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Abstract. Hybrid systems, i.e., dynamical systems combining discrete
and continuous dynamics, have a complete axiomatization in differential
dynamic logic relative to differential equations. Differential invariants
are a natural induction principle for proving properties of the remaining
differential equations. We study the equational case of differential invari-
ants using a differential operator view. We relate differential invariants
to Lie’s seminal work and explain important structural properties re-
sulting from this view. Finally, we study the connection of differential
invariants with partial differential equations in the context of the inverse
characteristic method for computing differential invariants.

1 Introduction

Hybrid systems [IJT1] are dynamical systems that combine discrete and contin-
uous dynamics. They are important for modeling embedded systems and cyber-
physical systems. Reachability in hybrid systems is neither semidecidable nor
co-semidecidable [I1]. Nevertheless, hybrid systems have a complete axiomati-
zation relative to elementary properties of differential equations in differential
dynamic logic dZ [I8I21]. Using the proof calculus of dZ, the problem of proving
properties of hybrid systems reduces to proving properties of continuous systems.

It is provably the case that the only challenge in hybrid systems verification
is the need to find invariants and variants [I8I2]; the handling of real arith-
metic is challenging in practice [27], even if it is decidable in theory [2], but
this is not the focus of this paper. According to our completeness results [I8J21],
we can equivalently focus on either only the discrete or on only the continu-
ous dynamics, because both are equivalently and constructively interreducible,
proof-theoretically. Thus, we can equivalently consider the need to prove proper-
ties of differential equations as the only challenge in hybrid systems verification.
Since the solutions of most differential equations fall outside the usual decid-
able classes of arithmetic, or do not exist in closed form, the primary means
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for proving properties of differential equations is induction [19]. In retrospect,
this is not surprising, because our constructive proof-theoretical alignment [21]
shows that every proof technique for discrete systems lifts to continuous systems
(and vice versa). Since most verification principles for discrete systems are based
on some form of induction, this means that induction is possible for differential
equations. Differential invariants are such an induction principle. We have intro-
duced differential invariants in 2008 [19], and later refined them to a procedure
that computes differential invariants in a fixed-point loop [24125]. Differential in-
variants are also related to barrier certificates [29], equational templates [30], and
a constraint-based template approach [§]. The structure and theory of general
differential invariants has been studied in previous work in detail [23].

In this paper, we focus on the equational case of differential invariants. We
show that the equational case of differential invariants and similar approaches
is already subsumed by Lie’s seminal work [T4UT5/T617] in the case of open do-
mains. On open (semialgebraic) domains, Lie’s approach gives an equivalence
characterization of (smooth) invariant functions. This almost solves the differ-
ential invariance generation problem for the equational case completely. It turns
out, however, that differential invariants and differential cuts may still prove
properties indirectly that the equivalence characterization misses. We carefully
illustrate why that is the case. We investigate structural properties of invariant
functions and invariant equations. We prove that invariant functions form an al-
gebra and that, in the presence of differential cuts provable invariant equations
and valid invariant equations form a chain of differential ideals, whose varieties
are generated by a single polynomial, which is the most informative invariant.

Furthermore, we study the connection of differential invariants with partial
differential equations. We explain the inverse characteristic method, which is the
inverse of the usual characteristic method for studying partial differential equa-
tions in terms of solutions of corresponding characteristic ordinary differential
equations. The inverse characteristic method, instead, uses partial differential
equations to study solutions of ordinary differential equations. What may, at
first, appear to idiosyncratically reduce the easier problem of ordinary differen-
tial equations to the more complicated one of partial differential equations, turns
out to be very useful, because it relates the differential invariance problem to
mathematically very well-understood partial differential equations.

Even though our results generalize to arbitrary smooth functions, we focus on
the polynomial case in this paper, because the resulting arithmetic is decidable.

For background on logic for hybrid systems, we refer to previous work [I820/22].

2 Differential Dynamic Logic (Excerpt)

Continuous dynamics described by differential equations are a crucial part of
hybrid system models. An important subproblem in hybrid system verification
is the question whether a system following a (vectorial) differential equation
z' = 6 that is restricted to an evolution domain constraint region H will always
stay in the region F. We represent this by the modal formula [z’ = 6 & H|F. It
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is true at a state v if, indeed, a system following x’ = 6 from v will always stay
in F at all times (at least as long as the system stays in H). It is false at v if
the system can follow 2’ = 0 from v and leave F' at some point in time, without
having left H at any time. Here, F' and H are (quantifier-free) formulas of real
arithmetic and 2’ = 6 is a (vectorial) differential equation, i.e., z = (z1,...,2,)
is a vector of variables and 6 = (6y,...,6,) a vector of polynomial terms; for
extensions to rational functions, see [19]. In particular, H describes a region
that the continuous system cannot leave (e.g., because of physical restrictions of
the system or because the controller otherwise switches to another mode of the
hybrid system). In contrast, F' describes a region which we want to prove that
the continuous system z’ = # & H will never leave.

This modal logical principle extends to a full dynamic logic for hybrid sys-
tems, called differential dynamic logic dC [I820021]. Here we only need first-order
logic and modalities for differential equations. For our purposes, it is sufficient
to consider the d£ fragment with the following grammar (where x is a vector of
variables, 6 a vector of terms of the same dimension, and F, H are formulas of
(quantifier-free) first-order real arithmetic over the variables x):

¢ n= F|=p| oA [V [ =Yoo |Vag|Tag | 2" =0&HF
A state is a function v : V' — R that assigns real numbers to all variables in the
set V ={x1,...,2,}. We denote the value of term 6 in state v by v[6]. The
semantics is that of first-order real arithmetic with the following addition:

v = [¢' = 0 & H]F iff for each function ¢ : [0,7] = (V — R) of some duration r
we have ¢(r) |= F under the following two conditions:

1. the differential equation holds, i.e., for each variable z; and each ¢ € [0, 7]:
do(t)[z:]
T(C) = (¢)[0:]

2. and the evolution domain is respected, i.e., ¢(¢) = H for each ¢ € [0,7].

The following simple d£ formula is valid (i.e., true in all states):
, 1
x>5— [z =§$]$>O

It expresses that = will always be positive if x starts with x > 5 and follows

2’ = 1z for any period of time.

3 Differential Equations and Differential Operators

In this section, we study differential equations and their associated differential
operators. Only properties of very simple differential equations can be proved
by working with their solutions, e.g., linear differential equations with constant
coefficients that form a nilpotent matrix [I§].

Differential Operators. More complicated differential equations need a dif-
ferent approach, because their solutions may not fall into decidable classes of
arithmetic, are not computable, or may not even exist in closed form. As a
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proof technique for advanced differential equations, we have

introduced differential invariants [19]. Differential invariants —F E

turn the following intuition into a formally sound proof pro-

cedure. If the vector field of the differential equation always

points into a direction where the differential invariant F,

which is a logical formula, is becoming “more true” (see

Fig.[l), then the system will always stay safe if it initially pig, 1.

starts safe. This principle can be understood in a simple but Differential
formally sound way in the logic d£ [19J20]. Differential in- invariant F
variants have been introduced in [I9] and later refined to a

procedure that computes differential invariants in a fixed-point loop [24]. Instead
of our original presentation, which was based on differential algebra, total deriva-
tives, and differential substitution, we take a differential operator approach here.
Both views are fruitful and closely related.

Definition 1 (Lie differential operator). Let 2/ = 0 be the differential equa-
tion system x| = 01,...,2,, =0, in vectorial notation. The (Lie) differential
operator belonging to ' = 0 is the operator 6 -V defined as

e 0 0
0. v”Ze =l g (1)
The {3%1, cee %} are partial derivative operators, but can be considered as a

basis of the tangent space at x of the manifold on which z’ = 6 is defined. The
result of applying the differential operator 6 - V to a differentiable function f is

of _, of of
O-V)f = Ze . 9151 "+9”8xn

The differential operator lifts conjunctively to logical formulas F":

O-VFE N\ ((0-V)b~(0-V)c)

(b~e) in F

This conjunction is over all atomic subformulas b ~ ¢ of F' for any operator
~ € {=,>,>,<,<}. In this definition, we assume that formulas use dualities
like =(a > b) = a < b to avoid negations and the operator # is handled in a
special way; see previous work for a discussion [19J22]. The functions and terms
in f and F need to be sufficiently smooth for the partial derivatives to be defined
and enjoy useful properties like commutativity of % and 8%. This is the case
for polynomials, which are arbitrarily smooth (C).

Since the differential operator 6 -V is a combination of the total deriva-
tive and differential substitution, we have elsewhere [19/22] denoted the result
(0 - V)F of applying 0 -V to a logical formula F by F’Z/. The latter notation
is also appropriate, because (6 V)F = F’Z, can, indeed, be formed by taking
the total derivative F’ and then substituting in the right-hand side 6 of the dif-
ferential equation to replace its left-hand side 2/, the result of which is denoted
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F',. Tt is insightful [19] to give a semantics to F’, because that is the key to
proving advanced differential transformations [I9], but beyond the scope of this
paper. We refrain from using this alternative notation in this paper, because we
want to emphasize the differential operator nature of the combined derivative
and differential substitution. In this notation, our differential induction proof
rule [19] is:

H—(0-V)F
Fo[a =0& HIF

(DD)

This differential induction rule is a natural induction principle for differential
equations. The difference compared to ordinary induction for discrete loops is
that the evolution domain constraint H is assumed in the premise (because the
continuous evolution is not allowed to leave its evolution domain constraint) and
that the induction step uses the differential formula (6 - V)F corresponding to
formula F' and the differential operator 6 - V belonging to the differential equa-
tion 2’ = 0 instead of a statement that the loop body preserves the invariant.
Intuitively, the differential formula (6 - V)F captures the infinitesimal change of
formula F' over time along 2’ = 6, and expresses the fact that F' is only getting
more true when following the differential equation x’ = 6. The semantics of dif-
ferential equations is defined in a mathematically precise but computationally
intractable way using analytic differentiation and limit processes at infinitely
many points in time. The key point about differential invariants is that they
replace this precise but computationally intractable semantics with a computa-
tionally effective use of a differential operator. The valuation of the resulting
computable formula (6 V)F along differential equations coincides with ana-
lytic differentiation [19]. The term (6 - V)p characterizes how p changes with
time along a solution of 2’ = 6.

Lemma 2 (Derivation lemma). Let 2’ = 0 & H be a differential equation with
evolution domain constraint H and let ¢ : [0,7] = (V — R) be a corresponding
solution of duration r > 0. Then for all terms p and all ¢ € [0,7]:

LWL ) — o(oy10- vl -

Proof. This lemma can either be shown directly or by combining the derivation
lemma [19, Lemma 1] with differential substitution [19, Lemma 2]. O

The rule [DI for differential invariance is computationally very attractive,
because it replaces the need to reason about complicated solutions of differential
equations with simple symbolic computation and arithmetic on terms that are
formed by differentiation, and, hence, have lower degree. The primary challenge,
however, is to find a suitable F for a proof.

Equational Differential Invariants. General formulas with propositional
combinations of equations and inequalities can be used as differential invari-
ants. For the purposes of this paper, we focus on the equational case in more
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detail, which is the following special case of [DIt

H—(0-V)p=0
p=0—[2'=0&H]|]p=0

(DL)

This equational case of differential invariants turns out to be a special case of
Lie’s seminal work on what are now called Lie groups [I5/16]. Since 6 and p are
(sufficiently) smooth, we can capture Lie’s theorem [I7, Proposition 2.6] as a d_
proof rule to make the connection to [DI_] more apparent.

Theorem 3 (Lie [I5/16]). Let 2’ = 6 be a differential equation system and H a
domain, i.e., a first-order formula of real arithmetic characterizing an open set.
The following proof rule is a sound global equivalence rule, i.e., the conclusion
1s valid if and only if the premise is.

H—0-V)p=0
(p=c—[2'=0&H]p=c)

(PL)

That is, the following dC axiom is sound, i.e., all of its instances valid
VeVe(p=c—[2' =0&Hlp=c) <> Vo (H—(0-V)p=0)

Proof (Sketch). We only sketch a proof for the soundness direction of [DI] and re-
fer to [ISITOULITITY] for a full proof. Suppose there was a ¢ with ¢(¢)[p] # ©(0)[p],
then, by mean-value theorem, there is a £ < ¢ such that, when using Lemmal[2}

0% 0(Q)18] - el = (¢ 02 ) — coeyp0- D

Thus, ©(£)[(6 - V)p] # 0, which contradicts the premise (when H = true). O

Note that domains are usually assumed to be connected. We can reason sep-
arately about each connected component of H, which are only finitely many,
because our domains are first-order definable in real-closed fields [31]. Observe
that the conclusion of [DI] implies that of [DI_] by instantiating ¢ with 0.

Corollary 4 (Decidability of invariant polynomials). [t is decidable, whether
a polynomial p with real algebraic coefficients is an invariant function for a given
x' =0 on a (first-order definable) domain H (i.e., the conclusion of [DI] holds).
In particular, the set of polynomials with real algebraic coefficients that are in-
variant for ' = 0 is recursively enumerable.

This corollary depends on the fact that real algebraic coefficients are countable.
A significantly more efficient version of the recursive enumerability is obtained
when using symbolic parameters as coefficients in a polynomial p of increasing
degree and using the fact that the equivalence in Theorem[d] is valid for each
choice of p. In particular, when p is a polynomial with a vector a of symbolic
parameters, then, by Theorem[3] the following dC formula is valid

JaVz Ve (p=c— [2' =0& H]p = c) <> JaVz (H—(0 - V)p =0) (2)
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The right-hand side is decidable in the first-order theory of real-closed fields [31].
Hence, so is the left-hand side, but the approach needs to be refined to be useful.

This includes a logical reformulation of the so-called direct method, where
the user guesses an Ansatz p, e.g., as a polynomial with symbolic parameters a
instead of concrete numbers as coefficients, and these parameters are instantiated
as needed during the attempt to prove invariance of p. In dZ, we do not need
to instantiate parameters a, because it is sufficient to prove existence, for which
there are corresponding df proof principles [I8]. Other constraints on p need
to be considered, however, e.g., that p = 0 holds in the initial state and p = 0
implies the desired postcondition. Otherwise, the instantiation of a that yields
the zero polynomial would be a solution for (2)), just not a very insightful one.
For example, let dC formula A characterize the initial state and d formula B
be the postcondition for a continuous system z’ = 6 & H. Then validity of the
following (arithmetic) formula

JaVe (H—=@0-V)p=0A(A—=p=0)A(HAp=0— B) (3)
implies validity of the d£ formula
A— 2 =0&H|B

Formula is decidable if A and B are first-order real arithmetic formulas.
Otherwise, the full d calculus is needed to prove . Existential quantifiers for
parameters can be added in more general ways to dC formulas with full hybrid
systems dynamics to obtain an approach for generating invariants for proving
more general properties of hybrid systems [24I25]. The Ansatz p can also be
varied automatically by enumerating one polynomial with symbolic coefficients
for each (multivariate) degree. This direct method can be very effective, and is
related to similar approaches for deciding universal real-closed field arithmetic
[27], but, because of the computational cost of real arithmetic [7l4], stops to be
efficient for complicated high-dimensional problems. In this paper, we analyze the
invariance problem further to develop a deeper understanding of its challenges
and ways of solving it.

Since [DI]is an equivalence, Theorem[3] and its corollary may appear to solve
the invariance problem (for equations) completely. T heorem is a very powerful
result, but there are still many remaining challenges in solving the invariance
problem as we illustrate in the following.

Counterexample 5 (Deconstructed aircraft). The following d£ formula is valid.
It is a much simplified version of a formula proving collision freedom for an air
traffic control maneuver [19126]. We have transformed the differential equations
to a physically less interesting case that is notationally simpler and still exhibits
similar technical phenomena as those that occur in air traffic control verification.

P ryi=1ne=a=r = —yy = =—y|(@>+1y° =1Ne=2) (4)

This dC formula expresses that an aircraft with position (z,y) will always be
safely separated from the origin (0, 0), here, by exactly distance 1 to make things
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easier. Formula also expresses that the aircraft always is in a compatible y-
direction e compared to its position (z,y). In the full aircraft scenario, there is
more than one aircraft, each aircraft has more than one direction variable, the
relation of the directions to the positions is more complex, and the distance of
the aircraft to each other is not fixed at 1, it can be any distance bigger than
a protected zone, etc. Yet the basic mathematical phenomena when analyzing
are similar to those for full aircraft [I9)26], which is why we focus on (@) for
notational simplicity. Unfortunately, when we try to prove the valid dC formula
by a Lie-type differential invariance argument, the proof fails

not valid

—2zy + 2ey =0
(—y)2x+e2y=0A—y=—y

_ya(w;:yz) + ea(acZ;ryz) —0A—yle = —yi=

P2 42 = 1ne =2 —[e' = —y,y = e, = —y)(a® +y> = 1 e =1)

This is, at first, surprising, since Theorem[3]is an equivalence, but the conclusion
is valid and, yet, the proof does not close. On second thought, the postcon-
dition is a propositional combination of equations instead of the single equation
assumed in[DI]and [DI_] This discrepancy might have caused Theorem[3|to fail.
That is not the issue, however, because we have shown that the deductive power
of equational differential invariants equals the deductive power of propositional
combinations of equations [I9, Proposition 1][23, Proposition 5.1]. That is, ev-
ery formula that is provable using propositional combinations of equations as
differential invariants is provable with single equational differential invariants.

Proposition 6 (Equational deductive power [19423]). The deductive power
of differential induction with atomic equations is identical to the deductive power
of differential induction with propositional combinations of polynomial equations:
That is, each formula is provable with propositional combinations of equations as
differential invariants iff it is provable with only atomic equations as differential
moariants.

Using the construction of the proof of Proposition[f] on the situation in Coun-
terexample[5] we obtain the following counterexample.

Counterezample 7 (Deconstructed aircraft atomic). The construction in the (con-
structive) proof of Proposition@ uses an equivalence, here, the following:

Py =1ne=c=@*+y* -1 +(e—2)=0

The right-hand side of the equivalence is a valid invariant and now a single
polynomial as assumed in Theorem[3] but [DL] and [DI] still do not prove it,
even though the desired conclusion is valid (because it follows from (4]) by axiom
K and Godel’s generalization [21]):
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not valid

2(x? +y? — 1)(—2yzx + 2ey) = 0

2(2” +y* — 1) (—y2z +e2y) +2(e — z)(~y — (~y)) =0

(—yg +em —y) (P +y° - 1)’ +(e—2)?) =0
PHa?+y7—1)" + (e=2)” = 0 = [¢' = —y,y = e, = —y](2” +y* — 1)’ + (e —2)* =0

How can that happen? And what can we do about it? The key to understand-

ing this is the observation that we could close the above proof if only we knew
that e = x, which is part of the invariant we are trying to prove in this proof
attempt. Note that the relation of the variables in the air traffic control maneu-
ver is more involved than mere identity. In that case, a similar relation of the
state variables still exists, involving the angular velocity, positions, and multidi-
mensional directions of the aircraft. This relation is crucial for a corresponding
proof; see previous work [19/26].

We could close the proof attempt in Counterexample[7] if only we could as-
sume in the premise the invariant F' that we are trying to prove. A common
mistake is to suspect that F' (or the boundary of F') could, indeed, be assumed
in the premise when proving invariance of F' along differential equations. That
would generally be unsound even though it has been suggested [28]].

Counterexample 8 (No recursive assumptions). The following counterexample

shows that it is generally unsound to assume invariants like F = 22 — 6z +9 =0
in the antecedent of the induction step for equational differential invariants

unsound

22 —6x+9=0—-9y2x—6y=0

(x> —6249) 8(x2—6x+9)
Oz -z dy =0

22 —62+9=0—="=y,y =—x]2? —6x+9=0

22— 62 +9=0—y

We have previously identified [19] conditions under which F' can still be assumed
soundly in the differential induction step. Those conditions include the case
where F' is open or where the differential induction step can be strengthen to
an open condition with strict inequalities. Unfortunately, these cases do not
apply to equations, which are closed and rarely satisfy strict inequalities in the
differential induction step. In particular, we cannot use those to close the proof
in Counterexample[7]

Differential Cuts. As an alternative, we have introduced differential cuts [19].
Differential cuts [19] are a fundamental proof principle for differential equations.
They can be used to strengthen assumptions in a sound way:

Fola' =0& HIC  F—[a' =0& (HAC)|F

(DC) F—lzs' =0& H|F
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The differential cut rule works like a cut, but for differential equations. In the
right premise, rule restricts the system evolution to the subdomain H A C
of H, which restricts the system dynamics to a subdomain but this change is
a pseudo-restriction, because the left premise proves that the extra restriction
C on the system evolution is an invariant anyhow (e.g. using rule [DI)). Note
that rule is special in that it changes the dynamics of the system (it adds
a constraint to the system evolution domain region that the resulting system is
never allowed to leave), but it is still sound, because this change does not reduce
the reachable set. The benefit of rule is that C will (soundly) be available
as an extra assumption for all subsequent [DI] uses on the right premise of
In particular, the differential cut rule [DC| can be used to strengthen the right
premise with more and more auxiliary differential invariants C' that cut down the
state space and will be available as extra assumptions to prove the right premise,
once they have been proven to be differential invariants in the left premise.

Using differential cuts repeatedly in a process called differential saturation
has turned out to be extremely useful in practice and even simplifies the invariant
search, because it leads to several simpler invariants to find and prove instead
of a single complex property [24I25/20]. Differential cuts helped us find proofs
for collision avoidance protocols for aircraft [19/26]. Following the same principle
in the simplified case of deconstructed aircraft, we finally prove the separation
property by a differential cut. The differential cut elimination hypothesis,
i.e., whether differential cuts are necessary, has been studied in previous work
[23] and will be discussed briefly later.

Ezample 9 (Differential cuts help separate aircraft). With the help of a differ-
ential cut by e = z, we can now prove the valid dC formula 7 which is a
deconstructed variant of how safe separation of aircraft can be proved. For lay-
out reasons, we first show the left premise resulting from

*
I3
—Yy=-Y
DL e=z = =—yy =ce =—yle=zx >

P24y =1ne=a2 =t/ = —y,y =e,¢ = —y|(a® +y* =1 Ae =)

and then show the proof of the right premise of resulting from the hidden
branch (indicated by > above):

*

e=x — —2yr+2xy =0

e=x —(—y)2x+e2y=0
e=x — — ya(x;:f) + ea(I;’;f) =0

mz2+y2:1/\e:x—>[m’:—y,y’:e,e’z—y&ezx](x2+y2:1/\e:ac)

Finally, we have a proof of even if it took more than Theorem to prove it.
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Another challenge in invariance properties of differential equations the fol-
lowing. Theorem[3] is sufficient, i.e., the premise of [DI] implies the conclusion
even if H is not a domain. But the converse direction of necessity may stop to
hold, because the conclusion might hold only because all evolutions immediately
leave the evolution domain H.

Counterexample 10 (Equivalence requires domain). The following counterexam-
ple shows that the equivalence of [DI] requires H to be a domain
not valid
y=0—2=0
y=0 %(2%4—3%)‘%:0
Vc(x:c% [ =2,y :3&y:0]x:c)

Here, the (closed) restriction y = 0 has an empty interior and y’ = 3 leaves it
immediately. The fact that the evolution leaves y = 0 immediately is the only
reason why x = c is an invariant, which would otherwise not be true, because
z' = 2 leaves x = ¢ when evolving for any positive duration. That is why the
above premise is not valid even if the conclusion is. Consequently, [DI] can miss
some invariants if H is not a domain. Similar phenomena occur when H has a
non-empty interior but is not open.

In the proof of Example[d] after the differential cut (DC) with e = x, the re-
fined evolution domain constraint is not a domain anymore, which may appear
to cause difficulties in the reasoning according to Counterexample[I0}] Whether
evolution domain restrictions introduced by differential cuts are domains, how-
ever, is irrelevant, because the left premise of just proved that the differential
equation (without the extra constraint C') never leaves C, which turns C' into a
manifold on which differentiation is well-defined and Lie’s theorem applies.

Ezample 11 (Indirect single proof proof of aircraft separation). We had originally
conjectured in 2008 [19] that the differential cuts as used in Example[9| and for
other aircraft dynamics are necessary to prove these separation properties. We
recently found out, however, that this is not actually the case [23]. The following
proof of uses a single differential induction step and no differential cuts:

*

= —y2e+e2y=0AN—-y=—y

o(e*+y*) ae*+y?) _ de _ P
Y=~ te——5, - =0AN-yz. = -y

Dhe? 42 =1ne=a [/ = —y,y = e, = —y)(?+y* = 1ne=21)

Using the construction in Proposition[6} a corresponding proof uses only a single

equational invariant to prove (4):

*

2(¢® +y” — 1)(—y2e + e2y) + 2(e — 2)(—y — (~y)) =0
(vZ e v (@ +F -+ (e—0)) =0

D e2 42— 1) + (e—2)> =0 =2’ = -y, = e, = —yl(2+y° — 1>+ (e—2)> =0

IN




A Differential Operator Approach to Equational Differential Invariants 39

Thus, and domain restrictions are not critical for proving . Observe,
however, that the indirect proof of in Example worked with a single equa-
tional differential invariant and recall that the same formula was not provable
directly in Counterexample Thus, even when the evolution domain (here true)
is a domain and the phenomena illustrated in Counterexample[I0] are not an is-
sue, indirect proofs with auxiliary invariants may succeed even if the direct use
of [DI] fails. This makes Theorem[3] incomplete and invariant generation chal-
lenging.

Before we illustrate the reasons for this difference in the next section, we
briefly show that the same phenomenon happens for the actual aircraft dynamics,
not just the deconstructed aircraft-type dynamics.

Ezample 12 (Aircraft). We abbreviate d? + d3 = w?p? Ady = —wxa A dp = wry
by F', which is equivalent to the condition x% + :c% = p2 ANdi = —wxs A dos = wxy
for safe separation by distance p of the aircraft (z1,x2) from the origin (0, 0),

when the aircraft flies in a roundabout in its current direction (di,ds) with
angular velocity w # 0. We prove invariance of F' for an aircraft:

*

= 2d1(—wd2) + 2dawd; = 0N\ —wdy = —wda A\ wdy = wd;
2d1d} + 2dadl, = 0 A dy) = —wazh Adhy = wa)

DIF A w # 0 —[z) = dy, 2l = do, d}, = —wdy, dy = wdy|F

The proof for collision freedom of an aircraft (z1,z2) in direction (di,ds) from
an aircraft (y1,ys2) flying in direction (eq, e2) is similar to that in [I9].

While differential cuts have, thus, turned out not to be required (though still
practically useful) for these aircraft properties, differential cuts are still crucially
necessary to prove other systems. We have recently shown that differential cuts
increase the deductive power fundamentally [23]. That is, unlike in the first-order
case, where Gentzen’s cut elimination theorem [6] proves that first-order cuts
can be eliminated, we have refuted the differential cut elimination hypothesis,
by proving that some properties of differential equations can only be proved with
a differential cut, not without.

Theorem 13 (Differential cut power [23]). The deductive power with dif-
ferential cuts (rule[DA) exceeds the deductive power without differential cuts.

We refer to previous work [23] for details on the differential cut elimination
hypothesis [19], the proof of its refutation [23], and a complete investigation of
the relative deductive power of several classes of differential invariants.

4 Invariant Equations and Invariant Functions

In this section, we study invariant equations and the closely related notion of
invariant functions. The conclusion of rule [DI] expresses that the polynomial
term p is an invariant function of the differential equation ' = # on domain H:
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Definition 14 (Invariant function). The function p is an invariant function
of the differential equation ¥’ =0 on H iff

FVe(p=c— [/ =0&H]p=c)

That is, an invariant function p is one whose value p(x(t)) is constant along all
solutions z(t), as a function of time ¢, of the differential equation ' = 6 within
the domain H, i.e., p(z(t)) = p(x(0)) for all t. Rule [DI] provides a way to prove
that p is an invariant function. A closely related notion is the following.

Definition 15 (Invariant equation). For a function p, the equation p =0 is
an invariant equation of the differential equation ¥’ =0 on H iff

Ep=0—[2'=0&H]p=0

Synonymously, we say that p = 0 is an equational invariant or that the variety
V(p) is an invariant variety of ' = 6 & H. For a set S of functions (or polyno-
mials), V(5) is the variety of zeros of S:

V(S) Lf {a eR™: f(a) =0forall f e S}

For a single function or polynomial p, we

write V(p) for V({p}). Varieties of sets of

polynomials are a fundamental object of

study in algebraic geometry [3/10]. Rule [DI]

provides a way to prove that p = 0 is an in-

variant equation. 2
What is, at first, surprising, is that the 3

premise of rule [DI_] does not depend on the

constant term of the polynomial p. However,

a closer look reveals that the premises of[DI_] ) )

and [DI] are equivalent, and, hence, rule [DI_] Fig. 2. Invariant equations p = ¢

. . . for levels ¢ of invariant function p

actually proves that p is an invariant func-

tion, not just that p = 0 is an equational invariant. Both notions of invariance

are closely related but different. If p is an invariant function, then p = 0 is an

equational invariant [I7], but not conversely, since not every level set of p has to

be invariant if p = 0 is invariant; compare Fig.[2] to general differential invariant

Fig.[T}

Lemma 16 (Relation of invariant functions and invariant equations). A
(smooth) polynomial p is an invariant function of x' = 0 & H iff, for every ¢ € R,
p = c 1s an invariant equation of ¥’ = 0 & H. In this case, if ¢ is a constant that
denotes the value of p at the initial state, then p = c and p =0 are invariant
equations. Conversely, if p = 0 is an equational invariant then the product I—op
is an invariant function (not necessarily C*, i.e., continuously differentiable). If
c is a fresh variable and p = ¢ an invariant equation of x' = 0,¢ = 0& H, then
p is an invariant function of ¥’ = 0& H and v’ =0,/ =0& H.
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Proof. By definition. Recall that the characteristic or indicator function of p = 0
is defined as I,—o(x) = 1 if p(z) = 0 and as I,—o(z) = 0 if p(z) # 0. O

Counterexample 17 (p = 0 equational invariant # p invariant function). We
have Fz =0 —= [2'=zla =0but Faz=1— [2' =z]x =1, hence p = 0 is
an equational invariant of ' = z but p is no invariant function, because p = 1
is no equational invariant. In particular, we can tell by simulation, whether a
polynomial p can be an invariant function, which gives a good falsification test.

The structure of invariant functions is that they form an algebra.

Lemma 18 (Structure of invariant functions). The invariant functions (or
the invariant polynomials) of ' = 0 & H form an R-algebra.

Proof. As a function of time ¢, let z:(¢) be a solution of the differential equation
under consideration. If p, ¢ are invariant functions and A € R is a number (or
constant symbol), then p + ¢,pg, \p are invariant functions, because, for any
operator @ € {+,-}:

(p © q)(z(t)) = p((t)) © q(2(t() = p(2(0)) @ ¢(x(0)) = (p © ¢)(x(0)) O

According to Lemmal[g] it is enough to find a generating system of the algebra
of invariant functions, because all algebraic expressions built from this gener-
ating set are invariant functions. A generating system of an algebra is a set S
such that the set of all elements that can be formed from S by operations of
the algebra coincides with the full algebra. More precisely, the smallest algebra
containing S is the full algebra of invariant functions. This generating system is
not necessarily small, however, because, whenever p is an invariant function and
F an arbitrary (sufficiently smooth) function, e.g., polynomial, then F'(p) is an
invariant function. This holds accordingly for (sufficiently smooth) functions F'
with multiple arguments. The situation improves if we take a functional gener-
ating set G. That is, a set G that gives all invariant functions when closing it
under composition with any (sufficiently smooth) function F, i.e., F(p1,...,pn)
is in the closure for all p; in the closure.

A useful structure of the invariant equations is that they form an ideal. For a
fixed dynamics 2’ = 0 or 2’ = 0 & H we define the following sets of valid formulas
and provable formulas, respectively:

] : Er—=[¢'=0&H]p=0}
DCI_(I) —{pGR[w] Mo pa I — [2 = 0 & H]p = 0}
rZ-:={peR[z] : Fp=0—=[2'=0&H]p=0}
rDCI- :={peR[z] : htprLipgp=0— [z’ =0& H]p =0}

The set Z_(I") collects the polynomials whose variety forms an invariant equation
(p € Z_(I')). The set DCZ_(I") collects the polynomials for whose zero set it
is provable using equational differential invariants (DIZ]) and differential cuts
(DC) that they are invariant equations (p € DCZ_(I")). The sets Z_(I") and
DCI_(I') are relative to a d formula (or set) I' that is used as assumption.
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The reflexive sets rZ— and rDCZ_, instead, assume that the precondition and
postcondition are identical. It turns out that the reflexive versions do not have a
very well-behaved structure (see the following proof). The invariant sets Z_(I")
and DCZ_(I"), instead, are well-behaved and form a chain of differential ideals.

Lemma 19 (Structure of invariant equations). Let I' be a set of dC for-
mulas, then DCI_(I") CZ_(I") is a chain of differential ideals (with respect to
the derivation 6 -V, in particular (0 - V)p € DCI_(I") for all p € DCI_(I)).
Furthermore, the varieties of these ideals are generated by a single polynomial.

Proof. We prove each of the stated properties.

1.

The inclusion follows from soundness. The inclusion rDCZ—_ C rZ_ even still
holds for rZ_.

It is easy to see that p,q € Z_(I") and r € Rlx] imply p + q,rp € Z_(I").
Both properties do not hold for rZ_, because z, 2% € rZ_ for the dynamics
x’ = x, but the sum/product 2% + z = x(x + 1) € rZ_

Let p,q € DCZ_(I"), then p+ q € DCZ_(I"), because I' = p=0A ¢ = 0 im-
plies I' = p 4+ ¢ = 0 (for the antecedent) and 6 - V is a linear operator:

0-V)p+q) =(0-V)p+(0-V)g=0+0=0

The second equation holds after sufficiently many uses of[DClthat are needed
to show that p,q € DCZ_(I").

Let p € DCI_(I') and r € R[], then rp € DCI_(I"), because I' - p =10
implies I' — rp = 0 (for the antecedent) and 6 - V is a deriva