )(z) z ∈ {x ′}∁

−φ(T − τ )(z) z ∈ {x ′}

Notice that ψ (0) agrees with φ(T ) except on {x ′}∁. Moreover, it
solves the system x ′ = f (x) and stays in evolution domain Q for
its entire duration. Finally, ψ (T ) agrees with ν , except on {x ′}∁,
which, by coincidence for formulas [15, Lemma 11], implies that
ψ (T ) ∈ I [[¬P]] (recall, that P only depends on x). Therefore,ψ is a
witness for φ(T ) ∈ I [[⟨x ′ = f (x)&Q⟩¬P]]. Hence, φ(T ) falsifies the
conclusion of sAI&, and so the right premise is also necessary. □

C Completed Proofs
We give full proofs for all remaining lemmas and theorems that
have not already been proved in previous appendices where we
developed the axiomatization (AppendixA) or derived the complete
proof rule for semialgebraic invariants (Appendix B).

C.1 Darboux Inequalities
We derive the dbx≳ rule. Its proof is similar to the one for dbx.

Proof of Lemma 3.3. Let 1○ denote the use of the premise of dbx≳,
and 2○ abbreviate the right premise in the following derivation.

dG

M[·],∃R
dC
p≳0, y>0 ⊢ [x ′ = f (x ), y′ = −дy &Q ∧ y > 0]py ≳ 0 2○
p ≳ 0, y > 0 ⊢ [x ′ = f (x ), y′ = −дy &Q ](y > 0 ∧ py ≳ 0)

p ≳ 0 ⊢ ∃y [x ′ = f (x ), y′ = −дy &Q ]p ≳ 0
p ≳ 0 ⊢ [x ′ = f (x )&Q ]p ≳ 0

Note the minor variation in the proof: the last step above uses dC
instead of [·]∧, which introduces y > 0 into the evolution domain
constraint in the left premise. This sign condition on y is crucially
used when we apply 1○ in the proof for the left premise:

∗

Rp≳0, y>0 ⊢ py ≳ 0
1○

∗

R .
p ≥ дp, y > 0 ⊢

.
py − дyp ≥ 0

cutQ, y > 0 ⊢
.
py − дyp ≥ 0

dI p≳0, y>0 ⊢ [x ′ = f (x ), y′ = −дy &Q ∧ y > 0]py ≳ 0

The choice of the differential ghost y′ = −дy is obtained by solv-
ing the top condition for y′. The right premise 2○ is:

y > 0 ⊢ [x ′ = f (x),y′ = −дy &Q]y > 0

Its proof continues using a second ghost z′ = д
2 z. This allows us to

prove yz2 = 1 invariant, which implies y > 0 in the postcondition:
∗

R Q ⊢ −(дy)z2 + y(2z( д2 z)) = 0
dI yz2 = 1 ⊢ [x ′ = f (x ), y′ = −дy, z′ = д

2 z &Q ]yz2 = 1
M[·],∃R y > 0 ⊢ ∃z [x ′ = f (x ), y′ = −дy, z′ = д

2 z &Q ]y > 0
dG y > 0 ⊢ [x ′ = f (x ), y′ = −дy &Q ]y > 0

□

C.2 Differential Radical Invariants
We derive the dRI proof rule.

Proof of Theorem 4.2. Letp be a polynomial satisfying both premises
of the dRI proof rule, and let

p def
=

©«
p
.
p
(1)

...
.
p
(N−1)

ª®®®®®¬
We have pi

def
=

.
p
(i−1) for i = 1, 2, . . . ,N . If we take the component-

wise Lie derivative of p, we have: ( .p)i = Lf (x )(pi ) =
.
p
(i).

We start by setting up for a proof by vdbx. On the left premise
after the cut, we used the arithmetic equivalence

∧N−1
i=0

.
p
(i)
= 0↔

p = 0, to rewrite the succedent to the left premise of dRI.

Γ, Q ⊢
∧N−1
i=0

.
p
(i )
= 0

RΓ, Q ⊢ p = 0
p = 0 ⊢ [x ′ = f (x )&Q ]p = 0

M[·]p = 0 ⊢ [x ′ = f (x )&Q ]p = 0
cut Γ, Q ⊢ [x ′ = f (x )&Q ]p = 0
dI Γ ⊢ [x ′ = f (x )&Q ]p = 0

We continue on the right premise by applying vdbx with the
following special choice of G, with 1 on its superdiagonal, and the
дi cofactors in the last row:

vdbx

Q ⊢
.
p =

G︷                                             ︸︸                                             ︷©«

0 1 0 . . . 0

0 0
. . .

. . .
.
.
.

.

.

.
.
.
.

. . .
. . . 0

0 0 . . . 0 1
д0 д1 . . . дN−2 дN−1

ª®®®®®®®®¬
p

p = 0 ⊢ [x ′ = f (x )&Q ]p = 0

The succedent of the open premise requires us to prove a component-
wise equality on two vectors, i.e., ( .p)i = (Gp)i for 1 ≤ i ≤ N . For
1 ≤ i < N , explicit matrix multiplication yields:

(
.
p)i =

.
p
(i)
= 1 ·

.
p
(i)
= 1 · (p)i+1 = (Gp)i

Therefore, all but the final component-wise equality prove trivially
by R. The remaining premise is:

Q ⊢ (
.
p)N = (Gp)N

The LHS of this equality simplifies to:

(
.
p)N =

.
p
(N )

The RHS simplifies to:

(Gp)N =
N∑
i=1

дi−1(p)i =
N∑
i=1

дi−1
.
p
(i−1)

=

N−1∑
i=0

дi
.
p
(i)

Therefore, by an arithmetic step, we equivalently reduce the re-
maining open premise to the right premise of dRI. □

C.3 Semialgebraic Case
We prove local progress for the general case where P is a semialge-
braic formula in normal form (2).

Proof of Lemma 6.5. Throughout this proof, we will collapse similar
premises in derivations and index them by i, j. We first decompose
the outermost conjunction in P with ∧L for the antecedents, and
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&∧ for the evolution domain constraint. We write Pi for the i-th
conjunct of P .

&∧,∧L
Γ, P, Pi ⊢ ⟨x ′ = f (x )& Pi ⟩◦
Γ, P ⊢ ⟨x ′ = f (x )& P ⟩◦

Each Pi is a disjunctive formula:
∨m(i)
j=0 pi j = 0 ∨

∨n(i)
j=0 qi j > 0. It

will be sufficient for us to show local progress for just one of these
disjuncts, and then use ⟨·⟩dRW to conclude local progress for Pi .

We continue by case splitting on Pi in the antecedent with ∨L.
For the case with

∨n(i)
j=0 qi j > 0, we close using conto . This leaves

the
∨m(i)
j=0 pi j = 0 cases abbreviated by 1○.

1○
∗

conto ,⟨·⟩dRW∨n(i )
j=0 qi j > 0 ⊢ ⟨x ′ = f (x )& Pi ⟩◦

∨LΓ, P, Pi ⊢ ⟨x ′ = f (x )& Pi ⟩◦

We continue on 1○ by cutting in the corresponding i-th conjunct
of the premise of lpR, and then case splitting on the cut premise.
In the

.
pi j
(∗)
= 0 cases, we use ⟨·⟩dRI. The cases for .

qi j
(∗)
> 0 are

abbreviated with 2○:

cut

∨L

⟨·⟩dRI,⟨·⟩dRW
∗

.
pi j
(∗)
= 0 ⊢ ⟨x ′ = f (x )& Pi ⟩◦

2○

∨m(i )
j=0 pi j = 0,

∨m(i )
j=0

.
pi j
(∗)
= 0 ∨

∨n(i )
j=0

.
qi j
(∗)

> 0 ⊢ ⟨x ′ = f (x )& Pi ⟩◦

Γ, P,
∨m(i )
j=0 pi j = 0 ⊢ ⟨x ′ = f (x )& Pi ⟩◦

Finally, for 2○, we rewrite the antecedents and domain constraint
with

∨m(i)
j=0 pi j = 0↔

∏m(i)
j=0 pi j = 0which is a valid real arithmetic

equivalence. We then complete the proof with lp=∨> .

cut,R

⟨·⟩dRW,R

lp=∨>
∗∏m(i )

j=0 pi j = 0, .
qi j
(∗)

> 0 ⊢
〈
x ′ = f (x )&

∏m(i )
j=0 pi j = 0 ∨ qi j > 0

〉
◦∏m(i )

j=0 pi j = 0, .
qi j
(∗)

> 0 ⊢ ⟨x ′ = f (x )& Pi ⟩◦∨m(i )
j=0 pi j = 0, .

qi j
(∗)

> 0 ⊢ ⟨x ′ = f (x )& Pi ⟩◦

□
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