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Abstract

Hybrid systems are models for complex physical systems and are defined as dy-
namical systems with interacting discrete transitions and continuous evolutions
along differential equations. With the goal of developing a theoretical and practical
foundation for deductive verification of hybrid systems, we introduce differential
dynamic logic as a new logic with which correctness properties of hybrid systems
with parameterized system dynamics can be specified and verified naturally. As a
verification technique that is suitable for automation, we introduce a free variable
proof calculus with a novel combination of real-valued free variables and Skolem-
isation for lifting quantifier elimination for real arithmetic to dynamic logic. The
calculus is compositional, i.e., it reduces properties of hybrid systems successively
to properties of their parts. Our main result proves that this calculus axiomat-
ises the transition behaviour of hybrid systems completely relative to differential
equations.

Systematically, we develop automated theorem proving techniques for our calcu-
lus and present proof procedures to tackle the complexities of integrating decision
procedures for real arithmetic. For our logic, we further complement discrete in-
duction with differential induction as a new continuous generalization of induction,
with which hybrid systems can be verified by exploiting their differential constraints
algebraically without having to solve them. Finally, we develop a fixedpoint al-
gorithm for computing the differential invariants required for differential induction,
and we introduce a differential saturation procedure that refines the system dynam-
ics successively with differential invariants until correctness becomes provable. As
a systematic combination of logic-based techniques, we obtain a sound verification
procedure that is particularly suitable for parametric hybrid systems.

We demonstrate our approach by verifying safety, controllability, liveness, and
collision avoidance properties in case studies ranging from train control applications
in the European Train Control System to air traffic control, where we prove collision
avoidance in aircraft roundabout maneuvers.

Keywords: dynamic logic, differential equations, logic for hybrid systems, free
variable calculus, sequent calculus, axiomatisation, automated theorem proving,
real arithmetic, verification of hybrid systems, differential induction, fixedpoint
engines, train control, air traffic control
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Zusammenfassung

Hybride Systeme sind Modelle für komplexe physikalische Systeme und als dyna-
mische Systeme mit interagierenden diskreten Transitionen und kontinuierlichen
Evolutionen längs Differentialgleichungen definiert. Mit dem Ziel, ein theoretisches
und praktisches Fundament für die deduktive Verifikation hybrider Systeme zu ent-
wickeln, stellen wir differentielle dynamische Logik als eine neue Logik vor, mit der
Korrektheitsaussagen von hybriden Systemen mit parametrischer Systemdynamik
auf natürliche Art und Weise spezifiziert und verifiziert werden können. Als Verifi-
kationstechnik die sich zur Automatisierung eignet führen wir ferner einen Beweis-
kalkül ein, der eine neuartige Kombination reell-wertiger freier Variablen mit Skole-
misierung besitzt, um Quantorenelimination für reelle Arithmetik auf dynamische
Logik zu liften. Der Kalkül arbeitet kompositionell, d.h., er reduziert Eigenschaf-
ten von hybriden Systemen sukzessive auf Eigenschaften ihrer Bestandteile. Unser
Hauptresultat zeigt, dass dieser Kalkül das Transitionsverhalten hybrider Systeme
vollständig relativ zu Differentialgleichungen axiomatisiert.

Systematisch entwickeln wir automatische Beweistechniken für den Kalkül und
präsentieren Beweisprozeduren, die die Komplexitäten der Integration von Ent-
scheidungsprozeduren reeller Arithmetik bewältigen. Für unsere Logik komplemen-
tieren wir weiterhin diskrete Induktion mit differentieller Induktion als neuartige
kontinuierliche Generalisierung der Induktion, mit der hybride Systeme verifiziert
werden können indem deren differentielle Relationen algebraisch ausgenutzt werden
ohne sie lösen zu müssen. Schlußendlich entwickeln wir einen Fixpunktalgorithmus
um die dafür benötigten differentiellen Invarianten zu berechnen und führen ei-
ne differentielle Saturierungsprozedur ein, welche Systemdynamiken sukzessive mit
differentiellen Invarianten solange verfeinert bis Korrektheit beweisbar wird. Als
eine systematische Kombination logik-basierter Techniken erhalten wir eine korrek-
te Verifikationsprozedur, die sich besonders gut für parametrische hybride Systeme
eignet.

Wir demonstrieren unseren Ansatz indem wir Sicherheits-, Steuerbarkeits-, Le-
bendigkeits- und Kollisionsfreiheitseigenschaften in Fallstudien nachweisen, die von
Anwendungen in der Zugsteuerung wie dem European Train Control System bis hin
zur Flugsicherung reichen, wo wir Kollisionsvermeidung von Kreisverkehrmanövern
im Flugverkehr nachweisen.
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Chapter 1.

Introduction

“Time is defined so that motion looks simple”
[MTW73, p.23] expressing thoughts of Henri Poincaré

Ensuring correct functioning of complex physical systems is among the most chal-
lenging and most important problems in computer science, mathematics, and en-
gineering. In addition to nontrivial underlying physical system dynamics, the be-
haviour of complex systems is determined increasingly by computerised control and
automatic analog or digital decision-making, e.g., in aviation, railway, or automot-
ive applications. At the same time, correct decisions and control of these systems is
becoming increasingly important, because more and more safety-critical processes
are regulated using automatic or semiautomatic controllers, including the European
Train Control System [ERT02], collision avoidance maneuvers in air traffic con-
trol [TPS98, LLL00, DMC05, PC07, GMAR07, HKT07], car platooning technology
for highways following the California PATH project [HESV91], recent driverless
vehicle technology [Bue08], or biomedical applications like automatic glucose reg-
ulation for diabetes patients [PDP01]. As a more general phenomenon of complex
physical systems that are exemplified in these scenarios, correct system behaviour
depends on correct functioning of the interaction of control with physical system
dynamics and is not just an isolated property of only the control logic or only the
physical system dynamics.

To illustrate typical aspects and effects in these application areas, we take a
look at two examples in more detail, which will serve as running examples and
case studies throughout this thesis. In high-speed trains like ICE (InterCityEx-
press) or TGV (train à grande vitesse), whose high mass (1000–3000 tons) and
high speed (320km/h) causes them to require fairly long braking distances (more
than 3.8km), safe driving is impossible just based on sight without automatic tech-
nical means that enforce a safe minimum distance between trains. The European
Train Control System (ETCS), which is currently being developed and installed in
Europe [ERT02], regulates and protects train movement according to movement
authorities (MA) that are negotiated dynamically in rapid succession by wireless
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Figure 1.1.: European Train Control System

communication with decentralised radio block controllers (RBC), see Figure 1.1.
With the next generation development of ETCS, Level 3, all classical fixed track-
side signaling and fixed track segment partitioning with physical separation will
become obsolete, thereby advancing to a fully autonomous operation of ETCS in
order to achieve its performance goals of maximum speed and density on the track.
Yet, a safe operation of ETCS requires that—while achieving these performance
goals—the train controllers still always respect their local movement authorities
and that the radio block controllers only grant compatible movement authorities to
each of the trains. Even in emergency situations, the overall train control system
must always ensure that the trains cannot crash into one another. To determine
correct functioning of these controllers it has to be shown that the train positions,
which evolve dynamically over time, are always safely separated. For this, however,
we need to be able to analyse the interaction of the train control logic and the ETCS
cooperation protocol with a model of the actual physical train dynamics, because
collision freedom is not an isolated property of only the discrete cooperation-layer
control protocol, only the local train control decision process, or only the continuous
train dynamics, but a joint property of their superposition. In safety-critical com-
plex physical systems like ETCS, full formal verification is indeed quite important
and of particular practical relevance for ensuring that they operate safely: Despite
careful development and testing, safety violations have recently been reported in
ETCS [Gro07] even at its moderate currently deployed level.

In air traffic control, collision avoidance maneuvers [TPS98, LLL00, DMC05,
PC07, GMAR07, HKT07] are used to resolve conflicting flight paths that arise dur-
ing arbitrary free flight of the aircraft, see Figure 1.2. They are last resort means
for resolving air traffic conflicts that could lead to collisions and have not been
detected by the pilots during free flight or by the flight directors of the Air Route
Traffic Control Centres. Consequently, complicated online trajectory prediction,
trajectory evaluation, or lengthy maneuver negotiation may no longer be feasible
in the short time that remains for resolving the conflict. For instance, in the tragic
mid-flight collision in Überlingen [BFU04], only less than one minute of maneuv-
ering time would have been available to prevent the collision after the on-board
traffic alert and collision avoidance system TCAS [LLL00] signalled a traffic alert.
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Figure 1.2.: Collision avoidance maneuvers in air traffic control

Thus, for safe aircraft control we need particularly reliable instant reactions with
maneuvers whose correctness has been established previously by a thorough offline
analysis. To ensure correct functioning of aircraft collision avoidance maneuvers
under all circumstances, the temporal evolution of the aircraft in space must be
analysed carefully together with the effects that maneuvering control decisions have
on their dynamics, giving again a superposition of physical system dynamics with
control.

1.1. Technical Context

1.1.1. Hybrid Systems

As a common mathematical model for complex physical systems, hybrid systems
[Tav87, ACHH92, NOSY92, ACH+95, Bra95b, Hen96, AHH96, BBM98, LPY99,
DN00, PAM+05, DHO06, Lib03] are dynamical systems [Per91, KH96, Sib75] where
the system state evolves over time according to interacting laws of discrete and
continuous dynamics, with the idea being to capture the superposition of physical
system dynamics with control at a natural modelling level. For discrete transitions,
the hybrid system changes state instantaneously and possibly discontinuously. Dur-
ing continuous transitions, the system state is a continuous function of continuous
time and varies according to a differential equation, which is possibly subject to
domain restrictions or algebraic relations resulting from physical circumstances or
the interaction of continuous dynamics with discrete control. Continuous dynam-
ics results, e.g., from the continuous movement of a train along the track (train
position z evolves with velocity v along the differential equation z′ = v where z′ is
the time-derivative of z) or from the continuous variation of its velocity over time
(v′ = a with acceleration a). Other behaviour can be modelled more naturally by
discrete dynamics, for example, the instantaneous change of control variables like
the acceleration (e.g., the changing of a by setting a :=−b with braking force b > 0)
or change of status information in discrete controllers. Both kinds of dynamics in-
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accel
z′ = v
v′ = a

brake
z′ = v
v′ = a
v ≥ 0

z ≥ s

a :=−b

v ≤ 1

a := a+ 5

Figure 1.3.: Hybrid automaton for an (overly) simplified train control system

teract, e.g., when measurements of the continuous state affect decisions of discrete
controllers (the train switches to braking mode when v is too high). Likewise, they
interact when the resulting control choices take effect by changing the control vari-
ables of the continuous dynamics (e.g., changing control variable a in z′′ = a). The
superposition of continuous dynamics with analog or discrete control causes com-
plex system behaviour, which can neither be verified by purely continuous reasoning
(because of the discontinuities caused by discrete transitions) nor by considering
discrete change in isolation (because safety depends on continuous states).

Among several other models for hybrid systems [BBM98], the model of hybrid
automata [Hen96, ACH+95] is the most widely used notation. They specify dis-
crete and continuous dynamics in a graph, see Figure 1.3 for a (much too) simple
train control example. Each node corresponds to a continuous dynamical system
and is decorated by its differential equation and an invariant region specifying
the maximum domain of evolution. In the node brake of Figure 1.3, the differ-
ential equations z′ = v, v′ = a only apply within the invariant region v ≥ 0 (the
train does not move backwards when braking). Edges specify the discrete switch-
ing behaviour between the respective modes of continuous evolution. They can
be decorated with conditions (guards) that need to hold and with discrete state
transformations (jumps) that take instantaneous effect when the system follows
the edge. For example, the automaton in Figure 1.3 can take an edge to leave node
accel when train position z passed point s, which sets the acceleration to braking
by a :=−b, and enter node brake.

1.1.2. Model Checking

As a standard verification technique, model checking [EC82, CGP99] has been used
successfully for verifying temporal logic properties [Pnu77, EC82, EH86, ACD90]
of finite-state abstractions of automata-based transition structures by exhaustive
state space exploration [ACH+95, HNSY92, Hen96, MPM05]. The continuous state
spaces of hybrid automata, however, do not admit equivalent finite-state abstrac-
tions [Hen96]. Because of this, model checkers for hybrid automata use various ap-
proximations [HNSY92, ACH+95, Hen96, CK03, Frä99, AW01, CFH+03, ADG03,
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Tiw03, MPM05] and are still more successful in falsification than in verification.
Furthermore, for hybrid systems with symbolic parameters in the dynamics, cor-
rectness crucially depends on the free parameters (e.g., b and s in Figure 1.3). It is,
however, quite difficult to determine corresponding symbolic parameter constraints
from concrete values of a counterexample trace produced by a model checker, espe-
cially if they rely on nonstructural state splitting [CK03, CFH+03, ADG03, Fre05].
Finally, in hybrid systems with nontrivial interaction of discrete and continuous dy-
namics, parameters also have a nontrivial impact on the system behaviour, leading
to nonlinear parameter constraints and nonlinearities in the discrete and continuous
dynamics. For instance, the nonlinear constraint s ≥ v2

2b
will turn out to be import-

ant for Figure 1.3. Thus, standard model checking approaches [Hen96, ACH+95,
CK03, Fre05] cannot be used, as they require at most linear discrete dynamics.

1.1.3. Deductive Verification

Deductive approaches [BHS07, BP06, HLS+96, HKT00, Har79, ZRH92, Dav97,
DN00] have been used for verifying systems by proofs instead of by state space ex-
ploration and, thus, do not require finite-state abstractions. Davoren and Nerode
[DN00] further argue that deductive methods support formulas with free paramet-
ers. First-order logic, for instance, has widely proven its power and flexibility in
handling symbolic parameters as free or quantified logical variables. However, first-
order logic has no built-in means for referring to state transitions, which are crucial
for verifying dynamical systems where states change over time.

In temporal logics [Pnu77, EC82, EH86, ACD90, Sti92], state transitions can
be referred to using modal operators. In deductive approaches, temporal logics
have been used to prove validity of formulas in calculi [DN00, ZRH92]. Valid
formulas of temporal logic, however, only express generic facts that are true for
all systems, regardless of their actual behaviour. Hence, the behaviour of a spe-
cific hybrid system would need to be characterised declaratively with temporal
formulas to obtain meaningful results. Then, however, equivalence of declarative
temporal representations and actual system operations needs to be proven sep-
arately using other techniques. Furthermore, even for finite-state systems, direct
temporal characterisations can be computationally infeasible, e.g., direct temporal
characterisations transform the linear-time CTL model checking problem into an
EXPTIME-complete satisfiability problem [Eme90].

Dynamic logic (DL) [Pra76, Har79, HKT00] is a successful approach for verifying
infinite-state discrete systems deductively [BHS07, BP06, HLS+96, HKT00, Har79].
Like model checking, DL does not need declarative characterisations of system beha-
viour but can analyse the transition behaviour of actual operational system models
directly. Yet, operational models are fully internalised within DL-formulas, and
DL is closed under logical operators. Within a single specification and verification
language, it combines operational system models with means to talk about the

5



Chapter 1. Introduction

states that are reachable by system transitions. DL provides parameterised modal
operators [α] and 〈α〉 that refer to the states reachable by system α and can be
placed in front of any formula. The formula [α]φ expresses that all states reachable
by system α satisfy formula φ. Likewise, 〈α〉φ expresses that there is at least one
state reachable by α for which φ holds. These modalities can be used to express
necessary or possible properties of the transition behaviour of α in a natural way.
They can be nested or combined propositionally. In first-order dynamic logic with
quantifiers, ∃p [α]〈β〉φ says that there is a choice of parameter p such that for all
possible behaviour of system α there is a reaction of system β that ensures φ.
Likewise, ∃p ([α]φ ∧ [β]ψ) says that there is a choice of parameter p that makes
both [α]φ and [β]ψ true, simultaneously.

On the basis of first-order logic over the reals, which we use to describe safe
regions of hybrid systems and to quantify over parameter choices, we introduce
a first-order dynamic logic over the reals with modalities that directly quantify
over the possible transition behaviour of hybrid systems. Since hybrid systems
are subject to both continuous evolution and discrete state change, we generalise
dynamic logic so that operational models α of hybrid systems can be used in modal
formulas like [α]φ.

1.1.4. Compositional Verification

As a verification technology for our logic, we devise a compositional proof calculus
for verifying properties of a hybrid system by proving properties of its parts. The
calculus decomposes [α]φ symbolically into an equivalent formula,, for instance,
[α1]φ1 ∧ [α2]φ2 about subsystems αi of α and subproperties φi of φ. With this, [α]φ
can simply be verified by proving the [αi]φi separately and combining the results
conjunctively. In particular, synthesised parameter constraints carry over from the
latter to the former just by conjunction.

Unfortunately, hybrid automata are not suitably compositional for this purpose.
Their graph structures cannot be decomposed into subgraphs αi such that the
formula [α1]φ1 ∧ [α2]φ2 is equivalent to [α]φ, because of the dangling edges between
the subgraphs αi. For instance, the automaton in Figure 1.3 cannot simply be
verified by proving [accel]φ ∧ [brake]φ, because the effects of edges between the
nodes need to be taken into account.

Consequently, we do not impose an automaton structure on the system. Instead,
we introduce hybrid programs as a textual program notation for hybrid systems
by extending conventional discrete program notations in classical DL. They allow
for flexible programmatic combinations of elementary discrete or continuous trans-
itions by structured control programs with a perfectly compositional semantics:
The semantics of a compound hybrid program is a simple function of the semantics
of its parts and does not further depend on automata graph structures. The res-
ulting first-order dynamic logic for hybrid programs is called differential dynamic
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logic (dL) and constitutes a natural specification and verification logic for hybrid
systems. With the goal of developing a solid theoretical, practical, and applicable
foundation for deductive verification of hybrid systems by automated theorem prov-
ing, the focus of this thesis is a thorough analysis of the logic dL and its calculus.

1.1.5. Lifting Quantifier Elimination

When proving dL formulas, interacting hybrid dynamics causes interactions of arith-
metic quantifiers and dynamic modalities, which both affect the values of symbols.
For continuous evolutions, we have to prove formulas like ∀t [α]x≥0 expressing that,
for all durations t of some evolution in α, x ≥ 0 holds after all executions of sys-
tem α. Standard first-order quantifier rules [HS94, Fit96, FM99] are incomplete for
handling these situations, because they are based on instantiation or unification,
which is already insufficient for proving the tautology ∀z (z2 ≥ 0). Unfortunately,
decision procedures for real arithmetic like real quantifier elimination [Tar51, CH91]
cannot handle ∀t either, because of the modality [α]. The actual algebraic con-
straints on t still depend on how the system variables evolve along the dynamics
of α. This effect inherently results from the interacting dynamics of hybrid sys-
tems, where the duration t of a continuous evolution determines the resulting state
and, hence, affects all subsequent discrete or continuous evolutions in α. Thus, the
effect of α first needs to be analysed with respect to the arithmetical constraints it
imposes on t for x ≥ 0 to hold, before the quantifier ∀t can be handled.

In this thesis, we present a calculus that is suitable for automation and combines
deductive and arithmetical quantifier reasoning within a single proof. It introduces
real-valued free variables and Skolem terms to postpone quantifier elimination and
continue reasoning beyond the occurrence of a real quantifier in front of a modality.
Later, however, our calculus reintroduces a corresponding quantifier into the proof
when its algebraic constraints have been discovered completely. For ∀t [α]x ≥ 0,
our calculus will, for instance, continue with the unquantified kernel [α]x ≥ 0
after replacing t by a Skolem term s(x). Once all arithmetical constraints on s(x)
are known, a quantifier for s(x) is reintroduced and handled by real quantifier
elimination [Tar51, CH91]. In a similar manner, our calculus combines quantifier
elimination with deduction for handling existential real quantifiers using real-valued
free variables.

We introduce a calculus that makes this intuition formally precise. Crucially, we
exploit the relationship of Skolem terms and free variables in order to keep track of
the lost quantifier nesting to prohibit unsound rearrangements of quantifiers when
they are reintroduced. The corresponding calculus rules are perfectly natural and
comply with the prerequisites of quantifier elimination over the reals. Further, the
dL semantics and calculus are fully compositional so that properties of a hybrid
program can be proven by reduction to properties of its parts following a structural
symbolic decomposition within the dL calculus.
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1.1.6. Differential Induction and Differential Strengthening

In Chapter 3, we extend our logic dL to the differential-algebraic dynamic logic
DAL, which is the logic of general hybrid change. DAL provides differential-
algebraic programs (DA-programs) as general models for hybrid systems by allowing
for propositional operators and quantifiers in discrete and continuous transitions.
The standard approach to dealing with continuous dynamics for hybrid systems
is to use symbolic or numerical solutions of their respective differential equations.
Unfortunately, the range of systems that is amenable to these techniques is fairly
limited, because even solutions of simple linear differential equations quickly fall
into undecidable classes of arithmetic. For instance, the solutions of s′ = c, c′ = −s
are trigonometric functions like sin and cos. As a means for verifying hybrid sys-
tems with challenging continuous dynamics without having to solve differential
equations, we further complement discrete induction with a new form of differen-
tial induction and add differential strengthening for refining the system dynamics
with auxiliary invariants.

1.2. Related Work

Model Checking of Hybrid Automata Model checking approaches work by state
space exploration and—due to their undecidable reachability problem—require
[Hen96] various abstractions or approximations [HNSY92, ACH+95, Hen96, Frä99,
AW01, CFH+03, Tiw03, MPM05] for hybrid automata, including numerical ap-
proximations [CK03, ADG03].

Beyond standard approaches [ACH+95, Hen96, Fre05] for linear systems with
constant dynamics, Lafferriere et al. [LPY99, LPS00, LPY01] presented a decision
procedure for o-minimal hybrid automata and classes of linear dynamics with a
homogeneous eigenstructure. They analyse the discrete and continuous dynamics
independently, which requires completely decoupled dynamics with forgetful jumps,
i.e., where the outcome of a jump is completely independent of the continuous state.

Chutinan and Krogh [CK03] presented polyhedral approximations of hybrid auto-
mata with polyhedral discrete dynamics, invariants, and initial state sets. Fränzle
[Frä99] showed that reachability is decidable for specific classes of robust polyno-
mial hybrid automata, where the safe and unsafe states are sufficiently separate
and the safe region is bounded. Asarin et al. [ADG03] used piecewise linear nu-
merical approximations in an approximate reachability algorithm for continuous
systems with known Lipschitz bounds. Mysore et al. [MPM05] showed decidabil-
ity of bounded-time and bounded switching reachability prefixes of semi-algebraic
hybrid automata.

Model checking tools like HyTech [HH94], PHAVer [Fre05], CheckMate [CK03], or
other approaches [Hen96, Frä99, PAM+05] cannot handle our applications with non-
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linear switching, nonlinear discrete and continuous dynamics, and high-dimensional
state spaces.

Because hybrid systems do not admit equivalent finite-state abstractions [Hen96]
and due to general limits of numerical approximation [PC07], model checkers are
still more successful in falsification than in verification. To obtain a sound verific-
ation approach and for improved handling of free parameters [DN00], we follow a
symbolic logic-based approach and support dL as a significantly more expressive
specification language. Finally, we introduce hybrid programs as a more uniform
model for hybrid systems that is amenable to compositional symbolic verification.

Logics for Real-time Systems Logics for real-time systems [HNSY92, SRH02]
are not expressive enough to capture the dynamics of hybrid systems, particularly
their differential equations, which are the main focus of this thesis. For instance,
Schobbens et al. [SRH02] give complete axiomatisations of two decidable dense time
propositional linear temporal logics. Unfortunately, in these propositional logics one
cannot express that relevant separation properties like (x1 − y1)2 + (x2 − y2)2 ≥ p2

hold always during the flight of aircraft guided by specific flight controllers.

Logics for Hybrid Systems Zhou et al. [ZRH92] extended duration calculus with
mathematical expressions in derivatives of state variables. They use a multitude
of calculus rules and a non-constructive oracle that requires external mathematical
reasoning about the notions of derivatives and continuity.

Davoren and Nerode [Dav97, DN00] presented a semantics of modal µ-calcu-
lus in hybrid systems and examine topological aspects. They provided Hilbert-
style calculi to prove formulas that are valid for all hybrid systems simultaneously.
With this, however, only limited information can be obtained about a particular
system: In propositional modal logics, system behaviour needs to be axiomatised
declaratively in terms of abstract actions a, b, c of unknown effect.

The strength of our logic primarily is that it is an expressive first-order dynamic
logic: It handles actual operational models of hybrid systems like a := a+ 5; z′′ = a
instead of abstract propositional actions of unknown effect. The advantage of our
calculus in comparison to others [ZRH92, Dav97, DN00] is that it provides a con-
structive modular combination of arithmetic reasoning with reasoning about hybrid
transitions and works by structural decomposition. With this, our calculus can be
used easily for verifying actual operational hybrid system models, which is of consid-
erable practical interest [Hen96, BBM98, CK03, CFH+03, MPM05, DHO06, PC07,
DMO+07]. It supports free parameters and first-order definable flows, which are
well-suited for verifying the coordination of train dynamics. First-order approxim-
ations of more general flows can be used according to [AW01, PC07, Per91].

9
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Specification Languages for Hybrid Systems Inspired by He [Jif94], Zhou et
al. [CJR95] presented a hybrid variant of CSP as a language for describing hybrid
systems. They gave a semantics in extended duration calculus [ZRH92] but no
verification technique.

Rönkkö et al. [RRS03] extended guarded command programs with differential
relations and gave a weakest-precondition semantics in higher-order logic with built-
in derivatives. Without providing a means for verification of this higher-order
logic, this approach is still limited to providing a notational variant of classical
mathematics.

Uses of Deduction for Hybrid Systems Manna et al. [MS98, KMP00] and
Ábrahám et al. [ÁMSH01] used theorem provers for checking invariants of hybrid
automata in STeP [MS98] or PVS [ÁMSH01], respectively. Their working principle
is, however, quite different from ours. Given a hybrid automaton and given a global
system invariant, they compile, in a single step, a verification condition express-
ing that the invariant is preserved under all transitions of the hybrid automaton.
Hence, hybrid aspects and transition structure vanish completely before the proof
starts. All that remains is a flat quantified mathematical formula. Which hybrid
systems can be verified with this approach in practice strongly depends on the gen-
eral mathematical proving capabilities of STeP and PVS, which typically require
user interaction.

In contrast, we follow a fully symbolic approach using a genuine specification and
verification logic for hybrid systems. Our dynamic logic works deductively by sym-
bolic decomposition and preserves the transition structure during the proof, which
simplifies traceability of results considerably. Further, the structure in this symbolic
decomposition can be exploited for deriving invariants or parametric constraints.
Consequently, in dL, invariants do not necessarily need to be given beforehand.
Moreover, in practice, guiding quantifier elimination procedures along natural split-
ting possibilities of the structural decomposition performed by the dL calculus turns
out to be important for successful automatic proof strategies (Chapter 5).

1.3. Contributions

Our main conceptual contribution is a series of differential dynamic logics for hy-
brid systems (dL, DAL, and dTL), which capture the logical quintessence of the
dynamics of hybrid systems succinctly. Our logics provide a uniform semantics
and concise language for specifying and verifying correctness properties of general
hybrid systems with sophisticated dynamics. Our main practical contribution is
a concise free variable calculus that axiomatises the transition behaviour of hy-
brid systems relative to differential equation solving. With our generalisation of
free variable calculi to dynamic logic over the reals, the calculus is suitable for
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automated theorem proving and for verifying hybrid superpositions of interacting
discrete and continuous dynamics compositionally.

Our main theoretical contribution is that we prove our calculi to be complete rel-
ative to the handling of differential equations. To the best of our knowledge, this is
the first relative completeness proof for a logic of hybrid systems, and even the first
formal notion of hybrid completeness. Our results fully align hybrid and continu-
ous reasoning proof-theoretically and show that hybrid systems with interacting
repetitive discrete and continuous evolutions can be verified whenever differential
equations can.

We further contribute a verification calculus that includes uniform proof rules
for differential induction along differential equations or more general differential
constraints, using a combination of differential invariants, differential variants, and
differential strengthening for verifying hybrid systems without having to solve their
differential constraints. Based on these calculi, we develop a fixedpoint verification
algorithm that computes the required invariants and differential invariants for a
formula and refines the underlying system dynamics as needed during the proof.

As applied contributions, we demonstrate the capabilities of our logics, calculi,
and algorithms by verifying collision avoidance in realistic train control applications
and challenging air traffic control maneuvers. Overall, our logic-based verification
approach for hybrid systems can successfully verify realistic applications that were
out of scope for other approaches, both for theoretical reasons and for scalability
reasons.

1.4. Structure of this Thesis

This thesis consists of three parts that basically correspond to the theory, practice,
and applications, respectively, of differential dynamic logics for hybrid systems.
You are now reading the introduction.

Logics and Calculi In Part I, which is the core part of this thesis, we introduce
novel logics and proof calculi that form the new conceptual, formal, and technical
basis for logic-based verification of hybrid systems. In Chapter 2, we introduce
the differential dynamic logic dL as a variant of dynamic logic that is suitable for
specifying and verifying properties of hybrid systems. It generalises dynamic logic
to dynamic logic over the reals in the presence of continuous state transitions along
differential equations. As a verification technique, we present a new compositional
sequent calculus for dL that is suitable for automation and integrates handling of
real quantifiers by generalising Skolemisation and free variables to the reals. In
Chapter 2, we also show completeness relative to differential equations as the most
fundamental theoretical result in this thesis.
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In Chapter 3, we introduce the differential-algebraic logic DAL that extends
the class of hybrid system models by allowing more general differential-algebraic
equations and quantified nondeterminism. Further, we present a uniform theory of
differential induction, differential invariants, differential variants, and differential
strengthening as central symbolic verification techniques for handling challenging
continuous dynamics in hybrid systems without having to solve their differential
equations.

In Chapter 4, we address the handling of temporal properties and introduce the
differential temporal dynamic logic dTL along with a calculus that reduces temporal
properties to dL properties. The extensions of dL that we present in Chapter 3 and
Chapter 4 are complementary and compatible. Their direct modular combination
immediately defines the differential-algebraic temporal dynamic logic DATL.

Automated Theorem Proving In Part II, we focus on the practical aspects of
implementing the verification calculi from Part I. The calculi in Part I have already
been designed for the practical needs of automated theorem proving, most notably
so the free variable and Skolemisation techniques from Chapter 2 and the composi-
tional calculi from Part I. Immediate implementations of the calculi from Part I in
automated theorem provers can directly prove examples of medium complexity. Yet,
more complex case studies still require additional algorithmic techniques for achiev-
ing very high degree automation and good scalability properties. In Chapter 5, we
refine the calculi from Part I to tableau procedures and present proof strategies
that navigate among their nondeterminisms to overcome the complexity issues of
integrating real quantifier elimination as a decision procedure for real arithmetic.

In Chapter 6, which results from joint work with Edmund M. Clarke [PC08a],
we refine the differential induction techniques from Chapter 3 to a fully automatic
verification algorithm for computing the required discrete and differential invariants
of a hybrid system locally in a logic-based fixedpoint loop.

Applications In Part III, we shift our attention to application scenarios for our
logic-based verification approach for hybrid systems. Extending smaller hybrid
systems which have served as running examples throughout this thesis, we show
full case studies of the European Train Control System in Chapter 7, which is
based on joint work with Jan-David Quesel [PQ08b], and for aircraft collision
avoidance maneuvers in Chapter 8, which is based on joint work with Edmund
M. Clarke [PC07, PC08a, PC08b].

Finally, Chapter 9 concludes this thesis with a discussion of the results and
perspectives for future research.

Appendix In Appendix A, we briefly characterise the verification tool KeYmaera
that implements the logics and automated theorem proving techniques presented in
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this thesis and has been implemented in joint work with Jan-David Quesel [PQ08a].
We also survey various techniques that can be used to handle real arithmetic, in-
cluding a description of techniques for using Gröbner basis computations to handle
nonlinear real arithmetic.

In Appendix B, we formally analyse the close relationship of hybrid automata
and hybrid programs by embedding hybrid automata into hybrid programs. For
reference, Appendix C summarises some classical results about differential equa-
tions that we need in this thesis. In the interest of a comprehensive presentation,
theorems that we reference from the book by Walter [Wal98] in this thesis can be
found in Appendix C.

Sources This thesis is based on several sources. Chapter 2 is based on an art-
icle in the Journal of Automated Reasoning [Pla08b] and also covers most of the
material from other sources of previous work at TABLEAUX [Pla07b, Pla07c] and
HSCC [Pla07d]. Chapter 3 is an extended version of an article in the Journal of
Logic and Computation [Pla08a], where we now add a relative completeness argu-
ment and prove that DAL is a conservative extension of the sublogic dL. We further
combine the solution based techniques from Chapter 2 with differential induction
based techniques from Chapter 3 by introducing the new extension of differential
monotonicity relaxations. Chapter 4 is a substantially extended version of a pre-
vious paper at LFCS [Pla07e, Pla07f], where we now add a complete and more
elegant calculus and provide a modular relative completeness proof.

In Chapter 5, we extend a previous paper at VERIFY [Pla07a] with more detail
on iterative background closure strategies, including experimental evaluation, and
complement this proof technique with a new iterative inflation strategy. Chapter 6
is based on joint work with Edmund M. Clarke at CAV [PC08a, PC08b].

Chapter 7 is a substantially revised and improved version of joint work with
Jan-David Quesel at HSCC [PQ08b]. Chapter 8 is a significantly improved and
detailed case study developed on the basis of joint work with Edmund M. Clarke
at HSCC [PC07] and CAV [PC08b, PC08a].

Finally, Appendix A uses excerpts from joint work with Jan-David Quesel at IJ-
CAR [PQ08a], adding thorough descriptions of computational backends and overall
discussion of the KeYmaera verification tool. Appendix B is a substantially detailed
version of a proof sketch in previous work [Pla07c]. Appendix C summarises clas-
sical results from the theory of differential equations [Wal98].

Further Material For extensions of the logic dL with nominals we refer to our
work at HyLo [Pla07g], where we introduce state-based reasoning as a paradigm
for delaying expansion of transitions using nominals as symbolic state labels. For
numerical approximation-refinement model checking techniques for hybrid systems,
general (un)decidability results for numerical hybrid systems image computation,
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and probabilistic verification techniques for hybrid systems, we refer to joint work
with Edmund M. Clarke at HSCC [PC07].

For an overall embedding of this work in the context of the AVACS project, with
a special emphasis on the overall verification flow within AVACS, we refer to joint
work with Werner Damm, Alfred Mikschl, Jens Oehlerking, Ernst-Rüdiger Olderog,
Jun Pang, Marc Segelken, and Boris Wirtz [DMO+07].

Due to their different focus, some other material is also not covered in this
thesis, including joint work with Bernhard Beckert [BP06] on dynamic logic for
object-oriented programming languages and with Stephanie Kemper [KP07] on
SAT-based abstraction-refinement model checking for real-time systems using Craig
interpolants [Cra57].
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Differential Dynamic Logic dL
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2.7.3. Characterising Real Gödel Encodings . . . . . . . . . . . . . 50

2.7.4. Expressibility and Rendition of Hybrid Program Semantics . 52

2.7.5. Relative Completeness of First-order Assertions . . . . . . . . 55

2.7.6. Relative Completeness of the Differential Logic Calculus . . . 59

2.8. Relatively Semidecidable Fragments . . . . . . . . . . . . . . . . . 60

17



Chapter 2. Differential Dynamic Logic dL

2.9. Train Control Verification . . . . . . . . . . . . . . . . . . . . . . . 64

2.9.1. Finding Inductive Candidates . . . . . . . . . . . . . . . . . . 64

2.9.2. Inductive Verification . . . . . . . . . . . . . . . . . . . . . . 64

2.9.3. Parameter Constraint Discovery . . . . . . . . . . . . . . . . 66

2.10. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Synopsis

Hybrid systems are models for complex physical systems and are defined as
dynamical systems with interacting discrete transitions and continuous evol-
utions along differential equations. With the goal of developing a theoretical
and practical foundation for deductive verification of hybrid systems, we in-
troduce a dynamic logic for hybrid programs, which is a program notation
for hybrid systems. As a verification technique that is suitable for automa-
tion, we introduce a free variable proof calculus with a novel combination of
real-valued free variables and Skolemisation for lifting quantifier elimination
for real arithmetic to dynamic logic. The calculus is compositional, i.e., it
reduces properties of hybrid programs to properties of their parts. Our main
result proves that this calculus axiomatises the transition behaviour of hybrid
systems completely relative to differential equations. In a case study with
cooperating traffic agents of the European Train Control System, we further
show that our calculus is well-suited for verifying realistic hybrid systems
with parametric system dynamics.

2.1. Introduction

In this chapter, we introduce the differential dynamic logic dL, its syntax, semantics,
and proof calculus. It forms the core of this thesis and is the basis for the extensions
and applications in subsequent chapters of this thesis. As the most fundamental
theoretical result in this work, we prove that our calculus is a complete axiomat-
isation of hybrid systems reachability relative to differential equations.

Contributions

Our main conceptual contribution is the differential dynamic logic dL for hybrid
programs, which captures the logical quintessence of the dynamics of hybrid systems
succinctly. Our main practical contribution is a concise free variable calculus for dL
that axiomatises the transition behaviour of hybrid systems relative to differential
equation solving. It is suitable for automated theorem proving and for verifying
hybrid interacting discrete and continuous dynamics compositionally. Our main
theoretical contribution is that we prove the dL calculus to be complete relative
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to the handling of differential equations. To the best of our knowledge, this is the
first relative completeness proof for a logic of hybrid systems, and even the first
formal notion of hybrid completeness. Our results fully align hybrid and continu-
ous reasoning proof-theoretically and show that hybrid systems with interacting
repetitive discrete and continuous evolutions can be verified whenever differential
equations can. As an applied contribution, we further demonstrate that our logic
and calculus can be used successfully for verifying collision avoidance in realistic
train control applications.

Structure of this Chapter

After introducing syntax and semantics of the differential dynamic logic dL in
Section 2.2 and Section 2.3, we introduce a free variable sequent calculus for dL
in Section 2.5 and prove soundness and relative completeness in Section 2.6 and
Section 2.7, respectively. We present relatively semidecidable fragments of dL in
Section 2.8 In Section 2.9, we use our calculus to prove an inductive safety property
of the train control system that we present in Section 2.4. We draw conclusions
and discuss future work in Section 2.10.

2.2. Syntax of Differential Dynamic Logic

In this section, we introduce the differential dynamic logic dL in which operational
models of hybrid systems are internalised as first-class citizens, so that correctness
statements about the transition behaviour of hybrid systems can be expressed as
formulas. As a basis, dL includes (nonlinear) real arithmetic for describing concepts
like safe regions of the state space. Further, dL supports real-valued quantifiers for
quantifying over the possible values of system parameters or durations of continu-
ous evolutions. For talking about the transition behaviour of hybrid systems, dL
provides modal operators like [α] or 〈α〉 that refer to the states reachable by fol-
lowing the transitions of hybrid system α.

The logic dL is a first-order dynamic logic over the reals for hybrid programs,
which is a compositional program notation for hybrid systems. Hybrid programs
provide:

Discrete jump sets Discrete transitions are represented as instantaneous assign-
ments of values to state variables, which are, essentially, difference equations. They
can express resets a :=−b or adjustments of control variables like a := a+ 5, as oc-
curring in the discrete transformations attached to edges in hybrid automata, see
Figure 1.3. Likewise, implicit discrete state changes like the changing of evolution
modes from one node of an automaton to the other can be expressed uniformly
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as, e.g., q := brake, where variable q remembers the current node. To handle sim-
ultaneous changes of multiple variables, discrete jumps can be combined to sets of
jumps with simultaneous effect following corresponding techniques in the discrete
case [BP06]. For instance, the discrete jump set a := a+ 5, A := 2a2 expresses that a
is increased by 5 and, simultaneously, variable A is set to 2a2, which is evaluated
before a receives its new value.

Differential equation systems Continuous variation in system dynamics is rep-
resented using differential equation systems as evolution constraints. For example
the differential equation z′′ = −b describes deceleration and z′ = v, v′ = −b& v ≥ 0
expresses that the evolution only applies as long as the speed is v ≥ 0, which repres-
ents mode brake of Figure 1.3. This is an evolution along the differential equation
system z′ = v, v′ = −b that is restricted to remain within the region v ≥ 0, i.e., to
stop braking before v < 0. Such an evolution can stop at any time within v ≥ 0, it
could even continue with transient grazing along the border v = 0, but it is never
allowed to enter v < 0.

Control structure Discrete and continuous transitions—represented as difference
or differential equations, respectively—can be combined to form a hybrid program
with interacting hybrid dynamics using regular expression operators (∪, ∗, ;) of reg-
ular programs [HKT00] as control structure. For example, q := accel ∪ z′′ = −b
describes a train controller that can either choose to switch to acceleration mode
or brake by the differential equation z′′ = −b, by a nondeterministic choice (∪). In
conjunction with other regular combinations, control constraints can be expressed
using tests like ?z ≥ s as guards for the system state.

2.1 Example (Embedding hybrid automata). With these operations, hybrid systems
can be represented naturally as hybrid programs. For example, Figure 2.1 depicts
a hybrid program rendition of the hybrid automaton in Figure 1.3. We represent
each discrete and continuous transition of the automaton as a sequence of state-
ments with a nondeterministic choice between these transitions. Line 4 represents
a continuous transition. It tests if the current node q is brake, and then follows a
differential equation system restricted to the invariant region v ≥ 0. Line 3 char-
acterises a discrete transition of the automaton. It tests the guard z ≥ s when in
node accel, resets a :=−b, and then switches q to node brake. By the semantics of
hybrid automata [ACH+95, Hen96], an automaton in node accel is only allowed to
make a transition to node brake if the invariant of brake is true when entering the
node, which is expressed by the additional test ?v ≥ 0. In order to obtain a fully
compositional model, hybrid programs make these implicit side-conditions explicit.
Finally, the ∗-operator at the end of Figure 2.1 expresses that the transitions of a
hybrid automaton can repeat indefinitely.
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q := accel; /* initial mode is node accel */(
(?q = accel; z′ = v, v′ = a)

∪ (?q = accel ∧ z ≥ s; a :=−b; q := brake; ?v ≥ 0)
∪ (?q = brake; z′ = v, v′ = a& v ≥ 0)

∪ (?q = brake ∧ v ≤ 1; a := a+ 5; q := accel)
)∗

Figure 2.1.: Hybrid program rendition of hybrid automaton for (overly) simplified
train control

2.2.1. Terms

The formulas of dL are built over a set V of real-valued logical variables and a (fi-
nite) signature Σ of real-valued function and predicate symbols, with the usual func-
tion and predicate symbols for real arithmetic, such as 0, 1,+,−, ·, /,=,≤, <,≥, >.
State variables of hybrid systems, like, e.g., positions and velocities, are represented
as real-valued constant symbols of Σ, i.e., function symbols of arity 0. Unlike fixed
symbols like 1, state variables are flexible, i.e., their interpretation can change from
state to state during the execution of a hybrid program. Flexibility of symbols will
be used to represent the progression of system values along states over time during
a hybrid evolution. Symbols like 1, instead, are rigid, i.e., they have the same value
at all states.

There is no need to distinguish between discrete and continuous variables in dL.
The distinction between logical variables in V , which can be quantified, and state
variables in Σ, which can change their value by discrete jumps and differential
equations in modalities, is not strictly required. For instance, quantification of
state variables is definable using auxiliary logical variables. The distinction makes
the semantics less subtle, though. Our calculus assumes that V contains suffi-
ciently many variables and Σ contains additional Skolem function symbols, which
are reserved for use by the calculus.

The set Trm(Σ, V ) of terms is defined as in classical first-order logic yielding poly-
nomial (or rational) expressions over V and over additional Skolem terms s(t1, . . . , tn)
with terms ti. Our calculus only uses Skolem terms s(X1, . . . , Xn) with logical vari-
ables Xi ∈ V .

2.1 Definition (Terms). Trm(Σ, V ) is the set of all terms, which is the smallest
set such that:

• If x ∈ V , then x ∈ Trm(Σ, V ).

• If f ∈ Σ is a function symbol of arity n ≥ 0 and, for 1 ≤ i ≤ n, θi ∈ Trm(Σ, V ),
then f(θ1, . . . , θn) ∈ Trm(Σ, V ). The case n = 0 is permitted.

The set of formulas of first-order logic is defined as usual, giving first-order real
arithmetic [Tar51] augmented with Skolem terms. We will show the precise relation-
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ship to standard first-order real arithmetic without Skolem terms in Lemma 2.13
of Section 2.5.2.

2.2 Definition (First-order formulas). The set FmlFOL(Σ, V ) of formulas of
first-order logic is the smallest set with:

• If p ∈ Σ is a predicate symbol of arity n ≥ 0 and θi ∈ Trm(Σ, V ) for 1 ≤ i ≤ n,
then p(θ1, . . . , θn) ∈ FmlFOL(Σ, V ).

• If φ, ψ ∈ FmlFOL(Σ, V ), then ¬φ, (φ∧ ψ), (φ∨ ψ), (φ→ ψ) ∈ FmlFOL(Σ, V ).

• If φ ∈ FmlFOL(Σ, V ) and x ∈ V , then ∀xφ,∃xφ ∈ Fml(Σ, V ).

2.2.2. Hybrid Programs

As uniform compositional models for hybrid systems, discrete and continuous trans-
itions can be combined by structured control programs.

2.3 Definition (Hybrid programs). The set HP(Σ, V ) of hybrid programs, with
typical elements α, β, is defined inductively as the smallest set such that

1. If xi ∈ Σ is a state variable and θi ∈ Trm(Σ, V ) for 1 ≤ i ≤ n, then the discrete
jump set (x1 := θ1, . . . , xn := θn) ∈ HP(Σ, V ) is a hybrid program.

2. If xi ∈ Σ is a state variable and θi ∈ Trm(Σ, V ) for 1 ≤ i ≤ n, then, x′i = θi is
a differential equation in which x′i represents the time-derivative of variable xi.
If χ is a first-order formula, then (x′1 = θ1, . . . , x

′
n = θn &χ) ∈ HP(Σ, V ).

3. If χ is a first-order formula, then (?χ) ∈ HP(Σ, V ).

4. If α, β ∈ HP(Σ, V ), then (α ∪ β) ∈ HP(Σ, V ).

5. If α, β ∈ HP(Σ, V ), then (α; β) ∈ HP(Σ, V ).

6. If α ∈ HP(Σ, V ), then (α∗) ∈ HP(Σ, V ).

The effect of jump set x1 := θ1, . . . , xn := θn is to simultaneously change the
interpretations of the xi to the respective θi by performing a discrete jump in
the state space. In particular, the θi are evaluated before changing the value of
any xj. The effect of x′1 = θ1, . . . , x

′
n = θn &χ is an ongoing continuous evolution

respecting the differential equation system x′1 = θ1, . . . , x
′
n = θn while remaining

within the region χ. The evolution is allowed to stop at any point in χ. It is,
however, required to stop before it leaves χ. For unconstrained evolutions, we
write x′ = θ in place of x′ = θ& true. For structural reasons, we expect both dif-
ference equations (discrete jump sets) and differential equations to be given in
explicit form, i.e., with the affected variable on the left. The dL semantics allows
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arbitrary differential equations. To retain feasible arithmetic, some of our calculus
rules assume that, like in [ACH+95, Frä99, MPM05, Hen96], the differential equa-
tions have first-order definable flows or approximations. We assume that stand-
ard techniques are used to determine corresponding solutions or approximations,
e.g., [AW01, LPY99, PC07, Per91, Wal98].

The test action ?χ is used to define conditions. Its semantics is that of a no-op if χ
is true in the current state; otherwise, like abort, it allows no transitions. Note that,
according to Definition 2.3, we only allow first-order formulas as tests. Instead, we
could allow rich tests, i.e., arbitrary dL formulas χ with nested modalities as tests ?χ
inside hybrid programs (and even in invariant regions χ of differential equations).
The calculus and our meta-results directly carry over to rich test dL. To simplify
the presentation, however, we refrain from allowing arbitrary dL formulas as tests,
because that requires simultaneous inductive handling of hybrid programs and dL
formulas in syntax, semantics, and completeness proofs, because dL formulas would
then be allowed to occur in hybrid programs and vice versa.

The non-deterministic choice α ∪ β, sequential composition α; β, and non-de-
terministic repetition α∗ of programs are as usual but generalised to a semantics
in hybrid systems. Choices α ∪ β are used to express behavioural alternatives
between the transitions of α and β. The sequential composition α; β says that the
hybrid program β starts executing after α has finished (β never starts if α does
not terminate). Observe that, like repetitions, continuous evolutions within α can
take longer or shorter, which already causes uncountable nondeterminism. This
nondeterminism is inherent in hybrid systems and as such reflected in hybrid pro-
grams. Repetition α∗ is used to express that the hybrid process α repeats any
number of times, including zero times. The control flow operations of choice, se-
quential composition, and repetition can be combined with ?χ to form all other
control structures [HKT00]. For instance, (?χ;α)∗; ?¬χ corresponds to a while loop
that repeats α while χ holds and only stops when χ ceases to hold.

Hybrid programs are designed as a minimal extension of conventional discrete
programs. They characterise hybrid systems succinctly by adding continuous evol-
ution along differential equations as the only additional primitive operation to a
regular basis of conventional discrete programs. To yield hybrid systems, their
operations are interpreted over the domain of real numbers. This gives rise to
an elegant syntactic hierarchy of discrete, continuous, and hybrid systems. Hy-
brid automata [Hen96] can be represented as hybrid programs using a straightfor-
ward generalisation of standard program encodings of automata, see Appendix B
for formal details. The fragment of hybrid programs without differential equa-
tions corresponds to conventional discrete programs generalised over the reals or to
discrete-time dynamical systems [Bra95b]. The fragment without discrete jumps
corresponds to switched continuous systems [Bra95b, BBM98], whereas the frag-
ment of differential equations gives purely continuous dynamical systems [Sib75].
Only the composition of mixed discrete jumps and continuous evolutions gives rise
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to truly hybrid behaviour.

2.2.3. Formulas of Differential Dynamic Logic

The formulas of dL are defined as in first-order dynamic logic [HKT00]. That is,
they are built using propositional connectives ¬,∧,∨,→,↔ and quantifiers ∀,∃
(first-order part). In addition, if φ is a dL formula and α a hybrid program, then
[α]φ, 〈α〉φ are formulas (dynamic part).

2.4 Definition (dL formulas). The set Fml(Σ, V ) of formulas of dL, with typical
elements φ, ψ, is the smallest set such that

1. If p is a predicate symbol of arity n ≥ 0 and θi ∈ Trm(Σ, V ) for 1 ≤ i ≤ n,
then p(θ1, . . . , θn) ∈ Fml(Σ, V ).

2. If φ, ψ ∈ Fml(Σ, V ), then ¬φ, (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ) ∈ Fml(Σ, V ).

3. If φ ∈ Fml(Σ, V ) and x ∈ V , then ∀xφ,∃xφ ∈ Fml(Σ, V ).

4. If φ ∈ Fml(Σ, V ) and α ∈ HP(Σ, V ), then [α]φ, 〈α〉φ ∈ Fml(Σ, V ).

We consider φ↔ ψ as an abbreviation for (φ→ ψ) ∧ (ψ → φ) to simplify the calcu-
lus. When train denotes the hybrid program in Figure 2.1, the following dL formula
states that the train is able to leave region z < m when it starts in the same region:

z < m→ 〈train〉z ≥ m .

Note that, according to Definition 2.4, hybrid programs are not additional ex-
ternal objects but fully internalised [Bla00] as first-class citizens within the logic
dL itself and the logic is closed. That is, modalities can be combined proposition-
ally, by quantifiers, or nested. For instance, [α]〈β〉x ≤ c says that, whatever α is
doing, β can react in some way to reach a controlled state where x is less than
some critical value c. Dually, 〈β〉[α]x ≤ c expresses that β can stabilise x ≤ c, i.e.,
behave in such a way that x ≤ c remains true no matter how α reacts. Accordingly,
∃p [α]x ≤ c says that there is a choice of parameter p such that α remains in x ≤ c.

During our analysis, we assume differential equations and discrete transitions
to be well-defined. In particular, we assume that all divisions p/q are guarded by
conditions that ensure q 6= 0 as, otherwise, the system behaviour is not well-defined
due to an undefined value at a singularity. It is simple but tedious to augment the
semantics and the calculus with corresponding side conditions to show that this
is respected. For instance, we assume that x := p/q is guarded by ?q 6= 0 and
that continuous evolutions are restricted such that the differential equations are
well-defined as, e.g., x′ = p/q& q 6= 0. Also see [BP06] for techniques how such
exceptional behaviour can be handled by program transformation while avoiding
partial valuations in the semantics. In logical formulas, partiality can be avoided
by writing, e.g., p = c · q ∧ q 6= 0 rather than p/q = c.
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2.3. Semantics of Differential Dynamic Logic

We define the semantics of dL as a Kripke semantics with worlds representing the
possible system states and with reachability along the hybrid transitions of the
system as accessibility relation. The interpretations of dL consist of states (worlds)
that are essentially first-order structures over the reals. In particular, real values
are assigned to state variables, possibly different values in each state. A potential
behaviour of a hybrid system corresponds to a succession of states that contain the
observable values of system variables during its hybrid evolution.

2.3.1. Valuation of Terms

An interpretation I assigns functions and relations over the reals to the respective
(rigid) symbols in Σ. The function and predicate symbols of real arithmetic are
interpreted as usual by I. A state is a map ν : Σfl → R; the set of all states is denoted
by Sta(Σ). Here, Σfl denotes the set of (flexible) state variables in Σ (they have
arity 0). Finally, an assignment for logical variables is a map η :V → R. It contains
the values for logical variables, which are not subject to change by modalities
but only by quantification. Observe that flexible symbols (which represent state
variables), are allowed to assume different interpretations in different states. Logical
variable symbols, however, are rigid in the sense that their value is determined by η
alone and does not depend on the state.

The valuation valI,η(ν, ·) of terms is defined as usual [FM99, HKT00] with a
distinction of rigid and flexible functions [BP06].

2.5 Definition (Valuation of terms). The valuation of terms with respect to
interpretation I, assignment η, and state ν is defined by

1. valI,η(ν, x) = η(x) if x ∈ V is a logical variable.

2. valI,η(ν, a) = ν(a) if a ∈ Σ is a state variable (flexible function symbol of
arity 0).

3. valI,η(ν, f(θ1, . . . , θn)) = I(f)
(
valI,η(ν, θ1), . . . , valI,η(ν, θn)

)
when f ∈ Σ is a

rigid function symbol of arity n ≥ 0.

2.3.2. Valuation of Formulas

The valuation valI,η(ν, ·) of formulas is defined as usual for first-order modal logic
[FM99, HKT00] with a distinction of rigid and flexible functions [BP06]. Modalit-
ies parameterised by a hybrid program α follow the accessibility relation spanned
by the respective hybrid state transition relation ρI,η(α), which is simultaneously
inductively defined in Definition 2.7.
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We will use ν[x 7→ d] to denote the modification of a state ν that agrees with ν
except for the interpretation of the symbol x ∈ Σfl, which is changed to d ∈ R.
Similarly, η[x 7→ d] agrees with the assignment η except on x ∈ V , which is as-
signed d ∈ R.

2.6 Definition (Valuation of dL formulas). The valuation, valI,η(ν, ·), of for-
mulas with respect to interpretation I, assignment η, and state ν is defined as

1. valI,η(ν, p(θ1, . . . , θn)) = I(p)
(
valI,η(ν, θ1), . . . , valI,η(ν, θn)

)
2. valI,η(ν, φ ∧ ψ) = true iff valI,η(ν, φ) = true and valI,η(ν, ψ) = true

3. valI,η(ν, φ ∨ ψ) = true iff valI,η(ν, φ) = true or valI,η(ν, ψ) = true

4. valI,η(ν,¬φ) = true iff valI,η(ν, φ) 6= true

5. valI,η(ν, φ→ ψ) = true iff valI,η(ν, φ) 6= true or valI,η(ν, ψ) = true

6. valI,η(ν,∀xφ) = true iff valI,η[x 7→d](ν, φ) = true for all d ∈ R

7. valI,η(ν,∃xφ) = true iff valI,η[x 7→d](ν, φ) = true for some d ∈ R

8. valI,η(ν, [α]φ) = true iff valI,η(ω, φ) = true for all states ω for which the trans-
ition relation satisfies (ν, ω) ∈ ρI,η(α)

9. valI,η(ν, 〈α〉φ) = true iff valI,η(ω, φ) = true for some state ω for which the
transition relation satisfies (ν, ω) ∈ ρI,η(α)

Following the usual notation, we also write I, η, ν |= φ iff valI,η(ν, φ) = true. Du-
ally, we write I, η, ν 6|= φ iff valI,η(ν, φ) 6= true. Occasionally, we write just � φ iff
I, η, ν |= φ holds for all I, η, ν.

2.3.3. Transition Semantics of Hybrid Programs

Now we can define the transition semantics, ρI,η(α), of a hybrid program α. The
semantics of a hybrid program is captured by its hybrid state transition relation.
For discrete jumps this transition relation holds for pairs of states that respect the
discrete jump set. For continuous evolutions, the transition relation holds for pairs
of states that can be interconnected by a continuous flow respecting the differential
equations and invariant throughout the evolution.

2.7 Definition (Transition semantics of hybrid programs). The valuation,
ρI,η(α), of a hybrid program α, is a transition relation on states. It specifies which
state ω is reachable from a state ν by operations of the hybrid program α and is
defined as follows
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1. (ν, ω) ∈ ρI,η(x1 := θ1, . . , xn := θn) iff ν[x1 7→ valI,η(ν, θ1)] . . [xn 7→ valI,η(ν, θn)]
equals state ω. Particularly, the value of other variables z 6∈ {x1, . . . , xn} re-
mains constant, i.e., valI,η(ν, z) = valI,η(ω, z).

2. (ν, ω) ∈ ρI,η(x′1 = θ1, . . . , x
′
n = θn &χ) iff there is a flow f of some duration

r ≥ 0 from state ν to state ω along x′1 = θ1, . . . , x
′
n = θn &χ, i.e., a function

f : [0, r]→ Sta(Σ) such that:

• f(0) = ν, f(r) = ω;

• f respects the differential equations: For each xi, valI,η(f(ζ), xi) is con-
tinuous in ζ on [0, r] and has a derivative of value valI,η(f(ζ), θi) at each
time ζ ∈ (0, r);

• The value of other variables z 6∈ {x1, . . . , xn} remains constant, that is,
valI,η(f(ζ), z) = valI,η(ν, z) for all ζ ∈ [0, r];

• And f respects the invariant: valI,η(f(ζ), χ) = true for each ζ ∈ [0, r].

3. ρI,η(?χ) = {(ν, ν) : valI,η(ν, χ) = true}

4. ρI,η(α ∪ β) = ρI,η(α) ∪ ρI,η(β)

5. ρI,η(α; β) = {(ν, ω) : (ν, z) ∈ ρI,η(α), (z, ω) ∈ ρI,η(β) for a state z}

6. (ν, ω) ∈ ρI,η(α∗) iff there are an n ∈ N and states ν = ν0, . . . , νn = ω such that
(νi, νi+1) ∈ ρI,η(α) for all 0 ≤ i < n.

Note that the modifications of a discrete jump set are executed simultaneously in
the sense that all terms θi are evaluated in the initial state ν. For simplicity, we
assume the xi to be different, and refer to previous work [BP06] for a compatible
semantics and calculus handling concurrent modifications of the same xi.

For differential equations like x′ = θ, Definition 2.7 characterises transitions along
a continuous evolution respecting the differential equation, see Figure 2.2a. A con-
tinuous transition along x′ = θ is possible from ν to ω whenever there is a continuous
flow f of some duration r ≥ 0 connecting state ν with ω such that f gives a solu-
tion of the differential equation x′ = θ. That is, its value is continuous on [0, r] and
differentiable with the value of θ as derivative on the open interval (0, r). Further,
only variables subject to a differential equation change during such a continuous
transition. Similarly, the continuous transitions of x′ = θ&χ with invariant re-
gion χ are those where f always resides within χ during the whole evolution, see
Figure 2.2b.

For the semantics of differential equations, derivatives are well-defined on the
open interval (0, r) as Sta(Σ) is isomorphic to some finite-dimensional real space
spanned by the variables of the differential equations (derivatives are not defined on
the closed interval [0, r] if r = 0). For the purpose of a differential equation system,
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Figure 2.2.: Continuous flow along differential equation x′ = θ over time t

states are fully determined by an assignment of a real value to each occurring
variable, which are finitely many. Furthermore, the terms of dL are continuously
differentiable on the open domain where divisors are non-zero, because the zero set
of divisors is closed. Hence, solutions in dL are unique:

2.8 Lemma (Uniqueness). Differential equations of dL have unique solutions,
i.e., for each differential equation system, each state ν and each duration r ≥ 0,
there is at most one flow f : [0, r]→ Sta(Σ) satisfying the conditions of Case 2 of
Definition 2.7.

Proof. Let x′1 = θ1, . . . , x
′
n = θn &χ be a differential equation system with invariant

region χ. Using simple computations in the field of rational fractions, we can assume
the right-hand sides θi of the differential equations to be of the form pi/qi for
polynomials pi, qi. The set of points in real space where qi = 0 holds is closed. As a
finite union of closed sets, the set where q1 = 0 ∨ · · · ∨ qn = 0 holds is closed. Hence,
the valuations of the θi are continuously differentiable on the complement of the
latter set, which is open. Thus, as a consequence of Picard-Lindelöf’s theorem a.k.a.
Cauchy-Lipschitz theorem [Wal98, Theorem 10.VI], the solutions are unique on each
connected component of this open domain. Consequently, solutions are unique
when restricted to χ, which, by assumption, entails q1 6= 0 ∧ · · · ∧ qn 6= 0.

For control-feedback loops α with a discrete controller regulating a continuous
plant, transition structures involve all safety-critical states, hence, ψ → [α]φ is a
natural rendition of the safety property that φ holds at all states reachable by α from
initial states that satisfy ψ. Otherwise, dL can be augmented with temporal oper-
ators to refer to intermediate states or nonterminating traces. The corresponding
calculus is compatible and reduces temporal properties to non-temporal properties
at intermediate states of the hybrid program, as we illustrate in Chapter 4.

2.4. Collision Avoidance in Train Control

As a case study to illustrate how dL can be used for specifying and verifying hy-
brid systems, we examine a scenario of cooperating traffic agents in the European
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Train Control System (ETCS) [DMO+07]. The purpose of ETCS is to ensure that
trains cannot crash into other trains or pass open gates. Its secondary objective is
to maximise throughput and velocity without endangering safety. To achieve these
objectives, ETCS discards the static partitioning of the track into fixed segments of
mutually exclusive and physically separated access by trains, which has been used
traditionally. Instead, permission to move is granted dynamically by decentral-
ised Radio Block Controllers (RBC) depending on the current track situation and
movement of other traffic agents within the region of responsibility of the RBC, see
Figure 2.3.

Figure 2.3.: ETCS train coordination protocol using dynamic movement authorities

Movement Authorities This moving block principle is achieved by dynamically
giving a movement authority (MA) to each traffic agent, within which it is obliged
to remain. Before a train moves into a part of the track for which it does not have
MA, it asks the RBC for an MA-extension (negotiation phase neg of Figure 2.3).
Depending on the MA that the RBC has currently given to other traffic agents or
gates, the RBC will grant this extension and the train can move on. If the newly
requested MA is still in possession of another train which could occupy the track, or
if the MA is still consumed by an open gate, the RBC will deny the MA-extension
such that the requesting train needs to reduce speed or start braking in order to
safely remain within its old MA. As the negotiation process with the RBC can take
time because of possibly unreliable wireless communication and negotiation of the
RBC with other agents, the train initiates negotiation well before reaching the end
of its MA. When the rear end of a train has safely left a part of a track, the train
can give that part of its MA back to RBC control such that it can be used by other
traffic agents.

In addition to increased flexibility and throughput of this moving block principle,
the underlying technical concept of movement authorities can be exploited for veri-
fying ETCS. It can be shown that a system of arbitrarily many trains, gates, and
RBCs, which communicate in the aforementioned manner, safely avoids collisions
if each traffic agent always resides within its MA under all circumstances, provided
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that the RBCs grant MA mutually exclusive so that the MAs dynamically parti-
tion the track [DHO06]. This way, verification of a system of unboundedly many
traffic agents can be reduced to an analysis of individual agents with respect to
their specific MA.

Train Control Model For trains, speed supervision and automatic train protec-
tion are responsible for locally controlling the movement of a train such that it
always respects its MA [DHO06]. Depending on the current driving situation, the
train controller determines a point SB (for start braking) upto which driving is
safe, and adjusts its acceleration a in accordance with SB. Before SB, speed can
be regulated freely (to keep the desired speed and throughput of a track profile).
Beyond SB (correcting phase cor in Figure 2.3), the train starts braking in order
to make sure it remains within its MA if the RBC does not grant an extension in
time.

We assume that an MA has been granted up to some track position, which we
call m, and the train is located at position z, heading with initial speed v towards m.
We represent the point SB as the safety distance s relative to the end m of the MA
(i.e., m− s = SB). In this situation, dL can analyse the following crucial safety
property of ETCS:

ψ → [(ctrl ; drive)∗] z ≤ m (2.1)

where ctrl ≡ (?m− z ≤ s; a :=−b) ∪ (?m− z ≥ s; a :=A)

drive ≡ τ := 0; (z′ = v, v′ = a, τ ′ = 1 & v ≥ 0 ∧ τ ≤ ε) .

It expresses that a train always remains within its MA, assuming some constraint ψ
for its parameters. The operational system model is a control-feedback loop of the
digital controller ctrl and the plant drive. In ctrl , the train controller corrects its
acceleration or brakes on the basis of the remaining distance (m− z). As a failsafe
recovery manoeuvre [DHO06], it applies brakes with force b if the remaining MA
is less than s. Otherwise, speed is regulated freely. For simplicity, we assume the
train uses a fixed acceleration A before having passed s. The verification is quite
similar when the controller can dynamically choose any acceleration a ≤ A instead.

After acceleration a has been set in ctrl , the train continues moving in drive.
There, the position z of the train evolves according to the system z′ = v, v′ = a
(i.e., z′′ = a). The evolution in drive stops when the speed v drops below zero
(or earlier). Simultaneously, clock τ measures the duration of the current drive
phase before the controllers react to situation changes again. Clock τ is reset to
zero when entering drive, constantly evolves along τ ′ = 1, and is bound by the
invariant region τ ≤ ε. The effect is that a drive phase is interrupted for reassess-
ing the driving situation after at most ε seconds, and the ctrl ; drive feedback loop
repeats. The corresponding transition structure ρI,η((ctrl ; drive)∗) is depicted in
Figure 2.4a. Figure 2.4b shows possible runs of the train where speed regulation
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successively decreases velocity v because MA has not been extended in time (Fig-
ure 2.4b shows 3 different runs which correspond to different choices of parameter s,
where only the lowest velocity choice is safe). Finally, observe that the invariant
region v ≥ 0 ∧ τ ≤ ε needs to be true at all times during continuous evolutions of
drive, otherwise there is no corresponding transition in ρI,η(drive). This not only
restricts the maximum duration of drive, but also imposes a constraint on permitted
initial states: The arithmetic constraint v ≥ 0 expresses that the differential equa-
tion only applies for non-negative speed. Hence, like in a test ?v ≥ 0, program drive
allows no transitions when v is initially less than 0. In that case, ρI,η((ctrl ; drive)∗)
collapses to the trivial identity transition with zero repetitions.

a.

∪

?m−z≤s

?m−z≥s

a :=−b

a :=
A

τ := 0 z′′ = a

τ ′ = 1
& τ≤ε

b.
MA

z

v

MA
z

v
t

Figure 2.4.: ETCS transition structure and various choices of speed regulation for
train speed control

Discussion Here, we explicitly take into account possibly delayed controller reac-
tions to bridge the gap of continuous-time models and discrete-time control design.
To get meaningful results, we need to assume a maximum reaction delay ε as safety
cannot otherwise be guaranteed. Polling cycles of sensors and digital controllers as
well as latencies of actuators like brakes contribute to ε. Instead of using specific
estimates for ε for a particular train, we accept ε as a fully symbolic parameter.
Further, instead of manually choosing specific values for the free parameters of (2.1)
as in model checking approaches [DMO+07], we will use our calculus to synthesise
constraints on the relationship of parameters that are required for a safe operation
of train control. As they are of subordinate importance to the cooperation layer of
train control [DHO06], we do not model weather conditions, slope of track, or train
mass.

Because of its nonlinear behaviour and nontrivial reset relations, system (2.1)
is beyond the modelling capabilities of linear hybrid automata [ACH+95, Hen96,
Fre05] and beyond o-minimal automata [LPY99]. Previous approaches need linear
flows [ACH+95, Hen96], do not support the coupled dynamics caused by nontrivial
resets [LPY99], require polyhedral initial sets and discrete dynamics [CK03], only
handle robust systems with bounded regions [Frä99], although parametric systems
are not robust uniformly for all parameter choices, or they handle only bounded-
time safety for systems with bounded switching [MPM05]. Finally, in addition
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to general numerical limits [PC07], numerical approaches [CK03, ADG03] quickly
become intractable due to the exponential impact of the number of variables.

2.5. Free Variable Calculus for Differential Dynamic
Logic

In this section, we introduce a sequent calculus for verifying hybrid systems by
proving corresponding dL formulas. The basic idea is to symbolically compute the
effects of hybrid programs and successively transform them into logical formulas de-
scribing these effects by structural decomposition. The calculus consists of standard
propositional rules, rules for dynamic modalities that are generalised to hybrid pro-
grams, and novel quantifier rules that integrate real quantifier elimination (or, in
fact, any other quantifier elimination procedure) into the modal calculus using free
variables and Skolemisation.

2.5.1. Rules of the Calculus for Differential Dynamic Logic

A sequent is of the form Γ ` ∆, where the antecedent Γ and succedent ∆ are finite
sets of formulas. The semantics of Γ ` ∆ is that of the formula

∧
φ∈Γ φ →

∨
ψ∈∆ ψ.

For quantifier elimination rules, we make use of this fact by considering sequent
Γ ` ∆ as an abbreviation for the latter formula.

The dL calculus uses substitutions that take effect within formulas and pro-
grams. The result of applying to φ the substitution that simultaneously replaces xi
by θi (for 1 ≤ i ≤ n) is defined as usual; it is denoted by φθ1x1 . . .

θn
xn . We assume

α-conversion for renaming as needed. In the dL calculus, only admissible substitu-
tions are applicable, which is crucial for soundness. Admissible substitutions are
denotation-preserving: They ensure that symbols still denote the same values after
a substitution when they did so before.

2.9 Definition (Admissible substitution). An application of a substitution σ is
admissible if no variable x that σ replaces by σ(x) occurs in the scope of a quantifier
or modality binding x or a (logical or state) variable of the replacement σ(x). A
modality binds a state variable x iff it contains a discrete jump set assigning to x
(like x := θ) or a differential equation containing x′ (like x′ = θ).

2.2 Example (Non-admissible substitution). For the following formula, φ,

x = z → 〈z := z + 1〉(z ≥ x+ 1)

the substitution that replaces all occurrences of x by z, is not admissible. This is
due to the fact that for the forming of φzx as

z = z → 〈z := z + 1〉(z ≥ z + 1)
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the substitution replaces x in postcondition z ≥ x+ 1 by z, which is bound by
modality 〈z := z + 1〉. Hence, within the scope of the modality, symbol z denotes
a different value than outside the modality, thereby destroying the property of
the occurrences of x, or—after the substitution—of z, to share the same value
throughout the formula. Instead, a substitution of x by y + 1 in φ to form φy+1

x is
admissible for other symbols y.

When no confusion arises, we also use implicit notation for substitutions to im-
prove readability. Let φ(z) be a formula with a free variable z. Then for any
term θ, we use φ(θ) as an abbreviation for the formula φ(z)θz that results from φ(z)
by substituting θ for z.

Observe that, for soundness, the notion of bound variables can be any overap-
proximation of the set of variables that possibly change their value during a hybrid
program. In vacuous identity changes like x := x or x′ = 0, variable x will not really
change its value, but we still consider x as a bound variable for simplicity. For a
hybrid program α, we denote by ∀αφ the universal closure of formula φ with respect
to all state variables bound in α. Quantification over state variable x is definable
as ∀X [x :=X]Φ using an auxiliary logical variable X.

For handling quantifiers, we cannot use the standard rules [HS94, Fit96, FM99],
because these are for uninterpreted first-order logic and (ultimately) work by in-
stantiating quantifiers, either eagerly as in ground tableaux or lazily by unification
as in free variable tableaux [HS94, Fit96, FM99]. The basis of dL, instead, is first-
order logic interpreted over the reals or in the theory of real-closed fields [Tar51]. A
formula like ∃a ∀x (x2 + a > 0) cannot be proven by instantiation-based quantifier
rules but is valid in the theory of real-closed fields. Unfortunately, quantifier elim-
ination (QE) over the reals [CH91, Tar51], which is the standard decision procedure
for real arithmetic, cannot be applied to formulas with modalities either. Hence,
we introduce novel quantifier rules that integrate quantifier elimination in a way
that is compatible with dynamic modalities (as we illustrate in Section 2.5.2).

2.10 Definition (Quantifier elimination). A first-order theory admits quantifier
elimination if, to each formula φ, a quantifier-free formula QE(φ) can be associated
effectively that is equivalent (i.e., φ ↔ QE(φ) is valid) and has no additional free
variables or function symbols. The operation QE is further assumed to evaluate
ground formulas (i.e., without variables), yielding a decision procedure for closed
formulas of this theory.

As usual in sequent calculus rules—although the direction of entailment is from
premisses (above rule bar) to conclusion (below)—the order of reasoning is goal-
directed : Rules are applied in tableau-style, i.e., starting from the desired conclusion
at the bottom (goal) to the resulting premisses (sub-goals). To highlight the logical
essence of the dL calculus, Figure 2.5 provides rule schemata to which the following
definition associates the calculus rules that are applicable in dL proofs. The calculus
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consists of propositional rules (P-rules: P1–P10), first-order quantifier rules (F-
rules: F1–F6), rules for dynamic modalities (D-rules: D1–D12), and global rules
(G-rules: G1–G4).

2.11 Definition (Rules). The rule schemata in Figure 2.5 induce calculus rules
by:

1. If
Φ1 ` Ψ1 . . . Φn ` Ψn

Φ0 ` Ψ0

is an instance of a P, G, or F1–F5 rule schema in Figure 2.5, then

Γ, 〈J 〉Φ1 ` 〈J 〉Ψ1,∆ . . . Γ, 〈J 〉Φn ` 〈J 〉Ψn,∆

Γ, 〈J 〉Φ0 ` 〈J 〉Ψ0,∆

can be applied as a proof rule of the dL calculus, where Γ,∆ are arbitrary
finite sets of additional context formulas (including empty sets) and J is a
discrete jump set (including the empty set). Hence, the rule context Γ,∆ and
prefix 〈J 〉 remain unchanged during rule applications.

2. Symmetric schemata can be applied on either side of the sequent: If

φ1

φ0

is an instance of one of the symmetric rule schemata (D-rules) in Figure 2.5,
then

Γ ` 〈J 〉φ1,∆

Γ ` 〈J 〉φ0,∆
and

Γ, 〈J 〉φ1 ` ∆

Γ, 〈J 〉φ0 ` ∆

can both be applied as proof rules of the dL calculus, where Γ,∆ are arbitrary
finite sets of context formulas and J is a discrete jump set (including empty
sets). In particular, symmetric schemata yield equivalence transformations,
because the same rule applies in the antecedent as in the succedent.

3. Schema F6 applies to all goals containing X: If Φ1 ` Ψ1, . . ,Φn ` Ψn is the
list of all open goals of the proof that contain free variable X, then an instance

` QE(∃X ∧
i(Φi ` Ψi))

Φ1 ` Ψ1 . . . Φn ` Ψn

of rule schema F6 can be applied as a proof rule of the dL calculus.
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(P1)
φ `
` ¬φ

(P2)
` φ
¬φ `

(P3)
` φ, ψ
` φ ∨ ψ

(P4)
φ ` ψ `
φ ∨ ψ `

(P5)
` φ ` ψ
` φ ∧ ψ

(P6)
φ, ψ `
φ ∧ ψ `

(P7)
φ ` ψ
` φ→ ψ

(P8)
` φ ψ `
φ→ ψ `

(P9)
φ ` φ (P10)

` φ φ `
`

(D1)
〈α〉〈β〉φ
〈α; β〉φ

(D2)
[α][β]φ

[α; β]φ

(D3)
〈α〉φ ∨ 〈β〉φ
〈α ∪ β〉φ

(D4)
[α]φ ∧ [β]φ

[α ∪ β]φ

(D5)
φ ∨ 〈α〉〈α∗〉φ
〈α∗〉φ

(D6)
φ ∧ [α][α∗]φ

[α∗]φ

(D7)
χ ∧ ψ
〈?χ〉ψ

(D8)
χ→ ψ

[?χ]ψ

(D9)
φθ1x1 . . .

θn
xn

〈x1 := θ1, . . , xn := θn〉φ

(D10)
〈x1 := θ1, . . , xn := θn〉φ
[x1 := θ1, . . , xn := θn]φ

(D11)
∃t≥0

(
(∀0≤t̃≤t 〈St̃〉χ) ∧ 〈St〉φ

)
〈x′1 = θ1, . . , x′n = θn &χ〉φ

(D12)
∀t≥0

(
(∀0≤t̃≤t 〈St̃〉χ)→ 〈St〉φ

)
[x′1 = θ1, . . , x′n = θn &χ]φ

(F1)
` φ(s(X1, . . , Xn))

` ∀xφ(x)

(F2)
φ(s(X1, . . , Xn)) `
∃xφ(x) `

(F3)
` QE(∀X (Φ(X) ` Ψ(X)))

Φ(s(X1, . . , Xn)) ` Ψ(s(X1, . . , Xn))

(F4)
` φ(X)

` ∃xφ(x)

(F5)
φ(X) `
∀xφ(x) `

(F6)
` QE(∃X ∧

i(Φi ` Ψi))

Φ1 ` Ψ1 . . . Φn ` Ψn

(G1)
` ∀α(φ→ ψ)

[α]φ ` [α]ψ
(G2)

` ∀α(φ→ ψ)

〈α〉φ ` 〈α〉ψ (G3)
` ∀α(φ→ [α]φ)

φ ` [α∗]φ

(G4)
` ∀α∀v>0 (ϕ(v)→ 〈α〉ϕ(v − 1))

∃v ϕ(v) ` 〈α∗〉∃v≤0ϕ(v)

All substitutions need to be admissible, including the substitution that in-

serts s(X1, . . , Xn) into φ(s(X1, . . , Xn)). In D11–D12, t and t̃ are fresh logical variables

and 〈St〉 is the jump set 〈x1 := y1(t), . . , xn := yn(t)〉 with simultaneous solutions y1, . . , yn
of the respective differential equations with constant symbols xi as symbolic initial val-

ues. In G4, logical variable v does not occur in α. In F1 and F2, s is a new Skolem

function and X1, . . , Xn are all free logical variables of ∀xφ(x). In F3–F5, X is a new

logical variable. In F6, among all open branches, the free logical variable X only occurs

in the branches Φi ` Ψi. Finally, QE needs to be defined for the formulas in F3 and F6.

Especially, no Skolem dependencies on X occur in F6.

Figure 2.5.: Rule schemata of the free variable calculus for differential dynamic logic
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P-Rules For propositional logic, standard rules P1–P9 with cut P10 are listed
in Figure 2.5. They decompose the propositional structure of formulas. Rules
P1 and P2 use simple dualities caused by the implicative semantics of sequents.
P3 uses that formulas are combined disjunctively in succedents, P6 that they are
conjunctive in antecedents. P4 and P5 split the proof into two cases, because
conjuncts in the succedent can be proven separately (P5) and, dually, disjuncts of
the antecedent can be assumed separately (P4). P7 and P8 can be derived from
the equivalence of φ→ ψ and ¬φ ∨ ψ. The axiom rule P9 closes a goal (there are
no further sub-goals), because assumption φ in the antecedent trivially entails φ
in the succedent. Rule P10 is the cut rule that can be used for case distinctions:
The right sub-goal assumes any additional formula φ in the antecedent that the left
sub-goal shows in the succedent. We only use cuts in an orderly fashion to derive
simple rule dualities and to simplify metaproofs. In practical applications, cuts are
not usually needed and we conjecture that this is no coincidence.

F-Rules The quantifier rules F1 and F2 correspond to the liberalised δ+-rule of
Hähnle and Schmitt [HS94]. F4 and F5 resemble the usual γ-rule but, unlike
in [Fit96, FM99, HS94, Gie01], they cannot be applied twice because the original
formula is removed (∃xφ(x) in F4). The calculus still has a complete handling
of quantifiers due to F3 and F6, which can reconstruct and eliminate quantifiers
once QE is applicable as the remaining constraints are first-order in the respective
variables. In the premiss of F3 and F6, we again consider sequents Φ ` Ψ as
abbreviations for formulas. For closed formulas, we do not need other arithmetic
rules. We defer illustrations and further discussion of F-rules to Section 2.5.2.

D-Rules The dynamic modality rules transform a hybrid program into simpler
logical formulas. Rules D1–D8 are as in discrete dynamic logic [HKT00, BP06].
Sequential compositions are proven using nested modalities (D1–D2), and non-
deterministic choices split into their alternatives (D3–D4). D5 and D6 are the
usual iteration rules, which partially unwind loops. Tests are proven by showing
(D7) or assuming (D8) that the test succeeds, because ?χ can only make a transition
when χ holds true (Definition 2.7).

D9 uses simultaneous substitutions for handling discrete jump sets. To show
that φ is true after a discrete jump, D9 shows that φ has already been true before,
when replacing the xi by their new values θi in φ by an admissible substitution. In-
stead, the discrete jump set can remain an unchanged prefix (J in Definition 2.11)
for other dL rules applied to φ, until the substitution for D9 is admissible. D10
uses that discrete jump sets characterise a unique deterministic transition, hence, its
premiss and conclusion are equivalent. Assuming the presence of vacuous identity
jumps a := a for variables a that do not otherwise change (vacuous identity jumps
can be added as they do not change state), we can further use D9 to merge sub-
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sequent discrete jumps into a single discrete jump set (see previous results [BP06]
for a compatible calculus detailing jump set merging, which works without the need
to add vacuous identity jumps a := a):

` 〈z :=− b
2
t2 + V t, v := V + 1, a :=−b〉[β]φ

D9 ` 〈a :=−b, v := V 〉〈z := a
2
t2 + vt, v := v + 1, a := a〉[β]φ

D10 ` 〈a :=−b, v := V 〉[z := a
2
t2 + vt, v := v + 1, a := a][β]φ

D2 ` 〈a :=−b, v := V 〉[z := a
2
t2 + vt, v := v + 1, a := a; β]φ

More generally, 〈x1 := θ1, . . . , xn := θn〉〈x1 := ϑ1, . . . , xn := ϑn〉φ can be merged by
D9 to 〈x1 := ϑ1

θ1
x1
. . .θnxn , . . . , xn := ϑn

θ1
x1
. . .θnxn〉φ.

Given first-order definable flows for their differential equations, D11–D12 handle
continuous evolutions (see [AW01, LPY99, PC07] for flow approximation and solu-
tion techniques). These flows are combined in the jump set St. Given a solution
for the differential equation system with symbolic initial values x1, . . . , xn, continu-
ous evolution along differential equations can be replaced by a discrete jump 〈St〉
with an additional quantifier for the evolution time t. The effect of the constraint
on χ is to restrict the continuous evolution such that its solution St̃ remains in the
invariant region χ at all intermediate times t̃ ≤ t. This constraint simplifies to true
if χ is true. Similar simplifications can be made for convex invariant conditions
(Section 2.9).

G-Rules The G-rules are global rules. They depend on the truth of their premisses
in all states reachable by α, which is ensured by the universal closure ∀α with respect
to all bound state variables (Definition 2.9) of the respective hybrid program α.
This universal closure is required for soundness in the presence of contexts Γ,∆
(Definition 2.11) or of free variables. The G-rules are given in a form that best
displays their underlying logical principles. The general pattern for applying G-
rules to prove that the succedent of their conclusion holds is to prove that both
their premiss and the antecedent of their conclusion hold.

G1–G2 are generalisation rules and can be used to strengthen postconditions:
antecedent [α]φ is sufficient for proving succedent [α]ψ when postcondition φ en-
tails ψ in all relevant states reachable by α, which are overapproximated by the
universal closure ∀α with respect to the bound variables of α. G3 is an induction
schema with inductive invariant φ. Similarly, G4 is a generalisation of Harel’s con-
vergence rule [HKT00] to the hybrid case with decreasing variant ϕ. Both rules
are given in a form that best displays their underlying logical principles and simil-
arity. G3 says that φ holds after any number of repetitions of α, if it holds initially
(antecedent) and, for all reachable states (as overapproximated by ∀α), invariant φ
remains true after one iteration of α (premiss). G4 expresses that the variant ϕ(v)
holds for some real number v ≤ 0 after repeating α sufficiently often, if ϕ(v) holds
for some real number at all (antecedent) and, by premiss, decreases after every
execution of α by 1 (or at least any other positive real constant).
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For practical verification, rules G3 or G4 can be combined with generalisation
(G1–G2) to prove a postcondition ψ of a loop α∗ by showing that (a) the antecedent
of the respective goals of G3 and G4 holds initially, that (b) their sub-goals hold,
which represent the induction step, and that (c) finally, the postcondition of the
succedent in their goals entails ψ. The corresponding variants of G3 and G4 are
derived rules:

(G3’)
` φ ` ∀α(φ→ [α]φ) ` ∀α(φ→ ψ)

` [α∗]ψ

(G4’)
` ∃v ϕ(v) ` ∀α∀v>0 (ϕ(v)→ 〈α〉ϕ(v − 1)) ` ∀α(∃v≤0ϕ(v)→ ψ)

` 〈α∗〉ψ

For instance, using a cut with φ→ [α∗]φ, rule G3’ can be derived from G3 and G1:

` ∀α(φ→ [α]φ)
G3φ ` [α∗]φ
P7 ` φ→ [α∗]φ

` φ
` ∀α(φ→ ψ)

G1[α∗]φ ` [α∗]ψ
P8φ→ [α∗]φ ` [α∗]ψ

P10 ` [α∗]ψ

The notions of derivations and proofs are standard, except that F6 produces
multiple conclusions. Hence, we define derivations as finite acyclic graphs instead
of trees:

2.12 Definition (Provability). A derivation is a finite acyclic graph labelled with
sequents such that, for every node, the (set of) labels of its children must be the
(set of) premisses of an instance of one of the calculus rules (Definition 2.11) and
the (set of) labels of the parents of these children must be the (set of) conclusions
of that rule instance. A formula ψ is provable from a set Φ of formulas, denoted
by Φ `dL ψ, iff there is a finite subset Φ0 ⊆ Φ for which the sequent Φ0 ` ψ is
derivable, i.e., there is a derivation with a single root (i.e., node without parents)
labelled Φ0 ` ψ.

See Figure 2.6 for an illustration of the correpondence of a representative set of
proof rules for dynamic modalities to the transition semantics of hybrid programs
(Definition 2.7).

2.5.2. Deduction Modulo with Invertible Quantifiers and Real
Quantifier Elimination

The F-rules lift quantifier elimination to dL by following a generalised deduction
modulo approach. They integrate decision procedures, e.g., for real quantifier elim-
ination as a background prover [Bec99] into the deductive proof system. Yet, unlike
in the approaches of Dowek et al. [DHK03] and Tinelli [Tin03], the information
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φ
f(x)
x

[x := f(x)]φ ν ω

φ
f(x)
x x := f(x)

φ

∃t≥0 〈x := yx(t)〉φ
〈x′ = f(x)〉φ

ν ω
x′ = f(x)

φ
x := yx(t)

∃t≥0 (χ̄ ∧ 〈x := yx(t)〉φ)
〈x′ = f(x)&χ〉φ

χ̄ ≡ ∀0≤s≤t 〈x := yx(s)〉χ

ν ω
x′ = f(x)&χ

φ

x := yx(t
)x := yx(s)

χ

[α]φ ∧ [β]φ

[α ∪ β]φ
ν

ω1

ω2

α
φ

β φ

α ∪ β

[α][β]φ

[α;β]φ
ν s ω

α;β

[α][β]φ
α

[β]φ
β

φ

⊢ ∀α(φ → [α]φ)

φ ⊢ [α∗]φ ν ω

α∗

φ

α

φ → [α]φ

α α

φ

Figure 2.6.: Correspondence of dynamic proof rules and transition semantics
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given to the background prover is not restricted to ground formulas [Tin03] or
atomic formulas [DHK03]. Further, real quantifier elimination is quite different
from uninterpreted logic [HS94, Fit96, Gie01] in that the resulting formulas are not
obtained by instantiation but by intricate arithmetic recombination. The F-rules
can use any theory that admits quantifier elimination (see Definition 2.10) and has
a decidable ground theory, for instance, the first-order theory of real arithmetic
(i.e., the theory of real-closed fields [Tar51, CH91]). A formula of real arithmetic is
a first-order formula with +,−, ·, /,=,≤, <,≥, > as the only function or predicate
symbols besides constant symbols of Σ and logical variables of V .

Integrating quantifier elimination to deal with statements about real quantities
is quite challenging in the presence of modalities that influence the value of flexible
symbols. In principle, quantifier elimination can be used to handle quantified con-
straints as arising for continuous evolutions. In dL, however, real quantifiers interact
with modalities containing further discrete or continuous transitions, which is an
effect that is inherent in the interacting nature of hybrid systems. A hybrid formula
like ∃z 〈z′′ = −b; ?m− z ≥ s; z′′ = 0〉m− z < s is not first-order, hence quantifier
elimination cannot be applied. Even more so, the effect of a modality depends
on the solutions of the differential equations contained therein. For instance, it is
hard to know in advance, which first-order constraints need to be solved by QE
for the above formula. To find out how z evolves from ∃z to m − z < s, the sys-
tem dynamics needs to be taken into account (similar for repetitions). Hence, our
calculus first unwraps the first-order structure before applying QE to the resulting
arithmetic formulas.

Lifting Quantifier Elimination by Invertible Quantifier Rules

The purpose of the F-rules is to postpone QE until the actual arithmetic constraints
become apparent. The idea is that F1,F2,F4, and F5 temporarily remove quan-
tifiers by introducing new auxiliary symbols for quantified variables such that the
proof can be continued beyond the occurrence of the quantifier to further analyse
the modalities contained therein. Later, when the actual first-order constraints
for the auxiliary symbol have been discovered, the corresponding quantifier can
be reintroduced (F3, F6) and quantifier elimination QE is applied to reduce the
sequents equivalently to a simpler formula with less (distinct) symbols. In F4–F6,
the respective auxiliary symbols are free logical variables. In F1–F3, Skolem func-
tion terms are used instead for reasons that are crucial for soundness and will be
illustrated in the sequel. In this context, we think of free logical variables as being
introduced by γ-rules (F4 and F5), hence implicitly existentially quantified.

To illustrate how quantifier and dynamic rules of dL interact to combine arith-
metic with dynamic reasoning in hybrid systems, we analyse the braking behaviour
in train control. The proof in Figure 2.7 can be used to analyse whether a train can
violate its MA although it is braking. As the proof reveals, the answer depends on
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v ≥ 0, z < m ` v2 > 2b(m− z)
P7,P6 ` v ≥ 0 ∧ z < m→ v2 > 2b(m− z)

F6 v ≥ 0, z < m ` T ≥ 0
v ≥ 0, z < m ` − b

2
T 2 + vT + z > m

D9v ≥ 0, z < m ` 〈z :=− b
2
T 2 + vT + z〉z > m

P5 v ≥ 0, z < m ` T ≥ 0 ∧ 〈z :=− b
2
T 2 + vT + z〉z > m

F4 v ≥ 0, z < m ` ∃t≥0 〈z :=− b
2
t2 + vt+ z〉z > m

D11 v ≥ 0, z < m ` 〈z′ = v, v′ = −b〉z > m
P7,P6 ` v ≥ 0 ∧ z < m→ 〈z′ = v, v′ = −b〉z > m

Figure 2.7.: Deduction modulo for analysis of MA-violation in braking mode

the initial velocity v. For notational convenience, we use the simplified D11 rule, as
the differential equation is not restricted to an invariant region. Rule F4 introduces
a new free variable T for the quantified variable t to postpone QE. Later, when F6
is applied in Figure 2.7, the conjunction of its two goals can be handled by QE and
simplification, yielding the resulting sub-goal:

QE
(
∃T ((v ≥ 0 ∧ z < m→ T ≥ 0) ∧ (v ≥ 0 ∧ z < m→ − b

2
T 2 + vT + z > m))

)
≡ v ≥ 0 ∧ z < m → v2 > 2b(m− z) .

The open branch with this formula reveals the speed limit and can be used to
synthesise a corresponding parameter constraint. When v2 > 2b(m− z) holds ini-
tially, m can be violated even in braking mode, as the velocity exceeds the braking
power. Similarly, v2 ≤ 2b(m− z) guarantees that m can be respected by appro-
priate braking. The constraint so discovered thus forms a controllability constraint
of ETCS, i.e., a constraint that characterises from which states control choices
exist that guarantee safety. It is essentially equivalent to [z′′ = −b]z ≤ m and to
∃a (−b ≤ a ≤ A ∧ [z′′ = a]z ≤ m). The controllable region of the state space of
ETCS is illustrated in Figure 2.8.

z

v

m

v2 ≤ 2b(m− z)

Figure 2.8.: Controllable region of ETCS dynamics

Admissibility in Invertible Quantifier Rules

The requirement that substitutions in F3 are admissible implies that no occur-
rence of s(X1, . . . , Xn) is within the scope of a quantifier for any of these Xi.
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This prevents F3 from rearranging the order of quantifiers from ∃Xi ∀s to the
weaker ∀s ∃Xi , which would be unsound, because it is not sufficient to show the
weak sub-goal ∀s ∃Xi in order to prove the strong statement ∃Xi ∀s saying that
the same Xi works for all s.

F3 is not applicable
` QE(∃X (2X + 1 < s(X)))

F6 ` 2X + 1 < s(X)
D9 ` 〈x := 2X + 1〉(x < s(X))
F1 ` ∀y 〈x := 2X + 1〉(x < y)
F4 ` ∃x∀y 〈x := 2x+ 1〉(x < y)

`
false︷ ︸︸ ︷

QE (∃X QE(∀s (2X + 1 < s)))
F6 ` QE(∀s (2X + 1 < s))
F3 ` 2X + 1 < s(X)
D9 ` 〈x := 2X + 1〉(x < s(X))
F1 ` ∀y 〈x := 2X + 1〉(x < y)
F4 ` ∃x ∀y 〈x := 2x+ 1〉(x < y)

a. Wrong rearrangement attempt b. Correct reintroduction order

Figure 2.9.: Deduction modulo with invertible quantifiers

For the moment, suppose the rules did not contain QE. The requirement for
admissible substitutions (Definition 2.9) ensures that the proof attempt of an invalid
formula in Figure 2.9a cannot close in the dL calculus. At the indicated position,
F3, which would unsoundly invert the quantifier order to ∀S ∃X , cannot be applied:
In F3, the substitution inserting s(X) gives ∃Y (2Y + 1 < s(X)) by α-renaming,
instead of ∃X (2X + 1 < s(X)). Thus, F3 is not applicable, because the quantified
formula is not of the form Ψ(s(X))

Now, we consider what happens in the presence of QE. The purpose of QE is
to (equivalently) remove quantifiers like ∃X . Thus it is no longer obvious that
the admissibility argument applies, because the blocking variable X would have
disappeared after successful quantifier elimination. However, quantifier elimination
over the reals is defined in the first-order theory of real arithmetic [Tar51, CH91].
Yet, when eliminating X in Figure 2.9a, the Skolem term s(X) is no term of real
arithmetic, as, unlike that of +, the interpretation of s is arbitrary. The truth value
of ∃X (2X + 1 < s(X)) depends on the interpretation of s. If I(s) is a constant
function, the formula is true, if I(s)(a) = 2a, it is false. In general, such cases
cannot be distinguished without quantifiers. Thus, in the presence of uninterpreted
function terms, real arithmetic does not generally admit quantifier elimination.
Consequently, F6 and F3 are only applicable if QE is defined. Yet, QE can be
lifted to formulas with Skolem functions when these are instances of real arithmetic
formulas:

2.13 Lemma (Quantifier elimination lifting). Quantifier elimination can be
lifted to instances of formulas of first-order theories that admit quantifier elimina-
tion, i.e., to formulas that result from the base theory by substitution.

42



2.5. Proof Calculus

Proof. Let formula φ be an instance of ψ, with ψ being a formula of the base theory,
i.e., φ is ψθ1z1 . . .

θn
zn for some variables zi and arbitrary terms θi. As QE is defined for

the base theory, let QE(ψ) be the quantifier-free formula belonging to ψ according
to Definition 2.10. Then QE (ψ)θ1z1 . . .

θn
zn satisfies the requirements of Definition 2.10

for φ, because � ψθ1z1 . . .
θn
zn ↔ QE (ψ)θ1z1 . . .

θn
zn : For F defined as ψ ↔ QE(ψ), we have

that � F implies � F θ1
z1
. . .θnzn by a standard consequence of the substitution lemma.

By Lemma 2.13, QE is defined in the presence of Skolem terms that do not depend
on quantified variables, e.g., for ∃X (2X + 1 < t(Y, Z)) which is an instance of the

form (∃X (2X + 1 < z))t(Y,Z)
z . However, QE is not defined in the premiss of F6 when

Skolem-dependencies on X occur. In Figure 2.9a, ∃X (2X + 1 < s(X)) is no in-

stance of first-order real arithmetic, because, by α-renaming, (∃X (2X + 1 < z))s(X)
z

yields a different formula ∃Y (2Y + 1 < s(X)). An occurrence of s(X), which cor-
responds to a quantifier nesting of ∃X ∀s , thus requires s(X) to be eliminated by
F3 before F6 can eliminate X, see Figure 2.9b. Hence, inner universal quantifiers
are handled first and unsound quantifier rearrangements are prevented even in the
presence of QE.

Finally observe that F3 and F6 do not require quantifiers to be eliminated in
the same order in which they occurred in the original formula. The elimination
order within homogeneous quantifier blocks like ∀x1 ∀x2 is not restricted as there
are no Skolem dependencies among the corresponding auxiliary Skolem terms. Yet,
eliminating such a quantifier block is sound in any order (accordingly for ∃x1 ∃x2 ).
Similarly, F6 and F3 could interchange the order of ∀x ∃y to the stronger ∃y ∀x,
because the resulting Skolem term s for x in the former formula does not depend
on y. In this direction, however, the interchange is sound, as it amounts to proving
a stronger statement.

Quantifier Elimination and Modalities

Quantifier elimination over the first-order theory of reals cannot handle modal
formulas. Hence, the dL calculus first reduces modalities to first-order constraints
before applying QE. Yet, this is not necessary for all modalities. The modal
subformula in the following example does not impose any constraints on X but its
truth value only determines which first-order constraints are imposed on X:

QE(∃X
(
X < 0∧

(
(〈y := 2y + 1〉y > 0)→ X > y

))
) ≡ (〈y := 2y + 1〉y > 0)→ y < 0

Modal formulas not containing elimination variable X can be handled by proposi-
tional abstraction in QE and remain unchanged. Syntactically, the reason for this
is that dL rule applications on modal formulas that do not contain X will never
produce formulas which do. The semantical reason for the same fact is a general-
isation of the coincidence lemma to dL, which says that values of variables that do
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not occur will neither affect the transition structure of a hybrid program nor the
truth value of formulas.

2.14 Lemma (Coincidence). If the interpretations (and assignments and states,
respectively) I, η, ν and J, ε, ω agree on all symbols that occur free in the formula φ,
then valI,η(ν, φ) = valJ,ε(ω, φ).

Proof. The proof is by a simple structural induction using the definition of valuation
valI,η(ν, ·) and ρI,η(·) in Definition 2.5–2.7.

Global Invertible Quantifier Rules

Rules F3 and F6 display an asymmetry. While F3 works locally on a branch, F6
needs to respect all branches that contain X. The reason for this is that branches
are implicitly combined conjunctively in sequent calculus, as all branches have to
close simultaneously for a proof to succeed (Definition 2.12). Universal quantifiers
can be handled separately for conjunctions by ∀x (φ ∧ ψ) ≡ ∀xφ ∧ ∀xψ. Existential
quantifiers, however, can only be dealt with separately for disjunctions but not for
conjunctions. In calculi with a disjunctive proof structure, the roles of F3 and F6
would be interchanged but the phenomenon remains.

Rule F6 can be applied to the full proof (i.e., all open goals) like a global closing
substitution in the tableau calculus [Fit96]. By Lemma 2.14 it only needs to con-
sider the set of all open goals Φi ` Ψi that actually contain X. F6 resembles global
closing substitutions in uninterpreted free variable tableaux [Gie01]. Both avoid
the backtracking over closing substitutions that local closing substitutions require.
Unlike closing substitutions, however, F6 uses the fixed semantics of function and
predicate symbols of real arithmetic such that variables can already be eliminated
equivalently by QE before the proof completes. Applying F3 or F6 early does not
necessarily close the proof. Instead, equivalent constraints on the remaining vari-
ables will be revealed, which can simplify the proof or help deriving parametric
constraints or invariants.

2.6. Soundness

In this section, we prove that the dL calculus is a sound axiomatisation of the
transition behaviour of hybrid systems.

We prove that a successful deduction in the dL calculus always produces correct
verification results about hybrid systems: The dL calculus is sound, i.e., all prov-
able (closed) formulas are valid in all states of all interpretations. To reflect the
interaction of free variables and Skolem terms, we adapt the notion of soundness
for the liberalised δ+-rule in free variable tableau calculi [HS94] to sequent calculus.

A formula φ is satisfiable [HS94] (or has a model) if there is an interpretation I
and a state ν such that for all variable assignments η we have I, η, ν |= φ. Closed
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tableaux prove the unsatisfiability of the negated goal. Sequent calculi work dually
and show validity of the proof obligation. Consequently, we use the dual notion
and say that ψ is a consequence of φ iff, for every I, ν there is an assignment η
such that I, η, ν |= ψ, provided that, for every I, ν there is an assignment η such
that I, η, ν |= φ. A calculus rule that concludes Ψ from the premisses Φ is sound
if Ψ is a consequence of Φ. As usual, multiple branches in Ψ or Φ are combined
conjunctively.

In this context, we think of free logical variables as being introduced by γ-rules,
i.e., F4 and F5 (hence the implicit existential quantification of free logical variables
by η). For closed formulas (without free logical variables), validity corresponds to
being a consequence from an empty set of open goals. Hence, closed formulas that
are provable with a sound deduction are valid (true in all states of all interpreta-
tions).

2.15 Theorem (Soundness). The dL calculus is sound.

Proof. The calculus is sound if each rule instance is sound. All rules of the dL
calculus except F1,F2 and F6 are even locally sound, i.e., their conclusion is true
at I, η, ν if all its premisses are true in I, η, ν, which implies soundness. It is also easy
to show that locally sound rules remain sound when adding contexts Γ,∆, 〈J 〉 as in
Definition 2.11, since a discrete jump set 〈J 〉 characterises a unique state transition.
Local soundness proofs of D1–D8 and propositional rules are as usual. Note that,
for symmetric rules, local soundness implies that the premiss and conclusion are
equivalent, i.e., true in the same states.

D9 The rule D9 is locally sound. Assume that the premiss holds in I, η, ν, i.e.,
I, η, ν |= φθ1x1 . . .

θn
xn . We have to show that I, η, ν |= 〈x1 := θ1, . . , xn := θn〉φ,

i.e., I, η, ω |= φ for a state ω with (ν, ω) ∈ ρI,η(x1 := θ1, . . , xn := θn). This
follows directly from the substitution lemma, which generalises to dynamic
logic for admissible substitutions (Definition 2.9). Rule D10 uses that discrete
jumps are deterministic.

D11 The rule D11 is locally sound. Let y1, . . . , yn be a solution for the differential
equation system x′1 = θ1, . . . , x

′
n = θn with symbolic initial values x1, . . . , xn.

Let further 〈St〉 be the jump set 〈x1 := y1(t), . . . , xn := yn(t)〉. Assume I, η, ν
are such that the premiss is true: I, η, ν |= ∃t≥0 (χ̄ ∧ 〈St〉φ) with ∀0≤t̃≤t 〈St̃〉χ
abbreviated as χ̄. For any ζ ∈ R, we denote by ηζ the assignment that agrees
with η except that it assigns ζ to t. Then, by assumption, there is a real
value r ≥ 0 such that I, ηr, ν |= χ̄ ∧ 〈St〉φ. Abbreviate x′1 = θ1, . . , x

′
n = θn &χ

by D. We have to show that I, η, ν |= 〈D〉φ. Equivalently, by Lemma 2.14,
we show I, ηr, ν |= 〈D〉φ, because t is a fresh variable that does not occur in D
or φ. Let function f : [0, r]→ Sta(Σ) be defined such that (ν, f(ζ)) ∈ ρI,ηζ(St)
for all ζ ∈ [0, r]. By premiss, f(0) is identical to ν and φ holds at f(r).
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Thus it only remains to show that f respects the constraints of Defini-
tion 2.7 for D. In fact, f obeys the continuity and differentiability prop-
erties of Definition 2.7 by the corresponding properties of the yi. Moreover,
valI,ηr(f(ζ), xi) = valI,ηr(ν, yi(t)) has a derivative of value valI,ηr(f(ζ), θi),
because yi is a solution of the differential equation x′i = θi with correspond-
ing initial value ν(xi). Further, it can be shown that the evolution invariant
region χ is respected along f as follows: By premiss, I, ηr, ν |= χ̄ holds for
the initial state ν, thus valI,ηr(f(ζ), χ) = true for all ζ ∈ [0, r]. Combining
these results, we can conclude that f is a witness for I, η, ν |= 〈D〉φ. The
converse direction can be shown accordingly to prove the dual rule D12 using
Lemma 2.8.

F1 The proof is a sequent calculus adaptation of that in [HS94]. By contra-
position, assume that there are I, ν such that for all η it is the case that
I, η, ν 6|= ∀xφ(x), hence I, η, ν |= ∃x¬φ(x). We construct an interpretation
I ′ that agrees with I except for the new function symbol s. Let b1, . . . , bn ∈ R
be arbitrary elements and let ηb assign bi to the respectiveXi for 1 ≤ i ≤ n. As
I, η, ν |= ∃x¬φ(x) holds for all η, we pick a witness d for I, ηb, ν |= ∃x¬φ(x)
and choose I ′(s)(b1, . . . , bn) = d. For this interpretation I ′ and state ν we have
I ′, η, ν 6|= φ(s(X1, . . . , Xn)) for all assignments η by Lemma 2.14, as X1, . . , Xn

are all free variables determining the truth value of φ(s(X1, . . . , Xn)). To see
that the contexts Γ,∆ of Definition 2.11 can be added to instantiate this rule,
consider the following. Since s is new and does not occur in the context Γ,∆,
the latter do not change their truth value by passing from I to I ′. Likewise, s
is rigid so that it does not change its value by adding jump prefix 〈J 〉 which
concludes the proof. The proof of F2 is dual.

F3 F3 is locally sound. Assume that I, η, ν |= QE(∀X (Φ(X) ` Ψ(X))). Since
QE yields an equivalence, we can conclude I, η, ν |= ∀X (Φ(X) ` Ψ(X)). Then
if the antecedent of the conclusion is true, i.e., I, η, ν |= Φ(s(X1, . . . , Xn)), we
can conclude I, η, ν |= Ψ(s(X1, . . . , Xn)) by choosing valI,η(ν, s(X1, . . . , Xn))
for X in the premiss. By admissibility of substitutions, variables X1, . . . , Xn

are free at all occurrences of s(X1, . . . , Xn), hence their value is the same in
all occurrences.

F4 F4 is locally sound by a simplified version of the proof in [HS94]. For
any I, η, ν with I, η, ν |= φ(X) we can conclude I, η, ν |= ∃xφ(x) according
to the witness η(X). The proof of F5 is dual.

F6 For any I, ν let η be such that I, η, ν |= QE(∃X ∧
i(Φi ` Ψi)). Again, this im-

plies I, η, ν |= ∃X ∧
i(Φi ` Ψi), because quantifier elimination yields an equi-

valence. We pick a witness d ∈ R for this existential quantifier. As X does
not occur anywhere else in the proof, it disappears from all open premisses of
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the proof by applying F6. Hence, by the coincidence lemma 2.14, the value
of X does not change the truth value of the premise of F6. Consequently, η
can be extended to η′ by changing the interpretation of X to the witness d
such that I, η′, ν |= ∧

i(Φi ` Ψi). Thus, η′ extends I, η, ν to a simultaneous
model of all conclusions.

G2 Rules G1–G4 are locally sound by a variation of the usual proofs [HKT00]
using universal closures for local soundness. G1–G2 are simple refinements of
Lemma 2.14 using that the universal closure ∀α comprises all variables that
change in α. Let I, η, ν |= 〈α〉φ, i.e., let (ν, ν ′) ∈ ρI,η(α) with I, η, ν ′ |= φ.
As α can only change its bound variables, which are quantified universally in
the universal closure ∀α, the premiss implies I, η, ν ′ |= φ→ ψ, thus I, η, ν ′ |= ψ
and I, η, ν |= 〈α〉ψ. The proof of G1 is accordingly.

G3 For any I, η, ν with I, η, ν |= ∀α(φ→ [α]φ), we conclude I, η, ν ′ |= φ→ [α]φ
for all ν ′ with (ν, ν ′) ∈ ρI,η(α). As these share the same η, we can further
conclude I, η, ν |= φ→ [α∗]φ by induction along the series of states ν ′ reached
from ν by repeating α. The universal closure is necessary as, otherwise, the
premiss may yield different η in different states ν ′.

G4 Assume that the antecedent and premiss hold in I, η, ν. By premiss, we have
I, η[v 7→ d], ν ′ |= v > 0 ∧ ϕ(v)→ 〈α〉ϕ(v − 1) for all d ∈ R and all states ν ′

that are reachable by α∗ from ν, because ∀α comprises all variables that are
bound by α, which are the same as those bound by α∗. By antecedent, there
is a d ∈ R such that I, η[v 7→ d], ν |= ϕ(v). Now, the proof is a well-founded
induction on d. If d ≤ 0, we directly have I, η, ν |= 〈α∗〉∃v≤0ϕ(v) for zero
repetitions. Otherwise, if d > 0, we have, by premiss, that

I, η[v 7→ d], ν |= v > 0 ∧ ϕ(v)→ 〈α〉ϕ(v − 1)

As v > 0 ∧ ϕ(v) holds true, we have for some ν ′ with (ν, ν ′) ∈ ρI,η[v 7→d](α) that
I, η[v 7→ d], ν ′ |= ϕ(v − 1). Thus, I, η[v 7→ d− 1], ν ′ |= ϕ(v) satisfies the in-
duction hypothesis for a smaller d and a reachable ν ′, because (ν, ν ′) ∈ ρI,η(α)
as v does not occur in α. The induction is well-founded, because d decreases
by 1 up to the base case d ≤ 0.

2.7. Completeness

In this section, we prove that the dL calculus is a sound and complete axiomatisation
of the transition behaviour of hybrid systems relative to differential equations.
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2.7.1. Incompleteness

Theorem 2.15 shows that all provable closed dL formulas are valid. The converse
question is whether the dL calculus is complete, i.e., all valid dL formulas are prov-
able. Combining completeness for first-order logic [HS94] and decidability of real-
arithmetic [CH91], it is easy to see that our calculus is complete for closed formulas
of first-order real arithmetic by chaining the quantifier rules F1,F2,F4,F5 with the
respective inverse rules F3,F6, using P-rules as needed to unfold the propositional
structure. In the presence of modalities, however, dL is not axiomatisable and,
unlike its basis of first-order real arithmetic, dL is undecidable. Both unbounded
repetition in the discrete fragment and unbounded evolution in the continuous frag-
ment cause incompleteness. Beyond hybrid dynamics, where reachability is known
to be undecidable [Hen96], we show that even the purely discrete and purely con-
tinuous parts of dL are not effectively axiomatisable. Hence, valid dL formulas are
not always provable.

2.16 Theorem (Incompleteness). Both the discrete fragment and the continu-
ous fragment of dL are not effectively axiomatisable, i.e., they have no sound and
complete effective calculus, because natural numbers are definable in both fragments.

Proof. We prove that natural numbers are definable among the real numbers of dL
interpretations in both fragments. Then these fragments extend first-order integer
arithmetic such that the incompleteness theorem of Gödel [Göd31] applies. Natural
numbers are definable in the discrete fragment without continuous evolutions using
repetitive additions:

nat(n) ↔ 〈x := 0; (x := x+ 1)∗〉 x = n .

In the continuous fragment, an isomorphic copy of the natural numbers is definable
using linear differential equations:

nat(n) ↔ ∃s ∃c ∃τ (s = 0∧c = 1∧τ = 0∧〈s′ = c, c′ = −s, τ ′ = 1〉(s = 0∧τ = n)) .

These differential equations characterise sin and cos as unique solutions for s and c,

τ

s

π 3π 5π2π 4π

Figure 2.10.: Characterisation of N as zeros of solutions of differential equations

respectively. Their zeros, as detected by τ , correspond to an isomorphic copy of
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natural numbers, scaled by π, i.e., nat(n) holds iff n is of the form kπ for a k ∈ N,
see Figure 2.10. The initial values for s and c prevent the trivial solution identical
to 0.

In this context, note that hybrid programs contain a computationally complete
sublanguage and that reachability of hybrid systems is undecidable [Hen96].

2.7.2. Relative Completeness

The standard approach for showing adequacy of a calculus when its logic is not
effectively axiomatisable is to analyse the deductive power of the calculus relative to
a base logic or relative to an ineffective oracle rule for the base logic [Coo78, Har79,
HKT00]. In calculi for discrete programs, completeness is proven relative to the
handling of data [Coo78, Har79, HKT00]. For hybrid systems, this is inadequate:
By Theorem 2.16, no sound calculus for dL can be complete relative to its data
(the reals), because its basis, first-order real arithmetic, is a perfectly decidable
and axiomatisable theory [Tar51].

According to Theorem 2.16, continuous evolutions, repetitive discrete transitions,
and their interaction cause non-axiomatisability of dL. Discrete transitions and
repetition do not supersede the complexity of continuous transitions. Even relative
to an oracle for handling properties of discrete jumps and repetition, the dL calculus
is not complete, simply because not all differential equations have solutions that
are definable in first-order arithmetic so that D12 can be used. For instance, the
solutions of s′ = c, c′ = −s are trigonometric functions (like sin and cos), which are
not first-order definable. The question is whether the converse is true, i.e., whether
hybrid programs can be verified given that all required differential equations can
be handled.

To calibrate the deductive power of the dL calculus in light of its inherent in-
completeness, we analyse the quotient of reasoning about hybrid systems modulo
differential equation handling. Using generalisations of the usual notions of relative
completeness for discrete systems [Coo78, Har79, HKT00] to the hybrid case, we
show that the dL calculus completely axiomatises dL relative to one single addi-
tional axiom about valid first-order properties of differential equations. Essentially,
we drop the effectiveness requirement for one oracle axiom and show that the res-
ulting dL calculus is sound and complete.

As a basis, we define FOD as the first-order logic of differential equations , i.e.,
first-order real arithmetic augmented with formulas expressing properties of dif-
ferential equations, that is, dL formulas of the form [x′1 = θ1, . . . , x

′
n = θn]F with

a first-order formula F . Dually, the diamond formula 〈x′1 = θ1, . . . , x
′
n = θn〉F is

expressible as ¬[x′1 = θ1, . . . , x
′
n = θn]¬F .

2.17 Theorem (Relative completeness). The dL calculus is complete relative
to FOD, i.e., every valid dL formula can be derived from FOD-tautologies.
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Proof Outline. The (constructive) proof, which, in full, is contained in the re-
mainder of Section 2.7, adapts the techniques of Cook [Coo78] and Harel [Har79,
HKT00] to the hybrid case. The decisive step is to show that every valid property
of a repetition α∗ can be proven by G3 or G4, respectively, with a sufficiently strong
invariant or variant that is expressible in dL. For this, we show that dL formulas
can be expressed equivalently in FOD, and that valid dL formulas can be derived
from corresponding FOD axioms in the dL calculus. In turn, the crucial step is to
construct a finite FOD formula that characterises the effect of unboundedly many
repetitive hybrid transitions and just uses finitely many real variables.

This main result completely aligns hybrid and continuous verification proof-the-
oretically. It gives a formal justification that reasoning about hybrid systems is
possible to exactly the same extent to which it is possible to show properties of
solutions of differential equations. Theorem 2.17 shows that superpositions of dis-
crete jumps, continuous evolutions, and repetitions of hybrid processes, can be
verified when corresponding (intermediate) properties of differential equations are
provable. Moreover, in a proof-theoretical sense, our calculus completely lifts all
verification techniques for dynamical systems to hybrid systems.

Summarising Theorem 2.15 and 2.17, the dL calculus axiomatises the transition
behaviour of hybrid systems completely relative to the handling of differential equa-
tions!

In the sequel, we present a fully constructive proof of Theorem 2.17, which gen-
eralises the techniques of Harel [Har79, HKT00] and Cook [Coo78] to the hybrid
case. It shows that for every valid dL formula, there is a finite set of valid FOD-
formulas from which it can be derived in the dL calculus. See the proof outline of
Theorem 2.17 for a road map of the proof.

Natural numbers are definable in FOD by Theorem 2.16. In this section, we
abbreviate quantifiers over natural numbers, e.g., ∀x (nat(x)→ φ) by ∀x :N φ and
∃x (nat(x) ∧ φ) by ∃x :N φ. Likewise, we abbreviate quantifiers over integers, e.g.,
∀x ((nat(x) ∨ nat(−x))→ φ) by ∀x :Z φ.

2.7.3. Characterising Real Gödel Encodings

As the central device for constructing a FOD formula that captures the effect of
unboundedly many repetitive hybrid transitions and just uses finitely many real
variables, we prove that a real version of Gödel encoding is definable in FOD. That
is, we give a FOD formula that reversibly packs finite sequences of real values into
a single real number.

Observe that a single differential equation system is not sufficient for defining
these pairing functions as their solutions are differentiable, yet, as a consequence
of Morayne’s theorem [Mor87], there is no differentiable surjection R→ R2, nor to
any part of R2 of positive measure. We show that real sequences can be encoded
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nevertheless by chaining the effects of solutions of multiple differential equations
and quantifiers.

2.18 Lemma (R-Gödel encoding). The formula at(Z, n, j, z), which holds iff Z
is a real number that represents a Gödel encoding of a sequence of n real num-
bers with real value z at position j (for 1 ≤ j ≤ m), is definable in FOD. For a

formula φ(z) we abbreviate ∃z (at(Z, n, j, z) ∧ φ(z)) by φ(Z
(n)
j ).

∞∑
i=0

ai
2i

= a0.a1a2 . . .

∞∑
i=0

bi
2i

= b0.b1b2 . . .

∞∑
i=0

(
ai

22i−1
+

bi
22i

)
= a0b0.a1b1a2b2 . . .

a. Fractional encoding principle by bit interleaving

at(Z, n, j, z) ↔ ∀i :Z digit(z, i) = digit(Z, n(i− 1) + j) ∧ nat(n) ∧ nat(j) ∧ n > 0
digit(a, i) = intpart(2 frac(2i−1a))
intpart(a) = a− frac(a)

frac(a) = z ↔ ∃i :Z z = a− i ∧ −1 < z ∧ z < 1 ∧ az ≥ 0
2i = z ↔ i ≥ 0 ∧ ∃x ∃t (x = 1 ∧ t = 0 ∧ 〈x′ = x ln 2, t′ = 1〉(t = i ∧ x = z))

∨ i < 0 ∧ ∃x ∃t (x = 1 ∧ t = 0 ∧ 〈x′ = −x ln 2, t′ = −1〉(t = i ∧ x = z))
ln 2 = z ↔ ∃x∃t (x = 1 ∧ t = 0 ∧ 〈x′ = x, t′ = 1〉(x = 2 ∧ t = z))

b. Definition of R-Gödel encoding in FOD

Figure 2.11.: Characterising Gödel encoding of R-sequences in one real number

Proof. The basic idea of the R-Gödel encoding is to interleave the bits of real
numbers as depicted in Figure 2.11a (for a pairing of n = 2 numbers a and b).
For defining at(Z, n, j, z), we use several auxiliary functions to improve readability,
see Figure 2.11b. Note that these definitions need no recursion, hence, like in the
notation φ(Z

(n)
j ), we can consider occurrences of the function symbols as syntactic

abbreviations for quantified variables satisfying the respective definitions.
The function symbol digit(a, i) gives the i-th bit of a ∈ R when represented with

basis 2. For i > 0, digit(a, i) yields fractional bits, and, for i ≤ 0, it yields bits of the
integer part. For instance, digit(a, 1) yields the first fractional bit, digit(a, 0) is the
least-significant bit of the integer part of a. The function intpart(a) represents the
integer part of a ∈ R. The function frac(a) represents the fractional part of a ∈ R,
which drops all integer bits. The last constraint in its definition implies that frac(a)

51



Chapter 2. Differential Dynamic Logic dL

keeps the sign of a (or 0). Consequently, intpart(a) and digit(a, i) also keep the
sign of a (or 0). Exponentiation 2i is definable using differential equations, using an
auxiliary characterisation of the natural logarithm ln 2. The definition of 2i splits
into the case of exponential growth when i ≥ 0 and a symmetric case of exponential
decay when i < 0.

2.7.4. Expressibility and Rendition of Hybrid Program
Semantics

In order to show that dL is sufficiently expressive to state the invariants and variants
that are needed for proving valid statements about loops with G3 and G4, we prove
an expressibility result. We give a constructive proof that the state transition rela-
tion of hybrid programs is definable in FOD, i.e., there is a FOD-formula Sα(~x,~v)
characterising the state transitions of hybrid program α from the state characterised
by the vector ~x of variables to the state characterised by vector ~v.

For this, we need to characterise hybrid processes equivalently by differential
equations in FOD. Observe that the existence of such characterisations does not
follow from results embedding Turing machines into differential equations [Bra95c,
GCB07], because, unlike Turing machines, hybrid processes are not restricted to
discrete values on a grid (like Nk) but work with continuous real values. Fur-
thermore, Turing machines only have repetitions of discrete transitions on discrete
data (e.g., N). For hybrid programs, instead, we have to characterise repetitive
interactions of discrete and continuous transitions in continuous space (some Rk).

2.19 Lemma (Program rendition). For every hybrid program α with variables
among ~x = x1, . . . , xk there is a FOD-formula Sα(~x,~v) with variables among the 2k
distinct variables ~x = x1, . . . , xk and ~v = v1, . . . , vk such that

� Sα(~x,~v)↔ 〈α〉~x = ~v

or, equivalently, for every I, η, ν,

I, η, ν |= Sα(~x,~v) iff (ν, ν[~x 7→ valI,η(ν,~v)]) ∈ ρI,η(α) .

Proof. By Lemma 2.14, interpretations of the vectors ~x and ~v characterises the
input and output states, respectively, as far as α is concerned. These vectors are
finite because α is finite. Vectorial equalities like ~x = ~v or quantifiers ∃~v are to
be understood component-wise. The program rendition is defined inductively in
Figure 2.12. To simplify the notation, we assume that all variables x1, . . . , xk are
affected in discrete jumps and differential equations by adding vacuous xi := xi
or x′i = 0 if xi does not change in the respective statement, otherwise.
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Sx1:=θ1,..,xk:=θk(~x,~v) ≡
k∧
i=1

(vi = θi)

Sx′1=θ1,..,x′k=θk(~x,~v) ≡ 〈x′1 = θ1, . . , x
′
k = θk〉~v = ~x

Sx′1=θ1,..,x′k=θk &χ(~x,~v) ≡ ∃t
(
t = 0 ∧ 〈x′1 = θ1, . . , x

′
k = θk, t

′ = 1〉
(
~v = ~x

∧ [x′1 = −θ1, . . , x
′
k = −θk, t′ = −1](t ≥ 0→ χ)

))
S?χ(~x,~v) ≡ ~v = ~x ∧ χ
Sβ∪γ(~x,~v) ≡ Sβ(~x,~v) ∨ Sγ(~x,~v)

Sβ; γ(~x,~v) ≡ ∃~z (Sβ(~x, ~z) ∧ Sγ(~z,~v))

Sβ∗(~x,~v) ≡ ∃Z ∃n :N
(
Z

(n)
1 = ~x ∧ Z(n)

n = ~v

∧ ∀i :N (1 ≤ i < n→ Sβ(Z
(n)
i , Z

(n)
i+1))

)
Figure 2.12.: Explicit rendition of hybrid program transition semantics in FOD

Differential equations give FOD-formulas hence no further reduction is necessary.
Evolution along differential equations with invariant regions is definable by follow-
ing the unique flow (Lemma 2.8) backwards. Continuous evolution is reversible, i.e.,
the transitions of x′i = −θ are inverse to those of x′i = θ. Consequently, when us-
ing auxiliary variable t, all evolutions of [x′1 = −θ1, . . , x

′
k = −θk, t′ = −1] follow the

same flow as 〈x′1 = θ1, . . , x
′
k = θk, t

′ = 1〉 but backwards. By also reverting clock t,
we ensure that, along the reverse flow, χ has been true at all times (because of the
box modality) until starting time t = 0, see Figure 2.13.

t

~x

χ

~v revert flow and time

and check χ backwards
x′ = θ

0 r
x′ = −θ

Figure 2.13.: Invariant region checks along backwards flow over time t

To show reversibility, let (ν, ω) ∈ ρI,η(x′1 = θ1, . . , x
′
k = θk), that is, let f : [0, r]→

Sta(Σ) be a solution of x′1 = θ1, . . , x
′
k = θk starting in state ν and ending in ω. Then

g : [0, r]→ Sta(Σ), defined as g(ζ) = f(r − ζ), starts in ω and ends in ν. Thus, it
only remains to show that g is a solution of x′1 = −θ1, . . , x

′
k = −θk, which can be
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seen for 1 ≤ i ≤ k as follows:

dg(t)(xi)

dt
(ζ) =

df(r−t)(xi)
dt

(ζ) =
df(u)(xi)

du

d(r−t)
dt

(ζ) = −df(u)(xi)

du
(ζ)

=− valI,η(f(ζ), θi) = valI,η(f(ζ),−θi) .

Unlike all other cases, case Sx′1=θ1,..,x′k=θk &χ(~x,~v) in Figure 2.12 uses nested FOD
modalities. Nested modalities can be avoided in Sα(~x,~v) using an equivalent FOD
formula without them, see Figure 2.13:

∃t∃r
(
t = 0 ∧ 〈x′1 = θ1, . . , x

′
k = θk, t

′ = 1〉(~v = ~x ∧ r = t)∧
∀~x∀t (~x = ~v ∧ t = r → [x′1 = −θ1, . . , x

′
k = −θk, t′ = −1](t ≥ 0→ χ))

)
.

With a finite formula, the characterisation of repetition Sβ∗(~x,~v) in FOD needs
to capture arbitrarily long sequences of intermediate real-valued states and the
correct transition between successive states of such a sequence. To achieve this
with first-order quantifiers, we use the real Gödel encoding from Lemma 2.18 in
Figure 2.12 to map unbounded sequences of real-valued states reversibly to a single
real number Z, which can be quantified over in first-order logic.

Using the program rendition from Lemma 2.19 to characterise modalities, we
prove that every dL formula can be expressed equivalently in FOD by structural
induction.

2.20 Lemma (Expressibility). Logic dL is expressible in FOD: for all dL formu-
las φ ∈ Fml(Σ, V ) there is a FOD-formula φ# ∈ FmlFOD(Σ, V ) that is equivalent,
i.e., � φ↔ φ#. The converse holds trivially.

Proof. The proof follows an induction on the structure of formula φ for which it is
imperative to find an equivalent φ# in FOD. Observe that the construction of φ#

from φ is effective.

0. If φ is a first-order formula, then φ# := φ already is a FOD-formula such that
nothing has to be shown.

1. If φ is of the form ϕ ∨ ψ, then by induction hypothesis there are FOD-formulas
ϕ#, ψ# such that � ϕ↔ ϕ# and � ψ ↔ ψ#, from which we can conclude
by congruence that � (ϕ ∨ ψ)↔ (ϕ# ∨ ψ#) giving � φ↔ φ# by choosing
ϕ# ∨ ψ# for φ#. Likewise reasoning concludes the other propositional con-
nectives or quantifiers.

2. The case where φ is of the form 〈α〉ψ is a consequence of the characterisation
of the semantics of hybrid programs in FOD. The expressibility conjecture
holds by induction hypothesis using the equivalence of explicit hybrid program
renditions from Lemma 2.19:

� 〈α〉ψ ↔ ∃~v (Sα(~x,~v) ∧ ψ#~v

~x) .
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3. The case where φ is [α]ψ is again a consequence of Lemma 2.19:

� [α]ψ ↔ ∀~v (Sα(~x,~v)→ ψ#~v

~x)

The above proofs directly carry over to rich test dL, i.e., the logic where dL formu-
las are allowed in tests ?χ of hybrid programs and invariant regions χ of differential
equations, when using χ# in place of χ in Figure 2.12. Accordingly, nested modalit-
ies can be avoided in FOD by using the following formula for Sx′1=θ1,..,x′k=θk &χ(~x,~v):

∃t∃r
(
t = 0 ∧ 〈x′1 = θ1, . . , x

′
k = θk, t

′ = 1〉(~v = ~x ∧ r = t)∧
∀~z
(
∃~x∃t (~x = ~v ∧ t = r ∧ 〈x′1 = −θ1, . . , x

′
k = −θk, t′ = −1〉(t ≥ 0 ∧ ~z = ~x))

→ χ#~z

~x

))
2.7.5. Relative Completeness of First-order Assertions

As special cases of Theorem 2.17, we first prove relative completeness for first-order
assertions about hybrid programs. These first-order cases constitute the basis for
the general completeness proof for arbitrary formulas of differential dynamic logic.

In the sequel, we use the notation `D φ to indicate that a dL formula φ is derivable
(Definition 2.12) from a set of FOD-tautologies, which is equivalent to saying that φ
is derivable in the dL calculus augmented with a single oracle axiom D, that gives
all valid FOD-instances. Likewise, we use the notation Γ `D ∆ to indicate that the
sequent Γ ` ∆ is derivable from D.

For the completeness proof, we use several simplifications. For uniform proofs,
we assume formulas to use a simplified vocabulary. A formula φ is valid iff it is true
in all I, η, ν. In particular, we can assume valid φ to use Skolem constants (or state
variables) instead of free logical variables. Existential quantifiers can be represented
as modalities: ∃xφ ≡ 〈x′ = 1〉φ ∨ 〈x′ = −1〉φ. For simplicity, we use cut (P10) and
weakening to glue together subproofs propositionally. Weakening (i.e., from φ ` ψ
infer φ1, φ ` ψ, ψ1) can be emulated using contexts Γ,∆ from Definition 2.11, and
we use it implicitly together with P10 in the following. Derivability of sequents and
corresponding formulas is equivalent by the following lemma.

2.21 Lemma (Derivability of sequents). `D φ→ ψ iff φ `D ψ.

Proof. When we consider sequents as abbreviations for formulas, both sides are
identical. Otherwise, let `D φ→ ψ be derivable from D. Using P10 (and weaken-
ing) with φ→ ψ, this derivation can be extended to one of φ `D ψ:

∗
φ ` φ→ ψ, ψ

∗
P9φ ` φ, ψ

∗
P9ψ, φ ` ψ

P8 φ, φ→ ψ ` ψ
P10 φ ` ψ
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The converse direction is by an application of P7.

2.22 Lemma (Generalisation). If `D φ is provable without free logical variables,
then so are `D ∀xφ and `D 〈x1 := θ1, . . . xn := θn〉φ.

Proof. For the second conjecture, let 〈I〉 abbreviate 〈x1 := θ1, . . . xn := θn〉. We
prefix each formula in the proof of φ with 〈I〉 and show that this gives a proof
of 〈I〉φ. F6 is not needed in the proof due to the absence of free logical variables.
As an intermediate step, we first show that prefixing with 〈I〉 gives an (extended)
proof with rule applications generalised to allowing for nested jump prefixes 〈I〉〈J 〉:
By the argument in Theorem 4.7, it is easy to see for discrete jump sets I and J that
the dL rules remain sound with nested jump prefix 〈I〉〈J 〉 in place of only a single
prefix 〈J 〉 from Definition 2.11. Applicability conditions of rules do not depend
on jump prefixes, as Definition 2.11 allows adding any jump prefix. Thus, we
obtain a sound (extended) proof of 〈I〉φ when replacing—with arbitrary unchanged
context Γ,∆, 〈J 〉—every rule application of the form

Γ, 〈J 〉Φ1 ` 〈J 〉Ψ1,∆ . . . Γ, 〈J 〉Φn ` 〈J 〉Ψn,∆

Γ, 〈J 〉Φ0 ` 〈J 〉Ψ0,∆

in the proof of φ by a rule application with additional unchanged prefix 〈I〉 for
corresponding Γ,∆, 〈J 〉:

Γ, 〈I〉〈J 〉Φ1 ` 〈I〉〈J 〉Ψ1,∆ . . . Γ, 〈I〉〈J 〉Φn ` 〈I〉〈J 〉Ψn,∆

Γ, 〈I〉〈J 〉Φ0 ` 〈I〉〈J 〉Ψ0,∆
(2.2)

Next, we show that these nested jump prefixes can be reduced to a single jump prefix
as Definition 2.11 allows for: Let 〈IJ 〉 denote the discrete jump set obtained by
merging 〈I〉 and 〈J 〉 using D9 as in Section 2.5.1. We replace each rule application
(with nested prefixes) of the form (2.2) by the following derivation with only a
single prefix (assuming n = 1 for notational convenience):

. . .
Γ, 〈I〉〈J 〉Φ1 ` 〈IJ 〉Ψ1,∆

∗
P9Γ, 〈IJ 〉Φ1 ` 〈IJ 〉Φ1,∆
D9Γ, 〈IJ 〉Φ1 ` 〈I〉〈J 〉Φ1,∆

P10 Γ, 〈IJ 〉Φ1 ` 〈IJ 〉Ψ1,∆
Γ, 〈IJ 〉Φ0 ` 〈IJ 〉Ψ0,∆

D9,D9 Γ, 〈I〉〈J 〉Φ0 ` 〈I〉〈J 〉Ψ0,∆

The bottom-most D9 applications merge 〈I〉 into 〈J 〉 in the antecedent and suc-
cedent, respectively. The unmarked rule applies the same rule that has been used
in (2.2), which is applicable on Φ0 ` Ψ0 for any context by Definition 2.11, includ-
ing Γ,∆, 〈IJ 〉. The subsequent cut with 〈I〉〈J 〉Φ1 restores the form of the premiss
in (2.2). The left branch continues using a dual argument to turn succedent 〈IJ 〉Ψ1
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into 〈I〉〈J 〉Ψ1, thereby yielding a set of non-extended rule applications with the
same conclusions and premisses as the extended rule application (2.2):

Γ, 〈I〉〈J 〉Φ1 ` 〈I〉〈J 〉Ψ1,∆

∗
P9 Γ, 〈IJ 〉Ψ1 ` 〈IJ 〉Ψ1,∆
D9Γ, 〈I〉〈J 〉Ψ1 ` 〈IJ 〉Ψ1,∆

P10 Γ, 〈I〉〈J 〉Φ1 ` 〈IJ 〉Ψ1,∆

For reducing the first conjecture of this lemma to the second, let s be a Skolem
constant for state variable x. By the above proof, we derive `D 〈x := s〉φ. Using
F1, we continue this derivation to a proof of ∀X 〈x :=X〉φ, which we abbreviate
as ∀xφ (see text below Definition 2.9). Rule F1 is applicable for Skolem constant s
as no free logical variables occur in the proof.

2.23 Proposition (Relative completeness of first-order safety). For every
hybrid program α ∈ HP(Σ, V ) and each F,G ∈ FmlFOL(Σ, V ) of first-order logic

� F → [α]G implies `D F → [α]G (and F `D [α]G by Lemma 2.21) .

Proof. We generalise the relative completeness proof by Cook [Coo78] to dL and
follow an induction on the structure of program α. In the following, IH is short for
the induction hypothesis.

1. The cases where α is of the form x1 := θ1, . . . , xn := θn, ?χ, β ∪ γ, or β; γ are
consequences of the soundness of the symmetric rules D2, D4, and D8–D10.
Since these rules are symmetric, they perform equivalent transformations.
Consequently, whenever their conclusion is valid, their premiss is valid and of
smaller complexity (the programs get simpler), hence derivable by IH. Thus,
we can derive F → [α]G by applying the respective rule. We explicitly show
the proof for β; γ as it contains an extra twist.

2. � F → [β; γ]G, which implies � F → [β][γ]G. By Lemma 2.20, there is a
FOD-formula G# such that � G# ↔ [γ]G. From the validity of � F → [β]G#,
we can conclude by IH that F `D [β]G# is derivable. Similarly, because of
� G# → [γ]G, we conclude `D G# → [γ]G by IH. Using Lemma 2.22, we
conclude `D ∀β(G# → [γ]G). With an application of G1, the latter derivation
can be extended to a derivation of [β]G# `D [β][γ]G. Combining the above
derivations propositionally by a cut with [β]G#, we can derive F `D [β][γ]G,
from which D2 yields F `D [β; γ]G as desired (and Lemma 2.21 or P7 yield
`D F → [β; γ]G).

3. � F → [x′1 = θ1, . . . , x
′
n = θn]G is a FOD-formula and hence derivable as a D

axiom. Continuous evolution x′1 = θ1, . . . , x
′
n = θn &χ with invariant regions

is definable in FOD by Lemma 2.19, which we consider as an abbreviation in
this proof.
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4. � F → [β∗]G can be derived by induction. For this, we define the invariant as
a FOD encoding of the statement that all potential poststates of β∗ satisfy G
according to Lemma 2.20:

φ ≡ ([β∗]G)# ≡ ∀~v (Sβ∗(~x,~v)→ G~v
~x) .

Since F → φ and φ→ G are valid FOD-formulas, they are derivable by D;
so is F `D φ by Lemma 2.21. By Lemma 2.22 and G1, [β∗]φ `D [β∗]G is
derivable. Likewise, φ→ [β]φ is valid according to the semantics of repetition,
thus derivable by IH, since β is less complex. Using Lemma 2.22, we can derive
`D ∀β(φ→ [β]φ), from which G3 yields φ `D [β∗]φ. Combining the above
derivations propositionally by a cut with [β∗]φ and φ yields F `D [β∗]G.

2.24 Proposition (Relative completeness of first-order liveness). For each
hybrid program α ∈ HP(Σ, V ) and each F,G ∈ FmlFOL(Σ, V ) of first-order logic

� F → 〈α〉G implies `D F → 〈α〉G (and F `D 〈α〉G by Lemma 2.21) .

Proof. We generalise the arithmetic completeness proof by Harel [Har79] to the hy-
brid case. Most cases of the proof are simple adaptations of the corresponding cases
in Proposition 2.23. What remains to be shown is the case of repetitions. Assume
that � F → 〈β∗〉G. To derive this formula by G4, we use a FOD-formula ϕ(n) as
a variant expressing that, after n iterations, β can lead to a state satisfying G.
This formula is obtained from Lemma 2.19-2.20 as (〈β∗〉G)# ≡ ∃~v (Sβ∗(~x,~v) ∧G~v

~x),
except that the quantifier on the repetition count n is removed such that n becomes
a free variable (plus index shifting to count repetitions):

ϕ(n−1) ≡ ∃~v ∃Z
(
Z

(n)
1 = ~x∧Z(n)

n = ~v∧∀i :N (1 ≤ i < n→ Sβ(Z
(n)
i , Z

(n)
i+1))∧G~v

~x

)
.

By Lemma 2.18, ϕ(n) can only hold true if n is a natural number.
According to the loop semantics, � n > 0 ∧ ϕ(n)→ 〈β〉ϕ(n− 1) is valid by con-

struction: If n > 0 is a natural number then so is n− 1, and if β reaches G after n
repetitions, then, after executing β once, n− 1 repetitions of β reach G. By IH, this
formula is derivable, since β contains less loops. By Lemma 2.22, we extend this de-
rivation to `D ∀β∀n>0 (ϕ(n)→ 〈β〉ϕ(n− 1)). Thus ∃v ϕ(v) `D 〈β∗〉∃v≤0ϕ(v) by
G4. It only remains to show that the antecedent is derivable from F and 〈β∗〉G is
derivable from the succedent. From our assumption, we conclude that the following
are valid FOD-formulas, hence D-axioms:

• � F → ∃v ϕ(v), because � F → 〈β∗〉G, and

• � (∃v≤0ϕ(v))→ G, because v≤0 and the fact, that, by Lemma 2.18, ϕ(v)
only holds true for natural numbers, imply ϕ(0). Further, ϕ(0) entails G,
because zero repetitions of β have no effect.
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From the latter we derive `D ∀β(∃v≤0ϕ(v)→ G) by Lemma 2.22 and extend the
derivation to 〈β∗〉∃v≤0ϕ(v) `D 〈β∗〉G by G2. From `D F → ∃v ϕ(v) we conclude
F `D ∃v ϕ(v) by Lemma 2.21. Now, the above derivations can be combined propos-
itionally by a cut with 〈β∗〉∃v≤0ϕ(v) and with ∃v ϕ(v) to yield F `D 〈β∗〉G.

2.7.6. Relative Completeness of the Differential Logic Calculus

Having succeeded with the proofs of the above statements we can finish the proof
of the Theorem 2.17, which is the central result of this work.

Proof of Theorem 2.17. The proof follows a basic structure analogous to that of
Harel’s proof for the discrete case [Har79, Theorem 3.1]. We have to show that
every valid dL formula φ can be proven from FOD axioms within the dL calculus:
from � φ we have to prove `D φ. The proof proceeds as follows: By propositional
recombination, we inductively identify fragments of φ that correspond to φ1 → [α]φ2

or φ1 → 〈α〉φ2 logically. Next, we express subformulas φi equivalently in FOD by
Lemma 2.20, and use Proposition 2.23 and 2.24 to resolve these first-order safety or
liveness assertions. Finally, we prove that the original dL formula can be re-derived
from the subproofs.

We can assume φ to be given in conjunctive normal form by appropriate propos-
itional reasoning. In particular, we assume that negations are pushed inside over
modalities using the dualities ¬[α]φ ≡ 〈α〉¬φ and ¬〈α〉φ ≡ [α]¬φ. The remainder of
the proof follows an induction on a measure |φ| defined as the number of modalities
in φ. For a simple and uniform proof, we assume quantifiers to be abbreviations for
modal formulas: ∃xφ ≡ 〈x′ = 1〉φ ∨ 〈x′ = −1〉φ and ∀xφ ≡ [x′ = 1]φ ∧ [x′ = −1]φ.

0. |φ| = 0 then φ is a first-order formula, hence derivable by D.

1. φ is of the form ¬φ1, then φ1 is first-order, as we assumed negations to be
pushed inside. Hence, |φ| = 0 and Case 0 applies.

2. φ is of the form φ1 ∧ φ2, then individually deduce the simpler proofs for `D φ1

and `D φ2 by IH, which can be combined by P5.

3. φ is a disjunction and—without loss of generality—has one of the following
forms (otherwise use associativity and commutativity to select a different
order for the disjunction):

φ1 ∨ [α]φ2

φ1 ∨ 〈α〉φ2

As a unified notation for those cases we use φ1 ∨ 〈[α]〉φ2. Then, |φ2| < |φ|,
since φ2 has less modalities. Likewise, |φ1| < |φ| because 〈[α]〉φ2 contributes
one modality to |φ| that is not part of φ1.
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According to Lemma 2.20 there are equivalent FOD-formulas φ#
1 , φ

#
2 with

� φi ↔ φ#
i for i = 1, 2. By congruence, the validity � φ yields � φ#

1 ∨ 〈[α]〉φ#
2 ,

which directly implies � ¬φ#
1 → 〈[α]〉φ#

2 . Then by Proposition 2.23 or 2.24,
respectively, we can derive

¬φ#
1 `D 〈[α]〉φ#

2 . (2.3)

Further � φ1 ↔ φ#
1 implies � ¬φ1 → ¬φ#

1 , which is derivable by IH, because
|φ1| < |φ|. By Lemma 2.21, we obtain ¬φ1 `D ¬φ#

1 , which we combine with
(2.3) by a cut with ¬φ#

1 to

¬φ1 `D 〈[α]〉φ#
2 . (2.4)

Likewise � φ2 ↔ φ#
2 implies � φ#

2 → φ2, which is derivable by IH, as |φ2| < |φ|.
We can extend the derivation of `D φ#

2 → φ2 to one of `D ∀α(φ#
2 → φ2) by

Lemma 2.22 and conclude 〈[α]〉φ#
2 `D 〈[α]〉φ2 by G1–G2. Finally we com-

bine the latter propositionally with (2.4) by a cut with 〈[α]〉φ#
2 to derive

¬φ1 `D 〈[α]〉φ2, from which `D φ1 ∨ 〈[α]〉φ2 can be obtained, again using P10,
to complete the proof.

2.8. Relatively Semidecidable Fragments

To strengthen the completeness result from Theorem 2.17, we consider fragments of
dL where the required FOD tautologies are sufficiently simple as differential equa-
tions have first-order definable flows and the required loop invariants (or variants)
are expressible in first-order logic over the reals. In these fragments, the only dif-
ficulty is to find the required invariants and variants for the proof. Relative to an
(ineffective) oracle that provides first-order invariants and variants for repetitions,
the dL calculus can be used as a semidecision procedure. That is, when we assume
the oracle to provide suitable (in)variants, validity of formulas can be proven in
the dL calculus. If an imperfect oracle chooses inadequate (in)variants, applying
the dL calculus rules results in goals that are not valid, which is again decidable by
quantifier elimination in the dL calculus.

2.25 Theorem (Relatively semidecidable fragment). Relative to an oracle
generating first-order invariants and variants, the dL calculus gives a backtracking-
free semidecision procedure for (closed) dL formulas with differential equations hav-
ing first-order definable flows.

Proof Outline. The (constructive) proof, which, in full, can be found in the re-
mainder of this section, shows that there are always applicable dL rules that trans-
form the formulas equivalently and that formulas in this dL proof descend along a
well-founded order. For loops, we assume that suitable (in)variants are obtained
from the oracle and we can guarantee termination when these (in)variants are first-
order (or contain less loops).
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As a consequence, enumerating first-order invariants or variants gives a semide-
cision procedure for the fragment of Theorem 2.25. As a corollary to Theorem 2.16
and Theorem 2.25, there are valid dL formulas that need proper dL (or FOD) invari-
ants to be provable and cannot be proven just using (in)variants of first-order real
arithmetic. Similarly, the fragment with first-order definable flows and bounded
loops is decidable: When loops α∗ are decorated with natural numbers indicating
the maximum number of repetitions of α, an effective oracle for Theorem 2.25 can
be obtained by unrolling, e.g., by D5.

As an auxiliary result for proving Theorem 2.25, we show that, in dL proofs,
Skolem symbols occur in a uniform way, i.e., a Skolem symbol s always occurs with
the same list of arguments.

2.26 Lemma (Uniform Skolem symbols). Let φ be a dL formula without Skolem
symbols. In any derivation of φ, Skolem symbols only occur with a unique list of
free logical variables as arguments, provided that the formulas in cuts (P10) obey
this restriction.

Proof. The proof is by induction on the structure of proofs in the dL calculus. For
derivations of length zero, the conjecture holds, because φ does not contain Skolem
symbols. We show that the conjectured Skolem occurrence property is preserved
in all sub-goals when applying a rule to a goal that satisfies the conjecture.

F1 The symbols s(X1, . . . , Xn) introduced by rules F1–F2 are of the required
form as the Xi are precisely the free logical variables. In addition, the sym-
bol s(X1, . . . , Xn) does not occur nested in other Skolem terms, because, by
induction hypothesis, the bound variable x does not occur in Skolem terms
of the goal.

F3 Rules F3 and F6 are only applicable to instances of first-order real arithmetic
(Lemma 2.13), for which the equivalence transformations of quantifier elimin-
ation preserve the Skolem occurrence property, because they never introduce
quantifiers to bind free variables.

D11 Rule D11 preserves the property, as it only substitutes state variables xi ∈ Σ
not logical variables Xi ∈ V .

P10 Cuts preserve the Skolem occurrence property, as we assumed the formulas
that P10 introduces to adhere to the Skolem occurrence property.

• The other rules of the dL calculus preserve the property as they never replace
arguments of Skolem function symbols (which are free variables by induction
hypothesis).

Proof of Theorem 2.25. The proof is by well-founded induction. We prove that
there is a well-founded strict partial order ≺ such that:
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IH: For all non-atomic formulas occurring in the sequents during a proof, there is
an applicable series of dL rules such that all resulting sub-goals are simpler
with respect to ≺, have no additional free variables or function symbols, and
their conjunction is equivalent to the conclusion (for suitable oracle choices).

By applying these dL rules exhaustively, we obtain a decision procedure relative to
the oracle, because the sub-goals descend along the well-founded order ≺, which has
no infinite descending chain. Finally, validity of the remaining sequents with atomic
formulas is decidable by evaluating ground instances (Definition 2.10), because, by
IH, the resulting formulas have no free variables when the initial formula is closed
(open formulas, instead, yield equivalent parameter constraints as results). We use
the derived rules G3’ and G4’ in place of G3 and G4, see Section 2.5.1. To obtain
a backtracking-free procedure, we remove rules D5–D6 and G1–G4 and P10 from
the calculus: If a calculus with less rules gives a decision procedure, then so does
the full calculus.

We define the order ≺ as the lexicographical order of, respectively, the numbers
of: loops, differential equations, sequential compositions, choices, modalities, quan-
tifiers, number of different variables and Skolem function symbols, and the number
of logical connectives. As a lexicographical order of natural numbers, ≺ is well-
founded [DM79]. It lifts to sequents in rule applications (Definition 2.11) when all
sub-goals of all rule schemata are simpler than their goals with respect to ≺, which
can be shown to retain well-foundedness as a multiset ordering [DM79].

Now the proof of IH is by induction along ≺. Let φ be a non-atomic formula of
a sequent in an open branch of the proof. We assume φ to occur in the succedent;
the respective proofs for the antecedent are dual. Hence, we consider the sequent
to be of the form Γ ` φ,∆.

1. If φ is of the form ψ1 ∧ ψ2, then P5 is applicable, yielding smaller sequents
(with less logical connectives) that are equivalent. Other logical connectives
are handled likewise using P1–P7, respectively.

2. If φ is of the form [α]ψ or 〈α〉ψ and α is of the form ?χ, β; γ, or β ∪ γ
the corresponding rule D1–D4 or D7–D8 is applicable, yielding a simpler yet
equivalent formula.

3. If φ is of the form [x′1 = θ1, . . . , x
′
n = θn &χ]ψ, then D12 is applicable, as

we assumed differential equations to have first-order definable flows. The
resulting formula is equivalent and simpler, because it contains less differen-
tial equations. It involves additional bound variables but not free variables.
Case 〈x′1 = θ1, . . . , x

′
n = θn &χ〉ψ is similar, by D11.

4. If φ is of the form [α∗]ψ, then G3’ is applicable with a first-order invariant F
obtained from the oracle. The resulting sub-goals are simpler according to ≺,
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because they contain less loops (F does not contain loops). The resulting
sub-goals do not have additional free variables as all bound variables of α∗

remain bound by the universal closure ∀α in the respective premisses. Finally,
we assume the oracle to give an invariant such that the conjunction of the
resulting sub-goals is equivalent to the goal (otherwise we have nothing to
show for inadequate choices by the oracle). The case 〈α∗〉ψ is similar, using
G4’ instead.

5. If φ is of the form 〈x1 := θ1, . . . , xn := θn〉ψ, there are two cases. If D9 is
applicable, it yields equivalent simpler sequents. Otherwise, we have

ψ ≺ 〈x1 := θ1, . . . , xn := θn〉ψ

Thus, by IH, there is a finite sequence of rule applications on ψ yielding
equivalent sequents with atomic formulas. Prefixing the resulting proof with
〈x1 := θ1, . . . , xn := θn〉 yields a corresponding proof for deriving Γ ` φ,∆ by
Lemma 2.22. The formulas of the open branches of this proof resulting from φ
are of the form 〈x1 := θ1, . . . , xn := θn〉G for atomic formulas G, where, at the
latest, D9 is applicable, as substitutions are admissible on atomic formulas.
Case [x1 := θ1, . . . , xn := θn]ψ is similar, using D10 first.

6. If φ is of the form ∀xψ(x), we can apply F1 giving ψ(s(X1, . . . , Xn)). Now,
we have ψ(s(X1, . . . , Xn)) ≺ ∀xψ(x), hence, by IH, ψ(s(X1, . . . , Xn)) can be
transformed equivalently to a set of sequents of the form

Φi(s(X1, . . . , Xn)) ` Ψi(s(X1, . . . , Xn))

with atomic formulas (without loss of generality, we can assume s(X1, . . . , Xn)
to occur in all branches). Hence, QE is defined for these atomic formulas and
F3 can be applied on each branch, yielding QE(∀s (Φi(s) ` Ψi(s))). Con-
sequently, the original sequent Γ ` ∀xψ(x),∆ is equivalent to∧

i

QE(∀s (Φi(s) ` Ψi(s)))

for the following reason: Γ ` ψ(s(X1, . . . , Xn)),∆ is equivalent to∧
i

(Φi(s(X1, . . . , Xn)) ` Ψi(s(X1, . . . , Xn)))

by IH, using the equivalence QE(∀s (F ∧G)) ≡ QE(∀s F ) ∧QE(∀sG) and
that s does not occur in Γ,∆. After applying F3, the result has no additional
free symbols, although intermediate formulas do.
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7. If φ is of the form ∃xψ(x), then F4 is applicable giving ψ(X) for a fresh logical
variable X. Then ψ(X) ≺ ∃xψ(x), hence, by IH, ψ(X) can be transformed
equivalently to a set of sequents Φi ` Ψi with atomic formulas. If no Skolem
dependency on X occurs in Φi ` Ψi, then QE is defined and F6 applicable,
giving QE(∃X ∧

i(Φi ` Ψi)), which is equivalent to ∃X ∧
i(Φi ` Ψi). By IH,

this is equivalent to Γ ` ∃X ψ(X),∆, because X does not occur in Γ,∆.
Otherwise, if a Skolem term s(X1, . . . , X, . . . , Xn) occurs in a Φi ` Ψi, then,
by IH, the Skolem function s already occurred in ψ(X). By Lemma 2.26, the
Skolem term s(X1, . . . , X, . . . , Xn) itself must already have occurred in ψ(X),
which contradicts the fact that X is fresh and that bound variable x does not
occur in Skolem terms of ∃xψ(x), again by Lemma 2.26. After applying F6
the additional free variable X disappears.

2.9. Train Control Verification

In this section, we verify collision avoidance of the train control system presented
in Section 2.4.

2.9.1. Finding Inductive Candidates

We want to prove safety statement (2.1) of the European Train Control System
from Section 2.4. Using parametric extraction techniques, we identify both the
requirement ψ for safe driving and the induction hypothesis φ that is required for
the proof. Dually to the proof in Figure 2.7, an unwinding of the loop in (2.1) by
D6 can be used to extract a candidate for a parametric inductive hypothesis. It
expresses that there is sufficient braking distance at current speed v, which basically
corresponds to the controllability constraint for ETCS:

φ ≡ v2 ≤ 2b(m− z) ∧ b > 0 ∧ A ≥ 0 . (2.5)

2.9.2. Inductive Verification

Using G3 to prove (2.1) by induction, we show that (a) invariant φ holds initially,
i.e., ψ ` φ (implying antecedent of the conclusion of G3), that (b) the invariant
is sustained after each execution of ctrl ; drive, and that (c) invariant φ implies
postcondition z ≤ m. Case (c) holds by QE, as 0 ≤ v2 ≤ 2b(m− z) and b > 0.
The induction start (a) will be examined after the full proof, since we want to
identify the prerequisite ψ for safe driving by proof analysis. In the proof of the
induction step φ→ [ctrl ; drive]φ, we omit condition m− z ≤ s from ctrl , because
it is not used in the proof (braking remains safe with respect to z ≤ m). The
induction is provable in dL as follows (for notational convenience, we assume F1 to
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call the Skolem constant for m again m etc., as there are no free logical variables):

. . .
φ ` 〈a :=−b〉[drive]φ

. . .
φ,m− z ≥ s ` 〈a :=A〉[drive]φ

D8,P7 φ ` [?m− z ≥ s; a :=A][drive]φ
D4,P5 φ ` [ctrl][drive]φ

D2 φ ` [ctrl ; drive]φ
P7 ` φ→ [ctrl ; drive]φ
F1 ` ∀α(φ→ [ctrl ; drive]φ)
G3 φ ` [(ctrl ; drive)∗]φ

The differential equation system in drive is linear with a constant coefficient mat-
rix M . Its solution can be obtained by symbolically computing the exponen-
tial series eMtη with symbolic initial value η = (z, v) and similar symbolic in-
tegration of the inhomogeneous part [Wal98, §18.VI]. We abbreviate the solution
〈z :=− b

2
t2 + vt+ z, v :=−bt+ v〉 thus obtained by 〈St〉. In this example, the in-

variant evolution conditions are convex, hence the constraint ∀0≤t̃≤t 〈St̃〉χ of D12
can be simplified to 〈St〉χ to save space. Further, we leave out conditions which
are unnecessary for closing the above proof. In the left branch, the constrained
evolution of τ is irrelevant and will be left out. The left branch closes (marked ∗):

∗
D9,F3 φ, t ≥ 0,−bt+ v ≥ 0 ` 〈St〉φ

D9 φ, t ≥ 0, 〈v :=−bt+ v〉v ≥ 0 ` 〈St〉φ
P7,P7 φ ` t ≥ 0→ (〈v :=−bt+ v〉v ≥ 0→ 〈St〉φ)

F1 φ ` ∀t≥0 (〈v :=−bt+ v〉v ≥ 0→ 〈St〉φ)
D12 φ ` [z′ = v, v′ = −b& v ≥ 0]φ
D9 φ ` 〈a :=−b〉[drive]φ
D10 φ ` [a :=−b][drive]φ

The right branch does not need v ≥ 0, because v does not decrease. To abbreviate
solution 〈z := A

2
t2 + vt+ z, v :=At+ v〉, we again use 〈St〉.

. . .

φ,m− z ≥ s ` s ≥ v2

2b
+
(
A
b

+ 1
) (

A
2
ε2 + εv

)
D9,F3φ,m− z ≥ s, 0 ≤ t ≤ ε ` 〈St〉φ
P7,D9 φ,m− z ≥ s ` t ≥ 0→ (〈τ := t〉τ ≤ ε→ 〈St〉φ)

F1 φ,m− z ≥ s ` ∀t≥0 (〈τ := t〉τ ≤ ε→ 〈St〉φ)
D9 φ,m− z ≥ s ` 〈τ := 0〉∀t≥0 (〈τ := t+ τ〉τ ≤ ε→ 〈St〉φ)
D12 φ,m− z ≥ s ` 〈τ := 0〉[z′ = v, v′ = A, τ ′ = 1 & τ ≤ ε]φ
D10 φ,m− z ≥ s ` [τ := 0][z′ = v, v′ = A, τ ′ = 1 & τ ≤ ε]φ
D9 φ,m− z ≥ s ` 〈a :=A〉[τ := 0][z′ = v, v′ = a, τ ′ = 1 & τ ≤ ε]φ
D2 φ,m− z ≥ s ` 〈a :=A〉[drive]φ
D10 φ,m− z ≥ s ` [a :=A][drive]φ
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2.9.3. Parameter Constraint Discovery

The right branch only closes when the succedent of its open goal is guaranteed.
That formula expresses that there will still be sufficient braking distance even after
accelerating by ≤A for up to ε seconds:

s ≥ v2

2b
+

(
A

b
+ 1

)(
A

2
ε2 + εv

)
. (2.6)

This constraint can be discovered automatically in the above proof by the indic-
ated application of F3 using quantifier elimination with some simplifications. Con-
straint (2.6) is required to make sure invariant (2.5) still holds after accelerating.
In fact, augmenting the case study with (2.6) makes the argument inductive, and
the whole proof of the safety statement (2.1) closes when ψ is chosen identical
to φ. Here, the conditions of ψ cannot be removed without leaving the proof open
due to a counterexample, as the invariant (2.5) is a controllability constraint, see
Section 2.5.2.

Quite unlike in the acceleration-free case [Pla07b], constraint (2.6) needs to be
enforced dynamically as the affected variables change over time. That is, at the
beginning of each ctrl -cycle, s needs to be updated in accordance with (2.6), which
admits complex behaviour like in Figure 2.4b. Further, this constraint can be used
to find out how dense a track can be packed with trains in order to maximise ETCS
throughput without endangering safety. Using the dL calculus, similar constraints
can be derived (Section 4.8) to find out how early a train needs to start negoti-
ation in order to minimise the risk of having to reduce speed when the MA is not
extendable in time, which is the ST parameter of Figure 2.3.

For the resulting ETCS system, liveness can be proven in the dL calculus by
showing that the train can pass every point p by an appropriate choice of m by the
RBC:

z = z0 ∧ v = v0 > 0 ∧ ε > 0 ∧ b > 0 ∧ A ≥ 0→ ∀p∃m 〈(ctrl ; drive)∗〉 z ≥ p (2.7)

The proof of property (2.7) uses the variant z + nεv0 ≥ p ∧ v = v0 for G4, which
expresses that the speed does not decrease (until n < 0) and that the remaining
distance from z to target p can be covered after at most n iteration cycles. This
directly proves the property even when A = 0 for appropriate acceleration choices.
For A ≥ 0, the following variant proves property (2.7):

ϕ(n) ≡ ((z+nεv0 ≥ p∧z0 ≤ z∧v2 ≤ v2
0 +2A(z−z0)∧v ≥ v0∧z ≤ p)∨z ≥ p)∧v ≥ 0

It expresses that, when z ≤ p, the remaining distance can be covered after at most n
iterations, while the train position and velocity increase, yet the velocity is bounded
depending on the initial velocity v0, acceleration A, and distance z − z0. The
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appropriate choice of m for property (2.7) is

m ≥ p+
v2
o + 2A(p− z0)

2b
+

(
A

b
+ 1

)(
A

2
ε2

)
+ ε
√
v2

0 + 2A(p− z0)

which can be obtained by overapproximating braking condition (2.6) with the speed
limit v2 ≤ v2

0 + 2A(z − zo) from the variant. We will examine ETCS in more detail
in Chapter 7.

In this example, we can see the effect of the dL calculus. It takes a specification
of a hybrid system and successively identifies constraints on the parameters which
are needed for correctness. These constraints can then be handled in a purely
modular way by F3 and F6. As a typical characteristics of hybrid systems, further
observe that intermediate formulas are significantly more complex than the original
proof obligation, which can be expressed succinctly in dL. This reflects the fact
that the actual complexity of hybrid systems originates from hybrid interaction,
not from a single transition. Still, using appropriate proof strategies (Chapter 5)
for the dL calculus, the safety statement (2.1) with invariant (2.5) can be verified
automatically in a theorem prover that invokes Mathematica for D11–D12, F3, and
F6.

2.10. Summary

We have introduced a first-order dynamic logic for hybrid programs, which are
uniform operational models for hybrid systems with interacting discrete jumps and
continuous evolutions along differential equations. For this differential dynamic
logic, dL, we have presented a concise generalised free variable proof calculus over
the reals.

Our sequent calculus for dL is a generalisation of classical calculi for discrete dy-
namic logic [BHS07, BP06, HKT00, Har79] to the hybrid case. It is a compositional
verification calculus for verifying properties of hybrid programs by decomposing
them into properties of their parts. In order to handle interacting hybrid dynam-
ics, we lift real quantifier elimination to the deductive calculus in a new modular
way that is suitable for automation, using real-valued free variables, Skolem terms,
and invertible quantifier rules over the reals.

As a fundamental result aligning hybrid and continuous reasoning proof-theoret-
ically, we have proven our calculus to axiomatise the transition behaviour of hybrid
systems completely relative to the handling of differential equations. Moreover, we
have demonstrated that our calculus is well-suited for practical automatic verific-
ation in a realistic case study of a fully parametric version of the European Train
Control System.

Dynamic logic can be augmented [BP06] to support reasoning about dynamically
reconfiguring system structures, which we want to extend to hybrid systems in
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future work. While the dL calculus is complete relative to the continuous fragment,
it is a subtle open problem whether a converse calculus can exist that is complete
relative to various discrete fragments.
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Synopsis

We generalise dynamic logic to a logic for differential-algebraic programs,
i.e., discrete programs augmented with first-order differential-algebraic for-
mulas as continuous evolution constraints in addition to first-order discrete
jump formulas. These programs characterise interacting discrete and con-
tinuous dynamics of hybrid systems elegantly and uniformly. For our logic,
we introduce a calculus over real arithmetic with discrete induction and a new
differential induction with which differential-algebraic programs can be veri-
fied by exploiting their differential constraints algebraically without having
to solve them. We develop the theory of differential induction and differential
refinement and analyse their deductive power. As a case study, we present
parametric tangential roundabout maneuvers in air traffic control and prove
collision avoidance in our calculus.

3.1. Introduction

Verification of Hybrid Systems

Flight maneuvers in air traffic control [TPS98, LLL00, MF01, DMC05, DPR05,
PC07, GMAR07, HKT07] give hybrid systems with challenging dynamics. There
the continuous dynamics results from continuous movement of aircraft in space,
and the discrete dynamics is caused by the instantaneous switching of maneuvering
modes or by discrete aircraft controllers that decide when and how to initiate flight
maneuvers. Proper functioning of these systems is highly safety-critical with re-
spect to spatial separation of aircraft during all flight maneuvers, especially collision
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avoidance maneuvers. Their analysis, however, is challenging due to the superposi-
tion of involved continuous flight dynamics with nontrivial discrete control, causing
hybrid systems like these to be neither amenable to mere continuous reasoning nor
to verification techniques for purely discrete systems. Since, especially in the pres-
ence of parameters, hybrid systems cannot be verified numerically [PC07, CL05],
we present a purely symbolic approach using combined deductive and algebraic
verification techniques.

In practice, correctness of hybrid systems further depends on the choice of para-
meters that naturally arise from the degrees of freedom of how a part of the sys-
tem can be instantiated or how a controller can respond to input [TPS98, DN00,
DMO+07, PC07, HKT07]. For instance, correct angular velocities, proper tim-
ing, and compatible maneuver points are equally required for safe air traffic con-
trol [TPS98, PC07]. Additionally, relevant correctness properties for hybrid systems
include safety, liveness, and mixed properties like reactivity (see Chapter 7), all of
which can possibly involve (alternating) quantifiers or free variables for parameters.
As a uniform approach for specifying and verifying these heterogeneous properties
of hybrid systems with symbolic parameters, we introduce an extension of first-
order logic and dynamic logic [HKT00] for handling correctness statements about
hybrid systems in the presence of (quantified) parameters. These combinations can
even be used to discover constraints on the free parameters that are required for
system correctness.

Logic for Hybrid Systems

The aim of this chapter is to present logic-based techniques with which general
hybrid systems with interacting discrete and continuous dynamics can be spe-
cified and verified in a coherent logical framework. To this end, we introduce
the differential-algebraic dynamic logic (DA-logic or DAL for short) as the logic of
general hybrid change. As an elegant and uniform operational model for hybrid sys-
tems in DAL, we introduce differential-algebraic programs (DA-programs). These
programs combine first-order discrete jump constraints (DJ-constraints) to char-
acterise discrete transitions with support for first-order differential-algebraic con-
straints (DA-constraints) to characterise continuous transitions. DA-constraints
provide a convenient way for expressing continuous system evolution constraints
and give a uniform semantics to differential evolutions, systems of differential equa-
tions [Wal98], switched systems [Bra95a], invariant constraints [Hen96, DN00], trig-
gers [Bra95a], and differential-algebraic equations [Gea88]. In DJ-constraints and
DA-constraints, first-order quantifiers further give a natural and semantically well-
founded way of expressing unbounded discrete or continuous nondeterminism in
the dynamics, including nondeterminism resulting from internal choices or external
disturbances. In interaction with appropriate control structure, DJ-constraints and
DA-constraints can be combined to form DA-programs as uniform operational mod-

71



Chapter 3. Differential-Algebraic Dynamic Logic DAL

els for hybrid systems. With this, DA-programs are a generalised program notation
for the standard notation of hybrid systems as hybrid automata [Hen96].

As a specification and verification logic for hybrid systems given as DA-programs,
we design the first-order dynamic logic DAL. In particular, we generalise discrete
dynamic logic [HKT00] to hybrid control and support DA-programs as actions of
a first-order multi-modal logic [FM99], such that its modalities can be used to
specify and verify correctness properties of hybrid systems. For instance, the DAL
formula [α]φ expresses that all traces of DA-program α lead to states satisfying the
DAL formula φ. Likewise, 〈α〉φ says that there is at least one state reachable by α
which satisfies φ. Similarly, ∃p [α]〈β〉φ says that there is a choice of parameter p
such that for all possible behaviour of DA-program α there is a reaction of DA-
program β that ensures φ.

Deductive Verification and Differential Induction

As a means for verifying hybrid systems by proving corresponding DAL formulas,
we introduce a sequent calculus. It uses side deductions [Pla07b] as a simple and
concise, yet constructive, modular technique to integrate real quantifier elimination
with calculus rules for modalities. For handling discrete transitions, we present a
first-order generalisation of standard calculus rules [HKT00, BP06]. Interacting
continuous transitions are more involved. Formulas with very simple differential
equations can be verified by using their solutions [Frä99, PAM+05, AW01]: Lin-
ear differential equations with nilpotent constant coefficients (i.e., x′ = Ax for a
matrix A with An = 0 for some n) have polynomial solutions so that arithmetic
formulas about these solutions can be verified by quantifier elimination [CH91].
This approach, however, does not scale to hybrid systems with more sophisticated
differential constraints because their solutions do not support quantifier elimina-
tion (e.g., when they involve transcendental functions), cannot be given in closed
form [Wal98], are not computable [PER79], or do not even exist [Wal98, Kol72].
Solutions of differential equations are much more complicated than the original
equations and can become transcendental even for simple linear differential equa-
tions like x′ = −y, y′ = x, where the solutions will be trigonometric functions.

Instead, as a logic-based technique for verifying DA-programs with more gen-
eral differential-algebraic constraints, we introduce first-order differential induction
as a fully algebraic form of proving logical statements about DA-constraints us-
ing their differential-algebraic constraints in a differential induction step instead of
using their solutions in a reachability computation. Unlike in discrete induction,
the invariant is a differential invariant, i.e., a property that is closed under total
differentiation with respect to the differential constraints. There, the basic idea
for showing invariance of a property F is to show that F holds initially and its
total derivative F ′ holds always along the dynamics (with generalisations of total
differentials to logical formulas and corresponding generalisations for quantified

72



3.1. Introduction

DA-constraints). This analysis considers all non-Zeno executions, i.e., where the
system cannot switch its mode infinitely often in finite time. In addition, we intro-
duce differential strengthening as a technique for refining the system dynamics by
differential invariants until the property becomes provable for the refined dynamics,
which we show to be crucial in practical applications.

Comparison

In Chapter 2 we have introduced a logic and calculus for verifying hybrid programs ,
which is the quantifier-free subclass of DA-programs without propositional con-
nectives (see Table 3.1 for examples). Further, we have proven this calculus to be
complete relative to the handling of differential equations (Theorem 2.17). Com-
plementary, in this chapter, we address the question how sophisticated differential
constraints themselves can be specified and verified in a way that lifts to hybrid
systems, and how these techniques can be integrated seamlessly into a logic.

To this end, we design differential-algebraic programs as the first-order comple-
tion of hybrid programs, and we augment both the logic and the calculus with means
for handling DA-constraints. In particular, we extend our logic dL to the logic DAL
with general first-order differential constraints plus first-order jump formulas and
introduce differential induction for verifying differential-algebraic programs. Spe-
cifically, the continuous evolutions which can be handled by differential induction
are strictly more expressive than those that previous calculi [ZRH92, RRS03, DN00]
or the dL calculus are able to handle. DAL even supports differential-algebraic
equations [Gea88]. Consequently, the DAL calculus can verify much more general
scenarios, including the dynamics of aircraft maneuvers, which were out of scope for
approaches that require polynomial solutions [Frä99, PAM+05]. Table 3.1 summar-
ises the differences in syntactic expressiveness, discrete and continuous verification
technology, arithmetic quantifier integration approach, and overall scope of applic-
ability. The DAL extensions presented in this chapter are both complementary
to and compatible with our dL calculus extensions for integrating arithmetic as
presented in Chapter 2.

Contributions

The first contribution of this chapter is the generalised differential-algebraic dy-
namic logic DAL for differential-algebraic programs as the first-order completion
of hybrid programs. DAL provides a uniform semantics and a concise language
for specifying and verifying correctness properties of general hybrid systems with
sophisticated (possibly quantified) first-order dynamics. The main contribution is a
verification calculus for DAL including uniform proof rules for differential induction
along first-order differential-algebraic constraints with differential invariants, differ-
ential variants, and differential strengthening. Our main theoretical contribution is
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Table 3.1.: Comparison of DAL with DA-programs versus dL with hybrid programs

dL/hybrid programs DAL/DA-programs

expressive
power

single assignments propositional/quantified DJ-constraints
x := 1 x > 0→ ∃a (a < 5 ∧ x := a2 + 1)

differential equations propositional/quantified DA-constraints
x′1 = d1, x

′
2 = d2 ∃ω≤1 (d′1 = −ωd2 ∧ d′2 = ωd1) ∨ d′1 ≤ d′2 ≤ 2d1

verification
technology

substitutions quantifier elimination and substitutions
polynomial solutions first-order differential induction

quantifier
integra-
tion

real-valued free vari-
ables, Skolemisation

side deductions

scope of
applica-
tions

nilpotent dynamics,
e.g., trains in R1

algebraic dynamics and polynomial dif-
ferential constraints, e.g., curved air-
craft flight

our analysis of the deductive power of differential induction for classes of differen-
tial invariants. As an applied contribution, we introduce a generalised tangential
roundabout maneuver in air traffic control and we demonstrate the capabilities of
our approach by verifying collision avoidance in the DAL calculus. To the best of
our knowledge, this is the first formal proof for (unbounded) safety of the hybrid
dynamics of an aircraft maneuver with curved flight dynamics and the first sound
verification result for collision avoidance with curved aircraft dynamics.

3.1.1. Related Work

Most verification approaches for hybrid systems follow the model checking paradigm
for hybrid automata and use approximations or abstraction refinement, e.g., [Hen96,
CFH+03, ADG03], because reachability is undecidable for hybrid automata [Hen96].
We have shown in previous work [PC07] that even reachability problems for fairly
restricted classes of single continuous transitions are not decidable using numerical
computations. Thus, we follow a purely symbolic approach in this thesis. Moreover,
we introduce the logic DAL, which gives a more expressive specification and verific-
ation language than reachability in model checking. In addition, using quantifiers,
DAL is capable of handling quantified parametric properties.

Invariants of Hybrid Systems Several authors [SSM04, RCT05, PJ04, PJP07]
argue that invariant techniques scale to more general dynamics than explicit reach-
set computations or techniques that require solutions of the differential equations
[Frä99, PAM+05, Pla07b, Pla07e]. Among them, there are model checking ap-
proaches [SSM04, RCT05] that use equational polynomial invariants based on
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Gröbner basis computations. Still, the approach of Rodŕıguez-Carbonell and Tiwari
[RCT05] requires closed-form solutions and is restricted to linear dynamics. The
major limitation of these approaches [SSM04, RCT05], however, is that they only
work for equational invariants of fully equation-definable hybrid systems, including
equational initial sets and switching surfaces. Yet, this assumes highly regular sys-
tems without tolerances and only works for null sets. In practice, the set of initial
states usually does not have measure zero, though. A thorough analysis of collision
avoidance maneuvers, for instance, should consider all initial flight paths in free
flight instead of just a single restricted position corridor.

Prajna et al. [PJ04, PJP07] have generalised Lyapunov functions to barrier certi-
ficates, i.e., a function B decreasing along the dynamics whose zero set separates ini-
tial from unsafe states. Further, they focus on stochastic extensions. DAL provides
barrier certificates as a special case using B ≤ 0 as a differential invariant. In
a similar vein, criticality functions [DMO+07] generalise Lyapunov-functions from
stability to safety, which DAL provides as a special case of differential invariants.

We generalise purely equational invariants [SSM04, RCT05] and single polyno-
mial expressions [SSM04, PJ04, PJP07, DMO+07] to general differential induction
with real arithmetic formulas. In practice, such more general differential invariants
are needed for verifying sophisticated hybrid systems including aircraft maneuvers.
Further, unlike other approaches [SSM04, RCT05, PJ04, PJP07], DAL leverages
the full deductive power of logic, combining differential induction with discrete in-
duction to lift these proof techniques uniformly to hybrid systems. In addition,
dynamic logic can be used to prove sophisticated statements involving quantifier
and modality alternations for parametric verification [Pla07b]. Finally, the DAL
calculus supports combinations with differential variants for liveness properties or
combinations with differential strengthening, which we show to be crucial in veri-
fying realistic aircraft maneuvers.

Air Traffic Control Verification In air traffic control, Tomlin et al. [TPS98]
analyse competitive aircraft maneuvers game-theoretically using Hamilton-Jacobi-
Isaacs partial differential equations. They derive saddle solutions for purely angu-
lar or purely linear control actions. They propose roundabout maneuvers and give
bounded-time verification results for trapezoidal straight-line approximations. Our
symbolic techniques avoid exponential state space discretisations that are required
for complicated PDEs and are thus more scalable for automation. Further, we
handle fully parametric cases, even for more complicated curved flight dynamics.

Hwang et al. [HKT07] have presented a straight-line aircraft conflict avoidance
maneuver that involves optimisation over complicated trigonometric computations,
and validate it on random numerical simulation. They show examples where the
decisions of the maneuver change only slightly for small perturbations. Hwang et
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al. do not, however, prove that their proposed maneuver is safe with respect to
actual hybrid flight dynamics.

Dowek et al. [DMC05] and Galdino et al. [GMAR07] consider straight-line man-
euvers and formalise geometrical proofs in PVS. Like in the work of Hwang et
al. [HKT07], they do not, however, consider curved flight paths nor verify actual
hybrid dynamics but work with geometrical meta-level reasoning, instead.

In all these approaches [DMC05, GMAR07, HKT07], it remains to be proven
separately that the geometrical meta-level considerations actually fit to the hy-
brid dynamics and flight equations. In contrast, our approach directly works for
the hybrid flight dynamics and we verify roundabout maneuvers with curves in-
stead of straight-line maneuvers with non-flyable instant turns only. A few ap-
proaches [DPR05, MF01] have been undertaken to modelcheck discretisations of
roundabout maneuvers, which indicate avoidance of orthogonal collisions. How-
ever, the counterexamples found by our model checker in previous work [PC07]
show for these maneuvers that collision avoidance does not extend to other initial
flight paths.

Structure of this Chapter

In Section 3.2 and Section 3.3, we introduce syntax and semantics of the differential-
algebraic logic DAL. In Section 3.4, we introduce tangential roundabout maneuvers
in air traffic control as a case study and running example. Further, we introduce
a sequent calculus with differential induction for DAL in Section 3.5 and prove
soundness in Section 3.6. We show extensions of differential induction techniques
in Section 3.7. We exploit differential induction techniques for differential mono-
tonicity relaxations in Section 3.8. We prove relative completeness of the DAL
calculus in Section 3.9 and compare the deductive strength of differential invariants
in Section 3.10. Using the DAL calculus, we prove, in Section 3.11, safety of the
tangential roundabout maneuver in air traffic control. Finally, we draw conclusions
and discuss future work in Section 3.12.

3.2. Syntax of Differential-Algebraic Logic

In this section, we introduce the differential-algebraic logic (DAL) as a specifica-
tion and verification logic for differential-algebraic programs (DA-programs). DA-
programs constitute an elegant and uniform model for hybrid systems. We start
with an informal introduction that motivates the definitions to come. DA-programs
have three basic characteristics:

Discrete jump constraints Discrete transitions, which can possibly lead to dis-
continuous change, are represented as discrete jump constraints (DJ-constraints),
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i.e., first-order formulas with instantaneous assignments of values to state vari-
ables as additional atomic formulas. DJ-constraints specify what new values the
respective state variables assume by an instant change. For instance, d1 := −d2

specifies that the value of variable d1 is changed to the value of −d2. Multiple dis-
crete changes can be combined conjunctively with simultaneous effect, for instance
d1 :=−d2 ∧ d2 := d1, which assigns the previous value of −d2 to d1 and, simultan-
eously, the previous value of d1 to d2. This operation instantly rotates the vec-
tor d = (d1, d2) by π/2 to the left. Using d := d⊥ as a short vectorial notation for
this jump, the DJ-constraint (d1 > 0→ d := d⊥) ∧ (d1 ≤ 0→ d :=−d⊥) specifies
that the direction of the rotation depends on the initial value of d1. Finally, the
DJ-constraint ∃a (ω := a2 ∧ a < 5) assigns the square of some number less than 5
to ω.

Differential-algebraic constraints Continuous dynamics is represented with dif-
ferential-algebraic constraints (DA-constraints) as evolution constraints, i.e., first-
order formulas with differential symbols x′, e.g., in differential equations or inequal-
ities. DA-constraints specify how state variables change continuously over time. For
instance, x′1 = d1 ∧ x′2 = d2 says that the system continuously evolves by moving
the vector x = (x1, x2) into direction d = (d1, d2) along the differential equation sys-
tem (x′1 = d1, x

′
2 = d2). Likewise, d′1 = −ωd2 ∧ d′2 = ωd1 ∧ d1 ≥ 0 specifies that the

vector d is continuously rotating with angular velocity ω, so that (in conjunction
with x′1 = d1 ∧ x′2 = d2), the direction where point x is heading to changes over
time. By adding d1 ≥ 0 conjunctively to the DA-constraint, we express that the
curving will only be able to continue while d1 ≥ 0. This evolution will have to
stop before d1 < 0. The evolution is impossible if d1 ≥ 0 already fails to hold
initially. The DA-constraint ∃ω (d′1 = −ωd2 ∧ d′2 = ωd1 ∧ −1 ≤ ω ≤ 1) character-
ises rotation with some angular velocity −1 ≤ ω ≤ 1, which may even change over
time, in contrast to d′1 = −ωd2 ∧ d′2 = ωd1 ∧ −1 ≤ ω ≤ 1 ∧ ω′ = 0 or DA-constraint
d′1 = −ωd2 ∧ d′2 = ω where ω is not allowed to change.

Differential-algebraic programs As an operational model for hybrid systems, DJ-
constraints and DA-constraints, which represent general discrete and continuous
transitions, respectively, can be combined to form a DA-program using regular
expression operators (∪, ∗, ;) of regular discrete dynamic logic [HKT00] as control
structure. For example, ω := 1 ∪ ω :=−1 describes a controller that can either
choose to set angular velocity ω to a left or right curve, by a nondeterministic
choice (∪). Similarly, sequential composition ω := ω + 1; d′1 = −ωd2 ∧ d′2 = ωd1

says that the system first increases its angular velocity by a discrete transition
and then switches to a mode in which it follows a continuous rotation with this
angular velocity.
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Discussion Not all constraints involving x := θ or x′ qualify as reasonable ways of
characterising elementary system transitions. Unlike positive occurrences, negative
occurrences of assignments like in ¬(x := 5) are pointless, because they impose no
meaningful transition constraints on which new value x actually assumes (but only
on which value it is not assigned to). Likewise, negative occurrences of differential
constraints as in ¬(x′ = 5) would be pointless as they do not constrain the overall
evolution but allow arbitrary transitions.

Further, we disallow duplicate constraints that constrain the same variable in
incompatible ways at the same time as, e.g., in x := 2 ∧ x := 3 or x′ = 2 ∧ x′ = 3.
At any state during a system evolution, variable x can only assume one value at a
time, not both 2 and 3 at once. Similarly, variables cannot evolve with contradictory
slopes at the same time for any positive duration.

Finally, ∀a x := a would be equivalent to false, because it is impossible to assign
all possible choices for a (hence all reals) simultaneously to x, which can only assume
one value at a time. Likewise ∀a x′ = a would be equivalent to false, because x′

can only equal one real value at a time. Dually, ∃a a := θ is equivalent to true,
because the DJ-constraint imposes no constraints nor has any visible effects (the
scope of the quantified a ends with the DJ-constraint). The situation with ∃a a′ = θ
is similar.

Even though a semantics and proof rules for these cases can be defined, the
respective transitions are degenerate and their technical handling is not very illu-
minating. Hence, in the sequel, we define DJ-constraints and DA-constraints to
avoid these insignificant cases altogether. Note that the syntactical restrictions are
non-essential but simplify the presentation by allowing us to focus on the interesting
cases.

3.2.1. Terms

To simplify the presentation, we use side deduction rules [Pla07b] for quantifiers
in this chapter (the free variable calculus rules from Chapter 2 are still compatible
with the findings in this chapter). Consequently, we do not need to distinguish
between free logical variables from V and free state variables from Σ. Thus, we do
not distinguish Σ and V here.

The formulas of DAL are built over a signature Σ of real-valued function and pre-
dicate symbols. The signature Σ contains the usual function and predicate symbols
for real arithmetic: +,−, ·, /,=,≤, <,≥, > and number symbols such as 0, 1. State
variables are represented as real-valued function symbols of arity zero (constants)
in Σ. These state variables are flexible [BP06], i.e., their interpretation can change
from state to state while following the transitions of a DA-program. Observe that
there is no need to distinguish between discrete and continuous variables in DAL.
The set Term(Σ, V ) of terms is defined as in classical first-order logic, yielding ra-

78



3.2. Syntax

tional expressions over the reals. The set of formulas of first-order logic is defined
as common, giving first-order real arithmetic.

Although we are primarily interested in polynomial cases, our techniques gener-
alise to the presence of division. Yet to avoid partiality in the semantics, we only
allow to use p/q when q 6= 0 is present or ensured. Any formula or constraint φ
containing a term of the form p/q is taken to mean φ ∧ ¬(q = 0). Note that, in
a certain sense, divisions cause less difficulties for the calculus than for the se-
mantics. Particularly, our calculus uses indirect means of differential induction to
conclude properties of solutions of DA-constraints, thereby avoiding the need to
handle singularities in these solutions explicitly as caused by divisions by zero.

3.2.2. Differential-Algebraic Programs

DA-programs consist of first-order discrete jump formulas and first-order differential-
algebraic formulas as primitive operations, which interact using regular control
structure.

Reflecting the discussion before Section 3.2, we characterise reasonable occur-
rences for changes like x := θ or x′ as follows. We call a formula G an affirmative
subformula of a first-order formula F iff:

1. G is a positive subformula of F , i.e., it occurs with an even number of nega-
tions, and

2. no variable y that occurs in G is in the scope of a universal quantifier ∀y of
a positive subformula of F (or ∃y of a negative subformula of F ).

3.1 Definition (Discrete jump constraint). A discrete jump constraint (DJ-
constraint) is a formula J of first-order real arithmetic over Σ with additional
atomic formulas of the form x := θ where x ∈ Σ, θ ∈ Term(Σ, V ). The latter are
called assignments and are only allowed in affirmative subformulas of DJ-constraints
that are not in the scope of a quantifier for x of J . A DJ-constraint without
assignments is called jump-free. A variable x is (possibly) changed in J iff an
assignment of the form x := θ occurs in J .

The effect of (x1 := θ1 ∧ . . ∧ xn := θn ∧ x1 > 0) ∨ (x1 := ϑ1 ∧ . . ∧ xn := ϑn ∧ x1 < 0)
is to simultaneously change the interpretations of the variables xi to the respect-
ive θi if x1 > 0, and to change the xi to ϑi if, instead, x1 < 0. If neither case
applies (x1 = 0), the DJ-constraint evaluates to false as no disjunct applies so that
no jump is possible at all, which will prevent the system from continuing any fur-
ther. In particular, a jump-free DJ-constraint like x ≥ y corresponds to a test. It
completes without changing the state if, in fact, x ≥ y holds true in the current
state, and it aborts system evolution otherwise (deadlock). Especially, unlike the
assignment x := θ, which changes the value of x to that of θ, the test x = θ fails by
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aborting the system evolution if x does not already happen to have the value θ. If
cases overlap, as in (x := x− 1 ∧ x ≥ 0) ∨ x := 0, either disjunct can be chosen to
take effect by a nondeterministic choice.

Quantifiers within DJ-constraints express unbounded discrete nondeterministic
choices. For instance, the following quantified DJ-constraint assigns some vec-
tor u ∈ R2 to e such that the rays spanned by d = (d1, d2) and u = (u1, u2) inter-
sect:

∃u1∃u2 (e1 := u1 ∧ e2 := u2 ∧ ∃λ>0 ∃µ>0 (λd1 = µu1 ∧ λd2 = µu2)) .

We informally use vectorial notation when no confusion arises. Using vectorial
quantifiers, equations, arithmetic, and assignments, the latter DJ-constraint sim-
plifies to:

∃u (e := u ∧ ∃λ>0∃µ>0λd = µu) .

3.2 Definition (Differential-algebraic constraints). A differential-algebraic
constraint (DA-constraint) is a formula D of first-order real arithmetic over Σ∪Σ′,
in which symbols of Σ′ only occur in affirmative subformulas that are not in the
scope of a quantifier of D for that symbol. Here Σ′ is the set of all differential sym-
bols x(n) with n ∈ N for state variables x ∈ Σ. A DA-constraint without differential
symbols is called non-differential. A variable x is (possibly) changed in D iff x(n)

occurs in D for an n ≥ 1.

Syntactically, x(n) is like an ordinary function symbol of arity 0 but only allowed
to occur within DA-constraints not in any other formula. The intended semantics
of a differential symbol x(n) is to denote the n-th time-derivative of x, which is
used to form differential equations (or differential inequalities). We write x′ for x(1)

and x′′ for x(2) and, sometimes, x(0) for the non-differential symbol x. The (partial)
order ordxD of a DA-constraint D in x is the highest order n ∈ N of a differential
symbol x(n) occurring in D, or is not defined if no such x(n) occurs. The notion of
order is accordingly for terms instead of DA-constraint.

The effect of a DA-constraint D is an ongoing continuous evolution respecting
the differential and non-differential constraints of D during the whole evolution.
For instance, the effect of (x′ = θ ∧ x > 0) ∨ (x′ = −x2 ∧ x < 0) is that the system
evolves along x′ = θ while x > 0, and evolves along x′ = −x2 when x < 0. This
evolution can stop at any time but is never allowed to enter the region where neither
case applies anymore (x = 0).

More generally, the differential constraints of D describe how the valuations of
the respective state variables change continuously over time while following D.
The non-differential constraints of D can be understood to express domain restric-
tions or invariant regions of these evolutions for which the differential equations
apply or within which the evolution resides. For instance, in the DA-constraint
d′1 = −ωd2 ∧ d′2 = ωd1 ∧ d1 ≥ 0, the differential equations d′1 = −ωd2 and d′2 = ωd1
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describe the change and d1 ≥ 0 the invariance region or maximal domain of evolu-
tion. Overlapping cases are resolved like in DJ-constraints, i.e., by nondeterministic
choice. Likewise, a DA-constraint where no case applies abort the system evolution
as it does not satisfy the DA-constraint. Hence, non-differential DA-constraints
and jump-free DJ-constraints are both equivalent to pure tests [HKT00]. Except
for such tests, we need to distinguish DA-constraints from DJ-constraints: Only
DA-constraints can have evolutions of non-zero duration and only DJ-constraints
can lead to discontinuous changes.

Quantifiers within DA-constraints express continuous nondeterministic choices.
For example, constraint ∃u (d′1 = −(ω + u)d2 ∧ d′2 = (ω + u)d1 ∧ −0.1 ≤ u ≤ 0.1)
expresses that the system follows a continuous evolution in which, at each time, the
differential equations are respected for some choice of u in −0.1 ≤ u ≤ 0.1. In par-
ticular, the choice of u can be different at each time so that u amounts to a bounded
nondeterministic disturbance during the rotation in the above DA-constraint.

When using constraint formulas to characterise system transitions, we face the
usual frame problem: Typically, one does not expect variables to change their values
unless the respective constraint explicitly specifies how. In this chapter, we indicate
constant variables explicitly so that no confusion arises. In practical applications,
however, it can be quite cumbersome to have to specify z := z or z′ = 0 explicitly
for all variables z that are not supposed to change. To account for that, we will
define the DAL semantics so that variables that are not changed by a DJ-constraint
or DA-constraint keep their value. Since free nondeterministic change of variable y
is expressible using ∃a y := a or ∃a y′ = a, respectively, we expect the changes of all
changed variables to be specified explicitly in all cases of the constraints to improve
readability:

3.3 Definition (Homogeneous constraints). A DA-constraint or DJ-constraint
C is called homogeneous iff, in each of the disjuncts of a disjunctive normal form
of C, every changed variable of C is changed exactly once.

Note that Lemma 3.17 from Section 3.5.1 will show that DA-constraints are
equivalent to their disjunctive normal forms. Throughout the chapter, we assume
that all DA-constraints and DJ-constraints are homogeneous, thereby ensuring that
all changed variables receive a new value in all cases of the respective constraint
(or stay constant because they are changed nowhere in the constraint) and that no
change conflicts occur.

Hence, variable y does not change during the DA-constraint x′ = −x ∧ x ≥ y
but works as a constant lower bound for the evolution of x, because no differential
symbol y(n) with n ≥ 1 occurs so that y′ = 0 is assumed. If, instead, y is intended
to vary, yet its variation is not specified by a differential equation but y varies
according to some algebraic relation with x, then quantified DA-constraints can
be used to represent such differential-algebraic equations [Gea88]. For instance,
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the differential-algebraic equation x′ = −x, y2 = x, in which y2 = x is an algeb-
raic variational constraint specifying how y changes over time, is expressible as
the DA-constraint x′ = −x ∧ ∃u (y′ = u ∧ y2 = x). There, the quantified differen-
tial constraint on y essentially says that y can change arbitrarily (with arbitrary
disturbance u) but only so that it always respects the relation y2 = x.

Now we can define DA-programs as regular combinations of DJ-constraints and
DA-constraints.

3.4 Definition (Differential-algebraic programs). The set DA-program(Σ, V )
of differential-algebraic programs, with typical elements α, β, is inductively defined
as the smallest set such that:

• If J is a DJ-constraint over Σ, then J ∈ DA-program(Σ, V ).

• If D is a DA-constraint over Σ ∪ Σ′, then D ∈ DA-program(Σ, V ).

• If α, β ∈ DA-program(Σ, V ) then (α ∪ β) ∈ DA-program(Σ, V ).

• If α, β ∈ DA-program(Σ, V ) then (α; β) ∈ DA-program(Σ, V ).

• If α ∈ DA-program(Σ, V ) then (α∗) ∈ DA-program(Σ, V ).

Choices α ∪ β are used to express behavioural alternatives between α and β,
i.e., the system either follows α or it follows β. In particular, the difference
between the DA-constraint D ∨ E and the DA-program D ∪ E is that the sys-
tem has to commit to one choice of D or E in D ∪ E , but it can switch back
and forth multiple times between D and E in D ∨ E . The sequential composi-
tion α; β says that DA-program β starts executing after α has finished (β never
starts if α does not terminate, e.g., due to a failed test in α). Observe that, like
repetitions, continuous evolutions within α can take longer or shorter. This non-
determinism is inherent in hybrid systems and as such reflected in DA-programs.
Additional restrictions on the permitted duration of evolutions can simply be spe-
cified using auxiliary clocks, i.e., variables of derivative τ ′ = 1. For instance,
τ := 0; x′ = −x2 ∧ τ ′ = 1 ∧ τ ≤ 5; ?τ ≥ 2 specifies that the system only follows those
evolutions along x′ = −x2 that take at most 5 but at least 2 time units. Repeti-
tion α∗ is used to express that the hybrid process α repeats any number of times,
including zero. With this, the repetition of hybrid automata transitions [Hen96]
can be represented, see Appendix B for details.

Purely conjunctive DA-constraints correspond to continuous dynamical systems
[Sib75]. DA-constraints with disjunctions correspond to switched continuous dy-
namical systems [Bra95a]. DA-programs without DA-constraints correspond to
discrete dynamical systems or, when restricted to domain N (which is definable in
DAL), to discrete while programs [HKT00]. Regular combinations of DJ-constraints
form a complete basis of discrete programs [HKT00]. Finally, general DA-programs
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correspond to (first-order generalisations of) hybrid dynamical systems [Bra95a,
Hen96, DN00].

3.2.3. Formulas of Differential-Algebraic Logic

The set of formulas of DAL is defined as common in first-order dynamic logic
[HKT00]. They are built using propositional connectives and, in addition, if α
is a DA-program and φ is a DAL formula, then [α]φ, 〈α〉φ are DAL formulas.
The intuitive reading of [α]φ is that every run of DA-program α leads to states
satisfying φ. Dually, 〈α〉φ expresses that there is at least one run of α leading to
such a state.

3.5 Definition (DAL formulas). The set Fml(Σ, V ) of DAL formulas, with
typical elements φ, ψ, is inductively defined as the smallest set with:

• If θ1, θ2 ∈ Term(Σ, V ) are terms, then (θ1 ≥ θ2) ∈ Fml(Σ, V ), and accordingly
for =,≤, <,>.

• If φ, ψ ∈ Fml(Σ, V ), then ¬φ, (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ) ∈ Fml(Σ, V ).

• If φ ∈ Fml(Σ, V ) and α ∈ DA-program(Σ, V ), then [α]φ, 〈α〉φ ∈ Fml(Σ, V ).

Quantifiers in DAL formulas are definable in terms of DA-constraints or quanti-
fied DJ-constraints. We consider quantifiers as abbreviations:

∀xφ ≡ [∃a x := a]φ ≡ [x′ = 1 ∨ x′ = −1]φ

∃xφ ≡ 〈∃a x := a〉φ≡〈x′ = 1 ∨ x′ = −1〉φ .

The DAL formula [∃a x := a]φ considers all possibilities of assigning some value a
to x, which amounts to universal quantification. Likewise, 〈∃a x := a〉φ considers
some such choice, which is existential quantification. Similarly, the indeterminate
continuous evolution x′ = 1 ∨ x′ = −1 reaches all values, which amounts to the
respective quantifier when combined with the appropriate modality.

One common pattern for representing safety statements about hybrid control
loops is to use DAL formulas of the form φ→ [(controller ; plant)∗]ψ for specifying
that the system satisfies property ψ whenever the initial state satisfies φ. There,
the system repeats a controller-plant feedback loop, with a DA-constraint plant
describing the continuous plant dynamics and a discrete DA-program controller
describing the control decisions. The controller plant interaction repeats as indic-
ated by the repetition star. Still, more general forms of systems and properties can
be formulated and verified in DAL as well.
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3.3. Semantics of Differential-Algebraic Logic

The semantics of DAL is a Kripke semantics with possible states of a hybrid system
as possible worlds, where the accessibility relation between worlds is generated by
the discrete or continuous transitions of DA-programs. A potential behaviour of
a hybrid system corresponds to a succession of states that contain the observable
values of system variables during its hybrid evolution.

3.3.1. Transition Semantics of Differential-Algebraic Programs

Since, in this chapter, we do not distinguish free logical variables and constants,
the semantics does not need to distinguish states and variable assignments.

A state is a map ν : Σ→ R; the set of all states is denoted by State(Σ). The
function and predicate symbols of real arithmetic are interpreted as usual.

3.6 Definition (Valuation of terms). The valuation val(ν, ·) of terms with
respect to state ν is defined by

1. val(ν, x) = ν(x) if x ∈ Σ is a variable.

2. val(ν, θ1 + θ2) = val(ν, θ1) + val(ν, θ2) and accordingly for −, ·.

3. val(ν, θ1/θ2) = val(ν, θ1)/val(ν, θ2) if val(ν, θ2) 6= 0.

Note that we do not need the semantics of θ1/θ2 for val(ν, θ2) = 0, because we have
assumed the presence of constraints ensuring ¬(θ2 = 0) for divisions.

The interpretation of discrete jump constraints is defined as in first-order real
arithmetic with the addition of an interpretation for assignment formulas.

3.7 Definition (Interpretation of discrete jump constraints). The inter-
pretation of DJ-constraint J for the pair of states (ν, ω), denoted as (ν, ω) |= J ,
is defined as follows, where val(ω, z) = val(ν, z) for all variables z that are not
changed in J :

1. (ν, ω) |= x := θ iff val(ω, x) = val(ν, θ).

2. (ν, ω) |= θ1 ≥ θ2 iff val(ν, θ1) ≥ val(ν, θ2), and accordingly for =,≤, <,>.

3. (ν, ω) |= φ ∧ ψ iff (ν, ω) |= φ and (ν, ω) |= ψ. Accordingly for ¬,∨,→.

4. (ν, ω) |= ∀xφ iff (νx, ω) |= φ for all states νx that agree with ν except for the
value of x.

5. (ν, ω) |= ∃xφ iff (νx, ω) |= φ for some state νx that agrees with ν except for
the value of x.
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To give a semantics to DA-constraints, differential symbols x′ ∈ Σ′ must get a
meaning. However, a DA-constraint like d′1 = −ωd2 ∧ d′2 = ωd1 cannot be inter-
preted in a single state ν, because derivatives are not defined in isolated points.
Instead, DA-constraints are constraints that have to hold for an evolution of states
over time. Along such a flow function ϕ : [0, r]→ State(Σ), DA-constraints can
again be interpreted locally by assigning to the formal differential symbol d′1 the
analytic time-derivative of the value of d1 along ϕ at the respective points in time.
As we assumed DA-constraints to avoid zero divisions, analytic derivatives are well-
defined for r > 0 as State(Σ) is isomorphic to a finite-dimensional real space with
respect to the finitely many differential symbols occurring in the DA-constraint.
We give a uniform definition for all durations r ≥ 0 and defer the discussion of the
understanding for r = 0 until the DA-constraint semantics has been presented in
full. The philosophy behind hybrid systems is to isolate discontinuities in discrete
transitions. Thus we assume that state variables (and their differential symbols, if
present) always vary continuously along continuous evolutions over time.

3.8 Definition (Differential state flow). A function ϕ : [0, r]→ State(Σ) is
called state flow of duration r ≥ 0, if ϕ is componentwise continuous on [0, r],
i.e., for all x ∈ Σ, ϕ(ζ)(x) is continuous in ζ. Then, the differentially augmented
state ϕ̄(ζ) of ϕ at ζ ∈ [0, r] agrees with ϕ(ζ) except that it further assigns values
to some of the differential symbols x(n) ∈ Σ′: If ϕ(t)(x) is n-times continuously

differentiable in t at ζ, then ϕ̄(ζ) assigns the n-th time-derivative dnϕ(t)(x)
dtn

(ζ) of x
at ζ to differential symbol x(n) ∈ Σ′, otherwise the value of x(n) ∈ Σ′ is not defined.

For a DA-constraint D, a state flow ϕ of duration r is called state flow of the order
of D, iff the value of each differential symbol occurring in D is defined on [0, r],
i.e., ϕ(ζ)(x) is n-times continuously differentiable in ζ on [0, r] for n = ordxD.

3.9 Definition (Interpretation of differential-algebraic formulas). The in-
terpretation of DA-constraint D with respect to a state flow ϕ of the order of D
and duration r ≥ 0 is defined by: ϕ |= D iff, for all ζ ∈ [0, r],

1. ϕ̄(ζ) |=R D using the standard semantics |=R of first-order real arithmetic,
and

2. val(ϕ̄(ζ), z) = val(ϕ̄(0), z) for all variables z that are not changed by D.

Observe that, along the state flows for a DA-constraint D, only those variables
whose differential symbols occur in D have to be continuously differentiable of the
appropriate order. Quantified variables can change more arbitrarily (even discon-
tinuously) during the evolution, because the semantics does not directly relate the
value of a quantified variable like u in ∃ux′ = u2 at time ζ with the values that u
assumes at later times. Quantified variables may be constrained indirectly by their
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relations, though: In ∃ux′ = u2, the value of u2 (but not that of u) also varies
continuously over time, because x′ varies continuously.

As a consequence of Picard-Lindelöf’s theorem a.k.a. Cauchy-Lipschitz the-
orem [Wal98, Theorem 10.VI], and using that DAL terms are continuously dif-
ferentiable on the open domain where divisors are non-zero, the flows of explicit
quantifier-free DA-constraints of the form x′1 = θ1 ∧ · · · ∧ x′n = θn ∧ χ with non-
differential χ are unique (as long as they exist): For each duration and initial value,
there is at most one state flow ϕ (see Lemma 2.8). Yet, this is not the case for
disjunctive DA-constraints, differential inequalities, quantified DA-constraints, or
DA-constraints in implicit form like x′2 − 1 = 0, which has solutions x(t) = x(0) + t
and x(t) = x(0)− t. Finally, a non-differential χ imposes no change but only tests
whether χ holds. Hence, without differential constraints, a non-differential DA-
constraint χ itself only has constant flows (if any), i.e., ϕ(ζ) = ϕ(0) for all ζ.

Restrictions of differential state flows to a prefix are again state flows. In partic-
ular, for all differential equations, the restriction to the point interval [0, 0] yields
a trivial flow of no effect. For such point duration r = 0, however, derivatives and
differentiability are not defined. To admit trivial flows nevertheless, the under-
standing of a DA-constraint is that its differential terms take no effect for flows of
zero duration. That is, for trivial flows, atomic formulas with differential symbols
are defined to evaluate to true as they occur only positively in DA-constraints.
Thus, only the non-differential constraints of D impose constraints for trivial flows.
A state flow of duration zero satisfying D and starting in some state ν exists iff ν
satisfies the non-differential part of D, which acts as a test condition.

Now we can define the transition semantics, ρ(α), of a DA-program α. The se-
mantics of a DA-program is captured by the discrete or continuous transitions that
are possible by following this DA-program. For DJ-constraints this transition rela-
tion holds for pairs of states that satisfy the jump constraints. For DA-constraints,
the transition relation holds for pairs of states that can be interconnected by a
(continuous) state flow respecting the DA-constraint.

3.10 Definition (Transition semantics of differential-algebraic programs).
The valuation, ρ(α), of a DA-program α, is a transition relation on states. It
specifies which state ω is reachable from a state ν by operations of the hybrid
system α and is defined as:

1. (ν, ω) ∈ ρ(J ) iff (ν, ω) |= J according to Definition 3.7, when J is a DJ-
constraint.

2. ρ(D) = {(ϕ(0), ϕ(r)) : ϕ is a state flow of the order of D and some dura-
tion r ≥ 0 such that ϕ |= D}, when D is a DA-constraint, see Definition 3.9.

3. ρ(α ∪ β) = ρ(α) ∪ ρ(β)

4. ρ(α; β) = {(ν, ω) : (ν, z) ∈ ρ(α), (z, ω) ∈ ρ(β) for some state z}
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5. (ν, ω) ∈ ρ(α∗) iff there are an n ∈ N and ν = ν0, . . . , νn = ω such that
(νi, νi+1) ∈ ρ(α) for all 0 ≤ i < n.

3.3.2. Valuation of Formulas

Now, the interpretation of formulas is defined as usual for first-order modal logic
[FM99, HKT00], with the transition semantics, ρ(α), of DA-programs for modalit-
ies.

3.11 Definition (Interpretation of DAL formulas). The interpretation |= of
DAL formulas with respect to state ν is defined as

1. ν |= θ1 ≥ θ2 iff val(ν, θ1) ≥ val(ν, θ2), and accordingly for =,≤, <,>.

2. ν |= φ ∧ ψ iff ν |= φ and ν |= ψ. For ¬,∨,→, the definition is accordingly.

3. ν |= [α]φ iff ω |= φ for all states ω with (ν, ω) ∈ ρ(α).

4. ν |= 〈α〉φ iff ω |= φ for some state ωwith (ν, ω) ∈ ρ(α).

3.3.3. Time Anomalies

Hybrid systems evolve along piecewise continuous trajectories, which consist of
a sequence of continuous flows interrupted by discontinuous discrete jumps. A
common phenomenon in hybrid system models is that their semantics and analysis
is more controversial when discrete and continuous behaviour are allowed to interact
without certain regularity assumptions [JSZL01, RRS03, DN00, Hen96]. Zeno-
anomalies occur when the hybrid system is allowed to take infinitely many discrete
transitions in finite time.

Consider the DA-program (a′ = −1 ∧ d ≤ a; d := d/2)∗ starting in a state where
a > d > 0 and a and d progress towards goal 0. The (inverse) clock variable a
decreases continuously, yet d bounds the maximum duration of each continuous
evolution phase. At the latest when a = d, variable d decreases by a discrete trans-
ition. This Zeno system generates infinitely many transitions in finite time and it is
impossible for clock a to finally reach 0, because a ≥ d > 0 will always remain true.
Yet this behaviour is, in a certain sense, counterfactual, because it fails to obey
divergence of time: Real time diverges, whereas clock a converges to 0. Further,
systems with Zeno-anomalies cannot be realised [JSZL01, RRS03, DN00, Hen96] so
that corresponding regularity assumptions can be justified for practical purposes.

To avoid pitfalls of time anomalies, we define the DAL semantics so that it
only refers to well-defined system behaviour with finitely many transitions in finite
time: We restrict the semantics of DA-constraints and disallow infinite numbers of
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switches between differential equations in bounded time. With DA-constraint D
defined as (x ≥ 0→ x′′ = −1) ∧ (x < 0→ x′′ = 1) ∧ y′ = 1, the DAL formula

∃e 〈D〉[D](y > e→ x ≤ d)

expresses that, after some time, the system can stabilise such that it always remains
within the region x ≤ d when y > e for some choice of e. For such a stability
property, we do not analyse what happens after there have been infinitely many
switches from x′′ = 1 to x′′ = −1 within the first second. Instead, our semantics
is such that our calculus reveals what happens for any finite number of switches.
Accordingly, we restrict the semantics of DA-constraints to only accept non-Zeno
evolutions:

3.12 Definition. A state flow ϕ for a DA-constraint D is called non-Zeno, if
there only is a finite number of points in time where some variable needs to
obey another differential constraint of D than before the respective point in time:
Let D1 ∨ · · · ∨ Dn be a disjunctive normal form of D, then flow ϕ : [0, r]→ State(Σ)
is non-Zeno iff there are an m ∈ N and 0 = ζ0 < ζ1 < · · · < ζm = r and in-
dices i1, . . . , im ∈ {1, . . . , n} such that ϕ respects Dik on the interval [ζk−1, ζk], i.e.,
ϕ|[ζk−1,ζk] |= Dik for all k ∈ {1, . . . ,m}.

The semantics of DA-programs entails that runs with non-Zeno state flows are
non-Zeno, because α∗ does not accept infinitely many switches.

3.3.4. Conservative Extension

The following result shows that dL formulas with hybrid programs can be embed-
ded syntactically into the extension of DAL by DA-programs without changing the
meaning of the dL formulas. That is, the semantics of DAL formulas given in Defin-
ition 3.11 and 3.10 is equivalent to the final state reachability relation semantics
given in Definition 2.6 and 2.7 for the sublogic dL of dTL, using the syntactic
embedding of hybrid programs into DA-programs from Table 3.2.

Table 3.2.: Embedding hybrid programs as DA-programs

Hybrid program DA-program

assignment / discrete jump set DA-constraint
x1 := θ1, . . . , xn := θn x1 := θ1 ∧ · · · ∧ xn := θn

differential equation system DA-constraint
x′1 = θ1, . . . , x

′
n = θn &χ x′1 = θ1 ∧ · · · ∧ x′n = θn ∧ χ

test DJ-constraint/ DA-constraint
?χ χ
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3.13 Proposition (Conservative extension). The logic DAL is a conservative
extension of dL, i.e., the set of valid dL-formulas is the same with respect to trans-
ition semantics of hybrid programs (Definition 2.7) as with respect to the transition
semantics of DA-programs (Definition 3.10).

Proof. The valuation of formulas of dL and DAL is directly compatible (Defini-
tion 3.11 and 2.6, respectively). By comparing Definition 2.7 with Definition 3.10,
it is easy to see that we only need to show that differential equations generate the
same transitions. Using vectorial notation, let x′ = θ&χ be a differential equa-
tion with invariant region χ. Let (ν, ω) ∈ ρ(x′ = θ&χ) according to a flow ϕ of
duration r as a witness due to Definition 2.7. Then ϕ is a state flow of the or-
der of x′ = θ and ϕ(0) = ν, ϕ(r) = ω and ϕ |= χ and the value of variables z other
than x remains constant. Assume r > 0 as there is nothing else to show, otherwise.
By Definition 2.7, we know that ϕ |= x′ = θ holds on the interval (0, r) and have
to show that there is a continuation of ϕ so that ϕ |= x′ = θ holds on [0, r].

The right hand side θ of the differential equation assumes values that are defined
along ϕ, because ϕ |= χ and χ guards against zeros of denominators. Hence, the
image of ϕ remains in the domain of definition of θ. Further, ϕ is continuous
on [0, r], hence, as a compact image of a continuous map, its image is compact.
Thus, by the continuation theorem for solutions of differential equations [Wal98,
Proposition 6.VI], ϕ can be continued to a solution of x′ = θ on [0, r].

Conversely, it is easy to see that (ν, ω) ∈ ρ(x′ = θ ∧ χ) according to Defini-
tion 3.10 directly implies (ν, ω) ∈ ρ(x′ = θ&χ) according to Definition 2.7.

Clearly, the DAL calculus will not be a conservative extension of the dL calcu-
lus, because it contains more powerful rules for verifying properties of differential
equations. We will see that there are dL formulas that can be proven in the DAL
calculus but not in the dL calculus.

3.4. Collision Avoidance in Air Traffic Control

As a case study, which will serve as a running example, we show how succinctly
collision avoidance maneuvers in air traffic control can be described in DAL. In
Section 3.11, we will verify such maneuvers in the DAL calculus.

3.4.1. Flight Dynamics

Assuming, for simplicity, aircraft remain at the same altitude, an aircraft is de-
scribed by its planar position x = (x1, x2) ∈ R2 and angular orientation ϑ. The
dynamics of an aircraft is determined by its linear velocity v ∈ R and angular velo-
city ω, see Figure 3.1a (with ϑ = 0). When neglecting wind or gravitation, which is
appropriate for analysing cooperation in air traffic control [TPS98, LLL00, MF01,
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3.1d: Tangential
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Figure 3.1.: Roundabout maneuvers for collision avoidance in air traffic control

DPR05, PC07], the in-flight dynamics of an aircraft at x can be described by the
following differential equation system, see, e.g., [TPS98] for details:

x′1 = v cosϑ x′2 = v sinϑ ϑ′ = ω . (3.1)

3.4.2. Differential Axiomatisation

Unlike for straight-line flight (ω = 0), such nonlinear dynamics is difficult to ana-
lyse [TPS98, LLL00, MF01, DPR05, PC07] for ω 6= 0, especially due to the trigono-
metric expressions which are generally undecidable. Solving (3.1) already requires
the Floquet-theory of differential equations with periodic coefficients [Wal98, The-
orem 18.X] and yields mixed polynomial expressions with multiple trigonometric
functions. A true challenge, however, is verifying properties of the states that the
aircraft reach by following these solutions, which requires proving that complicated
formulas with mixed polynomial arithmetic and trigonometric functions hold true
for all values of state variables and all possible evolution durations. By Gödel’s
incompleteness theorem, however, the resulting first-order real arithmetic with tri-
gonometric functions is not semidecidable, because the roots of sin characterise an
isomorphic copy of natural numbers.

To obtain polynomial dynamics, we axiomatise the trigonometric functions in
the dynamics differentially and reparametrise the state correspondingly. Instead of
angular orientation ϑ and linear velocity v, we use the linear speed vector

d = (d1, d2) := (v cosϑ, v sinϑ) ∈ R2

which describes both the linear speed ‖d‖ :=
√
d2

1 + d2
2 = v and orientation of the

aircraft in space, see Figure 3.1a. Substituting this coordinate change into (3.1),
we immediately have x′1 = d1 and x′2 = d2. With the coordinate change, we further
obtain differential equations for d1, d2 from differential equation system (3.1) by
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simple symbolic differentiation:

d′1 = v′ cosϑ+ v(− sinϑ)ϑ′ = −(v sinϑ)ω = −ωd2

d′2 = v′ sinϑ+ v(cosϑ)ϑ′ = (v cosϑ)ω = ωd1

The middle equality holds for constant linear velocity (v′ = 0), which we assume,
because only limited variations in linear speed are possible and cost-effective during
the flight [TPS98, LLL00] so that ω is the primary control parameter in air traffic
control. Hence, equations (3.1) can be restated as the DA-constraint F(ω):

x′1 = d1 ∧x′2 = d2 ∧ d′1 = −ωd2 ∧ d′2 = ωd1 (F(ω))

y′1 = e1 ∧ y′2 = e2 ∧ e′1 = −$e2 ∧ e′2 = $e1 (G($))

DA-constraint F(ω) expresses that position x changes according to the linear
speed vector d, which in turn rotates according to ω. Simultaneous movement
together with a second aircraft at y ∈ R2 having linear speed e ∈ R2 (also in-
dicated with angle ϑ̄ in Figure 3.1a) and angular velocity $ corresponds to the
DA-constraint F(ω) ∧ G($). Such DA-constraints capture simultaneous dynamics
of multiple traffic agents succinctly using conjunction. By this differential axio-
matisation, we thus obtain polynomial differential equations, even though their
solutions still involve the same complicated nonlinear trigonometric expressions.
Since the solutions involve trigonometric functions, previous approaches [ZRH92,
Hen96, Frä99, RRS03, DN00, PAM+05] were not able to handle such dynamics.

3.4.3. Aircraft Collision Avoidance Maneuvers

Due to possible turbulence or collisions, a flight configuration is unsafe if another
aircraft is within a protected zone of radius p, i.e., ‖x− y‖2 < p2. Guiding aircraft
by collision avoidance maneuvers to automatically resolve conflicting flight paths
that would lead to possible loss of separation, is a major challenge both for air traffic
control and verification [TPS98, LLL00, MF01, DMC05, DPR05, PC07, GMAR07,
HKT07]. Several different classes of collision avoidance maneuvers for air traffic
control have been suggested [TPS98, LLL00, MF01, DMC05, GMAR07, HKT07].
The classical traffic alert and collision avoidance system (TCAS) [LLL00] directs
one aircraft on climbing routes the other on descending routes to resolve conflicts at
different altitudes but keeps otherwise unmodified straight-line flight paths. While
the simplistic TCAS maneuver has several benefits, it does not scale up easily to
multiple aircraft or dense traffic situations nearby airports. As a more scalable
alternative, Tomlin et al. [TPS98] suggested roundabout maneuvers on circular
paths, see Figure 3.1b, where, even at the same altitude, several aircraft can parti-
cipate in collision avoidance maneuvers. Because the continuous dynamics of curved
flights with ω 6= 0 is quite intricate, Tomlin et al. [TPS98] and Massink and De
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Francesco [MF01] have analysed trapezoidal straight-line (ω = 0) approximations
of roundabouts, instead, which consist only of a series of two to five straight-line
segments connected by several instant turns. Unfortunately, the discontinuities in
instant turns are not flyable by aircraft.

As a more realistic model, we investigate curved roundabout maneuvers proposed
by Tomlin et al. [TPS98]. Roundabouts have proper flight curves with nonzero
angular velocities ω (Figure 3.1b). We have shown previously [PC07] that round-
about maneuvers with fixed turns [TPS98, LLL00, MF01, DPR05] are unsafe for
non-orthogonal initial flight paths (see Figure 3.1c for a counterexample) and we
have proposed a tangential roundabout maneuver [PC07] with position-dependent
evasive actions to overcome these deficiencies. However, because of general limits
of numerical approximation techniques [PC07, CL05], we could not actually verify
the tangential roundabout maneuver numerically. In this chapter, we introduce
a generalised class of tangential roundabout maneuvers with curved flight paths
and formally verify this maneuver in the purely symbolic DAL calculus. Our main
motivation for studying roundabouts are their curved flight paths, which constitute
a substantial challenge for verification of hybrid systems with nontrivial dynamics
and an important part of realistic flight maneuvers.

3.4.4. Tangential Roundabout Maneuver

In the tangential roundabout maneuver, sketched in Figure 3.1d, the idea is that
the aircraft agree on some common angular velocity ω and common centre c around
which both can circle safely without coming closer to each other (their linear ve-
locities can differ, though, to compensate for different cruise speeds). Note that
neither, c nor ω need to be discovered by complicated online trajectory predictions.
Instead, we present in Section 3.11 a simple characterisation of safe choices for the
parameters of the tangential roundabout maneuver and determine safety of the
resulting flight paths using formal proofs in the DAL calculus.

In Figure 3.2, we introduce the DAL model for the tangential roundabout man-
euver, which is a simplified and more uniform generalisation of our previous work [PC07].
Observe how concisely complicated aircraft maneuvers can be specified in DAL.
There, safety property ψ for aircraft maneuvers expresses that protected zones are
respected during the flight (specified by separation property φ). The flight con-
troller (trm∗) performs collision avoidance maneuvers by tangential roundabouts
and repeats these maneuvers any number of times as needed. During each trm
phase, the aircraft first perform arbitrary free flight (free) by (repeatedly) inde-
pendently adjusting their angular velocities ω and $ while they are safely sep-
arated, which is expressed by conjunct φ of the DA-constraint. Observe that,
unlike in ∃u (ω := u); F(ω), angular velocities can be (re-)adjusted continuously
during free flight in ∃ωF(ω), rather than just once. In particular, free includes
piecewise constant choices as in (∃u (ω := u) ∧ ∃u ($ := u); F(ω) ∧ G($))∗. Due
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to invariant region φ of free, the tangential roundabout maneuver must be ini-
tiated (by a tangential initiation controller tang) before the flight paths become
unsafe. Then, the tangential roundabout maneuver itself is carried out by the DA-
constraint F(ω) ∧ G(ω) according to some common angular velocity ω determined
by tang . Finally, the collision avoidance roundabouts can be left again by repeating
the loop trm∗ and entering arbitrary free flight at any time. When further conflicts
occur during free flight, the controller in Figure 3.2 again enters roundabout conflict
resolution maneuvers.

ψ ≡ φ→ [trm∗]φ

φ ≡ ‖x− y‖2 ≥ p2 ≡ (x1 − y1)2 + (x2 − y2)2 ≥ p2

trm ≡ free; tang; F(ω) ∧ G(ω)

free ≡ ∃ωF(ω) ∧ ∃$ G($) ∧ φ
tang ≡ will be derived in Section 3.11

Figure 3.2.: Flight control with tangential roundabout collision avoidance man-
euvers

In summary, property ψ of Figure 3.2 expresses that the aircraft remain safe dur-
ing the flight, especially during evasive roundabout maneuvers. For the maneuver
in Figure 3.2, it is easy to see that φ also holds during free, because φ is specified as
an invariant region of free. In this chapter, we do not formally investigate temporal
properties like “always φ”, but refer to Chapter 4 for appropriate extensions of our
logic. In Section 3.11, we will determine a constraint on the parameter adjustment
by tang such that the roundabout maneuver is safe, and we give a simple choice
for tang respecting this parameter constraint.

3.5. Verification Calculus for Differential-Algebraic
Logic

In this section, we introduce a sequent calculus for proving DAL formulas. The
basic idea is to symbolically compute the effects of DA-programs and successively
transform them into simpler logical formulas describing their effects. The calculus
consists of standard propositional rules, dedicated rules for handling DA-program-
modalities, including differential induction rules for sophisticated differential con-
straints, and side deduction rules for integrating real quantifier elimination.

For our calculus, recall the definition of substitutions: The result of applying
to φ the substitution that replaces x by θ is defined as usual; it is denoted by φθx.
Likewise, in a simultaneous substitution φθ1x1 . . .

θn
xn the xi are replaced simultaneously

by the respective θi.
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3.5.1. Derivations and Differentiation

As a purely algebraic device for proving properties about continuous evolutions in
our calculus, we define syntactic derivations of terms and show that their valuation
corresponds with analytic differentiation (the total differential). With this, we can
build proof rules for verifying DA-programs fully algebraically by a differential form
of induction without the need to carry out analytic reasoning about analytic limits
or similar concepts that would require higher-order logic.

3.14 Definition (Derivation). The map D : Term(Σ∪Σ′, V )→ Term(Σ∪Σ′, V )
that is defined as follows is called syntactic (total) derivation

D(r) = 0 if r ∈ Q is a rational number (3.2a)

D(x(n)) = x(n+1) if x ∈ Σ is a state variable, n ≥ 0 (3.2b)

D(a+ b) = D(a) +D(b) (3.2c)

D(a− b) = D(a)−D(b) (3.2d)

D(a · b) = D(a) · b+ a ·D(b) (3.2e)

D(a/b) = (D(a) · b− a ·D(b))/b2 (3.2f)

For a first-order formula F , we define the following abbreviations:

D(F ) ≡
m∧
i=1

D(Fi) where {F1, . . . , Fm} is the set of all literals of F

D(a ≥ b) ≡ D(a) ≥ D(b) and accordingly for <,>,≤,= or negative literals.

To illustrate the naturalness of this definition, we briefly align it in terms of the
structures from differential algebra and refer to [Kol72] for details. Case (3.2a)
defines number symbols as differential constants, which do not change during con-
tinuous evolution. Equation (3.2c) and the Leibniz rule (3.2e) are defining condi-
tions for derivation operators on rings. Equation (3.2d) is a derived rule for sub-
traction according to a− b = a+ (−1) · b. In addition, equation (3.2b) uniquely
defines D on the differential polynomial algebra spanned by the differential inde-
terminates x ∈ Σ. Equation (3.2f) canonically extends D to the differential field of
quotients. As the base field R has no zero divisors, the right hand side of (3.2f)
is defined whenever the division a/b can be carried out, which, as we assumed,
is guarded by b 6= 0. The resulting structure Term(Σ∪Σ′, V ), together with the
derivation D, corresponds to the differential field of rational fractions with state
variables as differential indeterminates over R and with rational numbers as differ-
ential constants.

The conjunctive definition of the formula D(F ) in Definition 3.14 corresponds to
the joint total derivative of all atomic subformulas of F and will be an important
tool for differential induction rules of our calculus.
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The following central lemma, which is the differential counterpart of the substi-
tution lemma, establishes the connection between syntactic derivation of terms and
semantic differentiation as an analytic operation to obtain analytic derivatives of
valuations along state flows. It will allow us to draw analytic conclusions about the
behaviour of a system along differential equations from the truth of purely algebraic
formulas obtained by syntactic derivation.

3.15 Lemma (Derivation lemma). The valuation of DAL terms is a differential
homomorphism: Let θ ∈ Term(Σ, V ) and let ϕ : [0, r]→ State(Σ) be any state flow
of the order of D(θ) and duration r > 0 along which the value of θ is defined (as
no divisions by zero occur). Then we have for all ζ ∈ [0, r] that

d val(ϕ(t), θ)

dt
(ζ) = val(ϕ̄(ζ), D(θ)) .

In particular, val(ϕ(t), θ) is continuously differentiable (where θ is defined) and its
derivative exists on [0, r].

Proof. The proof is an inductive consequence of the correspondence of the semantics
of differential symbols and analytic derivatives in state flows (Definition 3.8). It
uses the assumption that the flow ϕ remains within the domain of definition of θ and
is continuously differentiable in all variables of θ. In particular, all denominators
are non-zero during ϕ.

• If θ is a variable x, the conjecture holds immediately by Definition 3.8:

d val(ϕ(t), x)

dt
(ζ) =

dϕ(t)(x)

dt
(ζ) = ϕ̄(ζ)(x′) = val(ϕ̄(ζ), D(x)) .

There, the derivative exists because the state flow is of order 1 in x and, thus,
(continuously) differentiable for x.

• If θ is of the form a+ b, the desired result can be obtained by using the
properties of derivatives, derivations (Definition 3.14), and valuations (Defin-
ition 3.6):

d

dt
(val(ϕ(t), a+ b))(ζ)

=
d

dt
(val(ϕ(t), a) + val(ϕ(t), b))(ζ) val(ν, ·) homomorph for +

=
d

dt
(val(ϕ(t), a))(ζ) +

d

dt
(val(ϕ(t), b))(ζ)

d

dt
is a (linear) derivation

= val(ϕ̄(ζ), D(a)) + val(ϕ̄(ζ), D(b)) by induction hypothesis

= val(ϕ̄(ζ), D(a) +D(b)) val(ν, ·) homomorph for +

= val(ϕ̄(ζ), D(a+ b)) D(·) is a syntactic derivation
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• The case where θ is of the form a · b or a− b is accordingly, using Leibniz
product rule (3.2e) or subtractiveness (3.2d) of Definition 3.14, respectively.

• The case where θ is of the form a/b uses (3.2f) of Definition 3.14 and further
depends on the assumption that b 6= 0 along ϕ. This holds as the value of θ
is assumed to be defined all along state flow ϕ.

• The values of numbers r ∈ Q do not change during a state flow (in fact, they
are not affected by the state at all), hence their derivative is D(r) = 0.

The principle of substitution [FM99] can be lifted to differential equations, i.e.,
differential equations can be used for equivalent substitutions along state flows
respecting the corresponding differential constraints.

3.16 Lemma (Differential substitution principle). If ϕ is a state flow satis-
fying ϕ |= x′1 = θ1 ∧ · · · ∧ x′n = θn ∧ χ, then ϕ |= D ↔ (χ→ Dθ1x′1 . . .

θn
x′n

) holds for all

DA-constraints D.

Proof. The proof is by using the substitution lemma for first-order logic on the
basis of val(ϕ̄(ζ), x′i) = val(ϕ̄(ζ), θi) and ϕ̄(ζ) |= χ at each time ζ in the domain
of ϕ.

The following lemma captures that the semantics of DA-constraints is not sens-
itive to how the DA-constraint is presented. It also plays its part in the soundness
proof of our calculus, because it immediately makes all implicational and equival-
ence transformations of real-arithmetic available for DA-constraints.

3.17 Lemma (Differential transformation principle). Let D and E be DA-
constraints (with the same changed variables). If D → E is a tautology of (non-
differential) first-order real arithmetic (that is, when considering x(n) as a new
variable independent from x), then ρ(D) ⊆ ρ(E).

Proof. Let the first-order formulas φ and ψ be obtained from D and E , respect-
ively, by replacing all x′ by new variable symbols X (accordingly for higher-order
differential symbols x(n)). Using vectorial notation, we write φx

′
X for the formula

obtained from φ by substituting all variables X by x′. Thus, φx
′
X is D and ψx

′
X is E .

Let φ→ ψ be valid in (non-differential) real arithmetic. Let (ν, ω) ∈ ρ(D) accord-
ing to a state flow ϕ. Then ϕ also is a state flow for E that justifies (ν, ω) ∈ ρ(E):
For any ζ ∈ [0, r], we have ϕ̄(ζ) |= D hence ϕ̄(ζ) |= E , because ϕ̄(ζ) |= φx

′
X immedi-

ately implies ϕ̄(ζ) |= ψx
′
X by validity of φ→ ψ. The assumption on D and E having

the same set of changed variables is only required for compatibility with condition 2
of Definition 3.9, which enforces that unchanged variables z remain constant. It
can be established easily by adding constraints of the form z′ = 0 as required.
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DA-constraints D and E are equivalent iff ρ(D) = ρ(E). In particular, the se-
mantics of DA-programs is preserved when replacing a DA-constraint by another
DA-constraint that is equivalent in non-differential first-order real arithmetic (sim-
ilarly for DJ-constraints).

3.5.2. Differential Reduction and Differential Elimination

Using the expressive power of DA-constraints, several reductions can be performed
to simplify the syntactic form of DA-constraints. With quantified DA-constraints,
we can reduce differential inequalities to quantified differential equations equival-
ently:

3.18 Lemma (Differential inequality elimination). DA-constraints admit dif-
ferential inequality elimination, i.e., to each DA-constraint D, an equivalent DA-
constraint without differential inequalities can be effectively associated that has no
other free variables.

Proof. Let E be obtained from D by replacing all differential inequalities θ1 ≤ θ2

by a quantified differential equation ∃u (θ1 = θ2 − u ∧ u ≥ 0) with a new variable u
for the quantified disturbance (accordingly for ≥, >,<). By Lemma 3.17, the equi-
valence of D and E is a simple consequence of the corresponding equivalences in
first-order real arithmetic.

In the sequel, we assume this transformation has been applied such that we can
focus on DA-constraints with differential equations, i.e., where differential symbols
only occur in differential equations, and where inequalities do not contain differ-
ential symbols. Yet, the DA-constraint resulting from Lemma 3.18 could become
inhomogeneous when multiple differential equations are produced for the same vari-
able that result from multiple differential inequalities. For instance, θ1 ≤ x′ ≤ θ2

produces ∃u∃v (x′ = θ1 + u ∧ x′ = θ2 − v ∧ u ≥ 0 ∧ v ≥ 0). To rehomogenise this
DA-constraint, we use the following:

3.19 Lemma (Differential equation normalisation). DA-constraints admit
differential equation normalisation, i.e., to each DA-constraint D, an equivalent
DA-constraint with at most one differential equation for each differential symbol
can be effectively associated that has no other free variables. Furthermore, this
differential equation is explicit, i.e., of the form x(n) = θ where ordx θ < n.

Proof. For each differential symbol x(n) ∈ Σ′ occurring in D, we introduce a new
non-differential variable Xn ∈ Σ. Let DXn

x(n)
denote the result of substituting Xn

for x(n) in D. By Lemma 3.17, the equivalence of D and ∃Xn (x(n) = Xn ∧ DXnx(n)) is a
simple consequence of the corresponding equivalence in first-order logic. Proceeding
inductively for all such x(n) ∈ Σ′ in D gives the desired result.
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Similarly, higher-order differential constraints reduce to first-order constraints
by introducing new non-differential auxiliary variables Xn for each of the higher-
order differential symbols x(n). For 1 ≤ ordx θ < n, we can replace a higher-order
differential equation x(n) = θ by:

x′ = X1 ∧X ′1 = X2 ∧ . . .∧X ′n−2 = Xn−1 ∧X ′n−1 = θX1

x′ . . .
Xn−1

x(n−1)

X′n−1

x(n)

3.5.3. Rules of the Calculus for Differential-Algebraic Logic

Sequents and substitutions are defined as in Section 2.5.1. We assume α-conversion
for renaming as needed. In the DAL calculus, only admissible substitutions are
applicable, which is crucial for soundness.

3.20 Definition (Admissible substitution). An application of a substitution σ
is admissible if no replaced variable x occurs in the scope of a quantifier or modality
binding x or a variable of the replacement σ(x). A modality binds x if its DA-
program (possibly) changes x, i.e., if it contains a DJ-constraint containing x := θ
or a DA-constraint containing x(n) ∈ Σ′ for an n ≥ 1.

As usual in sequent calculus—although the direction of entailment is from premisses
(above rule bar) to conclusion (below)—the order of reasoning and reading is goal-
directed in practice: Rules are applied in tableau-style, that is, starting from the
desired conclusion at the bottom (goal) to the resulting premisses (sub-goals). To
highlight the logical essence of the DAL calculus, Figure 3.3 provides rule schemata
to which the following definition associates the calculus rules that are applicable
during a DAL proof. The calculus inherits the propositional P-rules from Fig-
ure 2.5 and further consists of first-order quantifier rules (F-rules: F1–F4), rules
for dynamic modalities (D-rules: D1–D15), and global rules (G-rules: G1–G6).

The definition of rules is a simplified version of that in Definition 2.11, with
side deductions in place of free variable F-rules. Further, we can simplify the
presentation by avoiding update prefixes (which would also be sound here when
allowing conjunctive DA-constraints as prefixes). Notice that this generally requires
more complicated invariants and variants than in the dL calculus of Chapter 2,
where discrete jump set prefixes are allowed for rule applications so that more
information about the prestate is retained automatically.

3.21 Definition (Rules). The rule schemata in Figure 3.3 induce calculus rules
by:

1. If
Φ1 ` Ψ1 . . . Φn ` Ψn

Φ0 ` Ψ0
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is an instance of one of the rule schemata in Figure 3.3, then

Γ,Φ1 ` Ψ1,∆ . . . Γ,Φn ` Ψn,∆

Γ,Φ0 ` Ψ0,∆

can be applied as a proof rule of the DAL calculus, where Γ,∆ are arbitrary
finite sets of context formulas (including empty sets).

2. Symmetric schemata can be applied on either side of the sequent: If

φ1

φ0

is an instance of one of the symmetric rule schemata D1–D12 in Figure 3.3,
then

Γ ` φ1,∆

Γ ` φ0,∆
and

Γ, φ1 ` ∆

Γ, φ0 ` ∆

can both be applied as proof rules of the DAL calculus, where Γ,∆ are arbit-
rary finite sets of context formulas (including empty sets).

P-Rules For propositional logic, we use the standard P-rules from Figure 2.5.

F-Rules Unlike in uninterpreted first-order logic [Fit96, FM99], quantifier rules
have to respect the specific semantics of real arithmetic. Thus, our rules handle real
quantifiers using quantifier elimination (QE) over the reals [CH91]. Unfortunately,
QE is only defined in first-order real arithmetic and cannot handle DAL-modalities,
where variables evolve along hybrid trajectories over time. We establish compatib-
ility with dynamic modalities using side deductions for the F-rules, as illustrated
in Section 3.5.4. Alternatively, the F-rules can be replaced by the quantifier rules
of Chapter 2, which generalise free variables, Skolemisation, and Deskolemisation
to real arithmetic for integrating quantifier elimination with modal rules. Instead,
here, we use side deductions that we have introduced in previous work [Pla07b] as
a very intuitive and simple approach for handling real quantifiers.

D-Rules The D-rules transform a DA-program into simpler logical formulas. Rules
D1–D4 are as in discrete dynamic logic [HKT00, BP06] and as in Figure 2.5. D7 and
D8 normalise DJ-constraints to their disjunctive normal form such that the jump
alternatives can be read off easily. Similarly, D5 and D6 lift quantified choices in
DJ-constraints to DAL quantifiers, which are, in turn, handled by F-rules. Then,
D9 and D10 use generalised simultaneous substitutions [BP06] for handling discrete
change and check the jump-free constraint χ.
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(F1)
QE(∀x ∧i(Γi ` ∆i))

Γ ` ∆,∀xφ

(F2)
QE(∃x ∧i(Γi ` ∆i))

Γ, ∀xφ ` ∆

(F3)
QE(∃x ∧i(Γi ` ∆i))

Γ ` ∆,∃xφ

(F4)
QE(∀x ∧i(Γi ` ∆i))

Γ,∃xφ ` ∆

(D1)
〈α〉〈β〉φ
〈α; β〉φ

(D2)
[α][β]φ

[α; β]φ

(D3)
〈α〉φ ∨ 〈β〉φ
〈α ∪ β〉φ

(D4)
[α]φ ∧ [β]φ

[α ∪ β]φ

(D5)
∃x 〈J 〉φ
〈∃xJ 〉φ

(D6)
∀x [J ]φ

[∃xJ ]φ

(D7)
〈J1 ∪ . . . ∪ Jn〉φ

〈J 〉φ

(D8)
[J1 ∪ . . . ∪ Jn]φ

[J ]φ

(D9)
χ ∧ φθ1x1 . . .θnxn

〈x1 := θ1 ∧ . . ∧ xn := θn ∧ χ〉φ

(D10)
χ→ φθ1x1 . . .

θn
xn

[x1 := θ1 ∧ . . ∧ xn := θn ∧ χ]φ

(D11)
〈(D1 ∪ . . . ∪ Dn)∗〉φ

〈D〉φ

(D12)
[(D1 ∪ . . . ∪ Dn)∗]φ

[D]φ

(D13)
` [E ]φ

` [D]φ
(D14)

` 〈D〉φ
` 〈E〉φ (D15)

` [D]χ ` [D ∧ χ]φ

` [D]φ

(G1)
` ∀α(φ→ ψ)

[α]φ ` [α]ψ
(G2)

` ∀α(φ→ ψ)

〈α〉φ ` 〈α〉ψ (G3)
` ∀α(φ→ [α]φ)

φ ` [α∗]φ

(G4)
` ∀α(ϕ(x)→ 〈α〉ϕ(x− 1))

∃v ϕ(v) ` 〈α∗〉∃v≤0ϕ(v)

(G5)
` ∀α∀y1 . .∀yk (χ→ F ′θ1x′1

. . .θnx′n)

[∃y1 . .∃yk χ]F ` [∃y1 . .∃yk (x′1 = θ1 ∧ . . ∧ x′n = θn ∧ χ)]F

(G6)
` ∃ε>0∀α∀y1 . . yk (¬F ∧ χ→ (F ′ ≥ ε)θ1x′1

. . .θnx′n)

[∃y1 . . yk (x′1 = θ1 ∧ . . ∧ x′n = θn ∧ ∼F )]χ ` 〈∃y1 . . yk (x′1 = θ1 ∧ . . ∧ x′n = θn ∧ χ)〉F
In all rule schemata, all substitutions need to be admissible. In D7–D8, J1 ∨ · · · ∨ Jn
is a disjunctive normal form of the DJ-constraint J . In D11–D12, D1 ∨ · · · ∨ Dn is a

disjunctive normal form of the DA-constraint D. The rules D9–D10 and G5–G6 can

be applied for any reordering of the conjuncts of the DA-constraint or DJ-constraint,

where χ is non-differential or jump-free, respectively. In D13 and D14, D implies E , i.e.,

satisfies the assumptions of Lemma 3.17. In G5–G6, F is first-order without negative

equalities, and F ′ abbreviates D(F ), with z′ replaced by 0 for unchanged variables. In

G6, F does not contain equalities and the differential equations are Lipschitz-continuous.

For F-rules, the Γi ` ∆i are obtained from the resulting sub-goals of a side deduction,

see (?) in Figure 3.4. The side deduction is started from the goal Γ ` ∆, φ at the bottom

(or Γ, φ ` ∆ for F2 and F4), where x is assumed not to occur in Γ,∆ using renaming.

In the resulting sub-goals Γi ` ∆i, variable x is assumed to occur in first-order formulas

only, as quantifier elimination (QE) is then applicable.

Figure 3.3.: Rule schemata of the DAL proof calculus
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F3
QE(∃x ∧i(Γi ` ∆i))

Γ ` ∆,∃xφ


Γ1 ` ∆1

. . . ` . . . . . .
Γn ` ∆n

. . . ` . . .
Γ ` ∆, φ

 (?)

start side

QE

Figure 3.4.: Side deduction for quantifier elimination rules

Likewise, D11–D12 normalise DA-constraints to a form where their differential
evolution alternatives are readily identifiable. Unlike for D7–D8, however, continu-
ous evolutions take time so that the system can switch back and forth between
the various cases of the DA-constraint, hence the repetition. Observe that finitely
many repetitions are sufficient for non-Zeno flows (Definition 3.12), which can only
switch finitely often in finite time.

Rules D13–D15 are weakening and strengthening rules for DA-constraints, re-
spectively. In D13–D14, D implies E in real arithmetic according to Lemma 3.17,
which is easy to decide by QE in practice. Note that D13–D14, are sound for any
such combination of D and E . Their primary practical purpose is to use D13 for
overapproximating individual variable evolutions and D14 for refining nondetermin-
istic variable evolutions to specific differential equations (differential refinement).
In particular, we use D13 to project conjunctive differential constraints D to their
non-differential constraints. As we illustrate in Section 3.11, this gives a powerful
verification technique in combination with strengthening (D15), which allows to
refine the system dynamics by auxiliary constraints. We address the problem of
automatically determining the respective strengthenings χ in Chapter 6, where we
derive automatic verification algorithms from the results presented in this chapter.
Furthermore, D13–D14 make all equivalence transformations on DA-constraints
from Section 3.5.2 available as proof rules, including index reduction techniques for
differential-algebraic equations [Gea88].

Note that DAL does not need rules for handling negation in DA-constraints
or DJ-constraints, as—possibly after applying D7–D8 or D11–D12, respectively—
negations only occur in jump-free or non-differential parts, because assignments and
differential symbols only occur positively by Definition 3.1 and 3.2. Similarly, no
rules for universal quantifiers within DA-constraints or DJ-constraints are needed.
Like other propositional operators or quantifiers, negation and universal quantifi-
ers are allowed without restriction in non-differential or jump-free χ and are then
handled by D9–D10 or G5–G6 as usual.

G-Rules The G-rules are global rules. They depend on the truth of their premisses
in all states, which is ensured by the universal closure with respect to all bound
variables of the respective DA-program α (see Definition 3.20). G1–G4 are as in
Figure 2.5.
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G5 is a rule for differential induction, which is a continuous form of induction
along differential constraints. The induction rules G3 and G5 (or G4 and G6 re-
spectively) differ in the way the invariant is sustained. G3 uses the inductive nature
of repetition. G5, instead, uses continuity of evolution and the differential equation
for a continuous induction step with the differential invariant F : If F holds initially
(antecedent of conclusion) and its total differential F ′ satisfies the same relations
when taking into account the differential constraints (premiss), then F itself is sus-
tained differentially (succedent of conclusion). Formula F ′ abbreviatesD(F ) with z′

replaced by 0 for all variables z that are unchanged by the DA-constraint, i.e., that
are distinct from {x1, . . . , xn}, because these are assumed constant in the semantics.
By α-renaming, the yi do not occur in F . Rule G6 is a differential variant rule
where the variant F is attained differentially (with some minimal progress ε), rather
than sustained as in G5. Differential induction, the requirement of the differential
equations for G6 to be Lipschitz-continuous, and the notations F ′ ≥ ε and ∼F will
be illustrated in more detail in Sections 3.5.5–3.5.6 after side deductions for quan-
tifiers have been explained in Section 3.5.4. Finally, G-rules can be combined with
generalisation (G1–G2) to strengthen postconditions as needed.

Provability can be defined as a simplified version of Definition 2.12, because all
DAL rules have only one conclusion, so that a proof will be inductively defined as
a tree, not an acyclic graph.

3.22 Definition (Provability). A formula ψ is provable from a set Φ of formulas,
denoted by Φ `DAL ψ iff there is a finite set Φ0 ⊆ Φ for which the sequent Φ0 ` ψ
is derivable. Derivability is inductively defined so that a sequent Φ ` Ψ is derivable
iff there is a proof rule of the DAL calculus (Definition 3.21) with conclusion Φ ` Ψ
such that all premisses of the rule are derivable.

3.5.4. Deduction Modulo by Side Deduction

The F-rules constitute a purely modular interface to mathematical reasoning. They
can use any theory that admits quantifier elimination and has a decidable ground
theory, e.g., the theory of first-order real arithmetic, which is equivalent to the the-
ory of real-closed fields [CH91]. Unlike in deduction modulo approaches of Dowek
et al. [DHK03] and Tinelli [Tin03], the information given to the background prover
is not restricted to ground formulas [Tin03] or atomic formulas [DHK03], and the
effect of modalities has to be taken into account.

Integrating quantifier elimination to deal with statements about real quantities is
quite challenging in the presence of modalities that influence the value of variables
and terms. Real quantifier elimination cannot be applied to formulas with mixed
quantifiers and modalities like ∃x [x′ = −x;x := 2x]x ≤ 5. To find out which first-
order constraints are actually imposed on x by this DAL formula, we have to take
into account how x evolves from ∃x to x ≤ 5 along the hybrid system dynamics.
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Hence, our calculus first unveils the first-order constraints on x before applying QE.
To achieve this in a concise and simple way, we use side deductions that we have
introduced in previous work [Pla07b].

The effect of a side deduction is as follows. First, the DAL calculus discovers
all relevant first-order constraints from modal formulas using a side deduction.
Secondly, these constraints are reimported into the main proof and equivalently
reduced using QE and the main proof continues. For instance, an application of F3
to a sequent Γ ` ∆,∃xφ starts a side deduction (marked (?) in Figure 3.4) with the
unquantified kernel Γ ` ∆, φ as a goal at the bottom. This side deduction is carried
out in the DAL calculus until x no longer occurs within modal formulas of the
remaining open branches Γi ` ∆i of (?). Once all occurrences of x are in first-order
formulas, the resulting sub-goals Γi ` ∆i of (?) are copied back to the main proof
and QE is applied to eliminate x altogether (which determines the resulting sub-
goal of rule F3 on the upper left side of Figure 3.4). The remaining modal formulas
not containing x can be considered as atoms for this purpose, as they do not impose
constraints on x. Formally, this can be proven using the coincidence lemma 2.14.
When several quantifiers are nested, side deductions will be nested in a cascade,
as they can again spawn further side deductions. According to the applicability
conditions of F-rules, inner nested side deductions need to be completed by QE
before outer deductions continue. For instance, further side deductions started
within (?) of Figure 3.4 will be completed before (?) continues and the quantifier
elimination result of (?) is returned to the main F3 application.

3.1 Example (Aircraft progress). To illustrate how our calculus combines arithmetic
with dynamic reasoning using side deductions, we look at an aircraft example. Us-
ing the notation from Section 3.4 where F(ω) denotes the flight equation with
angular velocity ω, the following DAL formula expresses a simple progress property
about aircraft: The aircraft at x can finally fly beyond any point p ∈ R2 by adjust-
ing its speed vector d appropriately, using only speed vectors d ∈ R2 of bounded
speed ‖d‖ ≤ b, i.e., ‖d‖2 ≤ b2 ≡ d2

1 + d2
2 ≤ b2:

∀p ∃d (‖d‖2 ≤ b2 ∧ 〈F(0)〉(x1 ≥ p1 ∧ x2 ≥ p2)) . (3.3)

There, point p is constant during the evolution, i.e., p′1 = p′2 = 0 and b′ = 0. The
DAL proof in Figure 3.5 proves this property using nested side deductions for nested
quantifiers and differential variant induction G6. Applying F1 in the main branch
yields a side deduction for ∀p , which, in turn, yields another side deduction by
applying F3 for the nested quantifier ∃d . These nested side deductions in Figure 3.5
are inlined and indicated by indenting the side deductions, with arrows pointing
to the start of the respective inner side deduction and back to the continuation of
the outer deduction (marked with QE as in Figure 3.4). The two branches for the
side deduction for F3 recombine conjunctively and, after quantifiers are re-added,
quantifier elimination yields b > 0, which reveals the parameter constraint on the
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` b > 0

` QE(∃d ((‖d‖2 ≤ b2) ∧ (d1 > 0 ∧ d2 > 0)))

` ‖d‖2 ≤ b2

` d1 > 0 ∧ d2 > 0
F3 ` ∃ε>0∀x1, x2 (x1 < p1 ∨ x2 < p2 → d1 ≥ ε ∧ d2 ≥ ε)
G6` 〈F(0)〉(x1 ≥ p1 ∧ x2 ≥ p2)

P5 ` ‖d‖2 ≤ b2 ∧ 〈F(0)〉(x1 ≥ p1 ∧ x2 ≥ p2)
F3` ∃d (‖d‖2 ≤ b2 ∧ 〈F(0)〉(x1 ≥ p1 ∧ x2 ≥ p2))

F1` ∀p ∃d (‖d‖2 ≤ b2 ∧ 〈F(0)〉(x1 ≥ p1 ∧ x2 ≥ p2))si
de

si
de

QE

QE
QE

QE

Figure 3.5.: Nested side deductions and differential variants for progress property

speed bound b. Consequently, property (3.3) holds true and the proof closes for all
non-zero speed bounds. The right branch of this F3 side deduction uses differential
variant induction G6, as will be illustrated in Section 3.5.6. There, the quantifiers
for x1, x2 result from the universal closure ∀α in G6. The subsequent innermost F3
side deduction can be abbreviated by directly applying QE, because the affected
formula already is first-order.

Like the other aircraft examples in this chapter, formula (3.3) is provable in our
theorem prover [PQ08a] within a few seconds, despite the complicated underlying
aircraft dynamics.

3.5.5. Differential Induction with Differential Invariants

The purpose of G5 and G6 is to prove properties about continuous evolutions by
differential induction using differential invariants or differential variants, respect-
ively. They directly work with the differential constraints instead of complicated
(possibly undecidable) arithmetic of their solutions. Unlike approaches using solu-
tions [Frä99, PAM+05, Pla07b, Pla07e, Pla08b], differential induction can even be
used to verify systems with nondeterministic quantified input, which would oth-
erwise cause quantified higher-order functions for the time-dependent input of the
solutions. Further, unlike in discrete induction, these differential induction rules
exploit continuity of evolution and knowledge of the differential constraints for a
continuous induction step. We demonstrate the capabilities and the necessity of
the requirements of differential induction rules in a series of examples and counter-
examples.

F
¬F

Figure 3.6.:
Differential
invariants

Rule G5 uses differential induction to prove that F is a dif-
ferential invariant, i.e., F is closed under total differentiation
(Definition 3.14) relative to the differential constraints. For this,
the premiss of G5 shows that the total differential F ′—i.e., D(F )
with z′ replaced by 0 for unchanged variables z— holds within
invariant region χ, when substituting the differential equations
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into F ′. Now, if F holds initially (antecedent of conclusion),
then F itself is sustained (succedent of conclusion). Intuitively,
the premiss expresses that, within χ, the total derivative F ′ along
the differential constraints is pointing inwards or transversal to F
but never outwards to ¬F , see Figure 3.6. At this point, it is important to note that,
even though meta-proofs about DAL involve analytic reasoning, proofs within the
DAL calculus are fully algebraic, including the handling of differential constraints
by G5. Further observe that the premiss of G5 is a well-formed DAL formula,
because all differential symbols are replaced by non-differential terms when form-
ing F ′θ1x′1

. . .θnx′n .

3.2 Example (Quartic dynamics). As a first simple example, consider the differential
equation x′ = x4. It is not so easy to see the solution of this differential equation.
Still, with implicit means of differential induction, we can establish easily that the
solution always stays above 1

4
whenever the dynamics initially starts above 1

4
:

∗
F1 ` ∀x (x4 ≥ 0)
G5x ≥ 1

4
` [x′ = x4]x ≥ 1

4

This deduction proves invariance of x ≥ 1
4

along the differential equation x′ = x4 by
differential induction and without having to solve the differential equation. To apply
the differential induction rule G5, we form the total derivative of the differential in-
variant F ≡ x ≥ 1

4
, which gives the differential expression F ′ ≡ D(x ≥ 1

4
) ≡ x′ ≥ 0.

Now, the differential induction rule G5 takes into account that the derivative of
state variable x along the dynamics is known (the trick, of course, is to show why
this intuitive reasoning is sound, which we will prove in Section 3.6). Substitut-

ing the differential equation x′ = x4 into the inequality above yields F ′x
4

x′ ≡ x4 ≥ 0,
which is a valid formula and closes by quantifier elimination with F1. Observe how
elegantly differential induction establishes the desired result indirectly by work-
ing with the differential equation itself in an algebraic way instead of requiring its
solution.

Even more so, for the differential equations x′ = x2 + x4 or x′ = x2 − 4x+ 6,
solutions are hard to obtain both symbolically and numerically. With differential
induction, however, we directly establish the following result about their dynamics:

∗
F1 ` ∀x (x2 + x4 ≥ 0)
G5x ≥ 1

4
` [x′ = x2 + x4]x ≥ 1

4

3.3 Example (Linear versus angular speed). Consider the following simple proof,
which shows that the speed v of an aircraft at x is maintained, even when it
changes its angular velocity ω nondeterministically during the flight (as in mode

105



Chapter 3. Differential-Algebraic Dynamic Logic DAL

free of Figure 3.2). Again, F(ω) is the flight equation with angular velocity ω.

∗
` QE(∀x1, x2 ∀d1, d2 ∀ω (2d1(−ωd2) + 2d2ωd1 = 0))

F1 ` ∀x1, x2 ∀d1, d2 ∀ω (2d1(−ωd2) + 2d2ωd1 = 0)
G5d2

1 + d2
2 = v2 ` [∃ωF(ω)] d2

1 + d2
2 = v2

P7 ` d2
1 + d2

2 = v2 → [∃ωF(ω)] d2
1 + d2

2 = v2

F1 ` ∀v (d2
1 + d2

2 = v2 → [∃ωF(ω)] d2
1 + d2

2 = v2)

sid
e

QE
QE

The total derivative of the property F ≡ d2
1 + d2

2 = v2 for differential induction with
G5 is F ′ ≡ D(d2

1 + d2
2 = v2) ≡ 2d1d

′
1 + 2d2d

′
2 = 2vv′. Substituting the differential

equations F(ω) of flight yields F ′−ωd2d′1

ωd1
d′2

0
v′ ≡ 2d1(−ωd2) + 2d2ωd1 = 0, which is

valid and closes by quantifier elimination. This example shows the difference of dif-
ferential continuous evolution (of d1, d2) and nondeterministic continuous evolution
(of ω). The DA-constraint specifies how the di evolve along differential equations,
hence d′i is substituted in F ′. For ω, instead, the DA-constraint is nondetermin-
istic (∃ω) and does not specify how ω changes precisely. In particular, there is no
equation for ω′ that could be used for substition. Yet such an equation is not even
needed for forming the premiss of G5, because, after α-renaming, ω cannot occur
in F here, since the scope of ∃ω ends with the DA-constraint and does not extend
to postcondition F . In the proof, the quantifiers for xi and di result from the uni-
versal closure ∀α in G5. The quantifier for ω is introduced by G6 and ensures that
all possible evolutions of ω are taken into account as there is no specific equation
for ω′. Finally note that in such cases without existential variables, side deductions
can be inlined, see Chapter 2 for formal details.

3.4 Counterexample. For soundness of differential induction, it is crucial that Defini-
tion 3.14 defines D(F ∨G) conjunctively as D(F ) ∧D(G) instead of D(F ) ∨D(G).
From an initial state ν which satisfies ν |= F , hence ν |= F ∨G, the formula F ∨G
only is sustained differentially if F itself is a differential invariant, not if G is. For in-
stance, x1 ≥ 0 ∨ d2

1 + d2
2 = v2 is no differential invariant of ∃ωF(ω), because x1 ≥ 0

can be invalidated by appropriate curved flights along F(ω), see formula (3.3). In
practice, splitting differential induction proofs over disjunctions can be useful.

3.5 Counterexample (Restricting differential invariance). It may be tempting to
suspect that, in G5, the differential invariant F only needs to be differentially
inductive at the states where F actually holds true. The differential induction
needs to hold in a neighbourhood, though, such that adding F (or the border
of F ) to the assumptions in the premiss of G5 would be unsound! Consider the
following counterexample where region x2 ≤ 0 is actually left immediately when
following x′ = 1, which also demonstrates unsoundness of other approaches [PJ04,
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GT08]:

∗ (unsound)

` ∀x (x2 ≤ 0→ 2x ≤ 0)

x2 ≤ 0 ` [x′ = 1]x2 ≤ 0

If, however, F describes an open set (e.g., F only involves strict inequalities),
then G5 is sound even when adding F to the assumptions of the premiss. Like-
wise F can be added to the assumptions of the premiss when strengthening F ′ to
strict inequalities. We will prove both refinements in Section 3.7. If polynomial
solutions exist, they can be used as differential invariants. Furthermore, differen-
tial strengthening (D15) can be an extraordinarily successful proof technique for
successively enriching invariant regions by derived invariants until F itself becomes
differentially inductive, as we illustrate in Section 3.11.

3.6 Counterexample (Negative equations). It is crucial for soundness of differential
induction that F is not allowed to contain negative equations. In the following
counterexample, variable x can reach x = 0 without its derivative ever being 0.

∗ (unsound)

` ∀x (1 6= 0)

x 6= 0 ` [x′ = 1]x 6= 0

If, instead, both x < 0 and x > 0 are differential invariants of a system (e.g.,
of x′ = x), then x 6= 0 can be proven indirectly by encoding it as x < 0 ∨ x > 0.

A useful special case of D13 is the following derived weakening rule:

3.23 Lemma (Differential weakening). The following is a derived rule:

(D13’)
` ∀α∀y1 . .∀yk (χ→ φ)

` [∃y1 . .∃yk (x′1 = θ1 ∧ · · · ∧ x′n = θn ∧ χ)]φ

Proof. D13’ clearly is sound, because χ is true along all state flows of the DA-
constraint and φ is a consequence of χ by premiss. It can be derived as follows:

` QE(∀y1 . .∀yk ∀d1 . .∀dn (χd1x1 . . .
dn
xn → φd1x1 . . .

dn
xn))

` χd1x1 . . .dnxn → φd1x1 . . .
dn
xn

D10 ` [x1 := d1 ∧ · · · ∧ xn := dn ∧ χd1x1 . . .dnxn ]φ
F1 ` ∀y1 . .∀yk ∀d1 . .∀dn ([x1 := d1 ∧ · · · ∧ xn := dn ∧ χd1x1 . . .dnxn ]φ)
D6 ` [∃y1 . .∃yk ∃d1 . .∃dn (x1 := d1 ∧ · · · ∧ xn := dn ∧ χd1x1 . . .dnxn)]φ
D13 ` [∃y1 . .∃yk ∃d1 . .∃dn (x′1 = d1 ∧ · · · ∧ x′n = dn ∧ χ)]φ
D13 ` [∃y1 . .∃yk (x′1 = θ1 ∧ · · · ∧ x′n = θn ∧ χ)]φ

sid
e

QE

The second application of D13 uses that fully nondeterministic continuous state
change is equivalent to fully nondeterministic discrete state change, as they generate
the same transitions. Finally, χ→ φ can be obtained by α-renaming.
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Differential invariants enjoy structural closure properties. They are closed under
conjunction (because of the conjunctive definition in Definition 3.14) and closed
under differentiation.

3.24 Lemma. Differential invariants are closed under differentiation: The total
derivative of a differential invariant is an invariant of the same DA-constraint.

Proof. Let F be a differential invariant, i.e., satisfy G5 for some DA-constraint of
the form ∃y (x′ = θ ∧ χ), using vectorial notation for x and y. Hence, the premiss
of G5 is provable: ∀x ∀y (χ→ F ′θx′) where the quantifier for x results from the
universal closure ∀α. We have to show that the derivative F ′θx′ is invariant and
extend the proof to a proof of [∃y (x′ = θ ∧ χ)]F ′θx′ by weakening (Lemma 3.23):

∗
F1 ` QE(∀x ∀y (χ→ F ′θx′))

D13’ ` [∃y (x′ = θ ∧ χ)]F ′θx′

3.5.6. Differential Induction with Differential Variants

F

c

Figure 3.7.:
Differential
variants

Unlike the differential induction rule G5 for differential invari-
ants, rule G6 uses differential induction to prove that F is a dif-
ferential variant, which is attained differentially as an attractor
region, rather than sustained differentially as in G5. The essen-
tial difference to G5 thus is the progress condition F ′ ≥ ε in the
premiss, saying that the total differential of F along the DA-
constraint is positive and at least some ε > 0. There, F ′ ≥ ε is
a mnemonic notation for replacing all occurrences of inequalit-
ies a ≥ b in F ′ by a ≥ b+ ε and a > b by a > b+ ε (accordingly
for ≤, >,<). Intuitively, the premiss expresses that, whereever χ
holds but F does not yet hold, the total derivative is pointing towards F , see Fig-
ure 3.7. Especially F ′ ≥ ε guarantees a minimum progress rate of ε towards F
along the dynamics. To further ensure that the continuous evolution towards F
remains within χ, the antedent of the conclusion shows that χ holds until F is
attained, which can again be proven using G5. In this context, ∼F is a short
hand notation for weak negation, i.e., the operation that behaves like ¬, except
that ∼(a ≥ b) ≡ b ≥ a and ∼(a > b) ≡ a ≤ b. Unlike negation, weak negation re-
tains the border of F , which is required in G6 as χ needs to continue to hold
(including the border of F ) until F is reached. Especially, for G6, invariant χ is
not required to hold after F has been reached successfully. The operations F ′ ≥ ε
and ∼F are defined accordingly for other inequalities (in G6, we do not permit F
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to contain equalities, see Counterexample 3.8 below). Again we demonstrate dif-
ferential induction and the necessity of its prerequisites in a series of examples.

3.7 Example. As an example, we turn back to Figure 3.5. In the rightmost side de-
duction, G6 is used to prove that F ≡ x1 ≥ p1 ∧ x2 ≥ p2 is finally reached. There,
the total derivative is F ′ ≡ x′1 ≥ 0 ∧ x′2 ≥ 0, which yields d1 ≥ 0 ∧ d2 ≥ 0 when sub-
stituting the flight equations F(ω), because x′1 = d1, x

′
2 = d2, p

′
1 = p′2 = 0. Con-

sequently (F ′ ≥ ε)d1x′1
d2
x′2

−ωd2
d′1

ωd1
d′2

0
p′1

0
p′2

is identical to (F ′ ≥ ε)d1x′1
d2
x′2

0
p′1

0
p′2

, which gives

d1 ≥ ε ∧ d2 ≥ ε. Similarly, the proof for formula (3.3) can be generalised to dif-
ferential inequalities, again assuming d′1 = d′2 = p′1 = p′2 = 0 and b′ = 0:

∀p ∃d (‖d‖2 ≤ b2 ∧ 〈x′1 ≥ d1 ∧ x′2 ≥ d2〉(x1 ≥ p1 ∧ x2 ≥ p2)) .

Using Lemma 3.18, the differential inequalities, which express lower bounds on the
evolution of x1 and x2, can be reduced to differential equations with quantified
disturbance u ∈ R2:

∀p ∃d . . 〈∃u (x′1 = d1 + u1 ∧ x′2 = d2 + u2 ∧ u1 ≥ 0 ∧ u2 ≥ 0)〉(x1 ≥ p1 ∧ x2 ≥ p2).

The proof for this DAL formula is identical to Figure 3.5, except that G6 yields
∀x∀u ((x1 < p1 ∨ x2 < p2) ∧ u1 ≥ 0 ∧ u2 ≥ 0 → d1 + u1 ≥ ε ∧ d2 + u2 ≥ ε).

3.8 Counterexample (Equational differential variants). Rule G6 is not applicable
for equations like x = y. Even though x = y can be encoded as F ≡ x ≤ y ∧ x ≥ y,
the corresponding F ′ ≥ ε ≡ x′ + ε ≤ y′ ∧ x′ ≥ y′ + ε is equivalent to false for ε > 0.
Indeed, assuming a′ = b′ = 0, the validity of a formula like 〈x′ = a ∧ y′ = b〉x = y
depends on the relationship of the initial values of x and y and the constants a
and b: It is true, iff (x− y)(a− b) < 0 or x = y holds initially.

More generally, differential variants cannot (directly) verify conjunctive equations
like in 〈x′ = a ∧ y′ = b〉(x = 0 ∧ y = 0) because differential variants guarantee that
a target region F will be reached, not when precisely. In particular, x = 0 and y = 0
would not necessarily be reached simultaneously. In fact, for a, b 6= 0, the above
reachability property is only valid iff bx = ay ∧ ax < 0, initially.

3.9 Counterexample (Minimal progress requirement). Unlike in discrete domains,
strictly monotonic sequences can converge in R. Thus, the premiss F ′ ≥ ε for
an ε > 0 of G6 cannot be weakened to F ′ > 0 as the counterexample in Figure 3.8a
shows, in which x converges monotonically to 0 along the dynamics shown in Fig-
ure 3.8b. Moreover, this example demonstrates that, in the presence of convergent
dynamics, a property like x ≥ 0 can be invariant, even though it is not differentially
invariant, see Figure 3.8c.

3.10 Counterexample (Lipschitz-continuity requirement). As the counterexample in
Figure 3.9a shows, Lipschitz-continuity (or at least the existence of a solution of suf-
ficient duration) is, in fact, a necessary prerequisite for G6. For x = y = 0 initially,
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∗ (unsound)
` ∀x (x > 0→ −x < 0)
` 〈x′ = −x〉x ≤ 0

3.8a: Counterexample

0 t

x
x0

x0e
−t

x ′= −x

3.8b: Convergent descent

false
F1 ` ∀x (−x ≥ 0)
G5x ≥ 0 ` [x′ = −x]x ≥ 0

3.8c: Non-inductive

Figure 3.8.: Monotonically decreasing convergent counterexample

the solution of the differential equations in Figure 3.9a is x(t) = t and y(t) = tan t.
In explosive examples like the corresponding dynamics in Figure 3.9b, where solu-
tion y grows unbounded in finite time, the duration of existence of solutions is
limited so that the target region x ≥ 6 is physically unreachable. More precisely,
the dynamics is not well-posed beyond the explosive point of unbounded growth at
the singularity π

2
and is non-physical beyond that singularity. Note that the con-

tinuous dynamics of Figure 3.9 is only locally Lipschitz-continuous and disobeys
divergence of time (Section 3.3). The condition of Lipschitz-continuity is directly
expressible as a formula for G6:

∃L∀y1 . .∀yk∀x1 . .∀xn ∀ỹ1 . .∀ỹk∀x̃1 . .∀x̃n
(θ1 − θ̃1)2 + · · ·+ (θn − θ̃n)2 ≤ L2((x1 − x̃1)2 + · · ·+ (xn − x̃n)2)

where θ̃i denotes the result of substituting all xj in θi by the corresponding x̃j and
the yj by ỹj. Observe that, besides Lipschitz-continuity, any other condition can
be used that ensures the existence of a solution of sufficient duration for G6.

∗ (unsound)

` ∃ε>0 ∀x∀y (x < 6→ 1 ≥ ε)

` 〈x′ = 1 ∧ y′ = 1 + y2〉x ≥ 6

3.9a: Counterexample

y

x

���Π
2 Π ������3 Π

2 2 Π
t

-6

-4

-2

0

2

4

3.9b: Explosive dynamics

Figure 3.9.: Unbounded dynamics with limited duration of solutions

3.6. Soundness

In this section we prove that verification with the DAL calculus always produces
correct results about DA-programs, i.e., the DAL calculus is sound.
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3.25 Theorem (Soundness). The DAL calculus is sound, i.e., every DAL for-
mula that can be derived in the DAL calculus is valid (true in all states).

Proof. The calculus is sound if each rule instance is sound. The rules of the DAL
calculus are even locally sound, i.e., their conclusion is true at ν if all its premisses
are true in ν. Local soundness implies soundness. The local soundness proofs of
D1–D4 and the propositional rules are as usual. Similarly, G3 and G4 are local
versions of induction schemes, and the proof is as usual (Theorem 2.15, likewise
for G1–G2. The local soundness of D9–D10 is a generalisation of the proofs for
update rules [BP06] to first-order DJ-constraints. The proofs for D5–D8 are simple.
Finally, our previous results [BP06, Pla08b] can be lifted to show that locally sound
rules are closed under addition of Γ,∆ context and of conjunctive DJ-constraints
in Definition 3.22. For soundness, however, conjunctive DJ-constraints are crucial
here [BP06, Pla08b] as these are deterministic.

F3 Rule F3 is locally sound: Let ν be a state in which the premiss is true, i.e.,

ν |= QE(∃x
∧
i

(Γi ` ∆i)) .

We have to show that the conclusion is true in this state. Using that quantifier
elimination yields an equivalence, we see that ν also satisfies ∃x ∧i(Γi ` ∆i)
prior to the quantifier elimination. Hence, for some state νx that agrees with ν
except for the value of x we obtain:

νx |=
∧
i

(Γi ` ∆i) .

As side deduction (?) in Figure 3.4 is inductively shown to be locally sound,
we can conclude that νx |= (Γ ` ∆, φ). Therefore, ν |= ∃x (Γ ` ∆, φ). Now
the conjecture can be obtained using standard reasoning with quantifiers and
the absence of x in Γ,∆ by rewriting the conclusion with local equivalences:

∃x (Γ ` ∆, φ) ≡ ∃x (¬Γ ∨∆ ∨ φ) ≡ ¬Γ ∨∆ ∨ ∃xφ ≡ Γ ` ∆,∃xφ (3.4)

The soundness proof for F1 is similar since (3.4) holds for any quantifier. The
proofs of F4 and F2 can be derived using duality of quantifiers.

D12 By Lemma 3.17, there is an equivalent disjunctive normal form D1 ∨ · · · ∨ Dn
of D. Thus, it only remains to show that ρ(D) ⊆ ρ((D1 ∪ . . . ∪ Dn)∗) as the
converse inclusion is obvious. Let ϕ be a state flow for a transition (ν, ω) ∈
ρ(D). We assume that ϕ is non-Zeno according to Definition 3.12. Thus,
there is a finite number, m, of switches between the Di, say Di1 ,Di2 , . . . ,Dim .
Then, the transition (ν, ω) belonging to ϕ can be simulated piecewise by m
repetitions of D1 ∪ . . . ∪ Dn, where each piece selects the respective part Dij .
The proof for D11 is accordingly.
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D13 Local soundness of the rules D13 and D14 is an immediate consequence of
Lemma 3.17 and the respective semantics of modalities.

D15 Rule D15 can be proven locally sound using that the left premiss implies that
every flow ϕ that satisfies D also satisfies χ all along the flow. Thus, ϕ |= D
implies ϕ |= D ∧ χ so that the right premiss entails the conclusion.

G5 Let ν satisfy the premiss and the antecedent of the conclusion as, otherwise,
there is nothing to show. By Lemma 3.17, we can assume F to be in disjunct-
ive normal form and consider any disjunct G of F that is true at ν. In order
to show that F is sustained during the continuous evolution, it is sufficient
to show that each conjunct of G is. We can assume these conjuncts to be
of the form c ≥ 0 (or c > 0 where the proof is accordingly). Finally, using
vectorial notation, we write x′ = θ for the differential equation system and ∃y
for the chain of quantifiers. Now let ϕ : [0, r]→ State(Σ) be any state flow
with ϕ |= ∃y (x′ = θ ∧ χ) beginning in ϕ(0) = ν. In particular, ϕ |= ∃y χ,
which, by antecedent, implies ν |= F , i.e., c ≥ 0 holds at ν. We assume dur-
ation r > 0, because the other case is immediate (ν |= c ≥ 0 already holds).
We show that c ≥ 0 holds all along the flow ϕ, i.e., ϕ |= c ≥ 0.

Suppose there was a ζ ∈ [0, r] where ϕ(ζ) |= c < 0, which will lead to a con-
tradiction. Then the function h : [0, r] → R defined as h(t) = val(ϕ(t), c)
satisfies h(0) ≥ 0 > h(ζ), because ν |= c ≥ 0 by antecedent. Clearly, ϕ is of
the order of D(c), because: ϕ is of order 1 for all variables in vector x,
and trivially of order ∞ for variables that do not change during the DA-
constraint. Further, by α-renaming, D(c) cannot contain the quantified vari-
ables y, hence, ϕ is not required to be of any order in y. The value of c
is defined all along ϕ, because we have assumed χ to guard against zeros
of denominators. Thus, by Lemma 3.15, h is continuous on [0, r] and dif-
ferentiable at every ξ ∈ (0, r). The mean value theorem implies that there

is a ξ ∈ (0, ζ) such that dh(t)
dt

(ξ) · (ζ − 0) = h(ζ)− h(0) < 0. In particu-

lar, since ζ ≥ 0, we can conclude that dh(t)
dt

(ξ) < 0. Now Lemma 3.15 im-

plies that dh(t)
dt

(ξ) = val(ϕ̄(ξ), D(c)) < 0. The latter equals1 val(ϕ̄(ξ)uy , D(c)θx′)
by Lemma 3.16, because ϕ |= ∃y (x′ = θ ∧ χ) so that ϕ̄(ξ)uy |= x′ = θ ∧ χ for
some u ∈ R and because y′ does not occur and y 6∈ c. This, however, is a con-
tradiction, because the premiss implies that ϕ |= ∀y (χ→ D(c)θx′ ≥ 0) as ∀α
comprises all variables that change during the flow ϕ along x′ = θ, i.e., the
vector x. In particular, as ϕ̄(ξ)uy |= χ holds, we have ϕ̄(ξ)uy |= D(c)θx′ ≥ 0.

G6 First, we consider the quantifier free case, again using vectorial notation.
Let ν be any state satisfying the premiss and the antecedent of the conclusion.

1For u ∈ R let ϕ̄(ξ)
u
y denote the (augmented) state that agrees with ϕ̄(ξ) except that the value

of y is u.
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Since ν satisfies the premiss and, after α-renaming, ε is a fresh variable,
we can assume ν itself to satisfy ν |= ∀α(¬F ∧ χ→ (F ′ ≥ ε)θx′). For G6, we
required x′ = θ to be Lipschitz-continuous so that the global Picard-Lindelöf
theorem [Wal98, Propsosition 10.VII] ensures the existence of a global solution
of arbitrary duration r ≥ 0, which is all we need here. Let ϕ be a state flow
corresponding to a solution of the differential equation x′ = θ starting in ν of
some duration r ≥ 0. If there is a point in time ζ at which ϕ(ζ) |= F , then by
antecedent, until (and including, because ∼F contains the closure of ¬F ) the
first such point, χ holds true during ϕ. Hence, the restriction of ϕ to [0, ζ] is a
state flow witnessing ν |= 〈x′ = θ ∧ χ〉F . If, otherwise, there is no such point,
then we show that extending ϕ by choosing a larger r will inevitably make F
true. We thus have ϕ |= ¬F ∧ χ and, by premiss, ϕ |= F ′θx′ ≥ ε, because ∀α
comprises the variables x that change during ϕ. By Definition 3.14, F ′θx′ ≥ ε
is a conjunction. Consider one of its conjuncts, say c′θx′ ≥ ε belonging to
a literal c ≥ 0 of F (the other cases are accordingly). Again, ϕ is of the
order of D(c) and the value of c is defined along ϕ, because ϕ |= χ and χ is
assumed to guard against zeros. Hence, by mean-value theorem, Lemma 3.15,
and Lemma 3.16, we conclude for each ζ ∈ [0, r] that

val(ϕ(ζ), c)− val(ϕ(0), c) = val(ϕ̄(ξ), c′
θ
x′)(ζ − 0) ≥ ζval(ϕ(0), ε)

for some ξ ∈ (0, ζ). Now as val(ϕ(0), ε) > 0 we have for all ζ > − val(ϕ(0),c)
val(ϕ(0),ε)

that ϕ(ζ) |= c ≥ 0 and ϕ(r) |= c ≥ 0, even ϕ(r) |= c > 0. By extending r
sufficiently large, we have that all literals c ≥ 0 of one conjunct of F are true,
which concludes the proof, because, until F finally holds, ϕ |= χ is implied
by the antecedent as shown earlier.

In the presence of quantifiers (∃y with vectorial notation), rule G6 implies a
slightly stronger statement, because y is quantified universally in the premiss
(and antecedent): F can be reached for all choices of y that respect χ (rather
than just for one). By antecedent, there is a u ∈ R such that νuy |= χ.
Hence, νuy satisfies the assumptions of the above quantifier-free case. Thus,
νuy |= 〈x′ = θ ∧ χ〉F , which entails that ν |= 〈∃y (x′ = θ ∧ χ)〉F using u con-
stantly as the value for the quantified variable y during the evolution.

3.7. Restricting Differential Invariants

While Example 3.5 shows that differential invariant F cannot generally be assumed
to hold in the premiss of G5 without loosing soundness, we present two correspond-
ing refinements of G5 that are indeed sound.

3.26 Proposition. Using the notation of G5–G6, the following variations of dif-
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ferential induction G5 are sound (in G5’, F describes an open set):

(G5’)
` ∀α∀y1 . . . ∀yk (F ∧ χ→ F ′θ1x′1

. . .θnx′n)

[∃y1 . . . ∃yk χ]F ` [∃y1 . . . ∃yk (x′1 = θ1 ∧ · · · ∧ x′n = θn ∧ χ)]F

(G5”)
` ∀α∀y1 . . . ∀yk (F ∧ χ→ (F ′ > 0)θ1x′1

. . .θnx′n)

[∃y1 . . . ∃yk χ]F ` [∃y1 . . . ∃yk (x′1 = θ1 ∧ · · · ∧ x′n = θn ∧ χ)]F

Proof. The proof that the first rule is sound is similar to the proof for G5 in The-
orem 3.25, except that assuming ϕ(ζ) |= ¬F only yields h(0) ≥ 0 ≥ h(ζ), which
does not lead to a contradiction. However, by using that F is open, the distance
to the border of F is positive in the initial state ϕ(0), which yields the inequal-
ity h(0) > 0 ≥ h(ζ), and the contradiction arises accordingly.

The soundness of the second rule needs more adaptation. Repeating the argu-
ment for G5, we can assume F to be of the form c ≥ 0. Suppose there was a ι ∈ [0, r]
where ϕ(ι) |= c < 0, which will lead to a contradiction. Let ζ ∈ [0, r] be the infimum
of these ι, hence, ϕ(ζ) |= c = 0 by continuity. Then the function h : [0, r]→ R
defined as h(t) = val(ϕ(t), c) satisfies h(0) ≥ 0 ≥ h(ζ), because ν |= c ≥ 0 by ante-
cedent. By repeating the argument with Lemma 3.15 like in the proof for G5, h
is continuous on [0, r] and differentiable at every ξ ∈ (0, r) with a derivative of
dh(t)
dt

(ξ) = val(ϕ̄(ξ), D(c)), which in turn equals val(ϕ̄(ξ), D(c)θx′), as ϕ |= x′ = θ.
Now, the mean value theorem implies that there is a ξ ∈ (0, ζ) such that

dh(t)

dt
(ξ) · (ζ − 0) = h(ζ)− h(0) ≤ 0

In particular, as ζ ≥ 0, we can conclude that dh(t)
dt

(ξ) = val(ϕ̄(ξ), D(c)θx′) ≤ 0. This,

however, contradicts that the premiss implies ϕ̄(ξ) |= D(c)θx′ > 0, as the flow satis-
fies ϕ |= χ and ϕ(ξ) |= c ≥ 0, because ζ > ξ is the infimum of the counterexamples ι
with ϕ(ι) |= c < 0.

3.11 Example. Consider the differential equation x′ = x3. With either rule G5’
or rule G5”, we can establish easily that the system stays above 1

4
whenever the

dynamics starts above 1
4
:

∗
F1 ` ∀x (x > 1

4
→ x3 > 0)

G5’x > 1
4
` [x′ = x3]x > 1

4

3.8. Differential Monotonicity Relaxations

Invariant regions of DA-constraints are helpful for differential induction rule G5,
because they provide stronger assumptions for the premiss. In fact, the whole
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purpose of the differential strengthening rule D15 is to enrich invariant regions of
DA-constraints in order to weaken the sub-goals of G5.

In contrast, invariant regions are more demanding for differential variant induc-
tion rule G6, because the antecedent of its goal requires that invariant region χ is
shown to remain true throughout the evolution (after all, invariant regions χ of DA-
constraints D are domain restrictions that can be used as assumptions for [D ∧ χ]φ
but have to be shown to hold true for 〈D ∧ χ〉φ). Similarly, for evolution rules that
are based on solutions of differential equations—rules D11–D12 from Figure 2.5 on
page 35—invariant regions make the sub-goal formulas much more complex (even
though they even lead to weaker sub-goals for rule D12). In particular, invariant
regions increase the number of quantifier alternations in D11–D12, which have the
predominant influence on the complexity of quantifier elimination [DH88].

For simplifying non-differential invariant region χ from [D ∧ χ]φ with a DA-
constraint D, we can simply use the differential weakening rule D13 to drop χ:

D13
` [D]φ

` [D ∧ χ]φ

Slightly less conservatively, we can approximate the assumption ∀0≤t̃≤t 〈St̃〉χ on
the solution St in the sub-goal of D12 from Figure 2.5 by 〈St〉χ (or by χ ∧ 〈St〉χ) in a
sound yet incomplete way, because if every evolution of the solution St satisfying χ
at the end satisfies φ, then every evolution along D satisfying χ all the time must
satisfy φ even more so. Thus, the following variant of D12 is sound where St is the
solution of the differential equation like for D12:

(D12’)
∀t≥0

(
χ→ 〈St〉(χ→ φ)

)
[x′1 = θ1 ∧ . . ∧ x′n = θn ∧ χ]φ

For simplifying non-differential invariant region χ from 〈D ∧ χ〉φ, we can use
the dual of the differential strengthening rule D15 and show that χ remains true
throughout the evolution along D anyhow (left sub-goal which can be handled
using G5) so that only some evolution along D remains to be found that actually
reaches φ (right sub-goal):

D15
` [D]χ ` 〈D〉φ
` 〈D ∧ χ〉φ

When using G5 to prove the left sub-goal [D]χ by showing validity of a formula
of the form ∀Dχ′θx′ , we actually show invariance of χ along D. More generally, we
can use differential-algebraic techniques similar to differential induction to prove
the weaker property of monotonicity instead of invariance of χ.

3.27 Definition (Monotonicity derivation). Let α be a DA-program. For a
first-order formula F , the following formula is called monotonicity derivation of F ,
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where the syntactic derivative D(a) is defined according to Definition 3.14:

Mα(F ) ≡
m∧
i=1

Mα(Fi) where {F1, . . . , Fm} is the set of all literals of F

Mα(a ∼ b) ≡ ∀α(D(a) ≥ D(b)) ∨ ∀α(D(a) ≤ D(b)) where ∼ ∈ {≤,≥, <,>,=}

3.28 Proposition (Differential monotonicity). Let 〈St〉 be the DJ-constraint
for the solution at time t of the symbolic initial-value problem for the differential
equation D defined as x′1 = θ1 ∧ · · · ∧ x′n = θn like in rule D11 of Figure 2.5. Let the
non-differential constraint χ be a conjunction of atomic formulas without negative
equalities, then the following is a sound proof rule:

(D11’)
` ∃t≥0 (χ ∧ 〈St〉(χ ∧ φ)) ` MD(χ)

θ1
x′1
. . .θnx′n

` 〈x′1 = θ1 ∧ · · · ∧ x′n = θn ∧ χ〉φ

Proof. Local soundness is a simple consequence of the well-known fact that, for a
differentiable function f , monotonic increasing of f on an interval [c, d] is equivalent
to f ′(z) ≥ 0 on (c, d). With this, the right sub-goal implies that, for any conjunct
a ≥ b of χ (likewise for ≤, <,>,=), the value of a− b is either monotonically in-
creasing or monotonically decreasing along the flow. Either way, if χ holds in the
beginning and the end of a flow of some duration t (as implied by the left sub-goal),
monotonicity implies that χ holds all along the flow, so that the sub-goals imply
the conclusion as in case D11 of the proof of Theorem 2.15.

Formally, let ϕ be a state flow of an appropriate duration r following solution St
according to the left sub-goal as in Theorem 2.15. By the left sub-goal we have
ϕ(r) |= φ (when r is the witness for ∃t≥0) and we only need to show that ϕ |= χ.
Consider a conjunct a ≥ b of χ and consider the case where the right sub-goal
implies ϕ(0) |= ∀D(D(a) ≤ D(b))θx′ , using vectorial notation for x and θ. Then

ϕ |= (a′ ≤ b′)θx′ , because the universal closure ∀D comprises all variables that change
during the flow ϕ along D. Thus ϕ |= a′ ≤ b′ by Lemma 3.16. Let h : [0, r]→ R be
the function defined as h(t) = val(ϕ(t), a− b). Again, ϕ is of the order of a′ − b′ (ϕ
is of the order 1 in each xi and of arbitrary order for other variables) and the value of
a− b is defined all along ϕ, because χ guards against zeros in χ. Thus, Lemma 3.15
is applicable and h is differentiable at every ξ ∈ (0, r). For any ζ ∈ [0, r], we have
to show that ϕ(ζ) |= χ. By mean value theorem, there is a ξ ∈ (ζ, r) such that,
when using Lemma 3.15, we have

h(r)− h(ζ) = h′(ξ) · (r − ζ) = val(ϕ̄(ξ), a′ − b′) · (r − ζ) ≤ 0

because ϕ̄(ξ) |= a′ ≤ b′. Thus, we have h(ζ) ≥ h(r) ≥ 0, since ϕ(r) |= χ, which
implies that ϕ(r) |= a− b ≥ 0 and ϕ(r) |= a ≥ b.

The other case where the right sub-goal implies ϕ(0) |= ∀α(a′ ≥ b′) is simpler
using that ϕ(0) |= χ and is, in fact, a direct consequence of the proof of G5 in
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Theorem 3.25. The other conjuncts of the form a ≤ b, a < b, a > b and a = b are
almost identical, because the monotonicity argument for a− b carries over easily,
as the respective conjunct holds before and after the continuous evolution.

3.12 Example (Monotonic invariants in train control). Consider the differential
constraints for train control (equation (2.1) on page 30 in Section 2.4). For the DA-
constraint z′ = v ∧ v′ = a ∧ τ ′ = 1 ∧ v ≥ 0 ∧ τ ≤ ε, invariant region v ≥ 0 ∧ τ ≤ ε
can be shown to be monotonic or convex with respect to the dynamics, that is: If
it holds in the beginning and at the end of an evolution, the invariant also holds
in between. Monotonicity is easy to prove with the above proof rule using the
following symbolic computations for the right sub-goal (where ∀α is ∀z ∀v ∀τ ):(

(∀α(v′ ≥ 0) ∨ ∀α(v′ ≤ 0)) ∧ (∀α(τ ′ ≥ ε′) ∨ ∀α(τ ′ ≤ ε′))
)v
z′
a

v′
1

τ ′
0

ε′

≡ (∀α(a ≥ 0) ∨ ∀α(a ≤ 0)) ∧ (∀α(1 ≥ 0) ∨ ∀α(1 ≤ 0))

≡ true

Observe that the invariant domain will not be a differential invariant, here, because
v ≥ 0 is only an invariant of z′ = v ∧ v′ = a for a ≥ 0. For any a, however, v ≥ 0 will
either be a monotonically increasing property (if a ≥ 0 constantly) or monotonically
decreasing (if a ≤ 0 constantly), one of which is true for every constant a. Thus, if
v ≥ 0 has been true before and after an evolution along z′ = v ∧ v′ = a, it must have
been true throughout this evolution. Likewise, τ ≤ ε never is a differential invariant
of τ ′ = 1, because the passing of time along τ ′ = 1 will inevitably violate τ ≤ ε
sooner or later. Still, it is a monotonically decreasing property. Consequently, the
monotonicity relaxation of Proposition 3.28 applies for the train control example,
thereby simplifying proofs with invariant regions considerably, because the invariant
only needs to be checked before and after rather than throughout the evolution.
For instance, this simplifies the proof of property (2.7) on page 66.

Similarly, the right sub-goal of D11’ is a sufficient condition to ensure that D12’
is a complete replacement for D12.

3.13 Counterexample (Disjunctive monotonicity). For soundness of differential mono-
tonicity relaxations, it is crucial that D11’ only accepts conjunctive invariant re-
gions. As the counterexample in Figure 3.10a with the dynamics in Figure 3.10b
shows, differential monotonicity relaxations do not hold for disjunctive invariant re-
gions, because the same disjunct has to hold before and after the evolution for mono-
tonicity arguments to be sound. Let χ abbreviate the disjunctive invariant region
x ≤ 1 ∨ x ≥ 2. Then the differential monotonicity criterion ∀x (1 ≤ 0) ∨ ∀x (1 ≥ 0)
would be fulfilled, but a different disjunct holds at the initial state x = 0 than at
the target x ≥ 3 so that monotonicity neither implies that x ≤ 1 nor that x ≥ 2
holds in between.

3.14 Counterexample (Negative equalities). A similar counterexample shows why
D11’ does not allow negative equalities. Along the dynamics x′ = 1 ∧ x 6= 2 we
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∗ (unsound)

` ∃t≥0
(
χ ∧ 〈x := x+ t〉(χ ∧ x ≥ 3)

)
x = 0 ` 〈x′ = 1 ∧ (x ≤ 1 ∨ x ≥ 2)〉x ≥ 3

3.10a: Counterexample

0 t
1

1

2

2

3

3

χ
¬χ

χ x ≥ 3

3.10b: Interrupted dynamics

Figure 3.10.: Interrupted dynamics for disjunctive monotonicity

cannot conclude from the truth of x 6= 2 before and after the evolution that x 6= 2
held true throughout the evolution, just on the basis of a condition on the derivative
x′ 6= 0. A continuous evolution from x = 0 to x = 3 still leaves x 6= 2 in between.

3.9. Relative Completeness

As a consequence of Theorem 2.16 and Proposition 3.13, the DAL calculus is not ef-
fectively axiomatisable (yet even pure reachability is already undecidable for hybrid
systems [Hen96]).

It is easy to see that the relative completeness proof for dL generalises to DAL
with only minor modifications when using first-order logic of DA-constraints as a
basis in place of FOD (again, nested modalities can be avoided when using quan-
tifiers). The first-order logic of DA-constraints results from FOD by allowing DA-
constraints in place of differential equations inside modalities.

3.29 Theorem (Relative completeness). The DAL calculus is complete relative
to DA-constraints, i.e., every valid DAL formula can be derived from tautologies of
the first-order logic of DA-constraints.

Proof. The proof is a simple adaptation of the proof for dL in Section 2.7.2: In the
proof of Lemma 2.19, we replace all cases for continuous evolutions along differential
equations or for discrete jumps by the following cases for DA-constraints D or DJ-
constraints J , respectively:

SD(~x,~v) ≡ 〈D〉~v = ~x

SJ (~x,~v) ≡ J vi=θi
xi:=θi

Where the first-order formula J vi=θi
xi:=θi

results from J by replacing all assignments of
any form xi := θi by equations vi = θi. The rest of the relative completeness proof
generalises immediately using that the respective rules (D5–D10) for DJ-constraints
are symmetric, hence equivalent, and their premisses are of smaller complexity.
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Note that, for generalising the relative completeness proof in the simple-most
way, we formally need to allow update prefixes in DAL proofs as in Definition 2.11,
which is easily seen to be sound for deterministic DJ-constraints.

3.10. Deductive Strength of Differential Induction

We analyse the deductive power of differential induction with respect to classes
of formulas that are allowed as differential invariants. For purely equational dif-
ferential invariants, the deductive power is not affected by allowing or disallowing
propositional operators in differential invariants:

3.30 Proposition (Equational deductive power). The deductive power of dif-
ferential induction with atomic equations is identical to the deductive power of dif-
ferential induction with propositional combinations of polynomial equations: For-
mulas are provable with propositional combinations of equations as differential in-
variants iff they are provable with only atomic equations as differential invariants.

Proof. We show that every differential invariant that is a propositional combina-
tion φ of polynomial equations is expressible as a single atomic polynomial equation
(the converse inclusion is obvious). We assume φ to be in negation normal form
and reduce φ inductively using the following transformations:

• If φ is of the form p1 = p2 ∨ q1 = q2, then φ is equivalent to the single equation
(p1 − p2)(q1 − q2) = 0.

• If φ is of the form p1 = p2 ∧ q1 = q2, then φ is equivalent to the single equation
(p1 − p2)2 + (q1 − q2)2 = 0.

• If φ is of the form ¬(p1 = p2), then φ does not qualify as a differential in-
variant, because it contains a negative equality, which are disallowed for G5
according to Figure 3.3.

Observe, however, that the required polynomial degree of atomic equations is
larger than for propositional combinations, which can have computational disad-
vantages for quantifier elimination.

For general differential invariants, where inequalities are allowed, the situation is
different: We show that, in general, the deductive power of differential induction
depends on which class of formulas is allowed as differential invariants! Some DAL
formulas cannot by proven by a differential induction step with only atomic formula
but no propositional operators as differential invariant, while they are provable
immediately using unrestricted differential invariants.

3.31 Theorem (Deductive power). The deductive power of differential induction
with arbitrary formulas exceeds the deductive power of differential induction with
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atomic formulas: All DAL formulas that are provable using atomic differential
invariants are provable using general differential invariants, but not vice versa!

Proof. The inclusion is obvious. Conversely, we have to show that there are DAL
formulas that are provable with general differential invariants but not with atomic
differential invariants. Consider the following example, which is provable using rule
G5’, i.e., the variant of G5 for open sets (Section 3.7), with the non-atomic formula
x > 0 ∧ y > 0 as differential invariant:

∗
F1 ` ∀x∀y (x > 0 ∧ y > 0→ xy > 0 ∧ xy > 0)
G5’x > 0 ∧ y > 0 ` [x′ = xy ∧ y′ = xy](x > 0 ∧ y > 0)

First, we show that this formula is not provable by a differential induction step
with only atomic formulas as differential invariants. Suppose there was a single
polynomial p(x, y) in variables x, y such that p(x, y) > 0 is a differential invariant
proving the above formula, which will lead to a contradiction. The conditions for
differential invariants (G5 or G5’) imply that the following formulas have to be
valid:

1. x > 0 ∧ y > 0→ p(x, y) > 0, as differential invariants have to hold in the
prestate according to the antecedent of G5 (or G5’).

2. p(x, y) > 0→ x > 0 ∧ y > 0, as the differential invariant has to imply the
postcondition (when using G1 to show that the differential invariant implies
the postcondition).

In particular, x > 0 ∧ y > 0↔ p(x, y) > 0 is valid. Thus, p enjoys the property:

p(x, y) ≥ 0 for x ≥ 0, y ≥ 0, and, otherwise, p(x, y) ≤ 0 . (3.5)

Assume p has minimal total degree with property (3.5). Now, p(x, 0) is a univari-
ate polynomial in x with zeros at all x > 0, thus p(x, 0) = 0 is the zero polynomial,
hence y divides p(x, y). Accordingly, p(0, y) = 0 for all y, hence x divides p(x, y).

Thus, xy divides p. But by comparing the signs, we see that polynomial −p(−x,−y)
xy

also satisfies property (3.5) with a smaller total degree than p, which is a contra-
diction.

Similarly, there is no polynomial p such that x > 0 ∧ y > 0↔ p(x, y) = 0, be-
cause only the zero polynomial is zero on the full quadrant (0,∞)2. Finally,
x > 0 ∧ y > 0↔ p(x, y) ≥ 0 is impossible for continuity reasons which imply that
p(0, 0) = 0, which is a contradiction. More generally, the same argument holds
for any other sign condition that is supposed to characterise one quadrant of R2

uniquely.
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Observe that, so far, the argument does not depend on the actual dynamics and
is, thus, still valid in the presence of arbitrary differential weakening (D13).

Next, to see that the above example cannot even be proven indirectly after dif-
ferential strengthening (D15), we use that, inductively, the strengthening χ it-
self needs to be a differential invariant: Ultimately, the left sub-goal of D15 can
only be shown using differential induction. The above example, however, is built
such that, as x′ = xy is the differential equation, xy > 0 is required for x > 0
to be a differential invariant (which thus also requires y > 0). Vice versa, due
to y′ = xy, formula xy > 0 is a prerequisite for the differential invariance of y > 0
(which thus also needs x > 0). Yet, for differential invariance of xy > 0, we have
to prove xy > 0→ (y + x)xy > 0 for G5’, because (xy)′xyx′

xy
y′ gives (x′y + yx′)xyx′

xy
y′ ,

i.e., xyy + yxy. But xy > 0→ (y + x)xy > 0 is, again, equivalent to x ≥ 0 ∨ y ≥ 0,
and thus to ¬(−x > 0 ∧ −y > 0), which cannot be proven by atomic differential in-
duction (or differential weakening) according to the first part of this proof. Thus,
the required atomic differential invariants have circular dependencies for differential
strengthenings by x > 0, y > 0, and xy > 0, respectively, which cannot be resolved
in any proof tree without simultaneous differential induction using non-atomic dif-
ferential invariants, because differential strengthenings have to be ordered totally
along each proof branch.

As a special case, this result implies that differential induction in DAL is deduct-
ively stronger than approaches using barrier certificates [PJ04, PJP07], criticality
functions [DMO+07], or polynomial invariant equations [SSM04, RCT05]. On top
of that, the DAL calculus adds differential strengthening and weakening techniques,
which add further deductive power. The roundabout maneuver that we verify in
the next section is a practical example where differential induction with mixed non-
atomic formulas and successive differential strengthening turns out to be decisive.

3.11. Air Traffic Control Verification

In this section we verify that the tangential roundabout maneuver for collision
avoidance in air traffic control that we presented in Section 3.4 is collision-free, i.e.,
directs aircraft on flight paths with global minimal distance p > 0, and determine
a corresponding parameter constraint on the tang procedure. Using differential
induction and differential strengthening, the flight maneuver can be verified despite
the complicated hybrid flight dynamics of aircraft.

3.11.1. Characterisation of Safe Roundabout Dynamics

Property φ in Figure 3.2 defines safe states as those with separation ‖x− y‖ ≥ p.
This does not, however, characterise the states with safe dynamics : Several states
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that satisfy φ will not remain safe when following curved roundabout flight man-
euvers, see Figure 3.1c for a counterexample violating φ after some time. In par-
ticular, the angular velocity ω and initial speed vectors d and e must fit to the
relative positioning of the aircraft x and y for the aircraft dynamics to remain
safe. In order to find out the required parametric constraints for safety of the
roundabout maneuver, we analyse the DAL formula ψ in the DAL calculus and
identify a corresponding parameter constraint T . For notational convenience, we
inline side deductions and slightly simplify universal closure notation ∀α by taking
free variables as universally quantified, because the following DAL proof needs no
existential variables.

∗
F1 φ ` ∀x, y, d, e (φ→ φ)

D13’φ ` [free]φ

. . .
φ ` [tang](φ ∧ T )

. . .
φ ∧ T ` [F(ω) ∧ G(ω)]φ

G1 φ ` [tang;F(ω) ∧ G(ω)]φ
G1 φ ` [free][tang;F(ω) ∧ G(ω)]φ
D2 φ ` [trm]φ

F1,P7 ` ∀α(φ→ [trm]φ)
G3 φ ` [trm∗]φ
P7 ` φ→ [trm∗]φ

The left branch closes, because postcondition φ is the invariant region in free
flight such that its DA-constraint can be weakened by Lemma 3.23. In the other
branches, T is the parameter constraint that tang needs to establish in addition
to φ (middle branch) for the roundabout dynamics to be safe (right branch). Hence
condition T mediates among the middle and right branch. Using successive quan-
tifier elimination, we derive the following constraint T as a prerequisite for φ to
be differentially inductive. It is the decisive constraint that characterises configur-
ations with safely controllable dynamics in curved roundabout maneuvers (using
vectorial notation and orthogonal complements d⊥ from Section 3.2):

T ≡ d− e = ω(x− y)⊥
(
or, equivalently (d− e)⊥ = −ω(x− y)

)
(3.6)

≡ d1 − e1 = −ω(x2 − y2) ∧ d2 − e2 = ω(x1 − y1) .

This formula expresses that the relative speed vector d − e is orthogonal to the
relative position x − y and compatible with the angular velocity ω and tangential
orientation of d and e. Figure 3.11a illustrates the symmetric case with identical
linear speed ‖d‖ = ‖e‖, Figure 3.11b–3.11c show asymmetric cases with distinct
linear speeds ‖d‖ 6= ‖e‖, which is possible as well. Condition T gives the decisive
handle for an inductive characterisation of safe tangential roundabout configura-
tions: For the right branch of the above proof, we need to show that the tangential
configuration T is sufficient for φ to be sustained during curved evasive actions.
In the following, we prove that the relative speed vector configuration T is itself
differentially inductive (left branch) and use differential strengthening with D15 to
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Figure 3.11.: Tangential construction for characteristics T of roundabout dynamics

augment the dynamics with T as a derived invariant for proving that the actual
safety property φ is sustained (right branch), again by differential induction:

∗
F1 ` ∀α(T ′F(ω)∧G(ω))
G5φ, T ` [F(ω) ∧ G(ω)]T

∗
F1 ` ∀α(T → φ′F(ω)∧G(ω))
G5φ ` [F(ω) ∧ G(ω) ∧ T ]φ

D15 φ, T ` [F(ω) ∧ G(ω)]φ
P6 φ ∧ T ` [F(ω) ∧ G(ω)]φ

Observe that differential strengthening by D15 is crucial for the proof, because
neither φ nor T ∧ φ are differentially inductive for F(ω) ∧ G(ω)! Instead, the tan-
gential configuration T itself is differentially inductive relative to F(ω) ∧ G(ω) (left
branch) and strong enough to make φ differentially inductive relative to the aug-
mented DA-constraint F(ω) ∧ G(ω) ∧ T (right branch). For readability, we use a
slightly weaker rule for differential induction, with φ rather than [T ]φ in the ante-
cedent of the conclusion. This variant can be derived easily using a cut and will
again be called G5. The differential induction G5 on the left and right branch close
using quantifier elimination in F1 or the following algebraic equational reasoning,
respectively (T ′F(ω)∧G(ω) is a short notation for substituting the differential equations

from F(ω) ∧ G(ω) into D(T ), see Lemma 3.16):

T ′F(ω)∧G(ω) ≡ (d′1 − e′1 = −ω(x′2 − y′2) ∧ d′2 − e′2 = ω(x′1 − y′1))F(ω)∧G(ω)

≡ − ωd2 + ωe2 = −ω(d2 − e2) ∧ ωd1 − ωe1 = ω(d1 − e1) ≡ true

φ′F(ω)∧G(ω) ≡ (2(x1 − y1)(x′1 − y′1) + 2(x2 − y2)(x′2 − y′2) ≥ 0)F(ω)∧G(ω)

≡ 2(x1 − y1)(d1 − e1) + 2(x2 − y2)(d2 − e2) ≥ 0

(using T ) ≡ 2(x1 − y1)(−ω(x2 − y2)) + 2(x2 − y2)ω(x1 − y1) = 0 ≥ 0 ≡ true.

Altogether, we have shown that every tangential roundabout evasion maneuver
respecting T is safe. Further, the middle branch of the above proof reveals the
parameter constraint imposed on tang for safe roundabouts, which concludes the
proof of the following result.
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3.32 Theorem (Safety of tangential roundabout maneuver). For every
choice of the tangential entry procedure that satisfies φ→ [tang](φ ∧ T ), the tangen-
tial roundabout flight maneuver in Figure 3.2 safely avoids collisions, i.e., it directs
aircraft on flight paths with minimal horizontal aircraft separation at least p > 0.

This result can be proven in our theorem prover [PQ08a] in 2s including user
interactions for G3 and D15. Its proof does not need G1, which we only used
here to shorten the proof presentation. Theorem 3.32 expresses unbounded-time
safety for fully parametric tangential roundabouts with arbitrary choices for the
free parameters. The proof of Theorem 3.32 generalises to roundabouts entered
by more than two participants when φ and T are augmented accordingly. For
instance, using our automatic proof procedure from Chapter 6, our theorem prover
can prove mutual collision avoidance for 5 aircraft fully automatically, see Chapter 6
and Chapter 8. Likewise, G5 and D15 can be used to prove that external separation
to all other sufficiently far points is maintained during the roundabout maneuver,
in particular, the maneuver only needs bounded space:

3.33 Proposition (External separation of roundabout maneuvers). Separ-
ation of aircraft x to all external points u ∈ R2 of distance beyond the roundabout
diameter 2r is maintained:

r ≥ 0 ∧ (rω)2 = ‖d‖2 → ∀u (‖x− u‖2 > (2r + p)2 → [F(ω)](‖x− u‖2 > p2)) .

3.11.2. Tangential Entry Procedures

As a simple choice for the tangential initiation procedure tang satisfying property T ,
consider the following operation which chooses an arbitrary angular velocity ω,
an arbitrary centre c ∈ R2 for the roundabout maneuver, and adjusts d and e
tangentially:

tang ≡ ∃uω := u; ∃c (d := ω(x− c)⊥ ∧ e := ω(y − c)⊥) . (3.7)

This formula expresses that the speed vectors d and e of both aircraft at x and
y, respectively, are tangentially and of the same angular velocity ω relative to the
intended centre c of the roundabout, with the same orientation (Figure 3.11). For
this choice, the assumption of Theorem 3.32 can be proven after D10 substitutes
the corresponding terms for d and e in T , using F1 (or linearity of d⊥):

∗
P9φ ` φ

∗
φ ` ω(x− c)⊥ − ω(y − c)⊥ = ω(x− y)⊥

P5 φ ` φ ∧ ω(x− c)⊥ − ω(y − c)⊥ = ω(x− y)⊥
D10 φ ` [d := ω(x− c)⊥ ∧ e := ω(y − c)⊥](φ ∧ T )

F1,F1 φ ` ∀ω ∀c [d := ω(x− c)⊥ ∧ e := ω(y − c)⊥](φ ∧ T )
D2,D6,D6φ ` [tang](φ ∧ T )
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It can also be shown that ∃c (d = ω(x− c)⊥ ∧ e = ω(y − c)⊥) is equivalent to T for
nonzero ω. With choice (3.7), the tangential roundabout maneuver in Figure 3.2 is
safe and has been significantly simplified and generalised in comparison to [PC07].

3.11.3. Discussion

Our tangential roundabout maneuver leaves open how and when precisely the col-
lision avoidance maneuver is initiated or when to leave it. For instance, (3.7) does
not restrict c and ω but accepts any choice including choices optimising second-
ary objectives like fuel consumption. Furthermore, as specified in Figure 3.2 and
proven in this section, the roundabout maneuver can be left safely with arbitrary
free flight by repeating the loop at any time: The roundabout maneuver will simply
be initiated again during free flight when necessary. As a special case, this open
policy includes free flight enabling the aircraft to leave the roundabout in their ori-
ginal direction. While the simple choice (3.7) is possibly discontinuous in d and e,
it is comparably easy to see that there are fully curved entry and exit procedures
that remain safe when the entry procedure is initiated with sufficient distance by
using the separation limit of Proposition 3.33. We refine the roundabout collision
avoidance maneuver and develop a corresponding entry procedure in Chapter 8.
Our proof shows that the tangential roundabout maneuver is safe for every such
entry procedure. In particular, the control parameters c and ω of (3.7) can also
be chosen such that the resulting speed vectors d and e are in a bounded range
meeting external speed requirements of the aircraft:

∀v (φ→ 〈tang〉(φ ∧ T ∧ ‖d‖2 = ‖e‖2 = v2)) . (3.8)

3.12. Summary

We have introduced a first-order dynamic logic for differential-algebraic programs
with interacting first-order discrete jump constraints and first-order differential-al-
gebraic constraints. For this differential-algebraic logic, DAL, we have presented a
calculus for verifying hybrid systems given as differential-algebraic programs.

In differential-algebraic programs, both internal choices and disturbances during
continuous evolutions and nondeterminism in discrete operations can be described
uniformly by quantifiers. Most importantly, we have introduced first-order dif-
ferential induction with differential invariants and differential variants for proving
correctness statements with first-order differential-algebraic constraints purely al-
gebraically using the differential constraints themselves instead of their solutions.
In combination with successive differential strengthening for refining the system
dynamics by auxiliary differential invariants, we obtain a powerful verification cal-
culus for systems with challenging dynamics. We compare the deductive strength
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for classes of differential invariants and show that the deductive power of general
differential induction exceeds the deductive power of atomic differential invariants.

We have demonstrated that our calculus can be used successfully for verifying
fully parametric roundabout maneuvers in air traffic control. To the best of our
knowledge, this is the first formal proof for unbounded safety of hybrid aircraft
dynamics in curved collision avoidance maneuvers for air traffic control. Moreover,
we argue that our fully formal proof about aircraft gives more confidence in flight
maneuvers than informal approaches that do not consider the actual hybrid flight
dynamics [HKT07, DMC05, GMAR07] or results that only prevent orthogonal col-
lisions in discretisations of the system [DPR05, MF01]. Our logic DAL is also more
convenient, because hybrid systems like the tangential roundabout maneuver can
be specified and verified uniformly within a single logic. Despite challenging flight
dynamics, the DAL formulas about aircraft and roundabout maneuvers that we
presented in this chapter can be proven in our theorem prover [PQ08a] within a
few seconds.

While this work answers the open issues (1), (3) and (4) raised in the work
of Piazza et al. [PAM+05], we are interested in extending differential-algebraic
methods to address further questions about hybrid systems. In Chapter 6, we
investigate algorithms for constructing differential invariants automatically on the
basis of our DAL calculus presented here. Interesting future work for the aircraft
case study is to find a fully curved maneuver that achieves collision avoidance by
joint horizontal and vertical evasive actions.
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Synopsis

We combine first-order dynamic logic for reasoning about possible beha-
viour of hybrid systems with temporal logic for reasoning about the temporal
behaviour during their operation. Our logic supports verification of hybrid
programs with first-order definable flows and provides a uniform treatment
of discrete and continuous evolution. For our combined logic, we generalise
the semantics of dynamic modalities to refer to hybrid traces instead of final
states. Further, we prove that this gives a conservative extension of dynamic
logic. On this basis, we provide a modular verification calculus that reduces
correctness of temporal behaviour of hybrid systems to non-temporal reas-
oning and prove that we obtain a complete axiomatisation relative to the
non-temporal base logic. Using this calculus, we analyse safety invariants
in a train control system and symbolically synthesise parametric safety con-
straints.

4.1. Introduction

Correctness of real-time and hybrid systems depends on a safe operation throughout
all states of all possible trajectories, and the behaviour at intermediate states is
highly relevant [DHO06].

Temporal logics (TL) use temporal operators to talk about intermediate states
[Pnu77, EC82, EH86, ACD90, Sti92]. In addition to successful uses in model check-
ing [CGP99, ACD90, HNSY92, Hen96, MPM05], temporal logics have been used
in deductive approaches to prove validity of formulas in calculi [DN00, DCMM04].
Among other shortcommings and difficulties discussed in Chapter 1, the major
drawback of TL calculi for our purpose is that TL formulas cannot generally char-
acterise the operations of a specific hybrid system.

Like model checking, dynamic logic (DL) [HKT00] can directly analyse the beha-
viour of actual system models. However, DL only considers the behaviour at final
states, which is insufficient for verifying safety invariants that have to hold all the
time.

We close this gap of expressivity by combining first-order dynamic logic [HKT00]
with temporal logic [Pnu77, EC82, EH86]. We use the generalisation of operational
system models and semantics to hybrid systems from Chapter 2. In this chapter, we
introduce a temporal dynamic logic dTL, which provides modalities for quantifying
over traces of hybrid systems based on differential dynamic logic. We equip dTL
with temporal operators to state what is true all along a trace or at some point
during a trace. In this chapter, we modify the semantics of the dynamic modality [α]
to refer to all traces of α instead of all final states reachable with α (similarly
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for 〈α〉). For instance, the formula [α]�φ expresses that φ is true at each state
during all traces of the hybrid system α. With this, dTL can also be used to
verify temporal statements about the behaviour of α at intermediate states during
system runs. As in our non-temporal dynamic logic dL, we use hybrid programs as
an operational model for hybrid systems, since they admit a uniform compositional
treatment of interacting discrete and continuous evolution in logic.

As a semantical foundation for combined temporal dynamic formulas, we intro-
duce a hybrid trace semantics for dTL. We prove that dTL is a conservative exten-
sion of dL, that is, for non-temporal specifications, trace semantics is equivalent to
the non-temporal transition semantics of dL from Chapter 2.

As a means for verification, we introduce a sequent calculus for dTL that success-
ively reduces temporal statements about traces of hybrid programs to non-temporal
dL formulas. In this way, we make the intuition formally precise that temporal
safety invariants can be checked by augmenting proofs with appropriate assertions
about intermediate states. Like in Chapter 2, our calculus works compositionally:
It structurally decomposes correctness statements about hybrid programs into cor-
responding statements about its parts by symbolic transformation. Observe that
this is challenging for hybrid systems, because even a single elementary system ac-
tion of continuous evolution already exhibits temporal behaviour when it assumes
several different states as time passes.

Contributions

Our approach combines the advantages of DL in reasoning about the behaviour of
(multiple and parametric) operational system models with those of TL to verify
temporal statements about traces. Our first contribution is the logic dTL, which
provides a coherent foundation for reasoning about the temporal behaviour of oper-
ational models of hybrid systems with symbolic parameters. The main contribution
is our calculus for deductively verifying temporal statements about hybrid systems,
which is a complete axiomatisation relative to non-temporal dL.

4.1.1. Related Work

Based on [Pra79], Beckert and Schlager [BS01] added separate trace modalities to
dynamic logic and presented a relatively complete calculus. Their approach only
handles discrete state spaces. In contrast, dTL works for hybrid programs with
continuous state spaces. There, a particular challenge is that invariants may already
change their truth-value multiple times during a single continuous evolution, hence
relevant temporal behaviour even occurs during single transitions.

Davoren and Nerode [DN00] extended the propositional modal µ-calculus with
a semantics in hybrid systems and examine topological aspects. In [DCMM04],
Davoren et al. gave a semantics in general flow systems for a generalisation of
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CTL∗ [EH86]. In both cases, the authors of [DN00] and [DCMM04] provided
Hilbert-style calculi to prove formulas that are valid for all systems simultaneously
using abstract actions.

As discussed in Section 1.2, the strength of our logic primarily is that it is a first-
order dynamic logic and handles actual hybrid programs like x := x+ 1;x′ = 2y
rather than only abstract actions of unknown effect.

Structure of this Chapter

After introducing syntax and semantics of the differential temporal dynamic logic
dTL in Section 4.2 and Section 4.3, we introduce a modular sequent calculus for
dTL in Section 4.5 that extends our previous calculi with temporal proof rules
in a completely modular way. We prove soundness and relative completeness in
Section 4.6 and Section 4.7, respectively. In Section 4.8, we use our calculus to
analyse safety invariants in train control from Section 4.4. We further present
extensions for quantifier alternation liveness in Section 4.9. We draw conclusions
and discuss future work in Section 4.10.

4.2. Syntax of Temporal Dynamic Logic for Hybrid
Systems

The temporal dynamic logic dTL extends dynamic logic [HKT00] with three con-
cepts for verifying temporal specifications of hybrid systems:

Hybrid programs The behaviour of hybrid systems can be described by hybrid
programs (Section 2.2.2), which generalise real-time programs [HNSY92] to hy-
brid change. The distinguishing feature of hybrid programs in this context is that
they provide uniform discrete jumps and continuous evolutions along differential
equations. While hybrid automata [Hen96] can be embedded, program structures
are more amenable to compositional symbolic processing by calculus rules, see
Chapter 2.

Modal operators Modalities of dynamic logic express statements about all pos-
sible behaviour ([α]π) of a system α, or about the existence of a trace (〈α〉π),
satisfying condition π. As in Chapter 2, the system α is described as a hybrid
program. Yet, unlike in standard dynamic logic [HKT00] or in dL, π is a trace
formula in dTL, and π is allowed to refer to all states that occur during a trace
using temporal operators.
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Temporal operators For dTL, the temporal trace formula �φ expresses that the
formula φ holds all along a trace selected by [α] or 〈α〉. For instance, the state
formula 〈α〉�φ says that the state formula φ holds at every state along at least
one trace of α. Dually, the trace formula ♦φ expresses that φ holds at some point
during such a trace. It can occur in a state formula 〈α〉♦φ to express that there is
such a state in some trace of α, or as [α]♦φ to say that, along each trace, there is a
state satisfying φ. In this chapter, the primary focus of attention is on homogeneous
combinations of path and trace quantifiers like [α]�φ or 〈α〉♦φ.

4.2.1. Hybrid Programs

The formulas of dTL are built over a non-empty set V of real-valued variables and
a fixed signature Σ of function and predicate symbols. For simplicity, Σ is assumed
to contain exclusively the usual function and predicate symbols for real arithmetic,
such as 0, 1,+, ·,=,≤, <,≥, >. The set Trm(Σ, V ) of terms is defined as in classical
first-order logic.

The hybrid programs allowed in dynamic modalities of dTL are the same as
those of dL, see Definition 2.3 in Section 2.2.2. They are built from elementary
discrete jumps and continuous evolutions using a regular control structure [HKT00].
Similarly, differential-algebraic programs from Chapter 3 can be allowed when using
DAL as a basis instead of dL, leading to differential-algebraic temporal dynamic
logic DATL.

4.2.2. State and Trace Formulas

The formulas of dTL are defined similar to first-order dynamic logic [HKT00].
However, the modalities [α] and 〈α〉 accept trace formulas that refer to the temporal
behaviour of all states along a trace. Inspired by CTL and CTL∗ [EC82, EH86],
we distinguish between state formulas, that are true or false in states, and trace
formulas, that are true or false for system traces. The sets Fml(Σ, V ) of state
formulas, FmlT (Σ, V ) of trace formulas, and HP(Σ, V ) of hybrid programs with
variables in V are simultaneously inductively defined in Definition 4.1 and 2.3,
respectively.

4.1 Definition (dTL formulas). The set Fml(Σ, V ) of (state) formulas is sim-
ultaneously inductively defined as the smallest set such that:

1. If p ∈ Σ is a predicate of arity n ≥ 0 and θ1, . . . , θn ∈ Trm(Σ, V ), then
p(θ1, . . . , θn) ∈ Fml(Σ, V ).

2. If φ, ψ ∈ Fml(Σ, V ), then ¬φ, (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ) ∈ Fml(Σ, V ).

3. If φ ∈ Fml(Σ, V ) and x ∈ V , then ∀xφ,∃xφ ∈ Fml(Σ, V ).
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4. If π ∈ FmlT (Σ, V ) and α ∈ HP(Σ, V ), then [α]π, 〈α〉π ∈ Fml(Σ, V ).

The set FmlT (Σ, V ) of trace formulas is the smallest set with:

1. If φ ∈ Fml(Σ, V ), then φ ∈ FmlT (Σ, V ).

2. If φ ∈ Fml(Σ, V ), then �φ,♦φ ∈ FmlT (Σ, V ).

Formulas without � and ♦, i.e., without Case 2 of the trace formulas, are non-
temporal dL formulas (Chapter 2). Unlike in CTL, state formulas are true on a
trace (Case 1) if they hold for the last state of a trace, not for the first. Thus, [α]φ
expresses that φ is true at the end of each trace of α. In contrast, [α]�φ expresses
that φ is true all along all states of every trace of α. This combination gives a
smooth embedding of non-temporal dL into dTL and makes it possible to define
a compositional calculus. Like CTL, dTL allows nesting with a branching time
semantics [EC82], e.g., [α]�(x ≥ 2→ 〈β〉♦x ≤ 0).

Insipred by CTL∗ [EH86], syntactic and semantic extensions from dTL to dTL∗

are straightforward and amount to allowing propositional combinations of trace
formulas. Finding appropriate proof calculi, however, is much more difficult, even
for CTL∗ [PK02, Rey05].

4.3. Semantics

In standard dynamic logic [HKT00], the logic dL from Chapter 2, and DAL from
Chapter 3, modalities only refer to the final states of system runs and the semantics
is a reachability relation on states: State ω is reachable from state ν using α if there
is a run of α which terminates in ω when started in ν. For dTL, however, formulas
can refer to intermediate states of runs as well. Thus, the semantics of a hybrid
system α is the set of its possible traces, i.e., successions of states that occur during
the evolution of α.

4.3.1. Trace Semantics of Hybrid Programs

States contain values of system variables during a hybrid evolution. A state is
a map ν : V → R; the set of all states is denoted by Sta(Σ). In addition, we
distinguish a state Λ to denote the failure of a system run when it is aborted due to
a test ?χ that yields false. In particular, Λ can only occur at the end of an aborted
system run and marks that there is no further extension.

Hybrid systems evolve along piecewise continuous traces in multi-dimensional
space as time passes. Continuous phases are governed by differential equations,
whereas discontinuities are caused by discrete jumps in state space. Unlike in
discrete cases [Pra79, BS01], traces are not just sequences of states, since hybrid
systems pass through uncountably many states even in bounded time. Beyond that,
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continuous changes are more involved than in pure real-time [ACD90, HNSY92],
because all variables can evolve along different differential equations. Generalising
the real-time traces of [HNSY92], the following definition captures hybrid behaviour
by splitting the uncountable succession of states into periods σi that are regulated
by the same control law. For discrete jumps, some periods are point flows of
duration 0.

4.2 Definition (Hybrid trace). A trace is a (nonempty) finite or infinite se-
quence σ = (σ0, σ1, σ2, . . . ) of functions σi : [0, ri]→ Sta(Σ) with respective dura-
tions ri ∈ R (for i ∈ N). A position of σ is a pair (i, ζ) with i ∈ N and ζ in the
interval [0, ri]; the state of σ at (i, ζ) is σi(ζ). Positions of σ are ordered lex-
icographically by (i, ζ) ≺ (j, ξ) iff either i < j, or i = j and ζ < ξ. Further, for a
state ν ∈ Sta(Σ), ν̂ : 0 7→ ν is the point flow at ν with duration 0. A trace termin-
ates if it is a finite sequence (σ0, σ1, . . . , σn) and σn(rn) 6= Λ. In that case, the last
state last σ is denoted as σn(rn). The first state firstσ is σ0(0).

Unlike in [ACD90, HNSY92], the definition of traces also admits finite traces of
bounded duration, which is necessary for compositionality of traces in α; γ. The
semantics of hybrid programs α as the set τ(α) of its possible traces depends on
valuations val(ν, ·) of formulas and terms at intermediate states ν. The valuation of
terms [HKT00], and interpretations of function and predicate symbols are as usual
for real arithmetic. The valuation of formulas will be defined in Definition 4.4.
Again, we use ν[x 7→ d] to denote the modification that agrees with state ν on all
variables except for the symbol x, which is changed to d ∈ R.

4.3 Definition (Trace semantics of hybrid programs). The trace semantics,
τ(α), of a hybrid program α, is the set of all its possible hybrid traces and is defined
as follows:

1. τ(x1 := θ1, . . , xn := θn) = {(ν̂, ω̂) : ω = ν[x1 7→ val(ν, θ1)] . . [xn 7→ val(ν, θn)]
for ν ∈ Sta(Σ)}

2. τ(x′1 = θ1, . . . , x
′
n = θn &χ) = {(ϕ) : ϕ is a state flow of order 1 and some

duration r ≥ 0 such that ϕ |= x′1 = θ1 ∧ · · · ∧ x′n = θn ∧ χ, see Definition 3.9}

3. τ(?χ) = {(ν̂) : val(ν, χ) = true} ∪ {(ν̂, Λ̂) : val(ν, χ) = false}

4. τ(α ∪ β) = τ(α) ∪ τ(β)

5. τ(α; β) = {σ ◦ ς : σ ∈ τ(α) , ς ∈ τ(β) when σ ◦ ς is defined};
the composition of σ = (σ0, σ1, σ2, . . . ) and ς = (ς0, ς1, ς2, . . . ) is

σ ◦ ς :=


(σ0, . . . , σn, ς0, ς1, . . . ) if σ terminates at σn and lastσ = first ς

σ if σ does not terminate

not defined otherwise
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6. τ(α∗) =
⋃
n∈N τ(α

n), where αn+1 := (αn;α) for n ≥ 1, and α0 := (?true).

Time passes differently during discrete and continuous change. During continuous
evolution, the discrete step index i of positions (i, ζ) remains constant, whereas the
continuous duration ζ remains 0 during discrete point flows. This permits multiple
discrete state changes to happen at the same (super-dense) continuous time, unlike
in [ACD90].

4.3.2. Valuation of State and Trace Formulas

In the semantics of dTL formulas, the dynamic modalities determine the set of
traces according to the trace semantics of hybrid programs, and, independently, the
temporal modalities determine at which points in time, the respective postcondition
needs to hold.

4.4 Definition (Valuation of dTL formulas). For state formulas, the valu-
ation val(ν, ·) with respect to state ν is defined as follows:

1. val(ν, p(θ1, . . . , θn)) = p`
(
val(ν, θ1), . . . , val(ν, θn)

)
, where p` is the relation

associated to p.

2. val(ν, φ ∧ ψ) is defined as usual, the same holds for ¬,∨,→.

3. val(ν,∀xφ) = true iff val(ν[x 7→ d], φ) = true for all d ∈ R

4. val(ν,∃xφ) = true iff val(ν[x 7→ d], φ) = true for some d ∈ R

5. val(ν, [α]π) = true iff for each trace σ ∈ τ(α) that starts in firstσ = ν, if
val(σ, π) is defined, then val(σ, π) = true.

6. val(ν, 〈α〉π) = true iff there is a trace σ ∈ τ(α) starting in firstσ = ν, such
that val(σ, π) = true.

For trace formulas, the valuation val(σ, ·) with respect to trace σ is defined as:

1. If φ is a state formula, then val(σ, φ) = val(lastσ, φ) if σ terminates, whereas
val(σ, φ) is not defined if σ does not terminate.

2. val(σ,�φ) = true iff val(σi(ζ), φ) = true holds for all positions (i, ζ) of σ
with σi(ζ) 6= Λ.

3. val(σ,♦φ) = true iff val(σi(ζ), φ) = true holds for some position (i, ζ) of σ
with σi(ζ) 6= Λ.
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As usual, a (state) formula is valid if it is true in all states. Further for (state)
formula φ and state ν we write ν |= φ iff val(ν, φ) = true and we write ν 6|= φ iff
val(ν, φ) = false. Likewise, for trace formula π and trace σ we write σ |= π iff
val(σ, π) = true and we write σ 6|= π iff val(σ, π) = false. In particular, we only
write σ |= π or σ 6|= π if val(σ, π) is defined, which it is not if π is a state for-
mula and σ does not terminate. The points where a dTL property φ has to hold
for the various combinations of temporal and dynamic modalities is illustrated in
Figure 4.1.
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Figure 4.1.: Trace semantics of dTL formulas
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4.3.3. Conservative Temporal Extension

The following result shows that the extension of dTL by temporal operators does
not change the meaning of non-temporal dL formulas. The trace semantics given in
Definition 4.4 is equivalent to the final state reachability relation semantics given
in Definition 2.6 for the sublogic dL of dTL.

4.5 Proposition (Conservative temporal extension). The logic dTL is a con-
servative extension of non-temporal dL, i.e., the set of valid dL-formulas is the same
with respect to transition reachability semantics of dL (Definition 2.6) as with re-
spect to the trace semantics of dTL (Definition 4.4).

The proof of Proposition 4.5 uses the following relationship of reachability and
trace semantics of dTL programs, which agree on initial and final states.

4.6 Lemma (Trace relation). For hybrid programs α ∈ HP(Σ, V ), we have

ρ(α) = {(firstσ, lastσ) : σ ∈ τ(α) terminates} .

Proof. The proof follows an induction on the structure of α.

• The cases x := θ, x′ = θ, and α ∪ β are simple comparisons of the defini-
tions 4.3 and 2.7.

• For ?χ, the reasoning splits into two directions. For the direction “⊇”, as-
sume σ ∈ τ(?χ). We distinguish between two cases. If val(firstσ, χ) = true,
then σ = (v̂) has length one, lastσ = firstσ, and (firstσ, firstσ) ∈ ρ(α). If,
however, val(firstσ, χ) = false, then σ = (v̂, Λ̂) does not terminate, hence,
there is nothing to show. Conversely, for “⊆”, assume (v, v) ∈ ρ(?χ), then
val(ν, χ) = true and (v̂) ∈ τ(α) satisfies the conditions on σ.

• For α; β and the direction “⊇”, assume that σ ◦ ς ∈ τ(α; β) terminates with
σ ∈ τ(α), ς ∈ τ(β), and lastσ = first ς. Then, by induction hypothesis, we
can assume that (first σ, lastσ) ∈ ρ(α) and (first ς, last ς) ∈ ρ(β). By the se-
mantics of sequential composition, we have (first (σ ◦ ς), last (σ ◦ ς)) ∈ ρ(α; β).
Conversely, for “⊆”, assume that (ν, w) ∈ ρ(α; β), i.e., let (ν, z) ∈ ρ(α) and
(z, w) ∈ ρ(β). By induction hypothesis, there is a terminating trace σ ∈ τ(α)
with firstσ = ν and lastσ = z. Further, by induction hypothesis, there is a
terminating ς ∈ τ(β) with first ς = z and last ς = w. Hence, σ ◦ ς ∈ τ(α; β)
terminates with first (σ ◦ ς) = ν and first (σ ◦ ς) = w.

• The case α∗ is an inductive consequence of the sequential composition case.
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Proof of Proposition 4.5. The formulas of dL are a subset of the dTL formulas. In
the course of this proof, we use the notation valdL(ν, ·) to indicate that the dL
valuation from Definition 4.4 in Section 2.3 is used. For dL formulas ψ, we show
that the valuations with respect to Definition 4.4 and with respect to Definition 2.6
are the same for all states ν:

val(ν, ψ) = valdL(ν, ψ) for all ν .

We prove this by induction on the structure of ψ. The cases 1–3 of the definition of
state formulas in Definition 4.1 are obvious. The other cases are proven as follows.

• If ψ has the form [α]φ, assume that val(ν, [α]φ) = false. Then there is some
terminating trace σ ∈ τ(α) with first σ = ν such that val(lastσ, φ) = false.
By induction hypothesis, this implies that valdL(lastσ, φ) = false. According
to Lemma 4.6, (ν, lastσ) ∈ ρ(α) holds, which implies valdL(ν, [α]φ) = false.
For the converse direction, assume that valdL(ν, [α]φ) = false. Then there is
a (ν, w) ∈ ρ(α) with valdL(w, φ) = false. By Lemma 4.6, there is a terminat-
ing trace σ ∈ τ(α) with firstσ = ν and last σ = w. By induction hypothesis,
val(lastσ, φ) = false. Thus, we can conclude that both val(σ, φ) = false and
val(ν, [α]φ) = false.

• The case ψ = 〈α〉φ is proven accordingly.

4.4. Safety Invariants in Train Control

In the European Train Control System (ETCS), trains are coordinated by decentral-
ised Radio Block Centres (RBC), which grant or deny movement authorities (MA)
dynamically to the individual trains by wireless communication. In emergencies,
trains always have to stop within the MA issued by the RBC, see Figure 4.2. Fol-
lowing the reasoning pattern for traffic agents in [DHO03], each train negotiates
with the RBC to extend its MA when approaching the end of its current MA. Since
wireless communication takes time, this negotiation is initiated in due time before
reaching m. To simplify the presentation, we adopt the assumption of Damm et
al. [DHO03] that trains keep their desired speed (or at least their maximum speed
limit) during negotiation. Before entering negotiation at some point ST (for start
talking), the train still has sufficient distance to MA (it is in far mode) and can
regulate its speed freely within the track limits.

As a model for train movements, we use the ideal-world model from Section 2.4.
For a safe operation of multiple traffic agents, it is crucial that the MA is respected
at every point in time during this protocol, not only at its end. Hence, we need to
consider temporal safety invariants. For instance, when the train has entered the
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far

neg

cor

recfsa

Figure 4.2.: ETCS train coordination protocol phases

negotiation phase at its current position z, dTL can analyse the following safety
invariant of a part of the protocol cycle of the train controller:

ψ → [neg; cor; drive]�(` ≤ L→ z < m) (4.1)

where neg ≡ z′ = v, `′ = 1

cor ≡ (?m− z < s; a :=−b) ∪ (?m− z ≥ s; a := . . . ) (4.2)

drive ≡ z′ = v, v′ = a .

It expresses that—under a sanity condition ψ for parameters—a train will always
remain within its MA m, as long as the accumulated RBC negotiation latency ` is
at most L. We refer to the work of Faber and Meyer [FM06] for details on what
kind of message passing contributes to `. Like in [DHO03], we model the train to
first negotiate while keeping a constant speed (z′ = v) in neg. Thereafter, in cor ,
the train corrects its acceleration or brakes with force b (as a failsafe recovery man-
oeuvre) on the basis of the remaining distance (m− z). Finally, the train continues
moving according to the differential equation system drive or, equivalently, z′′ = a.
Instead of manually choosing specific values for the free parameters of (4.1) as
in [DHO03, FM06], we will use the techniques developed in this thesis to automat-
ically synthesise constraints on the relationship of parameters that are required for
a safe operation of cooperative train control.

4.5. A Verification Calculus for Safety Invariants

In this section, we introduce a sequent calculus for verifying temporal specifications
of hybrid systems in dTL. With the basic idea being to perform a symbolic decom-
position, hybrid programs are successively transformed into simpler logical formulas
describing their effects. There, statements about the temporal behaviour of a hy-
brid program are successively reduced to corresponding non-temporal statements
about the intermediate states.

The dTL calculus is presented in Figure 4.3 and inherits the propositional, first-
order, and dynamic rules from dL. That is, it includes the propositional P-rules
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from Figure 2.5 and either the free variable quantifier F-rules from Figure 2.5 or
the simpler quantifier F-rules from Figure 3.3 that are based on side deductions.
The D-rules and G-rules for handling non-temporal dynamic modalities are also
inherited from Figure 2.5, except that D3–D4 are generalised to apply for formulas
of the form [α ∪ β]π where π is an arbitrary trace formula not just a state formula
as in dL. Thus, π may begin with � or ♦, which is why the rules are repeated in
this generalised form as T8 and T1 in Figure 4.3.

The new T-rules in Figure 4.3 successively transform temporal specifications of
hybrid programs into non-temporal dL formulas. The idea underlying this trans-
formation is to decompose hybrid programs and recursively augment intermediate
state transitions with appropriate specifications.

(T1)
[α]π ∧ [β]π

[α ∪ β]π

(T2)
[α]�φ ∧ [α][β]�φ

[α; β]�φ

(T3)
φ

[?χ]�φ

(T4)
φ ∧ [x := θ]φ

[x := θ]�φ

(T5)
[x′ = θ]φ

[x′ = θ]�φ

(T6)
[α;α∗]�φ

[α∗]�φ

(T7)
[α∗][α]�φ

[α∗]�φ

(T8)
〈α〉π ∨ 〈β〉π
〈α ∪ β〉π

(T9)
〈α〉♦φ ∨ 〈α〉〈β〉♦φ

〈α; β〉♦φ

(T10)
φ

〈?χ〉♦φ

(T11)
φ ∨ 〈x := θ〉φ
〈x := θ〉♦φ

(T12)
〈x′ = θ〉φ
〈x′ = θ〉♦φ

(T13)
〈α;α∗〉♦φ
〈α∗〉♦φ

(T14)
〈α∗〉〈α〉♦φ
〈α∗〉♦φ

In these rules, φ and ψ are (state) formulas, whereas π is a trace formula. Unlike φ and ψ,

the trace formula π may thus begin with temporal modalities � or ♦.

Figure 4.3.: Rule schemata of the temporal dynamic dTL verification calculus

Rule T2 decomposes invariants of α; β into an invariant of α and an invariant of β
that holds when β is started in any final state of α. The difference to D2 is that
T2 also checks safety invariant φ at the symbolic state in between the execution
of α and β, and recursively so because of the temporal modality �. T4 expresses
that invariants of assignments need to hold before and after the discrete change
(similarly for T3, except that tests do not lead to a state change). T5 can directly
reduce invariants of continuous evolutions to non-temporal formulas as restrictions
of solutions of differential equations are themselves solutions of different duration
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and thus already included in the evolutions of x′ = θ. In particular, observe that
the handling of differential equations within hybrid systems is fully encapsulated
within the D-rule fragment. The rules T5, T12, T4, and T11 directly generalise to
discrete jump sets and systems of differential equations or even DAF.

The (optional) iteration rule T6 can partially unwind loops. It relies on T2 and is
simpler than D6, because the other rules will inductively produce a premiss that φ
holds in the current state. The dual rules T9–T13 work similarly.

In Chapter 2 and Chapter 3, the primary means for handling loops are the
invariant induction (G3) and variant convergence (G4) rules. Here, we take a
different, completely modular approach for verifying temporal properties of loops
based on the dL capabilities for verifying non-temporal properties of loops. Rule T7
and T14 actually define temporal properties of loops inductively. Rule T7 expresses
that φ holds at all times during repetitions of α, iff, after repeating α any number of
times, φ holds at all times during one execution of α. Dually, T14 expresses that α
holds at some time during repetitions of α, iff, after some number of repetitions
of α, formula φ holds at some point during one execution of α. In this context,
the non-temporal modality 〈α∗〉 can be thought of as skipping over to the iteration
of α during which φ actually occurs, as expressed by the nested dTL-formula 〈α〉♦φ.
The inductive definition rules T7 and T14 completely reduce temporal properties of
loops to dTL-properties of standard non-temporal dL-modalities such that standard
induction (G3) or convergence rules (G4) can be used for the outer non-temporal
modality of the loop. Hence, after applying the inductive loop definition rules T7
and T14, the standard dL loop invariant and variant rules can be used for verifying
temporal properties of loops without change, except that the postcondition contains
temporal modalities.

Rules for handling [α]♦φ and 〈α〉�φ are discussed in Section 4.9. Finally, prov-
ability in the dTL calculus is denoted by Φ `dTL ψ, and defined according to Defin-
ition 2.12.

4.6. Soundness

The following result shows that verification with the dTL calculus always produces
correct results about safety of hybrid systems, i.e., the dTL calculus is sound.

4.7 Theorem (Soundness). The dTL calculus is sound, i.e., derivable (state)
formulas are valid.

Proof. We show that all rules of the dTL calculus are locally sound, i.e., for all
states ν, the conclusion of a rule is true in state ν when all premisses are true
in ν. Let ν be any state. For each rule we have to show that the conclusion is true
in ν assuming the premisses are true in ν. The P-rules are locally sound by The-
orem 2.15. Inductively, the soundness of the D-rules follows from Proposition 4.5
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and local soundness of the corresponding rules in dL. The proof for the generalisa-
tion in D4 and D3 to path formulas π is a straightforward extension. The F-rules
are sound by Theorem 2.15 or Theorem 3.25, respectively.

T2 Assuming ν |= [α]�φ and ν |= [α][β]�φ. Let σ ∈ τ(α; β), i.e., σ = % ◦ ς with
firstσ = ν, % ∈ τ(α), and ς ∈ τ(β). If % does not terminate, then σ = % ∈ τ(α)
and σ |= �φ by premise. If, instead, % terminates with last % = first ς, then
% |= �φ by premise. Further, we know that ν |= [α][β]�φ. In particular
we have for the trace % ∈ τ(α), that last % |= [β]�φ. Thus, ς |= �φ because
ς ∈ τ(β) starts at first ς = last %. By composition, % ◦ ς |= �φ. As σ = % ◦ ς
was arbitrary, we can conclude ν |= [α; β]�φ. The converse direction holds,
as all traces of α are prefixes of traces of α; β. Hence, the assumption
ν |= [α; β]�φ directly implies ν |= [α]�φ. Further, all traces of β that be-
gin at a state reachable from ν by α are suffixes of traces of α; β starting in ν.
Hence, ν |= [α][β]�φ is implied as well.

T3 Soundness of T3 is obvious, since, by premise, we can assume ν |= φ, and there
is nothing to show for Λ states according to Definition 4.4. Conversely, ν̂ is a
prefix of all traces in τ(?χ) that start in ν.

T4 Assuming ν |= φ and ν |= [x := θ]φ, we have to show that ν |= [x := θ]�φ.
Let σ ∈ τ(x := θ) be any trace with first σ = ν, i.e., σ = (ν̂, ω̂) by Defini-
tion 4.3. Hence, the only two states we need to consider are σ0(0) = ν
and σ1(0) = ω. By premise, σ0(0) = ν yields σ0(0) |= φ. Similarly, for the
state σ1(0) = last σ = ω, the premise gives σ1(0) |= φ. The converse direction
is similar.

T5 We prove that T5 is locally sound by contraposition. For this, assume
that ν 6|= [x′ = θ]�φ, then there is a trace σ = (ϕ) ∈ τ(x′ = θ) starting in
firstσ = ν and σ 6|= �φ. Hence, there is a position (0, ζ) of σ with σ0(ζ) 6|= φ.
Now ϕ restricted to the interval [0, ζ] also solves differential equation x′ = θ.
Thus, (ϕ|[0,ζ]) 6|= φ as ϕ(ζ) 6|= φ, since the last state is ϕ(ζ). Consequently,
ν 6|= [x′ = θ]φ. The converse direction is obvious as lastσ always is a state oc-
curring during σ, hence ν 6|= [x′ = θ]φ immediately implies ν 6|= [x′ = θ]�φ.

T6 By contraposition, assume that ν 6|= [α∗]�φ, then there is an n ∈ N and
a trace σ ∈ τ(αn) with firstσ = ν such that σ 6|= �φ. There are two cases.
If n > 0 then σ ∈ τ(α;α∗), thus ν 6|= [α;α∗]�φ. If, however, n = 0, then
σ = (v̂) and ν 6|= φ. Hence, all traces ς ∈ τ(α;α∗) with first ς = ν satisfy
ς 6|= �φ. Finally, it is easy to see that all programs have at least one such
trace ς (when V is nonempty) that witnesses ν 6|= [α;α∗]�φ. The converse dir-
ection is easy as all behaviour of α;α∗ is subsumed by α∗, i.e., τ(α;α∗) ⊆ τ(α∗).
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T7 Clearly, using that τ(α∗) ⊇ τ(α∗;α), the set of states along the traces of α∗ at
which φ needs to be true for the premiss is a subset of the corresponding set
for the conclusion. Hence, the conclusion entails the premiss. Conversely, all
states during traces of α∗ are also reachable by iterating α sufficiently often
to completion and then following a single trace of α. In detail: If ν 6|= [α∗]�φ,
then there is a trace σ ∈ τ(α∗) on which ¬φ holds true at some state, say,
at σi(ζ) 6= Λ. Let n ≥ 0 be the (maximum) number of complete repetitions
of α along σ before discrete step index i. That is, there is some discrete step
index in < i such that the prefix % = (σ0, . . . , σin) ∈ τ(αn) of σ consists of n
complete repetitions of α and the suffix ς = (σin+1, σin+2, . . . ) ∈ τ(α∗) starts
with a trace of α during which ¬φ occurs at point σi(ζ), namely at relative
position (i− (in + 1), ζ). Let ς́ ∈ τ(α) be this prefix of ς. Consequently,
ς́ |= 〈α〉♦¬φ and, the trace % ◦ ς́ is a witness for ν |= 〈α∗〉〈α〉♦¬φ.

The proofs for T9–T14 are dual, since 〈α〉♦φ is equivalent to ¬[α]�¬φ by duality.

4.7. Completeness

In this section, we show that the strictly modular dTL calculus enables us to lift
the relative completeness theorem 2.17 for dL to dTL.

4.7.1. Incompleteness

The incompleteness theorem 2.16 directly generalises to temporal and non-temporal
properties of dTL.

4.8 Theorem (Incompleteness). The discrete and continuous fragments of dTL
are non-axiomatisable for temporal safety ([α]�φ) and non-temporal ([α]φ) frag-
ments of dTL. Hence, valid dTL formulas are not always derivable.

Proof. We show that the discrete and continuous fragments of the following purely
temporal and non-temporal fragments of dTL non-axiomatisable:

1. the fragment that only contains modalities of the form [α]�φ and 〈α〉♦φ
2. the fragment that only contains [α]φ and 〈α〉φ (dL fragment).

Case 2 is a consequence of the corresponding incompleteness result Theorem 2.16
fragments of the sublogic dL, which carries over to the extension dTL by Proposi-
tion 4.5.

For Case 1, we prove that natural numbers are definable amongst the real num-
bers domain in both fragments, quite similar to the proof of Theorem 2.16. Then
these fragments extend first-order integer arithmetic such that the incompleteness
theorem of Gödel applies.
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• Natural numbers are definable in the discrete fragment without continuous
evolutions x′ = θ using repetitive additions:

nat(n) ↔ 〈x := 0; (x := x+ 1)∗〉♦x = n .

• In the continuous fragment, natural numbers are definable as:

nat(n) ↔ ∃s ∃c (s = 0 ∧ c = 1 ∧ 〈s′ = c, c′ = −s, τ ′ = 1〉♦(s = 0 ∧ τ = n)) .

These ODEs have sin and cos as unique solutions for s and c, respectively.
Their zeros characterise an isomorphic copy of natural numbers, scaled by π.

4.7.2. Relative Completeness

Due to the modular construction of the dTL calculus, we can lift the major relative
completeness result Theorem 2.17 from dL to dTL. By proving dTL complete-
ness relative to Theorem 2.17, we essentially show that dTL is complete relative to
dL, which directly implies that dTL is even complete relative to FOD using The-
orem 2.17 by a standard argument. Again, we restrict our attention to homogeneous
combinations of path and trace quantifiers like [α]�φ or 〈α〉♦φ.

4.9 Theorem (Relative completeness). The dTL calculus is complete relative
to FOD, i.e., every valid dTL formula can be derived from FOD-tautologies.

Proof Outline. The proof is a simple extension of the proof of Theorem 2.17, be-
cause the dTL calculus successively reduces temporal properties to non-temporal
properties and, in particular, handles loops by inductive definition rules in terms of
dL modalities. The T-rules in Figure 4.3 transform temporal formulas to simpler
formulas, i.e., where the temporal modalities occur after simpler programs (T1,
T7, T8, T14) or disappear completely (T3–T5 and T10–T12). Hence, the induct-
ive relative completeness proof in Section 2.7.2 directly generalises to dTL with the
following addition: After applying T7 or T14, loops are ultimately handled by the
standard dL rules G3 and G4. To show that sufficiently strong invariants and vari-
ants exist for the temporal postcondition [α]�φ and 〈α〉♦φ, we only have to show
that such temporal formulas are expressible in FOD, i.e., Lemma 2.20 generalises
to dTL.

This result, which we prove formally in the remainder of Section 4.7.2, gives
a formal justification that the dTL calculus reduces temporal properties to non-
temporal dL properties.
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4.7.3. Expressibility and Rendition of Hybrid Trace Semantics

The central step for lifting the dL completeness proof to dTL is the following: To
show that, after applying T7 or T14, sufficiently strong invariants and variants for
dTL postconditions can be expressed in dL for G3 or G4 to be able to prove the
result, we show that the trace semantics of hybrid programs can be characterised
in FOD.

4.10 Lemma (Program trace rendition). For every hybrid program α with vari-
ables ~x = x1, . . . , xk there is a FOD-formula Tα(~x,~v) with variables among the 2k
distinct variables ~x = x1, . . . , xk and ~v = v1, . . . , vk such that

� Tα(~x,~v)↔ 〈α〉♦~x = ~v

or, equivalently, for every ν, we have that ν |= Tα(~x,~v) iff

σi(ζ) = ν[~x 7→ val(ν,~v)] for a position (i, ζ) of some trace σ ∈ τ(α) starting in ν .

Tx1:=θ1,..,xk:=θk(~x,~v) ≡ ~x = ~v ∨ Sx1:=θ1,..,xk:=θk(~x,~v)

Tx′1=θ1,..,x′k=θk &χ(~x,~v) ≡ Sx′1=θ1,..,x′k=θk &χ(~x,~v)

T?χ(~x,~v) ≡ S?χ(~x,~v)

Tβ∪γ(~x,~v) ≡ Tβ(~x,~v) ∨ Tγ(~x,~v)

Tβ; γ(~x,~v) ≡ Tβ(~x,~v) ∨ ∃~z (Sβ(~x, ~z) ∧ Tγ(~z,~v))

Tβ∗(~x,~v) ≡ ∃~z (Sβ∗(~x, ~z) ∧ Tβ(~z,~v))

Figure 4.4.: Explicit rendition of hybrid program trace semantics in FOD

Proof. The proof is similar to that of Lemma 2.19, yet using the definition in
Figure 4.4. We recurse on corresponding characterisations from Lemma 2.19, which
simplifies the characterisation of Tα(~x,~v), because we only have to augment Sα(~x,~v)
by appropriate disjunctions for intermediate states, which can again be defined in
terms of Sα(~x,~v), recursively.

For instance, Tβ∗(~x,~v) characterises the states reachable during traces of β∗ as
the states reachable during traces of β that start after running β∗ to completion
for some number of iterations.

Using this program rendition to characterise temporal trace modalities, Lemma 2.20
generalises immediately to dTL as follows:
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4.11 Lemma (Expressibility). Logic dTL is expressible in FOD: for all dTL
formulas φ ∈ Fml(Σ, V ) there is a FOD-formula φ# ∈ FmlFOD(Σ, V ) that is equi-
valent, i.e., � φ↔ φ#. The converse holds trivially.

Proof. The proof is by a structural induction identical to that in the proof of
Lemma 2.20 with the following additions:

1. The case where φ is of the form 〈α〉♦ψ is a consequence of Lemma 4.10:

� 〈α〉♦ψ ↔ ∃~v (Tα(~x,~v) ∧ ψ#~v

~x) .

2. The case where φ is [α]�ψ is again a consequence of Lemma 4.10:

� [α]�ψ ↔ ∀~v (Tα(~x,~v)→ ψ#~v

~x) .

4.7.4. Modular Relative Completeness Proof for the Differential
Temporal Dynamic Logic Calculus

Now we assemble the proof of Theorem 4.9 from the previous results following a
simplified form of the proof of Theorem 2.17, since we can apply Theorem 2.17 for
dL formulas.

Proof of Theorem 4.9. The proof is a simple extension of the relative complete-
ness theorem 2.17 for dL. Unlike for the rules of the dL calculus, all new T-rules
are symmetric, hence perform equivalent transformations. Consequently, whenever
their conclusion is valid, their premiss is valid and of smaller complexity (temporal
modalities occur after simpler programs), hence derivable by induction hypothesis.

For instance, in analogy to the induction step for loops in Proposition 2.23,
let � F → [β∗]�G, then � F → [β∗][β]�G. By Lemma 4.11, there is a dL for-
mula or even FOD formula ([β]�G)# that characterises the temporal postcondi-
tion equivalently, i.e., such that � ([β]�G)# ↔ [β]�G. By induction hypothesis,
we can derive the simpler formula `D ([β]�G)# → [β]�G. Using Lemma 2.22,
we conclude `D ∀β(([β]�G)# → [β]�G), thus [β∗]([β]�G)# `D [β∗][β]�G is deriv-
able by G1. Furthermore, � F → [β∗]([β]�G)# is a valid dL formula and, thus,
F `D [β∗]([β]�G)# is derivable by Theorem 2.17. Combining these derivations by
a cut with [β∗]([β]�G)#, we derive F `D [β∗]�G. Since the T-rules perform a mod-
ular reduction to non-temporal D-rules, the case � F → 〈β∗〉♦G is almost identical
here, because the differences between variant and invariant rules have already been
captured in the proof of Theorem 2.17.
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4.8. Verification of Train Control Safety Invariants

Continuing the ETCS study from Section 4.4, we consider a slightly simplified
version of equation (4.1) that gives a more concise proof. By a safe abstraction
(provable in dTL), we simplify cor to permit braking even when m− z ≥ s, since
braking remains safe with respect to z < m. We use the following abbreviations in
addition to (4.1):

ψ ≡ z < m ∧ v > 0 ∧ ` = 0 ∧ L ≥ 0

φ ≡ ` ≤ L→ z < m

cor ≡ a :=−b ∪ (?m− z ≥ s; a := . . . ) .

Within the following proof, 〈[]〉 brackets are used instead of modalities to visually
identify the update prefix (Definition 2.12). The dTL proof of the safety invariant
in (4.1) splits into two cases that correspond to the respective protocol phases:

. . .
ψ ` [neg]�φ

. . .
ψ ` [neg][cor; drive]�φ

T2 ψ ` [neg; cor; drive]�φ
P7 ` ψ → [neg; cor; drive]�φ

There, the left branch proves that φ holds while negotiating and is as follows:

ψ ` Lv + z < m
F1,F3 ψ ` ∀l≥0 (l ≤ L→ lv + z < m)

D10,D9ψ ` ∀l≥0 〈[z := lv + z, ` := l]〉φ
D12 ψ ` [neg]φ
T5 ψ ` [neg]�φ

The right branch shows that φ continues to hold after negotiation has completed
when continuing with an adjusted acceleration a in cor; drive:

ψ, `≥0 ` v2 < 2b(m− Lv − z) ∧ Lv + z < m
F3 ψ, `≥0 ` 〈[z := `v+z, a :=−b]〉∀t≥0 (`≤L→ a

2
t2+vt+z<m)

D10,D9ψ, `≥0 ` 〈[z := `v+z, a :=−b]〉∀t≥0 〈[z := a
2
t2+vt+z]〉φ

T5,D12ψ, `≥0 ` 〈[z := `v+z, a :=−b]〉[drive]�φ .
D4 ψ, `≥0 ` 〈[z := `v+z]〉[cor][drive]�φ .
T2 ψ, `≥0 ` 〈[z := `v+z]〉[cor; drive]�φ
P7 ψ ` `≥0→ 〈[z := `v+z]〉[cor; drive]�φ
F1 ψ ` ∀`≥0 〈[z := `v+z]〉[cor; drive]�φ

D12 ψ ` [neg][cor; drive]�φ

The application of T2 in this latter case spawns a third case (marked with .) to
show that φ holds during cor . However, the reasoning in this third case is subsumed
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by the cases above, since the changes on a in cor do not interfere with condition φ.
Generally, this optimisation of T2 is applicable whenever the modified vocabulary
is disjoint from φ. Here, D12 and F3 are implemented in Mathematica to handle
evolutions.

The leaves of the proof branches above can even be used to automatically syn-
thesise parameter constraints that are necessary to avoid MA violation. The para-
metric safety constraint obtained by combining the open conditions conjunctively
is Lv + z < m ∧ v2 < 2b(m− Lv − z). It simplifies to v2 < 2b(m− Lv − z) be-
cause b > 0. This yields bounds for the speed limit and negotiation latency in
order to guarantee safe driving and closing of the proof. Similarly, D4 leads to
a branch for the case [?m− z ≥ s; a := . . .], from which corresponding conditions
about the safety envelope s can be derived depending on the particular speed con-
troller, similar to what we have shown in Section 2.9.

4.9. Liveness by Quantifier Alternation

Liveness specifications of the form [α]♦φ or 〈α〉�φ are sophisticated (Σ1
1-hard be-

cause they can express infinite occurrence in Turing machines). Beckert and Sch-
lager [BS01] say they failed to find sound rules for a discrete case that corresponds
to [α; β]♦φ.

For finitary liveness semantics, we accomplish this as follows. In this section,
we modify the meaning of [α]♦φ to refer to all terminating traces of α. Then, the
straightforward generalisation T15 in Figure 4.5 is sound, even in the hybrid case.
But T15 still leads to an incomplete axiomatisation as it does not cover the case
where, in some traces, φ becomes true at some point during α, and in other traces, φ
only becomes true during β. To overcome this limitation, we use a program trans-
formation approach. We instrument the hybrid program to monitor the occurrence
of φ during all changes: In T16, α̌ results from replacing all occurrences of x := θ
by x := θ; ?φ→ t = 1 and x′ = θ by x′ = θ& (φ→ t = 1). The latter is a continu-
ous evolution restricted to the region of the state space that satisfies φ→ t = 1.
The effect is that t detects whether φ has occurred during any change in α. In
particular, t is guaranteed to be 1 after all runs, if φ occurs at least once along
all traces of α. This trick directly works for first-order conditions φ. Using the
combination presented in [Pla07g], nominals can be used as state labels to address
the same issue for general φ.

4.12 Proposition (Local soundness). The rules in Figure 4.5 are locally sound
for finitary liveness semantics.

Proof. Let ν be any state.

T15 Assuming that the premiss is true, we need to consider two cases corres-
ponding to the two formulas of its succedent. If ν |= [α]♦φ, then obviously
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(T15)
` [α]♦φ, [α][β]♦φ

` [α; β]♦φ
(T16)

φ ∨ ∀t [α̌]t = 1

[α]♦φ

Figure 4.5.: Transformation rules for alternating temporal path and trace quantifi-
ers

ν |= [α; β]♦φ, as every trace of α; β has a trace of α as prefix, during which φ
holds at least once. If, however, ν |= [α][β]♦φ, then φ occurs at least once dur-
ing all traces that start in a state reachable from ν by α. Let % ◦ ς ∈ τ(α; β)
with first % = ν, % ∈ τ(α) and ς ∈ τ(β). In finitary liveness semantics, %◦ς can
be assumed to terminate (otherwise there is nothing to show). Then, last %
is a state reachable from ν by α, hence ς |= ♦φ. In particular, % ◦ ς |= ♦φ.

T16 For the soundness of T16, first observe that the truth of val(ν, φ) of φ depends
on the state ν, hence it can only be affected during state changes. Further,
the only actual changes of valuations happen during discrete jumps x := θ
or continuous evolutions x′ = θ. All other system actions only cause control
flow effects but no elementary state changes. Assume the premiss is true in a
state ν. If ν |= φ, the conjecture is obvious. Hence, assume ν |= ∀t [α̌]t = 1.
Suppose ν 6|= [α]φ,then there is a trace σ ∈ τ(α) with σ 6|= ♦φ. Then, this
trace directly corresponds to a trace σ̌ of α̌ in which all φ→ t = 1 conditions
are trivially satisfied as φ never holds. As there are no changes of the fresh
variable t during α̌, the value of t remains constant during σ̌. But then we
can conclude that there is a trace, which is essentially the same as σ̌, except
for the constant valuation of the fresh variable t on which no conditions are
imposed, hence t = 0 is possible. As these traces terminate in finitary liveness
semantics, we can conclude ν 6|= ∀t [α̌]t = 1, which is a contradiction. Con-
versely for equivalence of premiss and conclusion, assume ν 6|= φ ∨ ∀t [α̌]t = 1.
Then, the initial state ν does not satisfy φ and it is possible for α̌ to execute
along a terminating trace σ that permits t to be 6=1. Suppose there was a
position (i, ζ) of σ at which σi(ζ) |= φ. Without loss of generality, we can
assume (i, ζ) to be the first such position. Then, the hybrid action which
regulates σi is accompanied by an immediate condition that φ → t = 1,
hence t = 1 holds if σ terminates. Since the fresh variable t is rigid (is
never changed during α̌) and σ terminates in finitary liveness semantics, we
conclude val(lastσ, t) = 1, which is a contradiction.

4.10. Summary

For reasoning about hybrid systems, we have introduced a temporal dynamic logic,
dTL, with modal path quantifiers over traces and temporal quantifiers along the
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traces. It combines the capabilities of dynamic logic [HKT00] to reason about
possible system behaviour with the power of temporal logic [Pnu77, EC82, EH86]
in reasoning about the behaviour along traces. Furthermore, we have presented a
calculus for verifying temporal safety specifications of hybrid programs in dTL.

Our sequent calculus for dTL is a completely modular combination of temporal
and non-temporal reasoning. Temporal formulas are handled using rules that aug-
ment intermediate state transitions with corresponding sub-specifications. Purely
non-temporal dL rules handle the effects of discrete and continuous evolution. The
modular nature of the dTL calculus further enables us to lift the relative complete-
ness result from dL to dTL.

As an example, we demonstrate that our logic is suitable for reasoning about
safety invariants in the European Train Control System. Further, we have success-
fully applied our calculus to automatically synthesise (nonlinear) parametric safety
constraints for this system.

Future work includes extending dTL with CTL∗-like [EH86] formulas of the
form [α](ψ ∧�φ) to avoid splitting of the proof into two very similar sub-proofs for
temporal parts [α]�φ and non-temporal parts [α]ψ arising in T2. Our combination
of temporal logic with dynamic logic is more suitable for this purpose than previ-
ous approaches for discret systems [BS01], since dTL has uniform modalities and
uniform semantics for temporal and non-temporal specifications. This extension
will also simplify the treatment of alternating liveness quantifiers conceptually.
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Synopsis

We show how deductive, real algebraic, and computer algebraic methods
can be combined for verifying hybrid systems in an automated theorem prov-
ing approach. In particular, we highlight the interaction of deductive and al-
gebraic reasoning that is used for handling the joint discrete and continuous
behaviour of hybrid systems. Systematically, we derive a canonical tableau
procedure modulo from the calculus of differential dynamic logic. We de-
lineate the nondeterminisms in the tableau procedure carefully and analyse
their practical impact in the presence of computationally expensive hand-
ling of real algebraic constraints. Based on the experience with larger case
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studies, we analyse proof strategies for dealing with the practical challenges
for integrated algebraic and deductive verification of hybrid systems. To
overcome the complexity pitfalls of integrating real arithmetic, we propose
the iterative background closure and iterative inflation order strategies with
which we achieve substantial computational improvements.

5.1. Introduction

While the theoretical background and formal details of our logic-based verification
approach for hybrid systems can be found in Part I, here we discuss the practical
aspects of combining deductive, real algebraic, and computer algebraic prover tech-
nologies. In particular, we highlight the principles how these techniques interact
for verifying hybrid systems. We analyse the degrees of freedom in implementing
our calculus in terms of the nondeterminisms of its canonical proof procedure. We
illustrate the impact that various choices of proof strategies have on the overall
performance. For hybrid system verification, we observe that the nondeterminisms
in the interaction between deductive and real algebraic reasoning have consider-
able impact on the practical feasibility. While straightforward combinations are
sufficient for verifying examples like those presented in Part I, larger case studies
like those that we present in Part III are beyond the capabilities of state-of-the-art
decision procedures for real arithmetic. In this chapter, we analyse and explain
the causes and consequences of this effect and introduce automatic proof strategies
that avoid these complexity pitfalls and work well in practice.

Here we study the modular combination in the dL calculus (our findings gen-
eralise directly to the extensions of the DAL and dTL calculi so that we use dL
interchangably with DAL and dTL in the following). Our observations are of more
general interest, though, and we conjecture that similar results hold for other prover
combinations of logics with interpreted function symbols that are handled using
background decision procedures for computationally expensive theories including
real arithmetic, approximations of natural arithmetic, or arrays.

5.1.1. Related Work

As we have pointed out in Section 1.2, there are only a few other practical ap-
proaches [MS98, ÁMSH01] that use deduction for verifying hybrid systems and
actually integrate arithmetic reasoning in STeP [MS98] or in PVS [ÁMSH01], re-
spectively. They do not work with a genuine verification logic, however, but only
generate flat mathematical verification conditions for hybrid automata with a given
invariant. In contrast, the symbolic decompositions in our verification logic preserve
the problem structure, which enables us to achieve good performance in practice.
See Section 1.2 for a detailed comparison.
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Several other approaches intend to combine deductive and arithmetic reasoning,
e.g. [BJK+97, BCZ98, ADG+01]. Their focus, however, is on general mathematical
reasoning in classes of higher-order logic and is not tailored to verify hybrid systems.
Our work, instead, is intended to make practical verification of hybrid systems
possible and we aim at automating the verification process.

Structure of this Chapter

In Section 5.2, we analyse our calculi for differential dynamic logics from a qual-
itative perspective and present a corresponding tableau procedure modulo solvers
for handling real algebraic and computer algebraic constraints. We delineate their
nondeterminisms carefully in Section 5.3 and analyse their practical impact. We
present proof procedures for automated theorem proving in differential dynamic lo-
gics that navigate among the complexity pitfalls of integrating decision procedures
for real arithmetic in Section 5.4 and Section 5.5. In Section 5.6, we evaluate their
performance in larger case studies.

5.2. Tableau Procedures Modulo

In this section, we derive a canonical tableau procedure modulo background provers
from the dL calculus and analyse the remaining nondeterministims in the sequel.

For the purpose of this chapter, the full details of how the respective F-rules of
Chapter 2–3 lift quantifier elimination to dynamic logic are not important. What is
important to note, however, is that quantifier rules and rules for handling modalit-
ies need to interact because the actual constraints on quantified symbols depend on
the effect of the hybrid programs within modalities (Section 2.5.2). Thus, at some
point, after a number of rule applications that handle the dynamic part, F-rules will
be used to discharge (or at least simplify) proof obligations over real algebraic or
semialgebraic constraints by quantifier elimination [Col75, CH91, Tar51]. The re-
maining sub-goals will be analysed further again using dynamic rules. The F-rules
constitute the modular interface that combines deduction for handling dynamic
reasoning with algebraic constraint techniques for handling continuous reasoning
about the reals. Here, we discuss the consequences and principles of this combina-
tion and analyse proof strategies.

The principle how the dL calculus in Figure 2.5 combines deduction technology
with methods for handling real algebraic constraints complies with the general back-
ground reasoning principles [Bec99, Tin03, DHK03]. From an abstract perspective,
the dL calculus selects a set Φ of (quantified) formulas from an open branch (Φ
is called the key) and hands it over to the quantifier elimination procedure. The
resulting formula obtained by applying QE to Φ is then returned to the main se-
quent prover as a result, and the main proof continues, see Figure 5.1. Similarly,
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the dL calculus triggers symbolic, computer algebraic computations for the rules
for differential equations using their solutions (D11–D12 from Figure 2.5) or total
differentials of differential invariants (G5) or variants (G6) from Figure 3.3.

ψ ` [α]φ

Deductive
Prover

QE(Φ)

Φ

alg(Φ)

Φ

R-Algebraic
Elimination

Computer
Algebra

key

QE(key)

key

alg(key)

Figure 5.1.: Deductive, real algebraic, and computer algebraic prover combination

In this context, the P-rules, D-rules, and G-rules constitute the foreground rules
in the main prover (middle box of Figure 5.1), except for evolution rules D11–D12
and differential (in)variant rules G5–G6 that represent the computer algebraic rules
invoking a computer algebra system as a background solver (left box). The arith-
metic F-rules (in particular F3 and F6 from Figure 2.5 and F1–F4 from Figure 3.3)
form the set of rules that invoke the background prover (right box) for quantifier
elimination. Since the primary challenges caused by the nondeterminisms in the
dL calculus originate from the interaction of deductive and real algebraic rules, we
simplify the presentation in the following and only distinguish between background
real arithmetic rules and foreground rules, where computer algebraic rules will be
considered as foreground rules.

The canonical tableau procedure belonging to the dL calculus is presented in
Figure 5.2. Observe that the tableau procedure [Fit96] for our dL calculus has a
nonstandard set of nondeterministic steps (indicated by B,M, and F , respectively
in Figure 5.3):

B: selectBranch, i.e., which open branch to choose for further rule applications.

M: selectMode, i.e., whether to apply foreground dL rules (P-rules, D-rules, and
G-rules) or background arithmetic rules (F3, F6 from Figure 2.5 or F1–F4
from Figure 3.3).

F : selectFormula, i.e., which formula(s) to select for rule applications from the
current branch in the current mode.

Within the rule applications, there is an additional choice of whether to handle dif-
ferential equations using their solution (D11–D12 from Figure 2.5) or by differential
induction (G5–G6 from Figure 3.3). We do not follow up on this nondeterminism in
the sequel but simply choose to use solutions, whenever they are first-order express-
ible, and fall back to differential induction (Section 3.5.5) when no such solution
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while tab leau T has open branches do
B := se l ec tBranch (T) (∗ B−nondeterminism ∗)
M := se lectMode (B) (∗ M−nondeterminism ∗)
F := se l ec tFormu las (B,M) (∗ F−nondeterminism ∗)
i f M = foreground then

R := r e s u l t o f apply ing a P, D, or G−r u l e to F in B
r e p l a c e branch B by R in tab leau T

else
send key F to background d e c i s i o n procedure QE
receive r e s u l t R from QE
apply an F−r u l e to T with QE−r e s u l t R

end i f
end while

Figure 5.2.: Tableau procedure for differential dynamic logics

ψ ` [α]φ

F
M

B

Deductive Prover

QE(Φ)

Φ

R-Algebraic
Elimination

M

Figure 5.3.: Nondeterminisms in the tableau procedure for differential dynamic lo-
gics

can be found. The computational cost of differential induction is generally less
than when working with solutions, but the corresponding differential (in)variants
have to be found first, which we handle in Chapter 6. There is a further minor
nondeterminism of whether to expand loops using D5,D6 or to go for an induc-
tion by G3 and G4. Yet, as unrolling (D5,D6) only handles reachability prefixes
or bounded loops, our strategies prefer induction (G3 and G4) instead. The other
dL rules do not produce any conflicts once a formula has been selected as they
apply to formulas of distinct syntactic structures: The top-level operators uniquely
determine a calculus rule once a formula has been selected.

At this point, notice that, unlike the classical tableau procedure [Fit96], we have
three rather than four points of nondeterminism, since dL does not need closing
substitutions. The reason for this is that dL has an interpreted domain. Rather
than having to try out instantiations that have been determined by unification
or heuristics as in uninterpreted first-order logic [Fit96], we can make use of the
structure in the interpreted case of first-order logic over the reals. In particular,
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arithmetic formulas can be reduced equivalently by QE to simpler formulas in the
sense that the quantified symbols no longer occur. As this transformation is an
equivalence, there is no loss of information and we do not need to backtrack [Fit96]
or simultaneously keep track of multiple local closing instantiations [Gie01].

Despite this, the influence of nondeterminism on the practical prover performance
is remarkable. Even though the first-order theory of real arithmetic is decidable by
quantifier elimination [CH91], its complexity is doubly exponential in the number
of quantifier alternations [DH88]. While more efficient algorithms exist for linear
fragments [LW93], the practical performance is an issue in nonlinear cases. Hence,
the computational cost of individual rule applications is quite different from the
linear complexity of applying closing substitutions in uninterpreted tableaux.

5.3. Nondeterminisms in Tableau Modulo

In principle, exhaustive fair application of background rules by the nondeterminisms
M and F remains complete for appropriate fragments of dL. In practice, however,
the complexity of real arithmetic quickly makes this näıve approach infeasible for
larger case studies. In the remainder of this chapter, we discuss the consequences
of the nondeterminisms and develop proof strategies to tackle the combination and
integration challenges.

5.3.1. Nondeterminisms in Branch Selection

In classical uninterpreted tableaux, branch selection has no impact on completeness
but can only have impact on the proving duration as closing substitutions can some-
times be found much earlier on one branch than on the others. In the interpreted
case of dL, branch selection is even less important. As dL has no closing sub-
stitutions, there is no direct interference among multiple branches. Branches with
(explicitly or implicitly) universally quantified variables have to be closed independ-
ently, hence the branch order is not important. For instance, when x is a universally
quantified variable and we denote the corresponding Skolem symbol again by x, the
branches in the following proof can be handled separately (branches are implicitly
combined by conjunction and universal quantifiers distribute over conjunctions):

QE(∀x (. . . bx2 ≥ 0))
F3Γ, b > 0 ` bx2 ≥ 0

QE(∀x (. . . bx4 + x2 ≥ 0))
F3Γ, b > 0 ` bx4 + x2 ≥ 0

P5 Γ, b > 0 ` bx2 ≥ 0 ∧ bx4 + x2 ≥ 0
F1 Γ, b > 0 ` ∀x (bx2 ≥ 0 ∧ bx4 + x2 ≥ 0)

For existentially quantified variables, the situation is a bit more subtle as mul-
tiple branches interfere indirectly in the sense that a simultaneous solution needs
to be found for all branches at once. In ∃v (v > 0 ∧ v < 0), for instance, the two
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branches resulting from the cases v > 0 and v < 0 cannot be handled separately, as
the existential quantifier claims the existence of a simultaneous solution for v > 0
and v < 0, not two different solutions. Thus, when v is an existentially quanti-
fied variable and V its corresponding free existential variable, the branches in the
following proof need to synchronise before quantifier elimination is applied:

QE(∃v . . . )

F3

b > 2 ` b(V − 1) > 0

b > 2 ` [v := V − 1]bv > 0

b > 2 ` (V + 1)2 + bε(V + 1) > 0

b > 2 ` [v := V + 1]v2 + bεv > 0
P5 b > 2 ` [v := V − 1]bv > 0 ∧ [v := V + 1]v2 + bεv > 0
F1 b > 2 ` ∀v ([v := v − 1]bv > 0 ∧ [v := v + 1]v2 + bεv > 0)

The order in which the intermediate steps at the two branches are handled has
no impact on the proof. Branches like these synchronise on an existential free
variable V in the sense that all occurrences of V need to be first-order on all
branches for quantifier elimination to be applicable. Consequently, the only fairness
assumption for B is that whenever a formula of a branch is selected that is waiting
for synchronisation with another branch to become first-order, then it transfers its
branch choice to the other branch. In the above case the left branch synchronises
with the right branch on V . Hence, rule F6 can only be applied to b(V − 1) > 0 on
the left branch after D9 has been applied on the right branch to yield first-order
occurrences of V .

Thus, the primary remaining impact of the branch nondeterminism is that closing
branches by universally quantified variable reasoning simplifies all subsequent ex-
istential variable handling, because less branches remain that need to be considered
simultaneously.

5.3.2. Nondeterminisms in Formula Selection

In background proving mode, it turns out that nondeterminism F is important for
the practical performance. In practice, when a branch closes or, at least, can be
simplified significantly by a quantifier elimination call, then the running time of a
single decision procedure call depends strongly on the number of irrelevant formulas
that are selected in addition to the relevant ones by F .

Clearly, when Φ is a set of formulas from a sequent that yields a tautology such
that applying QE closes a branch, then selecting any superset Ψ ⊇ Φ from a branch
yields the same answer in the end (a sequent forms a disjunction of its formulas
hence it can be closed to true when any subset closes). However, the running
time until this result will be found in the larger Ψ is strongly disturbed by the
presence of complicated additional but irrelevant formulas. From our experience
with Mathematica, decision procedures for full real arithmetic seem to be distracted
considerably by such irrelevant additional information.
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5.1 Example (Computational distraction in quantifier elimination). One sequent
from the proof of the ETCS kernel in Section 2.4 is depicted in Figure 5.4. It
results from the right branch of the proof in Section 2.9 by exhaustive splitting.
Quantifier elimination, as performed by function Reduce in Mathematica, runs
more than 24h without producing a result on the formula in Figure 5.4, which
has 9 symbolic variables and polynomial degree 2.

The marked constraint in Figure 5.4 corresponds to the initial state of the system,
because it refers to the initial train position z and not to the current train posi-
tion z2 in the current induction step. In fact, the induction step does not depend on
this part of the initial state information (it does depend on b > 0, though). When
we remove the superfluous constraint on the initial state, the formula in Figure 5.4
suddenly becomes provable in less than one second! The dL calculus presented in
Chapter 2 already avoids this problem, because rule F3 applies quantifier elimina-
tion after reintroducing the quantifier structure that results from universal closures
in global rule applications (e.g., G3).

t2 > 0, ε ≥ t2, v2 ≥ 0, A+ 1/t2 · v2 ≥ 0, t2 ≥ 0,

m− z2 ≥ v2
2/(2b) + (A/b+ 1)(A/2ε2 + εv2),

2b(m− z2) ≥ v2
2

2b(m− z) ≥ v2, /* initial state */

b > 0, A ≥ 0

` (At2 + v2)2 ≤ 2b(m− 1/2(At22 + 2t2v2 + 2z2))

Figure 5.4.: Computational distraction in quantifier elimination

Yet, such additional information accumulates in tableaux procedures quite nat-
urally, because the purpose of a proof branch in dL is to keep track of all that is
known about a particular (symbolic) case of the system behaviour. Generally, not
all of this knowledge finally turns out to be relevant for that case but only plays a
role in other branches. Nevertheless, discarding part of this knowledge arbitrarily
would, of course, endanger completeness.

For instance, the safety statement (2.1) in Section 2.4 depends on a constraint
on the safety envelope s that regulates braking versus acceleration by the condi-
tion m− z ≥ s in ctrl . A maximal acceleration of A is permitted in case m−z ≥ s,
when adaptively choosing s depending on the current speed v, maximum braking
force b, and maximum controller response time ε in accordance with constraint (2.6)
as discovered in Section 2.9. This constraint is necessary for some but not for all
cases of the symbolic safety analysis, though. In the case where the braking beha-
viour of ETCS is analysed, for instance, the constraint on s is irrelevant, because
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braking is the safest operation that a train can do to avoid crashing into preceding
trains. The unnecessary presence of several quite complicated constraints like, for
instance, (2.6), however, can distract quantifier elimination procedures consider-
ably.

5.3.3. Nondeterminisms in Mode Selection

In its own right, nondeterminism M has less impact on the prover performance
than F . Every part of a branch could be responsible for closing it. The foreground
closing rule P9 of the main prover can only close branches for comparatively trivial
reasons like b > 0, ε > 0 ` ε > 0. Hence, mode selection has to give a chance to the
background procedure every once in a while, following some fair selection strategy.
From the observation that some decision procedure calls can run for hours without
terminating, we can see, however, that realisations of nondeterminismM needs to
be devised with considerable care.

As the reason for closing a branch can be hidden in any part of the sequent, some
expensive decision procedure calls are superfluous if the branch can be closed by
continuing dL reasoning on the other parts. For instance, if F is some complicated
algebraic constraint, decision procedure calls triggered by nondeterminism M can
lead to nontermination within any feasible time for

. . . , ε > 0,m− z ≥ s ` F, [drive]ε > 0, . . .

Instead, ifM chooses foreground rules, then an analysis of [drive]ε > 0 by dL rules
will quickly discover that the maximum reaction-time ε remains constant while
driving. Then, this part of a proof closes without the need to consider constraint F
at all. For this reason, proof strategies that eagerly check for closing branches by
background procedure calls are not successful in practice, see Figure 5.5. Similarly,

eager: infeasible

lazy: waste

Figure 5.5.: Eager and lazy quantifier elimination in proof search space

verifying the ETCS case study that we detail in Chapter 7 requires proving pretty
large subgoals of first-order real arithmetic, which cannot be proven by a quantifier
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state = 0,

2 * b * (m - z) >= v ^ 2 - d ^ 2,

v >= 0, d >= 0, v >= 0, ep > 0, b > 0, A > 0, d >= 0

==>

v <= vdes

-> \forall R a_3;

( a_3 >= 0 & a_3 <= A

-> ( m - z

<= (A / b + 1) * ep * v

+ (v ^ 2 - d ^ 2) / (2 * b)

+ (A / b + 1) * A * ep ^ 2 / 2

-> \forall R t0;

( t0 >= 0

-> \forall R ts0;

(0 <= ts0 & ts0 <= t0

-> -b * ts0 + v >= 0 & ts0 + 0 <= ep)

-> 2 * b * (m - 1 / 2 * (-b * t0 ^ 2 + 2 * t0 * v + 2 * z))

>= (-b * t0 + v) ^ 2

- d ^ 2

& -b * t0 + v >= 0

& d >= 0))

& ( m - z

> (A / b + 1) * ep * v

+ (v ^ 2 - d ^ 2) / (2 * b)

+ (A / b + 1) * A * ep ^ 2 / 2

-> \forall R t2;

( t2 >= 0

-> \forall R ts2;

(0 <= ts2 & ts2 <= t2

-> a_3 * ts2 + v >= 0 & ts2 + 0 <= ep)

-> 2 * b * (m - 1 / 2 * (a_3 * t2 ^ 2 + 2 * t2 * v + 2 * z))

>= (a_3 * t2 + v) ^ 2

- d ^ 2

& a_3 * t2 + v >= 0

& d >= 0)))

Figure 5.6.: A large subgoal of first-order real arithmetic during ETCS verification
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elimination procedure within any feasible amount of time, see Figure 5.6 for an
example.

Unfortunately, converse strategies with lazy checks that strongly favour fore-
ground dL rule applications inM, are not appropriate either, see Figure 5.5. There,
splitting rules like P5 and P4 can eagerly split the problems into multiple branches
without necessarily making them any easier to solve. If this happens, slightly dif-
ferent but similar arithmetic problems of about the same complexity need to be
solved repeatedly on multiple branches rather than just one branch, resulting in
runtime blow-up.

The reason why this can happen is a substantial syntactic redundancy in the
sequent encoding of formulas. For instance, the sets of sequents before and after
the following rule application are equivalent:

P5,P5
ψ ` v2 ≤ 2b(m− z) ψ ` ε > 0 ψ ` (z ≥ 0→ v ≤ 0)

ψ ` v2 ≤ 2b(m− z) ∧ ε > 0 ∧ (z ≥ 0→ v ≤ 0)

Yet, closing the three sequents above the bar by quantifier elimination is not ne-
cessarily easier than the single sequent below (neither conversely). Even worse, if
the sequents close by applying rules to ψ, then similar reasoning has to be repeated
for three branches. This threefold reasoning may not even be detected as identical
when ψ is again split differently on the three resulting branches.

Further, the representational equivalence in sequents is purely syntactic, i.e., up
to permutation, the representations share the same disjunctive normal form. In
the uninterpreted case of first-order logic, this syntactic redundancy is exploited by
the P-rules in order to transform sequents towards a canonical form with atomic
formulas, where partial closing situations are more readily identifiable. In the
presence of a background decision procedure, however, reduction to sequents with
atomic formulas is no longer necessary as it will be undone when handing the
formulas over to the background decision procedure.

Furthermore, the logical splitting along the propositional structure does not al-
ways help quantifier elimination procedures, because their working principle is not
a deductive case analysis but (partial) cylindrical algebraic decomposition [Col75,
CH91, CJK02]. In Section 5.4, we will see that the deductive analysis is still an
extremely important factor for accelerating quantifier elimination, but has to be
applied with care.

Finally, algebraic constraint handling techniques as in the Mathematica func-
tion Reduce can come up with a result that is only a restated version of the input
if a selected (open) formula cannot be simplified or closed. For instance, the se-
quent z < m ` v2 ≤ 2b(m− z) “reduces” to ` b ≥ v2/(2m− 2z) ∨m ≤ z without
any progress. Such arithmetical reformulation cannot even be detected by simple
syntactical means but easily lead to infinite proof loops without progress when the
outcome is split by P3 and again handled by the background procedures.
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5.4. Iterative Background Closure

In the sequel, we propose strategies to solve the previously addressed computa-
tional issues caused by the nondeterminisms of the dL tableau procedure and its
integration with computationally expensive background provers.

Priority-based Strategies We propose the priorities for rule applications in Fig-
ure 5.7a (with rules at the top taking precedence over rules at the bottom). In
this strategy, algebraic constraints are generally left intact as opposed to being
split among multiple branches, because arithmetic rules have a higher priority than
propositional splitting rules on first-order constraints. Further, we only accept the
result of the background procedure when the number of different variable symbols
has decreased to avoid infinite proof loops. We use arithmetic background rules
either with priority 2 or with priority 5.

1. non-splitting propositional rules P1–P3, P6–P7, P9

2. arithmetic rules if variable eliminated

3. dynamic rules D7–D10

4. splitting rules P5, P4, P8 on modalities

5. arithmetic rules if variable eliminated

6. (in)variant global rules G3, G4, G5, and G6

7. splitting rules P5, P4, P8 on first-order formulas

5.7a: Proof strategy priorities
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2 2

4 4

8 8
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5.7b: Iterative background closure

Figure 5.7.: Iterative background closure (IBC) proof strategy

The effect of using priority 2 is that branches are checked eagerly for closing
conditions or variable reductions, see Figure 5.5. If reasoning about algebraic con-
straints does not yield any progress (no variables can be eliminated), then dL rules
further analyse the system. For this choice, it is important to work with timeouts
to prevent lengthy background decision procedure calls from blocking dL proof
progress.

This problem is reduced significantly when using priority 5 for arithmetic rules
instead. The effect of priority 5 is that formulas containing modalities are analysed
and decomposed as much as possible before arithmetic reasoning is applied to al-
gebraic constraint formulas. Then, however, the prover might consume too much
time analysing the effects of programs on branches which would already close due
to simple arithmetic facts like in ε > 0, ε < 0 ` [α]φ.

A simple compromise is to use a combination of background rules with prior-
ity 2 for quick linear arithmetic [LW93] and to fall back to expensive quantifier
elimination calls for nonlinear arithmetic with priority 5.
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1 /∗ prove v a l i d i t y o f the sequent Φ ` Ψ ∗/
2 function IBC(Φ ` Ψ , timeout ) :
3 i f QE(Φ ` Ψ) succeeds within t imeout then
4 return QE(Φ ` Ψ)
5 else
6 while foreground r u l e a p p l i c a b l e and proo f not s p l i t do
7 apply foreground r u l e to cur rent sequent
8 end while
9 l e t Φ1 ` Ψ1, . . . ,Φn ` Ψn be the r e s u l t i n g branches

10 timeout := 2∗ t imeout
11 return IBC(Φ1 ` Ψ1 , t imeout ) and . . . and IBC(Φn ` Ψn , t imeout )

Figure 5.8.: Iterative background closure (IBC) algorithm schema

Iterative Background Closure As a more sophisticated control strategy on top of
the static priorities in Figure 5.7a, we introduce iterative background closure (IBC).
There, the idea is to periodically apply arithmetic rules with a timeout T that
increases by a factor of 2 after background procedure runs have timed out, see Fig-
ure 5.7b. Thus, background rules interleave with other rule applications (triangles
in Figure 5.7b), and the timeout for the sub-goals increases as indicated, until the
background procedure successfully eliminated variables on a branch (marked by
∗). The effect is that the prover avoids splitting in the average case but is still
able to split cases when combined handling turns out to be prohibitively expensive.
As an optimisation, timed-out QE will only be invoked again after the branch has
been split (or after a modal formula has disappeared from the sequent). Figure 5.8
shows a procedure that corresponds to a proof strategy that implements IBC. Un-
less the QE call terminated successfully within the current timeout (line 3), IBC
applies foreground rules (line 7) until the proof has split. Then, the timeout in-
creases (line 10) and IBC handles the resulting branches recursively (line 11). Our
experimental results show that IBC is surprisingly decisive for handling larger case
studies, see Section 5.6.

And/Or Branching More generally, the dL calculus gives rise to theorem proving
structures with combined and/or-branching. While the branches resulting from
one rule application are and-branches (all of them have to close for the proof to
succeed), the rule alternatives, especially as caused by the tableau procedure non-
determinisms, are or-branches (only one of the proof search alternatives has to be
successful), see Figure 5.9. Most notably, induction rules give rise to or-branches,
as there are several possible formulas (infinitely many) that could be used as (dif-
ferential) (in)variants for G3–G6, but one single successful (in)variant is enough
for closing the proof. For these or-branch alternatives, any fair parallel explora-
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tion scheme or any fair sequential exploration scheme with time-interleaving can
be used. Iterative background closure is one possible sequential interleaving choice
that works well in practice. On parallel computers, distributed clusters, or even
multi-core processors, truly parallel exploration schemes would be faster, as they
exploit the natural proving parallelism in our calculi. We will make use of and/or-
branching exploration based on iterative background closure in Chapter 6.

and

or

and

or or

and

or or

or

and

or or

and

or or

Figure 5.9.: General and/or-branching in proof strategies for differential dynamic
logics

5.5. Iterative Inflation

The iterative background closure strategy already has a decisive impact on the
feasibility of verifying larger case studies. Yet, there are still cases where the
F -nondeterminism has a significant computational impact that limits scalability.
These difficulties are primarily caused by superfluous constraints on previous or
initial states that accumulate in the sequent, see, e.g., Example 5.1.

A general possible solution for this issue is to iteratively consider more formulas of
the sequent and attempt decision procedure calls with fair time-interleaving until
the respective branch closes. There, only those additional formulas need to be
considered that share variables with any of the other selected formulas. Further,
timeouts can be used to discontinue lengthy decision procedure calls and continue
along other choices of the nondeterminisms in Figure 5.2. For complicated cases
with a prohibitive complexity, this heuristic process worked well on our examples.

Inflation Order As a general pattern for building iterative inflation optimisations,
we propose an algorithm that selects additional formulas of a sequent successively
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1 /∗ prove v a l i d i t y o f the d i s j u n c t i v e s e t S ∗/
2 /∗ o f formulas o f f i r s t −order r e a l a r i t h m e t i c ∗/
3 function IIO (S ) :
4 timeout := 1
5 C := { fa l se }
6 while C 6= ∅ do
7 for φ ∈ C do
8 i f (QE(φ) = true ) within t imeout then
9 return v a l i d

10 else i f (QE(φ) 6= true ) within t imeout
11 or FindInstance (¬φ) within t imeout then
12 C := (C ∪ {φ ∨ A : A ∈ S,A 6∈ φ}) \ {φ}
13 end for
14 timeout := 2∗ t imeout
15 end while
16 return not v a l i d

Figure 5.10.: Iterative inflation order (IIO) algorithm schema

while a counterexample can be found in bounded time (e.g., using the Mathematica
function FindInstance) and terminates when a quantifier elimination call yields
“true” within the current time bound (increasing timeouts as in IBC).

The iterative inflation algorithm schema in Figure 5.10 proves validity of a dis-
junction of formulas of first-order real arithmetic that is given as a set S of disjuncts.
Validity of a sequent Φ ` Ψ can be proven by IIO({¬φ : φ ∈ Φ} ∪ {ψ : ψ ∈ Ψ}).
Following the general scheme in Figure 5.9, the IIO algorithm explores subset can-
didates of S in parallel by fair time interleaving. Starting from the empty subset of
formulas (line 5), the algorithm will try to prove (line 8) or disprove (line 11) each
candidate subset φ of S. The first successful QE yielding true within the current
timeout shows validity of S (line 9), because a disjunction is valid iff any subset
is. When a counterexample is found (line 11) or quantifier elimination produced
another result than “true” within the timebounds (line 10), candidate φ is dropped
and any remaining formulas of S are added to φ to form new candidates. If no can-
didate could be proven (line 8) or disproven (lines 10–11) within the current time
bounds, the timeout increases (line 14). The algorithm returns that S is not valid
if all candidates have counterexamples (or QE yields results other than “true”) and
no new formulas of S can be added to produce new candidates (line 12).

Note that the IIO algorithm is a schematic algorithm. It allows for several
refinements, optimisations, and caching improvements. Most importantly, line 12
can be refined to limit the number of candidates explored in parallel by adding only
candidates with computationally promising properties. In general, a reinclusion
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ordering can be used to determine in which order, new candidates are added and
explored.

Canonical Reinclusion Order One simple canonical reinclusion ordering is to
order formulas by precomputing the overall resulting theoretical complexity based
on various complexity results for real quantifier elimination [DH88, Gri88, GV88,
Ris88, Wei88, BD07, Ren92a, Ren92b, Ren92c], which depend on the number of
variables and either the number of quantifiers (practical algorithms) or the number
of quantifier alternations (theoretical complexity results). While this has a certain
theoretically precise appeal, the disadvantage is that the theoretical complexity
measures are rather coarse-grained and do not take into account the structure of
the formula but only its worst-case elements.

Structural Reinclusion Order Among all possible orders for re-including formu-
las, total orders share the advantage that they prevent the need for parallel explor-
ation of multiple different possibilities of adding mutually incomparable formulas,
which can also turn into a disavantage once the order starts adding computationally
problematic high-degree constraints. As a compromise of the canonical reinclusion
order with structural information, we propose to order formulas for reinclusion ac-
cording to the lexicographical order of, respectively, relative variable recency, total
polynomial degree, number of new variables, and maximum term depth. Favouring
more recent variables follows the rationale that formulas that mention variables
that have been introduced only recently into the proof are more likely to carry
relevant information about the current state than those that only refer to variables
from the initial proof obligation for which more recent state variables have already
been introduced during the proof. For instance, the position z from the initial state
may be less relevant than the current position z2 in the induction step. The braking
power, b, however, may be as relevant as the recent z2, because there is no updated
copy of the symbolic constant b. The number of new variables that are added to
the current candidate φ ∈ C from Figure 5.10 also has an impact on the complexity.
Favouring small polynomial degrees is self-explanatory and follows the observation
that the polynomial degree has a substantial impact on overall performance, as we
will also see in Chapter 8. The term depth is used as an indicator for the complexity
of the formula. To obtain a linear, yet arbitrary, order this order can be extended
easily by breaking ties by lexicographical string comparison.

Combining this structural order with more sophisticated combinations of poly-
nomial degree and number of new variables according to the canonical orders may
also be a viable alternative to improve on pure lexicographic orders.
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5.6. Experimental Results

Tables 5.1–5.4 summarise verification results for our proof strategies for various
case studies. Experimental results are from a 2.6GHz AMD Opteron with 4GB
memory. The timeout for computations was 18000s=5h and is indicated as ∞.
Memory consumption of quantifier elimination is shown, excluding the front-end.
The dimension of the state space and the number of required proof steps are in-
dicated. To isolate effects resulting from our automatic invariant discovery that we
describe in Chapter 6, we conduct experiments both with (proof annotated) user
interactions and in automatic mode (the number of non-automatic interactions is
indicated in column “Int”). The respective case studies are based on the examples
shown in Part I and will be described in full detail in Part III and IV. For the tan-
gential roundabout maneuver from Section 3.4, the number of participating aircraft
is as indicated.

Observe that the performance of the extreme strategies of eager and lazy quanti-
fier elimination depends on the example. For ETCS and larger aircraft roundabout
maneuvers (Tables 5.1 and 5.3), the lazy strategy performs faster, while the eager
strategy is faster for bouncing ball and water tank examples (Tables 5.2 and 5.4),
where the lazy approach splits heavily (the number of required proof steps is much
higher). As an intermediate strategy, IBC generally shows intermediate perform-
ance. In our case studies, the eager strategy fails to come up with a result within
the timeout fairly often. Furthermore, IBC is the only strategy that is able to
prove all case studies. For the reactivity property of the ETCS case study, both
lazy and eager proof strategies fail at the same time and only IBC succeeds. A
result of “E” indicates that no data is available, because of current limits in the
KeYmaera implementation used consistently for performance measurements.

By comparing Tables 5.1–5.2 with Tables 5.3–5.4, we also see that the perform-
ance is generally better when we do not allow partial reductions of standalone
quantified subformulas of a sequent. The reason for that is that the result of
standalone QE-reductions on subformulas (Table 5.1-5.2) can produce several dis-
junctions which split into further subbranches, such that the redundancy effects
described in Section 5.3 and those illustrated in Figure 5.5 have more impact.

Finally note that, without our range of proof strategies that result from a care-
ful analysis of the nondeterminisms in the tableau procedures for differential dy-
namic logics, the practical prover performance is significantly worse than all those
presented in Tables 5.1–5.4. The small ETCS kernel from Chapter 2 is already
provable directly when implementing the dL calculus näıvely. Without our range
of proof-strategic improvements, however, the full ETCS system that we present in
Chapter 7 requires as much as 56 user interactions to be provable [Que07], while
our proof strategies and the algorithms that we present in Part II can, in fact, prove
ETCS completely automatically with zero user interactions.
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Table 5.1.: Experimental results for proof strategies (with standalone QE) I

Case study Int Strategy Time(s) Memory(MB) Steps Dim

ETCS kernel 1 eager 11.1 15.1 44 9
1 IBC 15.6 14.3 54
1 lazy 3.8 14.2 88
0 IBC 40.2 25.6 53
0 lazy 12.9 24.3 85

ETCS binary safety 1 eager 9.6 11.4 144 14
1 IBC 10.7 12.1 148
1 lazy 13.4 16.0 413
0 IBC 57.3 25.5 148
0 lazy 46.7 32.6 293

ETCS safety 1 eager ∞ ∞ ∞ 14
1 IBC 26.8 17.6 168
1 lazy 25.8 29.1 423
0 IBC 2089.2 206.1 171
0 lazy 2046.5 203.3 304

ETCS reactivity 0 eager ∞ ∞ ∞ 14
0 IBC 1084.1 6.1 34
0 lazy ∞ ∞ ∞

tangential roundabout 3 eager 1.7 6.8 94 13
3 IBC 1.5 6.8 93
3 lazy 1.6 6.7 139
0 IBC 10.3 6.9 114
0 lazy 10.2 6.8 197

tangential roundabout 3 3 eager ∞ ∞ ∞ 18
3 IBC 75.0 24.7 165
3 lazy 52.3 14.9 244
0 IBC 1065.5 27.6 186
0 lazy 620.2 15.0 342

tangential roundabout 4 3 eager 4208.2 E E 23
3 IBC 513.4 184.4 229
3 lazy 57.6 31.4 355
0 IBC 10998.1 184.3 256
0 lazy 901.7 31.4 520

tangential roundabout 5 3 eager 7714.1 E E 28
3 IBC 2457.9 479.3 317
3 lazy 108.9 43.6 502
0 IBC ∞ ∞ ∞
0 lazy 3417.5 48.5 735
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Table 5.2.: Experimental results for proof strategies (with standalone QE) II

Case study Int Strategy Time(s) Memory(MB) Steps Dim

bouncing ball 1 eager 7.7 13.6 85 7
1 IBC 8.0 13.6 85
1 lazy ∞ ∞ ∞
0 IBC 66.4 19.0 43
0 lazy ∞ ∞ ∞

water tank 1 eager 3.8 9.1 378 3
1 IBC 3.9 9.1 375
1 lazy 9.2 9.5 1604

5.7. Summary

From the experience of using our dL calculus for verifying parametric hybrid systems
in traffic applications, we have investigated combinations of deductive, computer
algebraic, and real algebraic reasoning from a practical perspective. We have ana-
lysed the principles of this prover combination, identified the nondeterminisms that
remain in the canonical dL tableau procedure, and analysed their impact.

We have proposed proof strategies that navigate among these nondeterminisms,
including iterative background closure and iterative inflation order strategies. Sim-
ilar to the huge importance of subsumption in resolution, background-style tableau
proving requires quick techniques to rule out branches closing for simple arithmetic
reasons. In our experiments with verifying cooperating traffic agents, the com-
bination of our proof strategies reduce the number of interactions and the overall
running time significantly.
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Table 5.3.: Experimental results for proof strategies (no standalone QE) I

Case study Int Strategy Time(s) Memory(MB) Steps Dim

ETCS kernel 1 eager 11.3 15.0 42 9
1 IBC 6.9 14.3 47
1 lazy 2.8 14.2 61
0 IBC 47.8 25.4 46
0 lazy 10.5 24.2 58

ETCS binary safety 1 eager 9.8 11.3 142 14
1 IBC 10.4 12.2 148
1 lazy 7.2 15.8 235
0 IBC 41.0 17.4 144
0 lazy 18.6 12.4 204

ETCS safety 1 eager ∞ ∞ ∞ 14
1 IBC 26.5 23.1 168
1 lazy 18.9 24.2 247
0 IBC 2051.3 204.1 163
0 lazy 2031.6 203.1 216

ETCS reactivity 0 eager ∞ ∞ ∞ 14
0 IBC 104.1 61.7 49
0 lazy ∞ ∞ ∞

tangential roundabout 3 eager 1.7 6.8 94 13
3 IBC 1.7 6.8 93
3 lazy 1.9 6.7 139
0 IBC 10.9 6.9 114
0 lazy 9.9 6.8 197

tangential roundabout 3 3 eager ∞ ∞ ∞ 18
3 IBC 75.3 24.7 165
3 lazy 52.3 15.0 244
0 IBC 965.8 32.8 186
0 lazy 636.2 15.1 342

tangential roundabout 4 3 eager 4340.6 E E 23
3 IBC 513 185.7 229
3 lazy 57 31.4 355
0 IBC 3323.5 44.0 247
0 lazy 884.9 31.4 520

tangential roundabout 5 3 eager 7702.3 E E 28
3 IBC 2439.7 533.8 317
3 lazy 108.9 43.6 503
0 IBC 16303.7 827 320
0 lazy 3552.6 46.9 735
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Table 5.4.: Experimental results for proof strategies (no standalone QE) II

Case study Int Strategy Time(s) Memory(MB) Steps Dim

bouncing ball 1 eager 7.8 13.6 85 7
1 IBC 7.8 13.6 85
1 lazy 20.1 13.7 166
0 IBC 65.0 16.9 43
0 lazy 78.2 26.0 92

water tank 1 eager 3.6 9.1 387 3
1 IBC 3.8 9.1 375
1 lazy 6.6 9.3 914
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Chapter 6.

Computing Differential Invariants as
Fixedpoints
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Synopsis

We introduce a fixedpoint algorithm for verifying safety properties of hy-
brid systems with differential equations whose right-hand sides are polyno-
mials in the state variables. In order to verify nontrivial systems without
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solving their differential equations and without numerical errors, we use dif-
ferential induction as a continuous generalisation of induction, for which our
algorithm computes the required differential invariants. As a means for com-
bining local differential invariants into global system invariants in a sound
way, our fixedpoint algorithm works with differential dynamic logic as a com-
positional verification logic for hybrid systems. To improve the verification
power, we further introduce a saturation procedure that refines the system
dynamics successively with differential invariants until safety becomes prov-
able. By complementing our symbolic verification algorithm with a robust
version of numerical falsification, we obtain a fast and sound verification
procedure. We verify roundabout maneuvers in air traffic management and
collision avoidance in train control.

6.1. Introduction

Reachability questions for systems with complex continuous dynamics are among
the most challenging problems in verifying embedded systems, in particular for
hybrid systems, which are models for these systems with interacting discrete and
continuous transitions along differential equations. For simple systems whose differ-
ential equations have solutions that are polynomials in the state variables, quantifier
elimination [CH91] can be used for verification as detailed in Chapter 2. Unfortu-
nately, this symbolic approach does not scale to systems with complicated differ-
ential equations whose solutions do not support quantifier elimination (e.g., when
they are transcendental functions) or cannot be given in closed form.

Numerical or approximation approaches [ADG03, PC07, DM07] can deal with
more general dynamics. However, numerical or approximation errors need to be
handled carefully as they easily cause unsoundness [PC07]. More specifically, we
have shown previously that even single image computations of fairly restricted
classes of hybrid systems are undecidable by numerical computation [PC07]. Thus,
numerical approaches can be used for falsification but not (ultimately) for verific-
ation.

In this chapter, we present a verification algorithm that combines the sound-
ness of symbolic approaches [Frä99, AW01, Pla07b, Pla08b] with support for non-
trivial dynamics that is classically more dominant in numerical approaches [ADG03,
PC07, DM07]. During continuous transitions, the system follows a solution of its
differential equation. But for nontrivial dynamics, these solutions are much more
complicated than the original equations. Solutions quickly become transcendental
even if the differential equations are linear. To overcome this, we handle continu-
ous transitions based on their vector fields, which are described by their differential
equations. We use differential induction (Section 3.5.5), a continuous generalisa-
tion of induction that works with the differential equations themselves instead of
their solutions. For the induction step, we use a condition that can be checked
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easily based on differential invariants (Section 3.5.5), i.e., properties whose deriv-
ative holds true in the direction of the vector field of the differential equation. The
derivative is a directional derivative in the direction of (the vector field generated
by) the differential equation, with derivatives generalised from functions to formu-
las according to the findings in Chapter 3. For this to work in practice, the most
crucial steps are to find sufficiently strong local differential invariants for differential
equations and compatible global invariants for the hybrid system.

To this end, we introduce a sound verification algorithm for hybrid systems that
computes the differential invariants and system invariants in a fixedpoint loop. We
follow the invariants as fixedpoints paradigm [Cla79] using dL as a verification
logic that is generalised to hybrid systems accordingly. For combining multiple
local differential invariants into a global invariant in a sound way, we exploit the
closure properties of the underlying verification logic dL by forming appropriate
logical combinations of multiple safety statements. In addition, we introduce a
differential saturation process that refines the hybrid dynamics successively with
auxiliary differential invariants until the safety statement becomes an invariant of
the refined system. Finally, each fixedpoint iteration of our algorithm can be com-
bined with numerical falsification to accelerate the overall symbolic verification in
a sound way. We validate our algorithm by verifying aircraft roundabout man-
euvers [TPS98, PC07] and train control applications automatically, continuing the
examples in Part I to the full case studies in Part III.

Contributions

The major contribution in this work is the fixedpoint algorithm for computing dif-
ferential invariants coupled with a differential saturation process. We show that
it can verify realistic applications that were out of scope for related invariant ap-
proaches [SSM04, RCT05, PJP07] or standard model checking approaches [Hen96,
Frä99, PAM+05] based on state-space exploration, both for theoretical reasons and
for scalability reasons (see discussions in Section 2.4 and Section 3.1.1).

6.1.1. Related Work

Other authors [SSM04, RCT05, PJP07] already argued that invariant techniques
scale to more general dynamics than explicit reach-set computations or techniques
that require solutions for differential equations [Frä99, PAM+05, Pla07b]. How-
ever, they cannot handle hybrid systems with inequalities in initial sets or switch-
ing surfaces [SSM04, RCT05], which occur in most real applications like aircraft
maneuvers. Barrier certificates [PJP07] only work for inequalities, but invariants
of roundabout maneuvers require mixed equations and inequalities (Section 3.11).
Prajna et al. [PJP07] search for barrier certificates of a fixed degree by global
optimization over the set of all proof attempts for the whole system at once,
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which is infeasible: Even with degree bound 2, it already requires solving a 5848-
dimensional optimization problem for ETCS (Chapter 7) and a 10005-dimensional
problem for roundabouts with 5 aircraft. Similar scalability issues arise for other
approaches [SSM04, GT08] that search for global invariants simultaneously for all
modes of the system at once. In addition, these approaches [SSM04, GT08] require
parametric templates for the respective invariants to be specified manually.

Structure of this Chapter

In Section 6.2, we introduce an automatic verification algorithm for hybrid sys-
tems that is based on the DAL calculus and computes the differential invariants
and invariants as fixedpoints that are required for verification. In Section 6.3, we
show how soundness of the DAL calculus inherits in a simple and elegant way to
soundness of our logic-based verification procedure. We present optimisations in
Section 6.4. In Section 6.5, we present experimental results for the running example
of roundabout maneuvers in air traffic control and conclude in Section 6.6.

6.2. Inductive Verification by Combining Local
Fixedpoints

For verifying safety properties of hybrid systems without having to solve their dif-
ferential equations, we use differential induction as a continuous form of induction.
In the induction step, we use a condition on directional derivatives in the direction
of the vector field generated by the differential equation. The resulting proper-
ties are invariants of the differential equation (whence called differential invariants
in Chapter 3). The crucial step for verifying discrete systems by induction is to
find sufficiently strong invariants (e.g., for loops α∗). Similarly, the crucial step
for verifying dynamical systems (which correspond to a single continuous mode of
a hybrid system) by induction is to find sufficiently strong invariant properties of
the differential equation. Consequently, for verifying hybrid systems inductively,
local invariants need to be found for each differential equation and a global system
invariant needs to be found that is compatible with all local invariants.

To compute the required invariants and differential invariants, we combine the
invariants as fixedpoints approach from [Cla79] with the lifting of verification logics
to hybrid systems from Chapter 2–3. We introduce a verification algorithm that
computes invariants of a system as fixedpoints of safety constraints on subsystems.
In order to obtain a local algorithm that works by decomposing global properties of
hybrid programs into local properties of subsystems, we exploit the fact that hybrid
programs can be decomposed into subsystems and that dL can combine safety
statements about multiple subsystems simultaneously. Note that, the algorithms

178



6.2. Inductive Verification by Combining Local Fixedpoints

developed in this chapter apply for the logics dL, DAL, and dTL from Part I,
respectively.

A simple safety statement corresponds to a dL formula ψ → [α]φ with a hy-
brid program α, a safety property φ about its reachable states, and an arithmetic
formula ψ that characterises the set of initial states symbolically. Validity of for-
mula ψ ` [α]φ (i.e., truth in all states) corresponds to φ being true in all states
reachable by hybrid program α from initial states that satisfy ψ. Our verification
algorithm defines the function prove(ψ ` [α]φ) for verifying this safety statement re-
cursively by refining the dL and DAL calculi to an automatic verification algorithm.
The discrete base cases are discussed in Section 6.2.1. In Section 6.2.2, we contrast
discrete and differential induction. Section 6.2.4 shows the fixedpoint algorithm
for computing differential invariants for differential equations, and Section 6.2.6 for
computing loop invariants. In Section 6.2.7, we explain the interplay of local and
global fixedpoint loops of our verification algorithm.

6.2.1. Verification by Symbolic Decomposition

The cases of the verification procedure prove where dL enables us to verify a prop-
erty of a hybrid program directly by decomposing it into a property of its parts are
shown in Figure 6.1. They correspond to the cases where D-rules of Figure 3.3 can
be applied depending on the top-level program operator. For a concise presenta-
tion, the case in line 1 introduces an auxiliary variable x̂ to handle discrete assign-
ments by substituting x̂ for x in φx̂x: E.g., x ≥ 2 ` [x := x− 1]x ≥ 0 is shown by
proving x ≥ 2 ∧ x̂ = x− 1 ` x̂ ≥ 0. Our implementation uses rule D9 and discrete
jump sets to avoid auxiliary variables according to Chapter 2. State checks ?χ
are shown by assuming the test succeeds, i.e., χ holds true (line 4), nondetermin-
istic choices split into their alternatives (line 5), sequential compositions are proven
using nested modalities (line 7), and random assignments by universal quantific-
ation (line 8), which is an optimisation of the handling in Chapter 3. Random
updates [x := ∗]φ that nondeterministically assign an arbitrary real value to x are
definable by [x′ = 1 ∪ x′−1]φ.

The base case in line 9, where φ is a formula of first-order real arithmetic, can
be proven by real quantifier elimination [CH91]. Despite its complexity, this can
remain feasible, because the formulas resulting from our algorithm do not depend on
the solutions of differential equations but only their right-hand sides. In addition,
we use the respective Skolemisation and free variable rules from Chapter 2 to resolve
quantifiers in front of modalities.

The algorithm in Figure 6.1 recursively reduces safety of hybrid programs to
properties of continuous evolutions or of repetitions, which we verify in the next
sections.
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1 function prove (ψ ` [x := θ]φ ) :
2 return prove (ψ ∧ x̂ = θ ` φx̂x )
3 where x̂ i s a new a u x i l i a r y v a r i a b l e
4 function prove (ψ ` [?χ]φ ) : return prove (ψ ∧ χ ` φ)
5 function prove (ψ ` [α ∪ β]φ ) :
6 return prove (ψ ` [α]φ) and prove (ψ ` [β]φ) /∗ i . e . ψ ` [α]φ ∧ [β]φ∗/
7 function prove (ψ ` [α; β]φ ) : return prove (ψ ` [α][β]φ)
8 function prove (ψ ` [x := ∗]φ ) : return prove (ψ ` ∀xφ)
9 function prove (ψ ` φ) where i s F i r s t O r d e r (φ ) :

10 return QE(ψ → φ)

Figure 6.1.: dL-based verification by symbolic decomposition

6.2.2. Discrete and Differential Induction, Differential Invariants

In the sequel, we present algorithms for verifying loops by discrete induction (which
corresponds to rule G3) and continuous evolutions by differential induction, which
is a continuous form of induction and corresponds to rule G5 from Figure 3.3. In
either case, we prove that an invariant F holds initially (in the states characterised
symbolically by ψ, thus ψ → F is valid) and finally entails the postcondition φ
(i.e., F → φ). The cases differ in their induction step.

6.1 Definition (Discrete induction). Formula F is a (discrete) invariant of
ψ → [α∗]φ iff the following formulas are valid:

1. ψ → F (induction start), and

2. F → [α]F (induction step).

An invariant is sufficiently strong if F → φ is valid.

6.2 Definition (Continuous invariants). Let D be a differential equation. For-
mula F is a continuous invariant of ψ → [D ∧ χ]φ iff the following formulas are
valid:

1. ψ ∧ χ→ F (induction start), and

2. F → [D ∧ χ]F (induction step).

Again, a continuous invariant is sufficiently strong if F → φ is valid.

To prove that F is a continuous invariant, it is sufficient by Theorem 3.25 and rule
G5 to check a condition on the directional derivatives of all terms of the formula,
which expresses that no atomic subformula of F changes its truth-value along the

180



6.2. Inductive Verification by Combining Local Fixedpoints

dynamics of the differential equation. This condition is much easier to check than a
reachability property (F → [D ∧ χ]F ) of a differential equation. Applications like
aircraft maneuvers need invariants with mixed equations and inequalities. Thus, we
use the generalisation of directional derivatives from functions to logical formulas
according to Definition 3.14.

6.3 Definition (Differential induction). Let the differential equation system D
be x′1 = θ1, . . . , x

′
n = θn. Formula F is a differential invariant of ψ → [D ∧ χ]φ iff

the following formulas are valid:

1. ψ ∧ χ→ F (induction start), and

2. χ→ F ′D (induction step).

Where F ′D is the result of substituting the differential equation D into DF , which
corresponds to the conjunction of all directional derivatives of atomic formulas in F
in the direction of the vector field of D (the partial derivative of b by xi is ∂b

∂xi
):

F ′D ≡
∧

(b∼c)∈F

((
n∑
i=1

∂b

∂xi
θi

)
∼
(

n∑
i=1

∂c

∂xi
θi

))
for ∼ ∈ {=,≥, >,≤, <}.

These partial derivatives of terms are well-defined in the Euclidean space spanned
by the variables and can be computed symbolically (Definition 3.14).

6.4 Proposition (Principle of differential induction). All differential invari-
ants are continuous invariants.

Proof. This proposition is a corollary to Theorem 3.25, which shows that rule G5
is sound.

In Sections 6.2.4–6.2.6, we present algorithms for finding differential invariants
for differential equations, and for finding global invariants for repetitions.

6.2.3. Flight Dynamics in Air Traffic Control

Aircraft collision avoidance maneuvers resolve conflicting flight paths, e.g., by
roundabout maneuvers [TPS98], see Figure 3.1. Their nontrivial dynamics makes
safe separation of aircraft difficult to verify [TPS98, MF01, DMC05, DPR05, PC07,
HKT07]. The parameters of two aircraft at (planar) position x = (x1, x2) ∈ R2

and y = (y1, y2) with angular orientation ϑ and ς are illustrated in Figure 3.1a
(with ϑ = 0). Their dynamics is determined by their linear speeds v, u ∈ R and
angular speeds ω, % ∈ R, see [TPS98]:

x′1 = v cosϑ x′2 = v sinϑ ϑ′ = ω y′1 = u cos ς y′2 = u sin ς ς ′ = % (6.1)
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In safe flight configurations, aircraft are separated by at least distance p:

(x1 − y1)2 + (x2 − y2)2 ≥ p2 (6.2)

To handle the transcendental functions in (6.1), we axiomatise sin and cos by
differential equations and reparametrise the system using a linear velocity vec-
tor d = (d1, d2) := (v cosϑ, v sinϑ) ∈ R2 according to Section 3.4.2:[

x′1 = d1 x′2 = d2 d′1 = −ωd2 d′2 = ωd1 t′ = 1
y′1 = e1 y′2 = e2 e′1 = −%e2 e′2 = %e1 s′ = 1

]
(F)

Equations (F) and (6.1) are equivalent up to reparameterisation. Here, we add
clock variables t, s that we need for synchronising collision avoidance maneuvers in
Chapter 8. By a simple computation, d2

1 + d2
2 ≥ a2 is a differential invariant of (F),

thereby showing that the linear speed of aircraft does not drop below some stalling
speed a during maneuvers:

(d2
1 + d2

2 ≥ a2)′F ≡ (d2
1 + d2

2 ≥ a2)′(d′1=−ωd2,d′2=ωd1)

≡ ∂(d2
1 + d2

2)

∂d1

(−ωd2) +
∂(d2

1 + d2
2)

∂d2

ωd1 ≥
∂a2

∂d1

(−ωd2) +
∂a2

∂d2

ωd1

≡ 2d1(−ωd2) + 2d2ωd1 ≥ 0 .

6.2.4. Local Fixedpoint Computation for Differential Invariants

Figure 6.2 depicts the fixedpoint algorithm for constructing differential invariants
for each continuous evolution D ∧ χ with a differential equation system D. The
algorithm in Figure 6.2 (called Differential Saturation) successively refines the do-
main χ by differential invariants until saturation, i.e., χ accumulates enough in-
formation to become a strong invariant that implies postcondition φ (line 2). If
domain χ already entails φ, then ψ ` [D ∧ χ]φ is proven (line 2). Otherwise, the
algorithm considers candidates F for augmenting χ (line 3). If F is a differential
invariant (line 4), then χ can soundly be refined to χ∧F (line 5) without affecting
the states reachable by D ∧ χ (Proposition 6.5 below). Then, the fixedpoint loop
repeats (line 6). At each iteration of this fixedpoint loop, the previous invariant χ
can be used to prove the next level of refinement χ ∧ F (line 4). The refinement
of the dynamics at line 5 is correct by the following proposition, using that the
conditions in line 4 imply that F is a differential invariant and, thus, a continuous
invariant by Proposition 6.4.

6.5 Proposition (Differential saturation). If F is a continuous invariant of the
formula ψ → [D ∧ χ]φ, then ψ → [D ∧ χ]φ and ψ → [D ∧ χ ∧ F ]φ are equivalent.

182



6.2. Inductive Verification by Combining Local Fixedpoints

1 function prove (ψ ` [D ∧ χ]φ ) :
2 i f prove (∀D(χ→ φ)) then return true /∗ proper ty proven ∗/
3 for each F ∈Candidates (ψ ` [D ∧ χ]φ , χ) do
4 i f prove (ψ ∧ χ ` F ) and prove (∀D(χ→ F ′D)) then
5 χ := χ ∧ F /∗ r e f i n e by d i f f e r e n t i a l i n v a r i a n t ∗/
6 goto 2 ; /∗ r e p e a t f i x e d p o i n t loop ∗/
7 end for
8 return not provable us ing cand idate s

Figure 6.2.: Fixedpoint algorithm for differential invariants (Differential Satura-
tion)

Proof. The proof is stronger version of the soundness of D15 by Theorem 3.25:
Let F be a continuous invariant, which implies that ψ ` [D ∧ χ]F is valid. Let ν
be a state satisfying ψ (otherwise there is nothing to show). Then, ν |= [D ∧ χ]F .
Since this means that F is true all along all flows ϕ of D ∧ χ that start in ν (Defin-
ition 3.10), the latter and D ∧ χ ∧ F have the same dynamics and the same reach-
able states from ν, i.e., (ν, ω) ∈ ρ(D ∧ χ) holds if and only if (ν, ω) ∈ ρ(D ∧ χ ∧ F )
(Definition 2.7). Thus, we can conclude that ψ ` [D ∧ χ]φ and ψ ` [D ∧ χ ∧ F ]φ
are equivalent, because their semantics uses the same transition relation.

This progressive differential saturation turns out to be crucial in practice. For
instance, the aircraft separation property (6.2) cannot be proven until (F) has been
refined by invariants for d and e, because these determine x′ and y′.

Function Candidates determines candidates for induction (line 3) depending on
transitive differential dependencies, as will be explained in Section 6.2.5. When
these are insufficient for proving ψ ` [D ∧ χ]φ, the algorithm fails (line 8, with
improvements in subsequent sections). Again, ∀αφ denotes the universal closure
of φ. It is required in lines 2 and 4, because the respective formulas need to hold
in all states (that satisfy χ), which we will improve on in Section 6.4.

6.2.5. Dependency-Directed Induction Candidates

In this section, we construct likely candidates for differential induction (function
Candidates in Figure 6.2). Later, we use the same procedure for finding global loop
invariants. We construct two kinds of candidates in an order induced by differential
dependencies. By following the effect of hybrid systems symbolically along their
decompositions, our verification algorithm enriches precondition ψ successively with
more precise information about the symbolic prestate as obtained by the symbolic
decompositions and proof steps in Figure 6.1 and 6.2. To exploit this, we first
look for invariant symbolic state information that accumulated in ψ and φ during
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the iterative symbolic decomposition by selecting subformulas that are not yet
contained in χ. In practice, this gives particularly good candidates for highly
parametric hybrid systems.

Secondly, we generate parametric invariants. Let V = {x1, . . . , xn} be a set of

relevant variables. We choose fresh names a
(l)
i1,...,in

for formal parameters of the
invariant candidates and build polynomials p1, . . . , pk of degree d with variables V
using formal parameters as symbolic coefficients:

pl :=
∑

i1+···+in≤d

a
(l)
i1,...,in

xi11 . . . x
in
n for 1 ≤ l ≤ k .

We define the set of parametric candidates (operator ∨ is similarly):

ParaForm(k, d, V ) :=

{
i∧
l=1

pl ≥ 0 ∧
k∧

l=i+1

pl = 0 : 0 ≤ i ≤ k

}
.

For instance, the parametric candidate a0,0 + a1,0d1 + a0,1x2 = 0 yields a differential
invariant of (F) for the choice a0,0 = 0, a1,0 = 1, a0,1 = ω. By simple combinatorics,

ParaForm contains k + 1 candidates with k
(
n+d
d

)
formal parameters a

(l)
i1,...,in

, which
are existentially quantified. Existence of a common satisfying instantiation for
these parameters can be expressed by adding ∃a(l)

i1,...,in
to the resulting dL formulas.

For this to be feasible, the number of parameters is crucial, which we minimise by
respecting (differential) dependencies.

To accelerate the differential saturation process in Section 6.2.4, it is crucial to
explore candidates in a promising order from simple to complex, because the al-
gorithm in Figure 6.2 uses successful differential invariants to refine the dynamics,
thereby simplifying subsequent proofs: E.g., (6.2) is only provable after the dy-
namics has been refined with invariants for d and e, because x′ and y′ depend on
the direction d and e. In fact, safety of roundabouts crucially depends on com-
patible directions of the aircraft, see Figure 3.1c. We construct candidates in a
natural order based on variable occurrence that is consistent with the differential
dependencies of the differential equations. For a differential equation D, variable x
depends on variable y according to the differential equation system D if y occurs
on the right-hand side for x′ (or transitively so). The resulting set depend(D) of
dependencies is the transitive closure of

{(x, y) : (x′ = θ) ∈ D and y occurs in θ}

From the differential equation system (F), we determine the differential dependen-
cies indicated as arrows (pointing to the dependent variables x) in Figure 6.3.

From these dependencies we determine an order on candidates. The idea is that,
as the value of x1 in (F), depends on that of d1, it makes sense to look for invariant
expressions of d1 first, because refinements with these help differential saturation
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Figure 6.3.: Differential dependencies (arrows) and (triangular) variable clusters
of (F)

in proving invariant expressions involving also x1. Thus, we order variables by
differential dependencies, which resembles the back substitution order in Gaussian
elimination (if, in triangular form, x1 depends on d1 then equations for d1 must
be solved first, except that, in the differential case, variables can remain mutually
dependent like, e.g., d1 and d2). Now we call a set V of variables a cluster of the
differential equation D iff V is closed with respect to depend(D), i.e., variables of V
only depend on variables in V :

x ∈ V and (x, y) ∈ depend(D) ⇒ y ∈ V
The resulting variable clusters for system (F) are marked as triangular shapes in
Figure 6.3. Finally, we choose candidates from ψ and ParaForm(k, d, V ) start-
ing with candidates whose variables lie in small clusters V and cover larger frac-
tions of that cluster. Thus, the differential invariant d2

1 + d2
2 ≥ a2 of Section 6.2.3

within cluster {d2, d1, ω} can be discovered before invariants like d1 = −ωx2 that
involve x2, because x2 depends on d2. Similarly, d1 = −ω(x2 − c2) will be discovered
before ‖x− y‖2 ≥ p2, as the latter lies in a larger cluster with worse coverage of
that cluster. The successive differential saturation process along these dependencies
further helps to keep the degrees in ParaForm small.

6.2.6. Global Fixedpoint Computation for Loop Invariants

With the uniform setup of dL, we can adapt the algorithm in Figure 6.2 easily to
obtain a fixedpoint algorithm for loops (ψ ` [α∗]φ) in place of continuous evolutions
(ψ ` [D ∧ χ]φ): In line 4 of Figure 6.2, we replace the induction step from Defini-
tion 6.3 by the step for loops (Definition 6.1). As an optimisation, invariants χ of
previous iterations can be exploited as refinements of the hybrid system dynamics,
similar to previous differential invariants that can be used in future iterations by
refining the dynamics using differential saturation:

6.6 Proposition (Loop saturation). If χ is a discrete invariant of ψ → [α∗]φ,
then χ ∧ F is a discrete invariant iff ψ → F and χ ∧ F → [α](χ→ F ) are valid.

Proof. Let χ be a discrete invariant of ψ → [α∗]φ. Let, further, F be a discrete
invariant of ψ → [α∗]φ. Then ψ → F and F → [α]F are valid by Definition 6.1.
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Hence, trivially, F → [α](χ→ F ) is valid, because all states that satisfy F also sat-
isfy the weaker property χ→ F . Especially, χ ∧ F → [α](χ→ F ) is valid. Finally,
the validity of ψ → χ ∧ F clearly entails ψ → F .

Conversely, let, χ be a discrete invariant. Let, further, χ ∧ F → [α](χ→ F )
and ψ → F be valid. For χ ∧ F to be a discrete invariant, we have to show
that F satisfies the induction step of Definition 6.1 (the induction start ψ → χ ∧ F
is an immediate combination of the validity of ψ → χ and ψ → F ). Since χ is
a discrete invariant, χ→ [α]χ is valid, which entails χ ∧ F → [α]χ as a special
case. Since χ ∧ F → [α](χ→ F ) is valid and χ ∧ F → [α]χ is valid, we conclude
that χ ∧ F → [α](χ ∧ F ) is valid for the following reason. Let ν be a state satis-
fying the initial constraints χ ∧ F . Then ν |= [α]χ and ν |= [α](χ→ F ). Hence,
all states ω reachable from ν by α satisfy ω |= χ and ω |= χ→ F . Thus, they sat-
isfy ω |= χ ∧ F , essentially by modus ponens. Consequently, we have shown that
χ ∧ F → [α](χ ∧ F ) is valid. and, hence, χ ∧ F is a discrete invariant of ψ → [α∗]φ.

The induction step from Proposition 6.6 can generally be proven faster, because
it is a weaker property than that of Definition 6.1.

To adapt our approach from Section 6.2.5 to loops, we use discrete data-flow
and control-flow dependencies of α. Dependencies can be determined immediately
from the syntax of HP. There is a direct data-flow dependency with the value of x
depending on y, if x := θ or x′ = θ occurs in α with a term θ that contains y.
Accordingly, there is a direct control-flow dependency, if, for any term θ, x := θ or
x′ = θ occurs in α after a ?χ containing y. The respective data-flow and control-flow
dependencies are the transitive closures of these relations.

1 function prove (ψ ` [α∗]φ ) :
2 χ := true /∗ c u r r e n t l y known i n v a r i a n t o f ψ ` [α∗]φ ∗/
3 i f prove (∀α(χ→ φ)) then return true /∗ proper ty proven ∗/
4 for each F ∈IndCandidates (ψ ` [α∗]φ , χ) do
5 i f prove (ψ ∧ χ ` F ) and prove (∀α(χ ∧ F → [α](χ→ F ))) then
6 χ := χ ∧ F /∗ r e f i n e by d i s c r e t e i n v a r i a n t ∗/
7 goto 3 ; /∗ r e p e a t f i x e d p o i n t loop ∗/
8 end for
9 return not provable us ing cand idate s

Figure 6.4.: Fixedpoint algorithm for discrete loop invariants (loop saturation)

The algorithm in Figure 6.4 verifies loops. It is a direct adaption of that in
Figure 6.2, except that it uses Proposition 6.6 as an induction step for loops. The
algorithm in Figure 6.4 performs a fixedpoint computation for loops and recursively
combines the local differential invariants obtained by differential saturation to form
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a global invariant. It recursively uses prove for verifying its subtasks, which handle
the discrete switching behaviour according to Figure 6.1 and infer local differen-
tial invariants according to differential saturation by the fixedpoint algorithm in
Figure 6.2.

6.2.7. Interplay of Local and Global Fixedpoint Loops

The local and global fixedpoint algorithms jointly verify correctness properties of
HP. Their interplay needs to be coordinated with fairness. If the local fixedpoint al-
gorithm in Figure 6.2 does not converge, stronger invariants may need to be found
by the global fixedpoint algorithm which iteratively result in stronger precondi-
tions ψi for the local algorithm, see Figure 6.5.

ψ → [α]φ

ψ1 → [α1]φ1 ψ2 → [α2]φ2

ψ3 → [α3]φ3 ψ4 → [α4]φ4

diffsat

diffsat

loopsat

Figure 6.5.: Interplay of local (diffsat) and global (loopsat) fixedpoints verification
loops during symbolic decomposition

Thus, the local fixedpoint algorithm should stop when it cannot prove its postcon-
dition, either because of a counterexample or because it runs out of candidates for
differential invariants. As in the work of Prajna [PJP07], the degrees of parametric
invariants, therefore, need to be bounded and increased iteratively. As in [PJP07],
there is no natural measure for how these degrees should be increased. Instead,
here, we exploit the fact that the candidates of Candidates are independent and
we explore them in parallel with fair time interleaving. There, the interleaving by
iterative timeout increase is similar to iterative background closures in Chapter 5,
except that it works for full subproofs instead of just one local quantifier elimination
call.

In well-designed control-loop systems, global fixedpoints are easier to find than
local fixedpoints of differential invariants, because the global invariant often coin-
cides with the controllability region of the system. In these systems, the minimal
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control objective is to keep the system in the controllable state region. That is, if
the system is in a controllable state, i.e., there is a control choice such that the sys-
tem can remain safe, suitable controllers will pick one such control option such that
the system again ends up in a controllable state. Inductively, this controllability
region directly corresponds to a global system invariant.

6.3. Soundness

Even though the interplay of the fixedpoint verification algorithms in this section
is already quite complicated, we can exploit the fact that they are working with
formula transformations in the verification logic dL to ensure soundness. Since
all formula transformations in the algorithm are justified by sound proof rules,
soundness is fully captured in the logic and the algorithm can only be incomplete
but not unsound:

6.7 Theorem (Soundness). The verification algorithm in Section 6.2 is sound,
i.e., whenever prove(ψ ` [α]φ) returns “ true”, the dL formula ψ → [α]φ is true
in all states, i.e., all states reachable by α from states satisfying ψ satisfy φ.

Proof. Soundness is a direct consequence of Theorem 3.25, as every statement that
returns true is justified by a sound proof rule of DAL. To show this in full detail:
We prove by induction on the structure of the algorithm.

• In the base case (line 9 of Figure 6.1), prove returns the result of quantifier
elimination, which is a sound decision procedure [CH91].

• If α is of the form x := θ, the algorithm in line 1 of Figure 6.1 is respons-
ible. If it returns “true”, then prove(ψ ∧ x̂ = θ ` φx̂x) has returned “true”.
Hence, by induction hypothesis, ψ ∧ x̂ = θ ` φx̂x is valid. Now, because x̂ was
a fresh variable, the substitution lemma can be used to show that ψ ` φθx and
ψ ` [x := θ]φ are valid. Hence, the result of prove is sound.

• If α is of the form x := ∗, the algorithm in line 8 of Figure 6.1 is responsible.
Soundness can be proven directly using the fact that φ being true after all
random assignments to x is equivalent to φ being true for all real values of x.
Hence, ψ ` [x := ∗]φ is valid if and only if ψ ` ∀xφ is.

• The other cases of Figure 6.1 are similar consequences of the soundness of the
DAL rules in Figure 3.3 by Theorem 3.25.

• If α is of the form D ∧ χ for a differential equation system D, the algorithm in
Figure 6.2 is responsible. If it returns “true” in line 2 in the first place, then
the calls to prove in line 2 must have resulted in “true”, hence, by induction

188



6.4. Optimisations

hypothesis, χ entails φ. Thus, soundness of rule D13 justifies soundness as fol-
lows. Postcondition φ is true in a subregion of the evolution domain χ. Thus
ψ ` [D ∧ χ]φ is valid, trivially, because all evolutions along D ∧ χ always sat-
isfy χ and, hence, φ. If, however, χ was changed in line 5 during the fixedpoint
computation, then the calls to prove for the properties in line 4 must have re-
turned “true”. Thus, by induction hypothesis, the dL formulas ψ ∧ χ ` F and
∀D(χ→ F ′D) are valid, hence D15 justifies soundness as follows. Formula F
is a differential invariant of ψ ` [D ∧ χ]φ by Definition 6.3. Consequently,
by Proposition 6.4, F also is a continuous invariant (Definition 6.2). Thus,
by Proposition 6.5, the dL formulas ψ ` [D ∧ χ]φ and ψ ` [D ∧ χ ∧ F ]φ are
equivalent, and we can (soundly) verify the former by proving the latter. Con-
sequently, the modification of the evolution domain χ to χ ∧ F in line 5 is
sound, because the algorithm will continue proving a refined but equivalent
formula for a refined but equivalent system.

• If α is a loop of the form β∗, the proof is similar to the case for differential
equations, except that it uses Proposition 6.6 instead of Proposition 6.4.

Since reachability of hybrid systems is undecidable, our algorithm must be in-
complete. It can fail to converge when the required invariants are not expressible
in first-order logic (yet, they are always expressible in dL by Theorem 2.17).

6.4. Optimisations

6.4.1. Sound Interleaving with Numerical Simulation

safe

robust unsafe

fragile unsafe

x
xx

+e

Figure 6.6.:
Robustness

During fixedpoint computations, wrong choices of candidates
are time consuming. Thus, in practice, it is important to dis-
cover futile attempts quickly. For this, we use non-exhaustive
numerical simulation to look for a counterexample for each
candidate. To prevent rejecting good candidates due to nu-
merical errors, we discard fragile counterexamples. We con-
sider counterexamples with distance <ε to safe states as fra-
gile, because small numerical perturbations could make it safe
(the right x in Figure 6.6 marks fragile examples or counterexamples). The left
mark in 6.6, instead, is a robust counterexample, i.e., only large (≥ ε) perturb-
ations could make it safe. Robust counterexamples can be ensured by repla-
cing, e.g., a ≥ b by a ≥ b+ ε in the formulas given to numerical reachability
simulation for some estimate ε ≥ 0 of the numerical error. Unlike in other ap-
proaches [ADG03, LT05, PAM+05, PJP07, PC07], numerical errors are not critical
for soundness here, because safety is exclusively established by sound symbolic
verification.
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We can further exploit the symbolic decomposition performed by our algorithm
in Section 6.2 and prefix recursive calls to prove(ψ ` [α]φ) with a partial simulation
of α. Using approximate cylindric algebraic decomposition [CH91] in the FindIn-
stance function of Mathematica, we find good samples of states satisfying ψ to start
the simulation of α.

6.4.2. Optimisations for the Verification Algorithm

Formulas with variables that do not change in a fragment of a HP are trivial in-
variants, as their truth-value is unaffected. For instance, ω = % is a trivial invariant
of system (F). Hence, it can be used as an invariant without proof. A formula
like ω2(d2

1 + d2
2) > r2 in ψ, instead, is not trivially invariant, because di changes

during (F). Still, it has invariant consequences like ω 6= 0. To make use of these
direct and indirect trivial invariants from ψ , we (soundly) weaken all universal
closures of the form ∀αφ in lines 2 and 4 of Figure 6.2 by ψ ` ∀αφ, which directly
reflects the rule context instantiations in Definition 2.11.

6.5. Experimental Results

c

x
entry

ex
it

y

Figure 6.7.:
Flyable aircraft
roundabout

As an example with nontrivial dynamics, we analyse aircraft
roundabout maneuvers [TPS98]. Curved flight as in round-
abouts is challenging for verification, because of its transcend-
ental solutions. The maneuver in Figure 3.1b from [TPS98]
and the maneuver in Figure 3.1d from [PC07, Pla08a] are not
flyable, because they still involve a few instant turns. A fly-
able roundabout maneuver without instant turns is depicted
in Figure 6.7. We verify safety properties for most (but not
yet all) phases of Figure 6.7 and provide verification results in
Table 6.1. Details on the case studies are presented in Part III.
Finally, note that the required invariants found by our approach for the roundabout
maneuver cannot even be found from Differential Gröbner Bases [Man91].

Verification results for roundabout aircraft maneuvers [TPS98, DPR05, PC07,
Pla08a, PC08b] and the European Train Control System (ETCS) are in Table 6.1.
Results are from a 2.6GHz AMD Opteron with 4GB memory. Memory consumption
of quantifier elimination is shown in Table 6.1, excluding the front-end. The results
are only slightly worse on a 1.7GHz Pentium M laptop with 1GB. The dimension
of the continuous state space is indicated. Notice that we handle all these variables
symbolically leading to state spaces up to R28.
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Table 6.1.: Experimental results for differential invariants as fixedpoints

Case study Time(s) Memory(MB) Proof steps Dim

tangential roundabout (2 aircraft) 14 8 117 13
tangential roundabout (3 aircraft) 387 42 182 18
tangential roundabout (4 aircraft) 730 39 234 23
tangential roundabout (5 aircraft) 1964 88 317 28
ETCS kernel safety 41 28 53 9
ETCS binary safety 56 27 147 14
ETCS safety 183 87 169 14

6.6. Summary

We have presented a sound algorithm for verifying hybrid systems with nontrivial
dynamics. It handles differential equations using differential invariants instead of
requiring solutions of the differential equations, because the latter quickly yield
undecidable arithmetic. We compute differential invariants as fixedpoints using
dL as a verification logic for hybrid systems. In the logic we can decompose the
system for computing local invariants and we obtain sound recombinations into
global invariants. Moreover, we introduce a differential saturation procedure that
verifies more complicated properties by refining the system dynamics successively
in a sound way. We validate our algorithm on challenging roundabout collision
avoidance maneuvers for aircraft and on collision avoidance protocols for trains.

Our algorithm works particularly good for highly parametric hybrid systems, be-
cause their parameter constraints can be combined faster to find invariants than
for systems with a single initial state, where simulation is more appropriate. Our
decompositional approach exploits locality in system designs. In well-designed sys-
tems, subsystems do not generally depend on all other parts of the system but are
built according to modularity and locality principles in engineering. In these cases,
the dL calculus achieves good decompositions and the required invariants for one
part of the system only need very little information about other parts of the sys-
tems, so that the fixedpoint algorithm terminates faster. Our algorithm probably
performs worse for systems that violate locality principles. We want to validate
this in further experiments and analyse scalability.

Differential induction and the logic dL generalise to liveness properties and to
systems with disturbances (Chapter 3). In future work, we want to generalise the
synthesis of corresponding differential (in)variants. Other invariant constructions
for differential equations, e.g., [RCT05] can be added and lifted to hybrid systems
using our uniform algorithm.

191



192



Part III.

Case Studies and Applications in
Hybrid Systems Verification
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Chapter 7. Parametric European Train Control System

Synopsis

Most hybrid systems allow for several degrees of freedom so that their cor-
rect functioning depends on how their parameters are adjusted. As a case
study in parametric verification of hybrid systems, we analyse a fully para-
metric cooperation protocol of the European Train Control System (ETCS).
We use the calculus of our logic for hybrid systems to discover the required
parameter constraints for safe train control and characterise these constraints
equivalently by appropriate reachability properties of the hybrid dynamics.
We formally verify controllability, safety, liveness, and reactivity properties
of the ETCS cooperation protocol that entail collision freedom and show
that the ETCS protocol remains correct under perturbation by disturbances
in the train dynamics.

7.1. Introduction

Most hybrid systems contain substantial degrees of freedom including how spe-
cific parameters are instantiated or adjusted [DHO06, FM06, DMO+07, BBW07,
ERT02]. Yet, virtually any hybrid system is only safe under certain constraints
on these parameters. For instance, the European Train Control System (ETCS)
has a wide range of different possible configurations of trains, track layouts, and
different driving circumstances. Still, it is only safe under certain conditions on
external parameters, e.g., when the speed of each train does not exceed its specific
braking power given the remaining distance to the next train. Similarly, internal
control design parameters for speed control and braking triggers need to be adjus-
ted in accordance with the underlying train dynamics. Moreover, parameters must
be constrained such that the system remains correct when passing from continuous
models with instant reactions to sampled data discrete time controllers of hardware
implementations. Finally, parameter choices must preserve correctness robustly in
the presence of disturbances caused by unforeseen external forces or internal mod-
elling inaccuracies of ideal-world dynamics. Yet, determining the range of external
parameters and the choice of internal design parameters for which ETCS is safe, is
not possible just by looking at the model, even less so for train dynamics that is
subject to disturbance.

Likewise, it is difficult to read off the parameter constraints that are required for
correctness from a failed verification attempt of model checkers [CGP99, Hen96,
MPM05, Fre05], as these often exploit non-structural heuristic splits of the state
space, which can lead to nonuniform parameter requirements for different states.
While approaches like counterexample-guided abstraction refinement [CGJ+03, Fre05]
are highly efficient in generating and learning from spurious counterexamples of a
failed verification attempt of an abstract hybrid system, they stop when the counter-
examples remain in the concrete case. For discovering constraints on free para-
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meters, though, even concrete models will have counterexamples until all required
parameter constraints have been identified. Even worse, concrete numeric values of
a counterexample trace, as produced by a model checker with state splitting, can-
not simply be translated into a uniform global constraint on the free parameters of
the system which would prevent this kind of error.

Instead, we use symbolic decompositions for systematically exploring the design
space of a hybrid system and for discovering correctness constraints on free paramet-
ers. Our approach follows a structural symbolic decomposition in our verification
logic dL [Pla07b, Pla08b] such that the discovered parametric constraints directly
relate to the behaviour of the hybrid system. In this chapter, we demonstrate that
parameter constraint identification by symbolic decomposition is feasible even for
realistic models of train cooperation protocols in ETCS with rich specifications
that include safety, controllability, reactivity, and liveness properties, which are
uniformly expressible in dL. Using the parametric constraints so discovered, we
verify correctness properties of the ETCS cooperation protocol that entail collision
freedom. Moreover, we verify those correctness properties of the parametric ETCS
case study almost fully automatically in our verification tool KeYmaera [PQ08a].

Contributions

As our central contribution we demonstrate that verification of realistic fully para-
metric hybrid systems at the cooperation layer of traffic agent collaboration proto-
cols is feasible using a logic-based verification approach. We discover all relevant
safety constraints on free parameters, including external system parameters and in-
ternal design parameters of controllers. Our main technical contribution is that we
characterise these parameter constraints equivalently in terms of properties of the
train dynamics and verify controllability, reactivity, safety, and liveness properties
of ETCS.

7.1.1. Related Work

Model checkers [CGP99] for hybrid systems, e.g. HyTech [AHH96] and PHAVer
[Fre05], verify by exploring the state space of the system as exhaustively as possible.
In contrast to our approach they need concrete numbers for most of the parameters
and cannot verify liveness or existential properties like whether and how a control
parameter can be instantiated safely.

Batt et al. [BBW07] give heuristics for splitting regions by linear constraints that
can be used to determine parameter constraints. Their approach is not applicable
for realistic systems like ETCS which require nonlinear parameter constraints for
correctness.

Peleska et al. [PGHD04] and Faber and Meyer [FM06] verify properties of trains.
They do not, however, verify hybrid dynamics, i.e., they do not take into account
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the actual movement of trains. Yet, the physical dynamics is crucial for faithful
train models and for showing actual collision freedom, because, after all, collision
freedom is a property of controlled movement.

Structure of this Chapter

We introduce a formal model for generalised parametric ETCS in Section 7.2. Fol-
lowing our symbolic decomposition analysis, we systematically derive parametric
correctness constraints for ETCS and verify several relevant correctness properties
of the parametric ETCS model using these constraints in Section 7.3. In Section 7.4,
we generalise the physical transmission model of trains to the presence of disturb-
ances and verify ETCS with disturbances. Section 7.5 gives experimental results
and a performance analysis in our verification tool KeYmaera. We summarise in
Section 7.6.

7.2. Fully Parametric European Train Control System

The European Train Control System (ETCS) [ERT02, FM06] is a standard to
ensure safe and collision-free operation of trains and high throughput of high speed
trains at speeds up to 320km/h. With 2.1 million passengers in Europe per day,
correct functioning of ETCS will be highly safety-critical, because the upcoming
installation of ETCS level 3 will replace all previous track-side safety measures in
order to achieve its throughput objectives.

7.2.1. Overview of the ETCS Cooperation Protocol

ETCS level 3 follows the moving block principle, i.e., movement permissions are
neither known beforehand nor fixed statically but they are determined based on the
current track situation by a Radio Block Controller (RBC). Trains are only allowed
to move within their current movement authority (MA), which can be updated
by the RBC using wireless communication. Hence the train controller needs to
regulate the movement of a train locally such that it always remains within its
MA, because there can be open gates, unsafe tunnels or other trains beyond. The
automatic train protection unit (atp) dynamically determines a safety envelope
around a train τ , within which it considers driving safe, and adjusts the train
acceleration τ.a accordingly. Figure 7.1a illustrates the dynamic assignment of MA
with phases of controllers switching according to the protocol cycle in Figure 7.1b.
When approaching towards the end of its MA the train switches from far mode
(where speed can be regulated freely) to negotiation (neg), which, at the latest,
happens at the point indicated by ST (for start talking). During negotiation the
RBC grants or denies MA-extensions. Instead, the RBC can announce emergencies,
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7.1a: Dynamic assignment of movement authorities

far

neg

cor

recfsa

7.1b: Cooperation cycle

Figure 7.1.: ETCS train coordination protocol

which force train controllers to switch to the recovery mode (rec) by applying full
emergency brakes. After the train has come to a full stop, the controller switches
to a failsafe state (fsa) and awaits manual clearance by the train operator.

7.1 Lemma (Principle of separation by movement authorities). If each
train stays within its MA and, at any time, MAs issued by the RBC form a disjoint
partitioning of the track, then trains can never collide.

Proof. To simplify notation, we assume trains are points (the proof is a simple
extension when each train has some maximal length l). Consider any point in
time ζ. For some n ∈ N, let z1, . . . , zn be the positions of all the trains 1 to n at ζ.
Let Mi be the MA-range, i.e., the set of positions on the track for which train i has
currently been issued MA. Suppose there was a collision at time ζ. Then zi = zj
at ζ for some i, j ∈ N. However, by assumption, zi ∈Mi and zj ∈Mj at ζ, thus
Mi ∩Mj 6= ∅, which contradicts the assumption of disjoint MA.

Lemma 7.1 effectively reduces the verification of an unbounded number of traffic
agents to a finite number. We exploit MA to decouple reasoning about global colli-
sion freedom to local cooperation of every traffic agent with its RBC. In particular,
we can verify correct coordination for a train without having to consider gates, be-
cause these only communicate via RBC mediation and can be considered as special
reasons for denial of MA-extensions. We only need to prove that the RBC handles
all interaction between the trains by assigning or revoking MA correctly and that
the trains respect their respective MA. However, to enable the RBC to guarantee
disjoint partitioning of the track it has to rely on properties like appropriate safe
rear end computation of the train. Additionally, safe operation of the train plant
in conjunction with its environment depends on proper functioning of the gates.
As these properties have a more static nature, they are much easier to show once
the actual hybrid train dynamics and movements have been proven to be controlled
correctly.
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As trains are not allowed to drive backwards without clearance by track super-
vision personnel, the relevant part of the safety envelope can be reduced to the
closest distance to the end of its current MA. The point SB, for start braking, is
the latest point where the train needs to start correcting its acceleration (in mode
ctrl) to make sure it always stays within the bounds of its MA. In Section 7.3, we
derive a constraint on SB that guarantees safe driving.

τ.v

τ.p

m.r

m.r
m.rm.r

m.em.em.e

m.d
m.d m.d

Figure 7.2.: ETCS distance
profile

We generalise the concept of MA to a vector
m = (d, e, r) meaning that beyond point m.e the train
must not have a velocity greater than m.d. Addition-
ally, the train should try not to outspeed the recom-
mended speed m.r for the current track segment, but short periods of slightly higher
speed are not considered safety-critical. Figure 7.2 shows an example of possible
train behaviour in conjunction with the current value of m that changes over time
due to RBC communication.

For a train τ = (p, v, a) at position τ.p with current velocity τ.v and accelera-
tion τ.a, we want to determine sufficient conditions ensuring safety and formally
verify that τ.v is always safe with respect to its current MA, satisyfing:

τ.p ≥m.e→ τ.v ≤m.d (S)

Generalised movement authorities are a uniform composition of two safety-critical
features. MA are crucial aspects for ensuring collision free operation in ETCS
(Lemma 7.1) and they can take into account safety-critical velocity limits due to
bridges, tunnels, or passing trains. For example high speed trains need to reduce
their velocity while passing non-airtight or freight trains with a pressure-sensitive
load within a tunnel. In our model this is done by a reduction of the speed com-
ponent d of m. Finally, two-dimensional MA permit higher throughput as we will
see in Section 7.3.

7.2.2. Formal Model of Fully Parametric ETCS

For analysing the proper functioning of the ETCS system, we have developed a
formal model of the ETCS control system as a hybrid program, shown in Figure 7.3.
RBC and train are independent distributed components running in parallel. They
interoperate by message passing over wireless communication. As the RBC is a
purely digital track-side controller and has no dependent continuous dynamics, we
can express parallelism equivalently by interleaving using non-deterministic choice
and repetition: The decisions of the train controller only depend on the point in time
where RBC messages arrive at the train, not its airtime. Thus, the nondeterministic
interleaving faithfully models every possible arrival time without the need for an
explicit deadtime channel model.
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ETCSskel ≡ (train ∪ rbc)∗

train ≡ spd; atp; drive
spd ≡ (?τ.v ≤m.r; τ.a := ∗; ?− b ≤ τ.a ≤ A)

∪(?τ.v ≥m.r; τ.a := ∗; ?− b ≤ τ.a ≤ 0)
atp ≡ if (m.e− τ.p ≤ SB ∨ rbc.message = emergency) then τ.a := −b fi
drive ≡ t := 0; (τ.p′ = τ.v ∧ τ.v′ = τ.a ∧ t′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε)
rbc ≡ (rbc.message := emergency) ∪ (m := ∗; ?m.r > 0)

Figure 7.3.: Formal model of parametric ETCS cooperation protocol (skeleton)

Train Controller As a first approximation of the train PID controllers and its
mechanical transmission [DMO+07], which we will refine in Section 7.4, we use a
controller with a ranged choice for the effective acceleration τ.a between its lower
bound −b and upper bound A. For Section 7.2-7.3, we model the continuous train
dynamics by the differential equation system

τ.p′ = τ.v ∧ τ.v′ = τ.a ∧ t′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε (7.1)

that formalises the ideal-world physical laws for movement, restricted to the in-
variant region τ.v ≥ 0 ∧ t ≤ ε in drive. Since trains do not drive backwards by
braking, the system contains an invariant stating that the speed remains non-
negative (τ.a ≥ 0). To further account for delayed effects of actuators like brakes
or for delays caused by cycle times of periodic sensor polling and sampled data dis-
crete time controllers, we permit the continuous movement of the train to continue
for up to ε time units until control decisions finally take effect. This is expressed
using the invariant region t ≤ ε on a clock t that will be used to keep track of the
progress of time and advances with constant slope 1.

Speed supervision (spd in Figure 7.3) chooses the acceleration τ.a to keep the
recommended speed m.r by a random assignment τ.a := ∗, which is definable as
τ.a′ = 1 ∪ τ.a′ = −1. If the current speed τ.v exceeds m.r, an acceleration is chosen
from the interval [−b, 0] otherwise the full range [−b, A] is available, which, as
a special case, includes controllers optimising speed and energy consumption as
secondary objectives.

As a supervisory controller, the automatic train protection (atp in Figure 7.3)
checks whether the point SB has been passed or a message from the RBC was
received notifying of a track-side emergency situation. Both events cause immediate
braking with full deceleration −b. Thus, atp decisions take precedence over spd
speed advisory.

Radio Block Controller We model the RBC as a controller with two possible
choices. It may choose to demand immediate initiation of recovery maneuvers by
sending emergency messages (rbc.message := emergency). Alternatively, the RBC
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may update the MA, either by a full exchange of m or a modification of any subset
of its 3 components. These non-deterministic changes to m reflect different real-
world effects like extending MA if the heading train has advanced significantly or,
instead, notify of a new recommended speed for a track segment.

7.3. Parametric Verification of Train Control

Successively, we develop free parameter constraints by analysing increasingly more
complex correctness properties of ETCS. We use the so discovered constraints to re-
fine the train control model iteratively with constraints on design parameter choices
and physical prerequisites on external parameters resulting from the safety require-
ments on the train dynamics.

7.3.1. Iterative Refinement Process

For discovering parametric constraints required for system correctness, we follow
an iterative refinement process :

1. Controllability discovery : Start with uncontrolled system dynamics. Use
structural decomposition in dL until a first-order formula is obtained revealing
the controllable state region, which specifies for which parameter combina-
tions the system dynamics can be controlled safely by any control law.

2. Control refinement : Successively add partial control laws to the system while
leaving its decision parameters (like SB or m) free. Use structural decompos-
ition to discover parametric constraints which preserve controllability under
these control laws.

3. Safety convergence: Repeat step 2 until the resulting system is proven safe.

4. Liveness check : Prove that discovered parametric constraints do not over-
constrain the system inconsistently by showing that it remains live.

In practice, variants of the controllable domain as discovered by step 1 constitute
good candidates for inductive invariants, and the parameter constraints discovered
by step 2 ensure that the actual control choices never leave the controllable domain.
For step 4, liveness can actually be verified again by structural decomposition in
dL and no need for separate verification techniques or different models arises.

7.3.2. Controllability Discovery in Parametric ETCS

For unregulated train dynamics, our automatic structural decomposition technique
discovers a controllability constraint on the external train parameters, i.e., a for-
mula characterising the parameter combinations for which the train dynamics can
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be controlled safely by any control law at all. We prove that the so discovered
constraint characterises equivalently the set of states where the train dynamics still
admits to respect MA by appropriate control choices (expressed by the left-hand
side dL formula):

7.2 Proposition (Controllability). The constraint τ.v2 −m.d2 ≤ 2b(m.e− τ.p)
is a controllability constraint for the train τ with respect to property (S) on page
200, i.e., the former constraint retains the ability of the train dynamics to respect the
safety property. Formally, with m.d ≥ 0 ∧ b > 0 ∧ τ.p ≤m.e ∧ τ.v ≥ 0 as regularity
assumptions, the following equivalence is valid:

[τ.p′ = τ.v ∧ τ.v′ = −b ∧ τ.v ≥ 0](τ.p ≥m.e→ τ.v ≤m.d)

≡ τ.v2 −m.d2 ≤ 2b(m.e− τ.p)
Observe how the above equivalence reduces a dL statement about future con-

trollable train dynamics to a single constraint on the current state. We will make
use of this key reduction step from safe train dynamics to controllably safe states
by analysing each part of the ETCS controller with respect to whether it preserves
controllability.

7.3 Definition (Controllable state). A train τ is in a controllable state, if, by
appropriate control actions, the train is always able to stay within its movement
authority m, which, by Proposition 7.2, corresponds to

τ.v2 −m.d2 ≤ 2b(m.e− τ.p) ∧ τ.v ≥ 0 ∧m.d ≥ 0 ∧ b > 0 . (C)
ETCS cannot be safe unless trains are in controllable states. Hence we pick (C)

as a minimal candidate for an inductive invariant. This invariant will be used to
prove safety of the system by induction.

7.3.3. Iterative Control Refinement of ETCS Parameters

Starting from the constraints for controllable trains, we identify constraints for their
various control decisions and refine the ETCS model correspondingly.

RBC Control Contraints For a safe functioning of ETCS it is important that
trains always respect their current MA. Consequently, RBCs are not allowed to
issue MAs that are physically impossible for the train like instantaneous full stops.
Instead RBCs are only allowed to send new MAs that remain within the controllable
range of the train dynamics. For technical reasons the RBC does not reliably
know the train positions and velocities in its domain of responsibility to a sufficient
precision, because the communication with the trains has to be performed wireless
with possibly high communication delay and message loss. Thus, we give a failsafe
constraint for MA updates which is reliably safe even for loss of position recording
communication.
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7.4 Proposition (RBC preserves controllability). The constraint

m0.d
2 −m.d2 ≤ 2b(m.e−m0.e) ∧m0.d ≥ 0 ∧m.d ≥ 0 (M)

ensures that the RBC preserves controllability (C) when changing MA from m0

to m, i.e., the following formula is valid:

∀τ
(
C → [m0 := m; rbc]

(
M→ C

))
. (7.2)

Further, RBC controllability is characterised by the following valid equivalence:

m.d ≥ 0 ∧ b > 0→ [m0 := m; rbc]
(
M↔ ∀τ

(
(〈m := m0〉C)→ C

))
. (7.3)

Property (7.2) expresses that, for all trains in a controllable state, every change
of MA that complies with (M) enforces that the train is still in a controllable state.
Constraint (M) says that an extension is safe if it is possible to reduce the speed
by braking with deceleration b from the old target speed m0.d to the new target
speed m.d within the extension range m.e−m0.e, regardless of the current speed
of train τ . This constraint sheds light on how to layout feasible track profiles. It is
characterised by the equivalence (7.3), expressing that RBC decisions ensure that
all trains respecting controllability for the previous MA m0 remain controllable for
the new MA, which holds iff (M) is true for the RBC choice.

Train Control Constraints Now that we know constraints characterising when
the cooperation of train and RBC is controllable, we need to find out under which
circumstances the respective actual control choices by spd and atp retain control-
lability. In particular, the design parameter SB needs to be chosen appropriately
to preserve (C). First we show the existence of an appropriate choice for SB :

7.5 Proposition. For all feasible RBC choices and all choices of speed control,
there is a choice for SB that makes the train always stay within its MA, i.e., for
controllable states, we can prove:

[m0 := m; rbc]
(
M→ [spd]〈SB := ∗〉[atp; move](τ.p ≥m.e→ τ.v ≤m.d)

)
To find a particular constraint on the choice of SB, we need to take the maximum
reaction latency ε of the train controllers into account. With ε > 0, the point where
the train needs to apply brakes to comply with m is not given by (C) exactly, but
needs additional safety margins to compensate for reaction delays.

7.6 Proposition (Reactivity constraint). When the train is in a controllable
state, the supervisory ETCS controller reacts appropriately in order to maintain
controllability iff SB is chosen according to the following equivalence(

∀m.e ∀τ.p
(
m.e− τ.p ≥ SB ∧ C → [τ.a :=A; drive] C

))
≡ SB ≥ τ.v2 −m.d2

2b
+
(A
b

+ 1
)(A

2
ε2 + ε τ.v

)
. (B)
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ETCSaug ≡ (train ∪ rbcaug)∗

train ≡ spd; atpaug; drive

atpaug ≡ SB := τ.v2−m.d2

2b
+
(
A
b

+ 1
)(

A
2
ε2 + ε τ.v

)
; atp

rbcaug ≡ (rbc.message := emergency)
∪
(
m0 := m; m := ∗;

?m.r ≥ 0 ∧m.d ≥ 0 ∧m0.d
2 −m.d2 ≤ 2b(m.e−m0.e)

)
Figure 7.4.: Parametric ETCS cooperation protocol augmented with parameter

constraints

Constraint (B) on SB is derived using a projection of the train behaviour to the
worst-case maximum acceleration A in a state where SB has not yet been passed.
We choose this projection because the train controller needs to make sure that it can
safely drive with maximum acceleration for ε time units even right before passing SB
in order for an acceleration choice of A to be safe. After discovering constraint (B),
it can be explained in retrospect: It characterises the relative braking distance
required to reduce speed from τ.v to target speed m.d with braking deceleration b—
which corresponds to controllability—plus the additional distance travelled during
one maximum reaction cycle of ε time units with acceleration A, including the
additional distance needed to reduce the speed again down to τ.v after accelerating
with A for ε time units. This extra distance results from speed changes and depends
on the relation A

b
of acceleration and braking power b.

The previous propositions prove equivalences. Hence, counterexamples exist
whenever the discovered parameter constraints are not met. Consequently, these
constraints must be respected for correctness of any model of ETCS controllers,
including implementation refinements. It is, thus, important to identify these safety
constraints early in the overall design and verification process.

7.3.4. Safety Verification of Refined ETCS

By augmenting the system from Figure 7.3 with the parametric constraints presen-
ted in Propositions 7.2–7.6, we synthesise a safe system model completing the ETCS
protocol skeleton. The refined model is presented in Figure 7.4.

7.7 Proposition (Safety). Assuming the train starts in a controllable state, the
following global and unbounded-horizon safety formula about the augmented ETCS
system in Figure 7.4 is valid:

C → [ETCSaug](τ.p ≥m.e→ τ.v ≤m.d) (7.4)

As an example to illustrate the proof structure for the verification of Proposi-
tion 7.7, consider the sketch in Figure 7.5. By convention, such proofs start with
the conjecture at the bottom and proceed by decomposition to the leafs. We need
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C → [ETCSaug]S

C → C

C → [train ∪ rbc]C

C → [rbc]C

m := ∗ rec

C → [train]C

τ.v ≥m.r

m.e− τ.p ≥ SB

m.e− τ.p ≤ SB

τ.v ≤m.r

m.e− τ.p ≤ SB

m.e− τ.p ≥ SB

C → S

Figure 7.5.: Proof sketch for Proposition 7.7

to prove that the assumption that the train is in a controllable state expressed
by C entails (7.4). As the system consists of a global loop, we prove that (C) is
an invariant of this loop and strong enough to imply (S). Using KeYmaera it can
be shown easily that the invariant is initially valid (left branch) and implies the
postcondition (right branch). As usual, proving that the invariant is preserved by
the loop body is the most challenging part of the proof (middle branch), which
splits into two cases. For the left case, we have to show that the RBC preserves the
invariant, which follows from Proposition 7.4. For the right case, we show that the
train controller preserves the invariant. The proof splits due to the choice in the
spd component depending on the relation of the current speed to the recommended
speed. The next split on both of these branches depends on the value of SB . If
the train has passed point SB (middle case), we can close this goal using Proposi-
tion 7.2, because the invariant describes a controllable state and the spd controller
applies brakes. The outer branches, where the train has not yet passed SB , can be
closed using Proposition 7.6.

7.3.5. Liveness Verification of Refined ETCS

In order to show that the discovered parameter constraints do not overconstrain the
system inconsistently, we show liveness, i.e., that an ETCS train is able to reach
all track positions with appropriate RBC permissions.

7.8 Proposition (Liveness). The augmented train system is live, i.e., assuming
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the RBC can safely grant the required MAs because preceding trains are moving on,
trains are able to reach any track position P by appropriate RBC choices:

A > 0 ∧ ε > 0 → ∀P 〈ETCSaug〉 τ.p ≥ P

7.3.6. Full Correctness of ETCS

By collecting Propositions 7.2–7.8, we obtain the following main result of this
chapter, which demonstrates the feasibility of dL-based parametric discovery and
verification. It gives important insights in the fully parametric ETCS case study
and yields conclusive and fully verified choices for the free parameters in ETCS.
By virtue of the parametric formulation, this result applies to all concrete instan-
tiations of the ETCS cooperation protocol from Section 7.2, including controllers
that further optimise speed or model refinements in hardware implementations.

7.9 Theorem (Correctness of ETCS cooperation protocol). The ETCS sys-
tem augmented with constraints (B) and (M) is correct as given in Figure 7.4.
Starting in any controllable state respecting (C), trains remain in the controllable
region at any time. They safely respect movement authorities issued by the RBC
such that ETCS is collision-free. Further, trains can always react safely to all RBC
decisions respecting (M). ETCS is live: when tracks become free, trains are able to
reach any track position by appropriate RBC actions. Furthermore, the augmented
constraints (C) and (B) are necessary and sharp: Every configuration violating (C)
or (B), respectively, gives rise to a concrete counterexample violating safety prop-
erty (S). Finally, every RBC choice violating (M) gives rise to a counterexample
in the presence of lossy wireless communication channels.

7.4. Disturbance and the European Train Control
System

In Section 7.2–7.3, we have assumed there was direct control of acceleration. In
reality, acceleration results from physical transmission of corresponding forces that
depend on the electrical current in the engine and are regulated by PID control-
lers. As a conservative overapproximation of these effects, we generalise the ETCS
model to a model with differential inequalities, where we also take into account
disturbances in the physical transmission of forces:

τ.p′ = τ.v ∧ τ.a− l ≤ τ.v′ ≤ τ.a+ u ∧ t′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε (7.5)

with a disturbance within the interval [−l, u]. That is, the acceleration τ.a chosen by
the train controller can take effect with an error bounded by −l and u, because the
derivative τ.v′ of the velocity will not need to be τ.a exactly but can vary arbitrarily
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between τ.a−l and τ.a+u over time. We generalise the differential equation (7.1) in
component train from Figure 7.3 by replacing it with the differential inequality (7.5)
and denote the result by traind.

Notice that, unlike (7.1), we cannot simply solve differential inequality (7.5),
because its actual solution depends on the precise value of the disturbance, which
is a quantity that changes over time. Thus, solutions will only be relative to this
disturbance function and a reachability analysis would have to consider all choices
of this function, which would require higher-order logic. Instead, we use differential
invariants [Pla08a] as a first-order characterisation.

7.4.1. Controllability in ETCS with Disturbances

The controllability characterisation carries over to train control with disturbance
when taking into account the maximum disturbance u on the maximum braking
power b:

7.10 Proposition (Controllability despite disturbance). The constraint

τ.v2 −m.d2 ≤ 2(b− u)(m.e− τ.p) ∧m.d ≥ 0 ∧ b > u ≥ 0 ∧ l ≥ 0 (Cd)
is a controllability constraint with respect to property (S) for the train τ with
disturbance, i.e., it retains the ability of the train dynamics to respect the safety
property. Formally, with m.d ≥ 0 ∧ b > u ≥ 0 ∧ l ≥ 0 ∧ τ.p ≤m.e ∧ τ.v ≥ 0 as reg-
ularity assumptions, the following equivalence holds:

[τ.p′ = τ.v ∧ τ.a− l ≤ τ.v′ ≤ τ.a+ u ∧ t′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε]S
≡ τ.v2 −m.d2 ≤ 2(b− u)(m.e− τ.p)

7.4.2. Iterative Control Refinement of Parameters with
Disturbances

When taking into account the worst-case effect that the disturbance has on control,
the reactivity constraint (B) carries over to the presence of disturbance in train
control:

7.11 Proposition (Reactivity constraint). When the train with disturbance is
in a controllable state, the supervisory ETCS controller reacts appropriately in order
to maintain controllability iff SB is chosen according to the following equivalence:(

∀m.e ∀τ.p
(
(m.e− τ.p ≥ SB ∧ τ.v2 −m.d2 ≤ 2(b− u)(m.e− τ.p))→

[τ.a :=A; drived](τ.v
2 −m.d2 ≤ 2(b− u)(m.e− τ.p)

))
≡ SB ≥ τ.v2 −m.d2

2(b− u)
+

(
A+ u

b− u + 1

)(
A+ u

2
ε2 + ετ.v

)
(Bd)
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7.4.3. Safety Verification of ETCS with Disturbances

When we augment the ETCS model by the constraints (Bd) and (M), ETCS is
safe even in the presence of disturbance when starting in a state respecting (Cd).
7.12 Proposition (Safety despite disturbance). Assuming the train starts in a
controllable state satisfying (Cd), the following global and unbounded-horizon safety
formula about the ETCS system with disturbance from Figure 7.6 is valid:

Cd → [ETCSd](τ.p ≥m.e→ τ.v ≤m.d)

ETCSd ≡ (traind ∪ rbc)∗

traind ≡ spd; atpd; drived
spd ≡ (?τ.v ≤m.r; τ.a := ∗; ?− b ≤ τ.a ≤ A)

∪(?τ.v ≥m.r; τ.a := ∗; ?0 > τ.a ≥ −b)
atpd ≡ SB := τ.v2−m.d2

2(b−u)
+
(
A+u
b−u + 1

) (
A+u

2
ε2 + ετ.v

)
;

if (m.e− τ.p ≤ SB ∨ rbc.message = emergency) then τ.a := −b fi
drived ≡ t := 0; (τ.p′ = τ.v ∧ τ.a− l ≤ τ.v′ ≤ τ.a+ u ∧ t′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε)
rbc ≡ (rbc.message := emergency)

∪
(
m0 := m; m := ∗;

?m.r ≥ 0 ∧m.d ≥ 0 ∧m0.d
2 −m.d2 ≤ 2(b− u)(m.e−m0.e)

)
Figure 7.6.: Parametric ETCS cooperation protocol with disturbances

The safety proof generalises to ETCS with disturbance, when using differential
induction [Pla08a] with a time-dependent version of (Bd) as differential invariant
for the acceleration case:

m.e− τ.p ≥ τ.v2 −m.d2

2(b− u)
+

(
A+ u

b− u + 1

)(
A+ u

2
(ε− t)2 + (ε− t)τ.v

)
(7.6)

The full ETCS system with disturbance, where all abbreviations are resolved, is
depicted in Figure 7.7.

7.5. Experimental Results

Experimental results for verifying ETCS in our dL-based verification tool KeYmaera
are presented in Table 7.1. Experimental results are from a 2.6GHz AMD Opteron
with 4GB memory. All correctness properties and parameter constraints of ETCS
can be verified with 94% to 100% degree automation. In the universal fragment
of dL, user interactions are only needed for supplying invariants, which, in turn,
can be discovered using our iterative refinement process and our invariant compu-
tation algorithm from Chapter 6. For liveness properties or substantial quantifier
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ψ ≡ τ.v2 −m.d2 ≤ 2(b− u)(m.e− τ.p) ∧m.d ≥ 0 ∧ b > u ≥ 0 ∧ l ≥ 0
→ [ETCSd](τ.p ≥m.e→ τ.v ≤m.d)

ETCSd ≡


spd :
 (

(?τ.v ≤m.r; τ.a := ∗; ?− b ≤ τ.a ≤ A)

∪ (?τ.v ≥m.r; τ.a := ∗; ?0 > τ.a ≥ −b)
)
;

atpd: SB := τ.v2−m.d2

2(b−u)
+
(
A+u
b−u + 1

) (
A+u

2
ε2 + ετ.v

)
;

if (m.e− τ.p ≤ SB ∨ rbc.message = emergency) then τ.a := −b fi;

drived: t := 0; (τ.p′ = τ.v ∧ τ.a− l ≤ τ.v′ ≤ τ.a+ u ∧ t′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε)
⋃

rbc:
 (rbc.message := emergency)

∪
(
m0.d := m.d; m0.e := m.e; m0.r := m.r;

m.d := ∗; m.e := ∗; m.r := ∗;

?m.r ≥ 0 ∧m.d ≥ 0 ∧m0.d
2 −m.d2 ≤ 2(b− u)(m.e−m0.e)

)∗
Figure 7.7.: Parametric ETCS cooperation protocol with disturbances (full instan-

tiation)
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alternations beyond the capabilities of currently available decision procedures for
real arithmetic, KeYmaera needs more user guidance. Yet, those properties can
still be verified with KeYmaera. Further, we see that the symbolic state dimension
has more impact on the computational complexity than the number of proof steps
in dL decompositions. The interactions in Proposition 7.11 and Proposition 7.12
are for the time-dependent version (7.6) of the constraint on SB.

The experimental results in Table 7.1 for Proposition 7.5 can be improved sig-
nificantly. Most of the user interactions are only required to overcome the cur-
rent limitations of the preliminary implementation of iterative inflation order proof
strategies in KeYmaera. Finally contrast our overall experimental results with
earlier implementations that had required as much as 56 user interactions even for
property Proposition 7.7 to be provable [Que07], which we have managed to prove
completely automatically now using our new automated theorem proving tech-
niques for differential dynamic logics and the logic-based verification algorithms
from Part II.

Table 7.1.: Experimental results for the European Train Control System

Case study Int Time(s) Memory(MB) Steps Dim

Proposition 7.2 0 0.6 6.9 14 5
Proposition 7.4, property (7.2) 0 0.5 6.4 42 12
Proposition 7.4, property (7.3) 0 0.9 6.5 82 12
Proposition 7.5 13 279.1 98.3 265 14
Proposition 7.6 0 103.9 61.7 47 14
Proposition 7.7 0 2052.4 204.3 153 14
Proposition 7.8 (kernel) 4 35.2 92.2 62 10
Proposition 7.8 (simplified) 6 9.6 23.5 134 13
Proposition 7.10 0 2.8 8.3 26 7
Proposition 7.11 1 23.7 47.6 76 15
Proposition 7.12 1 5805.2 34 218 1 6

7.6. Summary

As a case study for parametric verification, we have verified controllability, reactiv-
ity, safety, and liveness of the fully parametric cooperation protocol of the European
Train Control System, thereby demonstrating the feasibility of logic-based verifica-
tion of parametric hybrid systems. We have identified parametric constraints that
are both sufficient and necessary for a safe collision-free operation of ETCS. We
have characterised these constraints on the free parameters of ETCS equivalently
in terms of corresponding reachability properties of the underlying train dynam-
ics. We have further shown that the ETCS system remains correct even when the
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train dynamics is subject to disturbances caused, e.g., by the physical transmission,
friction, or wind.

We have seen that the logic dL can indeed express all relevant properties of train
control conveniently. Our experimental results with KeYmaera show a scalable ap-
proach by combining the strengths of completely automatic verification procedures
with the intuition behind user guidance to tackle even highly parametric hybrid
systems and properties with substantial quantifier alternation like reactivity or
liveness.

For future work, we want to generalise ETCS using probabilistic information
about sensor and communication accuracy and availability.
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Synopsis

Aircraft collision avoidance maneuvers are important and challenging ap-
plication scenarios for verification. Flight dynamics, especially during curved
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flight, exhibits nontrivial continuous dynamics. Moreover, the range of con-
trol choices during air traffic maneuvers result in hybrid systems with challen-
ging interactions of discrete and continuous dynamics. As a case study for
demonstrating the scalability in verifying hybrid systems with challenging
dynamics, we analyse roundabout maneuvers in air traffic control, where
appropriate curved flight, good timing, and compatible maneuver choices
are crucial for guaranteeing safe spatial separation of aircraft throughout
their flight. We show that our DAL-based verification algorithm is able to
verify collision avoidance of the tangential roundabout maneuver automat-
ically, even for 5 aircraft. Moreover, we introduce a fully flyable variant of
the roundabout collision avoidance maneuver and verify safety properties by
compositional verification in our calculus.

8.1. Introduction

As a case study, we show how safety properties of collision avoidance maneuvers in
air traffic management can be verified with the DAL calculus from Chapter 3 using
our verification algorithm from Chapter 6. Aircraft maneuvers are challenging for
verification [TPS98, LLL00, MF01, DPR05, DMC05, PC07, GMAR07, HKT07], be-
cause of the complicated spatial/geometrical movement of aircraft. Unlike in train
or car control, braking is no option for failsafe recovery for aircraft. Consequently,
we cannot rely on timely failsafe breaking to maintain safe separation when, e.g.,
movement authority extension negotiations do not succeed in time. Instead, the
full aircraft maneuver has to be coordinated in such a way that the aircraft always
respect minimal and maximal speed constraints and still remain safely separated.

Technically, complexities in analysis of aircraft maneuvers manifest most prom-
inently in difficulties with analysing hybrid systems for flight equation (3.1) on
page 90 in Section 3.4 or the equivalently reparameterised differential equation sys-
tem (F(ω)) on page 91 that we obtained from (3.1) by differential axiomatisation.

On straight lines, i.e., where the angular velocity is ω = 0, the angular orienta-
tion ϑ and the value of sinϑ and cosϑ remain constant during continuous evolutions
so that the solutions of (3.1) are simple (possibly piecewise) linear functions. For
hybrid systems with linear evolution functions, there are well-known analysis tech-
niques [Hen96, Fre05], for instance based on classical linear programming [Chv83].
Pure straight line maneuvers [TPS98, MF01, DMC05, GMAR07, HKT07] are air-
craft maneuvers with piecewise linear evolutions, see, e.g., Figure 8.1. They assume
instant turns for heading changes of the aircraft between multiple straight line seg-
ments. Instant turns, however, are impossible in midflight, because they are not
flyable: Aircraft cannot suddenly change their flight direction from 0 to 45 degrees
discontinuously but need to follow a smooth curve instead, in which they slowly
steer towards the desired direction by adjusting the angular velocities appropriately.
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non-flyable instant turn

Figure 8.1.: Non-flyable straight line maneuver with instant turns

During curved flight, the angular velocity ω is non-zero, which causes the trigono-
metric expressions in equation (3.1) from page 90 to have a permanent non-constant
and, more importantly, nonlinear effect on the dynamics of the system. For ω 6= 0,
the equivalent differential equation system (F(ω)) has transcendental solutions,
so that reachability problems along these solutions fall into undecidable classes of
arithmetics, as illustrated in Section 3.4.2. Consequently, maneuvers with curves,
like the roundabout maneuvers in Figure 6.7 on page 190, are more realistic but
also much more challenging for verification than straight line maneuvers like that in
Figure 8.1, because the flight equations (3.1) and (F(ω)) become highly non-trivial.
For instance, differential equation solving in Mathematica produces the solution de-
picted in Figure 8.2 for differential equation system that results from system (3.1)
on page 90 by considering relative positions of two aircraft, see [TPS98] for details:

x′1 = −v1 + v2 cosϑ+ ωx2 x′2 = v2 sinϑ− ωx1 ϑ′ = %− ω

The “solution” (if it is one at all) in Figure 8.2 is not suitable for verification pur-
poses. It involves several trigonometric functions and has an undefined singularity
at ω = 0. As we have illustrated in Section 3.4.2, reachability verification (e.g.,
with rule D12 of Figure 2.5) is not possible for trigonometric solutions like in Fig-
ure 8.2, because the resulting formulas of the form ∀t≥0φ(x1(t), x2(t), ϑ(t)) involve
quantified arithmetic over trigonometric functions, which is undecidable.

To verify roundabout maneuvers with curves like in Figure 3.1b on page 90 nev-
ertheless, our calculus and verification algorithm work with differential invariants
(Definition 6.3 and proof rule G5 of Figure 3.3) instead of solutions of differential
equations.

Despite all complications caused by their challenging dynamics, formal verifica-
tion is of tremendous importance for aircraft maneuvers. Basically, collision avoid-
ance systems like TCAS [LLL00] are intended as last resort means for resolving air
traffic conflict situations that have not been detected and prevented by pilots or
flight directors of the Air Route Traffic Control Centres. Consequently, decisions
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x1(t) =
1

%ω

(
x1%ω cos(tω)− ω sin(ϑ)v2 cos(tω) + ω cos(t%) sin(ϑ)v2 cos(tω)

+ ω cos(ϑ) sin(t%)v2 cos(tω) + x2%ω sin(tω)− % sin(tω)v1

− ω cos(ϑ) cos(t%) sin(tω)v2 + ω sin(ϑ) sin(t%) sin(tω)v2

− ω
√

1− sin(ϑ)2 sin(tω)v2

)
x2(t) =

1

%ω

(
%v1cos(tω)2 + x2%ω cos(tω)− %v1 cos(tω)− ω cos(ϑ) cos(t%)v2 cos(tω)

+ ω sin(ϑ) sin(t%)v2 cos(tω)− ω
√

1− sin(ϑ)2v2 cos(tω)− x1%ω sin(tω)

+ %sin(tω)2v1 + ω sin(ϑ) sin(tω)v2

− ω cos(t%) sin(ϑ) sin(tω)v2 − ω cos(ϑ) sin(t%) sin(tω)v2

)
ϑ(t) = ϑ+ t(%− ω)

Figure 8.2.: Formal “solution” of flight equations produced by Mathematica

of automatic air traffic control systems should be fast and particularly reliable. In
addition, the counterexample in Figure 3.1c, which has been found by our model
checker AMC [PC07] for the classical roundabout maneuver with fixed paramet-
ers [TPS98, MF01, DPR05], shows that sound formal verification is of utmost
importance to ensure correct functioning of air traffic control maneuvers.

Structure of this Chapter

We verify crucial safety and liveness properties of curved flight in roundabout man-
euvers in Section 8.2. We analyse synchronisation properties of roundabout man-
euvers for multiple aircraft in Section 8.3. In Section 8.5, we combine the previous
results to a safety theorem for fully flyable tangential roundabout maneuvers fol-
lowing a compositional verification approach in our calculi according to Section 8.4.
We present experimental results in Section 8.6 and conclude in Section 8.7.

8.2. Curved Flight in Roundabout Maneuvers

In this section, we introduce and verify the fully flyable roundabout maneuver that
is depicted in Figure 6.7. It refines the tangential roundabout maneuver from Fig-
ure 3.1d, which still has discontinuities at the entry and exit points of roundabouts,
to a fully flyable curved maneuver. The resulting maneuver does not contain any
instant turns, but all of its curves are sufficiently smooth. The flyable tangen-
tial roundabout maneuver (FTRM ) consists of the phases in the protocol cycle in
Figure 8.3a which correspond to the marked flight phases in Figure 6.7.
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free

ω := ∗
% := ∗

agree

entry

circ

exit

8.3a: Collision avoidance protocol

c

x
ω < 0

ex
it

ω > 0

y

8.3b: Maneuver construction

Figure 8.3.: Protocol cycle and construction of flyable roundabout maneuver

During free flight, the aircraft move without restrictions by repeatedly choosing
arbitrary new angular velocities ω and % respectively (as indicated by the self loop of
phase free in Figure 8.3a). As in Chapter 3, continuous nondeterministic variation
of ω and % could be permitted safely as well by adding ∃ω ∃% , the proofs carry over
immediately.

When the aircraft come too close to one another, they agree on a compatible
roundabout maneuver by negotiating a common roundabout centre c (in the co-
ordination phase agree). Next, the aircraft approach the actual roundabout circle
by a right curve with ω < 0 (entry mode) according to Figure 8.3b, thereby leading
to a tangential configuration satisfying property (3.6) of page 122 where roundabout
dynamics is safe. During the circ mode, the aircraft follow the circular roundabout
maneuver around the agreed centre c with a left curve of common angular velo-
city ω (or right curve for ω < 0). Finally, the aircraft leave the circular roundabout
in cruise mode (ω = 0) into their original direction (exit) and enter free flight again
when they have reached sufficient distance. The collision avoidance maneuver is
symmetric when exchanging left and right curves, which corresponds to using a
value ω < 0 in place of ω > 0.

8.2.1. Compositional Verification Plan

For verifying collision avoidance and other safety properties of the flyable tangen-
tial roundabout maneuver, we pursue the following overall verification plan that
modularises the proof and allows us to identify the respective safety constraints
imposed by the various maneuver phases successively. We verify subsequently:

AC1 Tangential roundabout maneuver cycle: We prove that the protected zones of
aircraft are safely separated at all times during the whole maneuver (including
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repetitive collision avoidance maneuver initiation) when using a simplified
entry operation.

AC2 Bounded control choices for aircraft velocities : We prove that there are real-
isable choices for the degrees of freedom in entry that require only bounded
control choices for velocities. Prove that linear speeds remain bounded for
the overall maneuver.

AC3 Flyable entry procedures : We prove that the simplified entry procedure can be
replaced by a flyable curve meeting the requirements of the entry procedure
identified in Section 3.11.

AC4 Bounded entry duration: We show that the flyable entry procedure succeeds
in bounded time.

AC5 Safe entry separation: We prove that the protected zones of aircraft are re-
spected during flyable entry procedure.

AC6 Successful negotiation: We prove that the negotiation phase (agree) of the
aircraft succeeds with all mutual requirements of the respective aircraft for
the entry phase being satisfied.

AC7 Safe exit separation: We show that, for its bounded duration, the exit proced-
ure does not conflict with other flight curves and that the initial far separation
is again reached as needed by the flyable entry procedure when re-initiating
collision avoidance maneuvers repeatedly.

We present details on these verification tasks in the sequel and summarise the
respective verification results into a joint safety property of the flyable tangential
roundabout maneuver in Section 8.5. For AC4, we still rely on informal arguments.

Finally note that, to simplify notation we use square roots and norms within
formulas in this chapter, because both are definable. For instance, ‖x− y‖ ≥ p
is definable by (x1 − y1)2 + (x2 − y2)2 ≥ p2 for p ≥ 0. Likewise, ‖x− y‖ =

√
3r is

definable by ‖x− y‖2 = 3r2 for r ≥ 0.

8.2.2. Tangential Roundabout Maneuver Cycle

First, we analyse the roundabout maneuver with a simplified entry procedure, which
also allows to simplify the exit procedure.

Modular Correctness of Tangential Roundabout Cycles For AC1, we have
proven in Section 3.11 that—for arbitrary choices of the entry maneuver that sat-
isfy the prerequisites of Theorem 3.32—the tangential roundabout maneuver safely
avoids collisions, i.e., the aircraft always maintain a safe distance ≥p during the
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8.2. Curved Flight in Roundabout Maneuvers

curved flight in the roundabout circle. In addition, these results show that arbit-
rary repetitions of the protocol cycle are safe at all times for a simplified choice of
the entry maneuver. The model and specification for this tangential roundabout,
as constructed in Section 3.4 and Section 3.11, are summarised in Figure 8.4.

ψ ≡ φ→ [trm∗]φ

φ ≡ ‖x− y‖2 ≥ p2 ≡ (x1 − y1)2 + (x2 − y2)2 ≥ p2

trm ≡ free; agree; F(ω) ∧ G(ω)

free ≡ (ω := ∗; % := ∗; F(ω) ∧ G(%) ∧ φ)∗

agree ≡ ω := ∗; c := ∗;
d1 :=−ω(x2 − c2); d2 := ω(x1 − c1);

e1 :=−ω(y1 − c1); e2 := ω(y2 − c2)

Figure 8.4.: Flight control with tangential roundabout collision avoidance man-
euvers

In summary, property ψ of Figure 8.4 expresses that the aircraft maintain a
safe distance of at least the protected zone p during the flight, especially during
evasive roundabout maneuvers. Our verification results for this property are already
indicated in Table 6.1.

Multiple Aircraft We prove a corresponding property for up to 5 aircraft, which
jointly participate in the roundabout maneuver. There, the safety property is
mutual collision avoidance, i.e., each of the aircraft has a safe distance ≥p to all
the other aircraft, which yields a quadratic number of constraints to show. This
quadratic increase in the property that actually needs to be proven for a safe round-
about of n aircraft and the increased dimension of the underlying continuous state
space cause the increased verification times for more aircraft in Table 6.1. For
instance, Figure 8.5 illustrates the (flyable) roundabout maneuver with multiple
aircraft and Figure 8.6 contains the system and separation property specification
for the 4-aircraft tangential roundabout maneuver (still with simplified entry pro-
cedure). There, property ψ expresses that the 4 aircraft at positions x, y, z, u ∈ R2,
respectively, keep mutual distance ≥p.

8.2.3. Bounded Control Choices for Aircraft Velocities

For AC2, we show that bounded speed choices are sufficient for the choices of the
entry procedure and that this bounded speed is maintained safely throughout the
maneuver.
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c
c c

Figure 8.5.: Flyable aircraft roundabout (multiple aircraft)

ψ ≡ φ→ [trm∗]φ

φ ≡ (x1 − y1)2 + (x2 − y2)2 ≥ p2 ∧ (y1 − z1)2 + (y2 − z2)2 ≥ p2

∧ (x1 − z1)2 + (x2 − z2)2 ≥ p2 ∧ (x1 − u1)2 + (x2 − u2)2 ≥ p2

∧ (y1 − u1)2 + (y2 − u2)2 ≥ p2 ∧ (z1 − u1)2 + (z2 − u2)2 ≥ p2

trm ≡ free; agree;

x′1 = d1 ∧ x′2 = d2 ∧ d′1 = −ωxd2 ∧ d′2 = ωxd1

∧ y′1 = e1 ∧ y′2 = e2 ∧ e′1 = −ωye2 ∧ e′2 = ωye1

∧ z′1 = f1 ∧ z′2 = f2 ∧ f ′1 = −ωzf2 ∧ f ′2 = ωzf1

∧ u′1 = g1 ∧ u′2 = g2 ∧ g′1 = −ωug2 ∧ g′2 = ωug1

free ≡ (ωx := ∗; ωy := ∗; ωz := ∗; ωu := ∗;
x′1 = d1 ∧ x′2 = d2 ∧ d′1 = −ωxd2 ∧ d′2 = ωxd1

∧ y′1 = e1 ∧ y′2 = e2 ∧ e′1 = −ωye2 ∧ e′2 = ωye1

∧ z′1 = f1 ∧ z′2 = f2 ∧ f ′1 = −ωzf2 ∧ f ′2 = ωzf1

∧ u′1 = g1 ∧ u′2 = g2 ∧ g′1 = −ωug2 ∧ g′2 = ωug1 ∧ φ)∗

agree ≡ ω := ∗; c := ∗;
d1 :=−ω(x2 − c2); d2 := ω(x1 − c1);

e1 :=−ω(y1 − c1); e2 := ω(y2 − c2);

f1 :=−ω(z1 − c1); f2 := ω(z2 − c2);

g1 :=−ω(u1 − c1); g2 := ω(u2 − c2)

Figure 8.6.: Tangential roundabout collision avoidance maneuver (4 aircraft)
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8.2. Curved Flight in Roundabout Maneuvers

Bounded Entry Choices The tangential roundabout maneuver in Figure 8.4
maintains collision avoidance for all its choices of centre c and angular velocity ω
in agree. Next, we show that there always is a choice respecting external require-
ments on linear speed (aircraft flight is neither save at too high speeds nor when
they are travelling too slowly, as they would stall), which corresponds to AC2 of Sec-
tion 8.2.1. The fact that external speed requirements can be met is a consequence
of the proof of property (3.8) on page 125 from Section 3.11. Consequently, the
constraints on the entry procedure are feasible with parameter choices respecting
any bounds for velocities that are imposed by the aircraft.

Bounded Maneuver Speed As a simple consequence of the proof in Example 3.3
on page 105, it is easy to see that external requirements on the linear speed of
aircraft are maintained throughout the whole roundabout maneuver. Example 3.3
shows that the linear speed is maintained for arbitrary repeated choices of the
angular velocity ω, which, as a special cases, includes the respective control choices
during the roundabout maneuver.

8.2.4. Flyable Entry Procedures

In order to generalise the verification results about the tangential roundabout man-
euver with simplified entry procedures (Figure 3.1) to the fully flyable tangential
roundabout maneuver (Figure 6.7 and Figure 8.5), we analyse a flyable entry pro-
cedure, which replaces our simple choice of entry in Figure 8.4 and Figure 8.6 by
flyable curves.

c

r

r

h

x r
ω < 0

ex
it

ω > 0

y

Figure 8.7.: Technical construction of flyable roundabout maneuver and entry

Flyable Entry Properties A flyable entry maneuver that follows the smooth entry
curve from Figure 6.7 is given in Figure 8.8a. Its construction uses the anchor
point h indicated in Figure 8.7. Anchor h is positioned relative to the roundabout
centre c and the x position at the start of the entry curve (i.e., with x at the right
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angle indicated in Figure 8.7). This anchor h has a distance of r to x, distance 2r
to c, and x− h is orthogonal to d, while taking into account the relative orientation
of the roundabout as implied by ω in the corresponding specification of the flyable
entry procedure in Figure 8.7. These declarative constraints on h are expressed
in Figure 8.8 as a precondition (for notational convenience, we formulate the pre-
condition as tests in the hybrid program rather than using an implication in the
formula) to the flyable entry procedure. The property in Figure 8.8a specifies that
the tangential configuration of the simple choice for agree in Figure 8.4 is reached by
a flyable curve when waiting until aircraft x and centre c have distance r. The ex-
istence of a choice for the anchor point h satisfying the requirements in Figure 8.8a
can be shown by proving the dual dL diamond formula in Figure 8.8b.

(rω)2 = d2
1 + d2

2 ∧ (x1 − c1)2 + (x2 − c2)2 = 3r2 ∧ ∃λ≥0 (x+ λd = c)

→[h := ∗;
?(d1 = ω(x2 − h2) ∧ d2 = −ω(x1 − h1));

?((h1 − c1)2 + (h2 − c2)2 = (2r)2);

x′1 = d1 ∧ x′2 = d2 ∧ d′1 = ωd2 ∧ d′2 = −ωd1 & ((x1 − c1)2 + (x2 − c2)2 ≥ r2)

]
(
(x1 − c1)2 + (x2 − c2)2 ≤ r2 → (d1 = −ω(x2 − c2) ∧ d2 = ω(x1 − c1))

)
8.8a: Entry procedure reaches tangential configuration

(rω)2 = d2
1 + d2

2 ∧ (x1 − c1)2 + (x2 − c2)2 = 3r2 ∧ ∃λ≥0 (x+ λd = c)

→〈h := ∗;
?(d1 = ω(x2 − h2) ∧ d2 = −ω(x1 − h1));

?((h1 − c1)2 + (h2 − c2)2 = (2r)2);

〉 true

8.8b: Choices of entry procedure are feasible

Figure 8.8.: Flyable entry procedure

Symmetry Reduction The properties in Figure 8.8 can be verified in a simplified
version. To overcome the complexity of real quantifier elimination [CH91], which
is doubly exponential in the number of quantifier alternations and (at least single)
exponential in the number of variables, we use symmetry reduction to simplify the
properties in Figure 8.8 computationally. That is, we exploit symmetries in the
state space to reduce its dimension by fixing some variables, concluding safety for
states that result from the fixed states by symmetric transformations. Without loss
of generality, we can recenter the coordinate system to have c at position 0. Further,
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8.2. Curved Flight in Roundabout Maneuvers

we can assume aircraft x to come from the left by changing the orientation of the
coordinate system. Finally, we can assume, without loss of generality, the linear
speed to be 1 (by rescaling units appropriately). Observe that we cannot fix a value
for both the linear speed and the angular velocity, because their units are strictly
interdependent. In other words, if we fix the linear speed, we need to consider
all angular velocities to verify the maneuver for all possible curve radii r for the
roundabout maneuver. The x position resulting from these symmetry reductions
can be determined by Pythagoras theorem (i.e., (2r)2 = r2 + x2

1 for the triangle
enclosed by h, x, c) or simple trigonometry as follows, see Figure 8.7:

x = (2r cos
π

6
, 0) = (

√
(2r)2 − r2, 0) = (

√
3r, 0) . (8.1)

To express the square root function using polynomial terms, we can easily use a
random assignment for x1 with a test condition x2

1 = (
√

3r)2 = 3r2. Consequently,
we simplify Figure 8.8 by specialising to the following situation:

d1 := 1; d2 := 0; c1 := 0; c2 := 0;

x2 := 0;

r := ∗; ?r > 0; ω := 1/r;

x1 := ∗; ?x2
1 = 3r2 ∧ x1 ≤ 0;

Verification results for the resulting entry procedure after symmetry reduction, and
a proof of existence of a corresponding anchor point h according to Figure 8.8b,
will be shown in Table 8.2.

For proving the feasibility property in Figure 8.8b within reasonable time, it is
sufficient to specialise the state by symmetry reduction to c1 := 0 ∧ c2 := 0 ∧ ω := 1.
Interestingly, this example shows another surprise of quantifier elimination com-
plexity and the power of symmetry reduction quite impressively: Without the
reduction to ω := 1, QE of Mathematica runs for more than 20 days without pro-
ducing a result on an Intel Xeon X5365 with 3GHz and 16GB memory (of which
only 3GB are used), even when adding the state space reduction r := 1.

8.2.5. Bounded Entry Duration

As the first step for showing that the entry procedure finally succeeds and maintains
a safe distance all the time, we show that entry succeeds in bounded time and
cannot take arbitrarily long to succeed (AC4).

Qualitative Analysis By a simple consequence of the proof for Figure 8.8a, the
entry procedure follows a circular motion around the anchor point h, which is
chosen according to Figure 8.8a, see Figure 8.9. That is to say that the prop-
erty ‖x− h‖ = r, with the radius r belonging to the angular velocity ω and linear
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Figure 8.9.: Characteristics of flyable entry maneuver

speed ‖d‖, is a (differential) invariant of entry . Indeed, the corresponding property
in Figure 8.10 is provable. For the remainder of AC4, we use informal arguments.
According to the proof in Example 3.3, the speed ‖d‖ is constant during the entry
procedure. Thus, the aircraft proceed with nonzero minimum progress rate ‖d‖
around the circle. Consequently, the entry maneuver ends in bounded time, be-
cause the arc length of the circle around h is bounded (2πr for radius r) and every
bounded curve will be traversed in bounded time with constant velocity and ori-
entation.

(rω)2 = d2
1 + d2

2 ∧ (x1 − c1)2 + (x2 − c2)2 = 3r2 ∧ ∃λ≥0 (x+ λd = c)

→[h := ∗;
?(d1 = ω(x2 − h2) ∧ d2 = −ω(x1 − h1));

?((h1 − c1)2 + (h2 − c2)2 = (2r)2);

x′1 = d1 ∧ x′2 = d2 ∧ d′1 = ωd2 ∧ d′2 = −ωd1 & ((x1 − c1)2 + (x2 − c2)2 ≥ r2)

](x1 − h1)2 + (x2 − h2)2 = r2

Figure 8.10.: Flyable entry procedure is circular

Quantitative Analysis To obtain a quantitative bound on the duration of the
entry maneuver, consider the following. The flight duration for a full circle of
radius r around h at constant linear speed ‖d‖ is 2πr

‖d‖ , because its arc length is 2πr.

By using the trigonometric identities underlying (8.1), we see that the aircraft do
not even have to complete the full circle, but only 1

6
-th of a circle, i.e., π

3
= 60◦, see

Figure 8.7. Consequently, the maximum duration T of the entry procedure can be
determined as:

T :=
1

6
· 2πr

‖d‖ =
πr

3‖d‖ (8.2)
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Using the standard relation |ω| = v
r

between the angular velocity ω, the corres-
ponding radius r of the circle (of evasive actions), and the linear velocity v = ‖d‖
of the aircraft, maximum duration T can also be expressed as T = 1

6
· 2π
|ω| .

Note that the constant π in the expression (8.2) for T is not definable in the
theory of real-closed fields (the transcendental number π is not even contained in
the real-closed field of algebraic numbers, thus it cannot be definable). Yet, T only
has to be some upper bound on the maximum duration of the entry procedure.
Consequently, any overapproximation of the maximum duration computed using
a rational P ≥ π will do, for instance 3.15r

3‖d‖ for the approximation 3.15 instead of

for π = 3.1415926 . . . in (8.2).

8.2.6. Safe Entry Separation

In Section 8.2.4, we have shown that the simplified entry procedure from the tan-
gential roundabout maneuver can be replaced by a flyable entry maneuver that
meets the requirements of approaching tangentially according to Theorem 3.32 for
each of the aircraft. Yet, we still have to show that the respective entry maneuvers
of multiple aircraft do not produce mutually conflicting flight paths, i.e., spatial sep-
aration of all aircraft is maintained during the entry maneuvers of multiple aircraft
(AC5 of Section 8.2.1).

Bounded Overapproximation We show that entry separation is a consequence
of the bounded speed (AC2) and bounded duration (AC4) of the flyable entry
procedure when initiating the negotiation phase agree with sufficient distance: With
bounded speed, aircraft can only come closer by a limited distance in bounded
time. Let b denote the overall speed bound during FTRM according to AC2 and
let T be the time bound for the duration of the entry procedure according to
AC4. As an overapproximation of the actual behaviour during the entry phase,
the following property expresses that—when the entry procedure is initiated with
sufficient distance p+ 2bT—the protected zone will still be respected after the 2
aircraft follow any curved flight (including the actual choices during entry and
subsequent circ) with speed ≤b up to T time units (see Figure 8.11):

‖d‖2 ≤ ‖e‖2 ≤ b2 ∧ ‖x− y‖2 ≥ (p+ 2bT )2 ∧ p ≥ 0 ∧ b ≥ 0 ∧ T ≥ 0

→ [τ := 0;∃ωF(ω) ∧ ∃%G(%) ∧ τ ′ = 1 ∧ τ ≤ T ]‖x− y‖2 ≥ p2 (8.3)

This property is a consequence of the fact that—regardless of the actual angular
velocity choices—aircraft only make limited progress in bounded time when starting
with bounded speeds:

‖d‖2 ≤ b2 ∧ b ≥ 0 ∧ x = z → [τ := 0; ∃ωF(ω) ∧ τ ′ = 1]‖x− z‖∞ ≤ τb (8.4)
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Figure 8.11.: Entry separation by bounded nondeterministic overapproximation

where the supremum norm ‖ · ‖∞ is definable as

‖x‖∞ ≤ c ≡ −c ≤ x1 ≤ c ∧ −c ≤ x2 ≤ c

‖x‖∞ ≥ c ≡ (x1 ≤ −c ∨ c ≤ x1) ∨ (x2 ≤ −c ∨ c ≤ x2)

The limited progress property (8.4) is provable immediately by differential induction
for the postcondition (the antecedent of G5 is provable as x = z ` ‖x− z‖∞ = 0):

∗
F1 ‖d‖2 ≤ b2 ∧ b ≥ 0 ` ∀x, y, τ ∀ω (−b ≤ d1 ≤ b ∧ −b ≤ d2 ≤ b)
G5 ‖d‖2 ≤ b2 ∧ b ≥ 0 ∧ x = z ` 〈τ := 0〉[∃ωF(ω) ∧ τ ′ = 1]‖x− z‖∞ ≤ τb

D10,D9‖d‖2 ≤ b2 ∧ b ≥ 0 ∧ x = z ` [τ := 0; ∃ωF(ω) ∧ τ ′ = 1]‖x− z‖∞ ≤ τb

Cartesian Degree Reduction Due to the complexity of QE, the proof of the
original property (8.3) does not terminate quickly enough. To overcome this issue,
we simplify property (8.3) and use the (linearly definable) supremum norm ‖ · ‖∞
in place of the (quadratically definable) Euclidean 2-norm ‖ · ‖2, thereby yielding
the following provable variant of (8.3):

‖d‖2 ≤ ‖e‖2 ≤ b2 ∧ ‖x− y‖∞ ≥ (p+ 2bT ) ∧ p ≥ 0 ∧ b ≥ 0 ∧ T ≥ 0

→ [τ := 0;∃ωF(ω) ∧ ∃%G(%) ∧ τ ′ = 1 ∧ τ ≤ T ]‖x− y‖∞ ≥ p (8.5)

It can be shown (and is provable even by QE) that the supremum norm ‖ · ‖∞
and the standard Euclidean norm ‖·‖2 are equivalent, i.e., their values are identical
up to constant factors:

∀x (‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞)

∀x (
1√
n
‖x‖2 ≤ ‖x‖∞ ≤ ‖x‖2)
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where n is the finite dimension of the vector space, here 2. From this equivalence
of norms, we can conclude that the following variant of (8.5) with 2-norms is valid:

‖d‖2 ≤ ‖e‖2 ≤ b2 ∧ ‖x− y‖2 ≥
√

2(p+ 2bT ) ∧ p ≥ 0 ∧ b ≥ 0 ∧ T ≥ 0

→ [τ := 0;∃ωF(ω) ∧ ∃%G(%) ∧ τ ′ = 1 ∧ τ ≤ T ]‖x− y‖2 ≥ p

The extra factor of
√

2 in the separation requirement results from the relaxation of
the 2-norm to the∞-norm. Using the bounded duration property AC4 of the entry
maneuver, it is easy to see that the entry maneuver is a special case of the above
nondeterministic hybrid program. Thus we conclude that the following property is
valid:

‖d‖2 ≤ ‖e‖2 ≤ b2 ∧ ‖x− y‖2 ≥
√

2(p+ 2bT ) ∧ p ≥ 0 ∧ b ≥ 0 ∧ T ≥ 0

→ [entry]‖x− y‖2 ≥ p (8.6)

Far Separation By combining the estimation of the entry duration from equa-
tion (8.2) with the entry separation property (8.6), we can determine the following
magnitude as the far separation, i.e., the distance which guarantees that protected
zone p is maintained during the maneuver, including its entry phase:

f :=
√

2(p+ 2bT ) =
√

2

(
p+

2

3
πr

)
(8.7)

Using f as an abbreviation for that term, we can abbreviate property (8.6) as
follows:

‖d‖2 ≤ ‖e‖2 ≤ b2 ∧ ‖x − y‖2 ≥ f ∧ p ≥ 0 ∧ b ≥ 0 → [entry]‖x − y‖2 ≥ p (8.8)

8.3. Synchronisation of Roundabout Maneuvers

In the previous sections, we have analysed collision freedom and separation prop-
erties of the various curved flight phases of FTRM. According to our verification
plan in Section 8.2.1, we also need to show that the various actions of the respect-
ive aircraft are synchronised appropriately to ensure safety of the maneuver. We
analyse the negotiation phase and compatible exit procedures next.

8.3.1. Successful Negotiation

For the negotiation phase to succeed, we have to show that there is a common
choice of the roundabout centre c and angular velocity ω (or radius r) so that all
participating aircraft can satisfy the requirements of their respective entry proced-
ures simultaneously, i.e., of the property in Figure 8.8a (we thus have to show AC6
of Section 8.2.1).
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Separate Success First of all, we show that there is a choice of c and r and ω
during the agree mode such that the antecedent of the property in Figure 8.8a is
satisfied, i.e., the agree mode is feasible:

〈c := ∗; r := ∗; ?‖x− c‖ =
√

3r ∧ r ≥ 0;ω := ∗; ?(rω)2 = d2
1 + d2

2〉(
‖x− c‖ =

√
3r ∧ ∃λ≥0 (x+ λd = c)

)
(8.9)

The dual property shows that, in fact, all choices of agree that also satisfy the
(feasible) constraint ∃λ≥0 (x+ λd = c) already satisfy the entry requirements:

[c := ∗; r := ∗; ?‖x−c‖ =
√

3r∧r ≥ 0; ?∃λ≥0 (x+λd = c); ω := ∗; ?(rω)2 = d2
1+d2

2](
‖x− c‖ =

√
3r ∧ ∃λ≥0 (x+ λd = c)

)
(8.10)

Joint Negotiation Success Similarly, we prove that all corresponding choices
of agree satisfy the mutual requirements of multiple aircraft simultaneously, i.e.,
there are always compatible choices for c, r, ω for multiple aircraft. First, we prove
that all corresponding choices satisfy mutual requirements when choosing round-
about center c as the intersection of the flight paths of the aircraft at x and y, see
Figure 8.12:

‖d‖ = ‖e‖ ∧ λ > 0 ∧ x+ λd = y + λe→
[c := x+ λd; r := ∗; ?‖x− c‖ =

√
3r; ?‖y − c‖ =

√
3r; ω := ∗; ?(rω)2 = d2

1 + d2
2](

‖x− c‖ =
√

3r ∧ λ ≥ 0 ∧ x+ λd = c ∧ ‖y − c‖ =
√

3r ∧ λ ≥ 0 ∧ y + λe = c
)

(8.11)

c

x

d

y

e

Figure 8.12.: Mutually agreeable negotiation choices for aircraft

Secondly, these choices are feasible, i.e., there always is a mutually agreeable
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choice:

‖d‖ = ‖e‖ ∧ λ > 0 ∧ x+ λd = y + λe→
〈c := x+ λd; r := ∗; ?‖x− c‖ =

√
3r; ?‖y − c‖ =

√
3r; ω := ∗; ?(rω)2 = d2

1 + d2
2〉(

‖x− c‖ =
√

3r ∧ λ ≥ 0 ∧ x+ λd = c ∧ ‖y − c‖ =
√

3r ∧ λ ≥ 0 ∧ y + λe = c
)

(8.12)

This property follows from the following provable simplified variant, obtained from
formula (8.12) by joining the equations ‖x− c‖ =

√
3r and ‖y − c‖ =

√
3r:

‖d‖ = ‖e‖ ∧ λ > 0 ∧ x+ λd = y + λe→
〈c := x+ λd; r := ∗; ?‖x− c‖ = ‖y − c‖ =

√
3r〉true (8.13)

That ‖x− c‖ can be written in the form
√

3r for some r is easy to see just by
division, similarly for the choice of ω.

Far Separation The entry procedure has to be initiated while the aircraft are still
sufficiently far apart for safety reasons. Correspondingly, the agree procedure will
negotiate a roundabout choice while the aircraft have far distance. Thus, the agree
procedure will have to maintain far separation, i.e., satisfy the property

‖x− y‖ ≥
√

2(p+
2

3
πr) → [agree]‖x− y‖ ≥

√
2(p+

2

3
πr) (8.14)

This appears to be a trivial property, because agree models the successful comple-
tion of the negotiation, so that no time elapses during agree, hence the positions x
and y do not even change. Observe, however, that the far separation distance ac-
cording to equation (8.7) depends on the protected zone p and the radius r of evasive
actions. Unlike p, radius r may change during agree, which allows for the flexibility
of changing the flight radius r adaptively when repeating the roundabout maneuver
loop at different positions. Consequently, the far separation distance

√
2(p+ 2

3
πr)

is affected when changing r.

To ensure that the new radius r is chosen such that far separation is still main-
tained, i.e., property (8.14) is respected, we add a corresponding constraint to agree.
Thus, changes of r are only accepted as long as they do not compromise far separ-
ation. We show that, when adding a corresponding constraint to property (8.11),
all choices by agree maintain far separation of the aircraft at x and y according
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to (8.7):

‖d‖ = ‖e‖ ∧ λ > 0 ∧ x+ λd = y + λe→

[c := x+ λd; r := ∗; ?‖x− c‖ =
√

3r; ?‖y − c‖ =
√

3r; ?‖x− y‖ ≥
√

2(p+
2

3
πr);

ω := ∗; ?(rω)2 = d2
1 + d2

2](
‖x− c‖ =

√
3r ∧ λ ≥ 0 ∧ x+ λd = c ∧ ‖y − c‖ =

√
3r ∧ λ ≥ 0 ∧ y + λe = c

∧ ‖x− y‖ ≥
√

2(p+
2

3
πr)
)

(8.15)

Finally, we analyse when such choices of agree are feasible:

‖d‖ = ‖e‖ ∧ λ > 0 ∧ x+ λd = y + λe→

〈c := x+ λd; r := ∗; ?‖x− c‖ = ‖y − c‖ =
√

3r〉‖x− y‖ ≥
√

2(p+
2

3
πr) (8.16)

The corresponding distance constraints on x, y and c for agree, respectively, are
depicted in Figure 8.13. Using standard trigonometric relations for each half of the

√
3r

c

√
3r

γ

≥
√

2(p+ 2
3
πr)

x
d

y
e

Figure 8.13.: Far separation for mutually agreeable negotiation choices

triangle, we can compute the resulting distance of x and y as ‖x− y‖ = 2
√

3r sin γ
2
.

With quantifier elimination and simple evaluation for the remaining trigonometric
expressions, we can determine under which circumstances property (8.16) holds
true, i.e., for all protected zones p there is a radius r satisfying the distance re-
quirements:

QE

(
∀p ∃r≥0

(
2
√

3r sin
γ

2
≥
√

2(p+
2

3
πr)

))
≡ sin

γ

2
>

1

3

√
2

3
π ≡ γ > 117.527◦

Consequently, corresponding choices are feasible for all protected zones with flight
paths that do not intersect with narrow collision angles. The constraint on the
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flight path intersection angle would relax to γ > 74.4◦ when removing the extra
factor of

√
2 from (8.7), which only results from our computational simplification

of cartesian degree reduction from Section 8.2.6.

Despite the presence of trigonometric expressions, the above formula is a substi-
tution instance of first-order real arithmetic and can thus be handled by QE using
Lemma 2.13. Note that the primary difference to trigonometric expressions occur-
ring in the solutions of flight equations for curved flight—which do not support
quantifier elimination—is that the argument γ

2
of sin is not quantified over, here.

8.3.2. Safe Exit Separation

For the tangential roundabout maneuver from Chapter 3, no special exit procedure
is needed for safety, because the maneuver repeats when further air traffic conflicts
arise. For the FTRM, instead, we need to show that the exit procedure produces
safe flight paths until the aircraft are sufficiently separated, because—when repeat-
ing the FTRM maneuver—the entry procedure requires more separation than just p
for safety, see Figure 6.7.

Safe Separation In order to establish the safe separation of aircraft during their
exit procedures, we show that, for its bounded duration, the exit procedure does
not conflict with other flight curves such that the initial far separation is again
maintained as needed by the flyable entry procedure when re-initiating collision
avoidance maneuvers repeatedly. For showing property AC7 of Section 8.2.1, we
have to show the following:

d = ω(x− c)⊥ ∧ e = ω(y − c)⊥ ∧ ‖x− y‖2 ≥ p2

→ [x′ = d ∧ y′ = e ∧ e′ = e⊥; x′ = d ∧ y′ = e]‖x− y‖2 ≥ p2 (8.17)

This property expresses that, when x already exits on a straight line while y keeps
following the roundabout for a while until both exit on straight lines, then the
protected zones are respected at any point. Since, in Section 8.3.1, we have assumed
simultaneous entry and identical speed, the aircraft can also be exit simultaneously.
With that, property (8.17) simplifies to:

d = ω(x−c)⊥∧e = ω(y−c)⊥∧‖x−y‖2 ≥ p2 → [x′ = d ∧ y′ = e]‖x−y‖2 ≥ p2 (8.18)

This property expresses that safely separated aircraft that exit simultaneously along
straight lines from tangential positions of a roundabout always remain safely separ-
ated. To reduce the arithmetical complexity, we overapproximate this property by
showing that even the whole exit rays never cross when the aircraft exit the same
roundabout tangentially (see Figure 8.14a; the counterexample in Figure 8.14b
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c

8.14a: Exit ray separation

c

8.14b: Incompatible exit rays

Figure 8.14.: Exit procedure separation

shows that the assumption on identical radii is required for this relaxation):

d = ω(x− c)⊥∧ e = ω(y− c)⊥∧‖x− c‖2 = ‖y− c‖2∧x 6= y → [x′ = d; y′ = e]x 6= y
(8.19)

Again the computational complexity of proving this property can be simplified sub-
stantially by adding c1 := 0 ∧ c2 := 0 by symmetry reduction. From this property,
the original separation property follows using the geometric fact that, for linearity
reasons, rays that never cross cannot come closer than the original distance p, which
can be expressed elegantly in dL as:

‖x− y‖2 ≥ p2 ∧ [x′ = d ∧ y′ = e]x 6= y → [x′ = d ∧ y′ = e]‖x− y‖2 ≥ p2 (8.20)

Thus, by combining (8.19) with (8.20) and the simple fact that the sequential in-
dependent ray evolution x′ = d; y′ = e is an overapproximation of the synchronous
evolution x′ = d ∧ y′ = e, we conclude that property (8.18) is valid.

Far Separation To show that even an arbitrarily large separation is reached when
following the exit procedure long enough, we prove that aircraft which enter round-
abouts in different directions always remain in different directions while following
the roundabout:

d = ω(x− c)⊥ ∧ e = ω(y − c)⊥ ∧ d 6= e→ [F(ω) ∧ G(ω)](d1 − e1)2 + (d2 − e2)2 > 0
(8.21)

Aircraft in a simultaneous roundabout maneuver can, indeed, never enter in the
same direction: Either they would already have collided (when they are entering
in the same direction at the same position) or crash later on (when entering in the
same direction with opposing orientations at different positions of the roundabout
circle), but we have already shown that the roundabout maneuver is collision free
(Theorem 3.32). Thus by (8.21), they maintain their different directions while
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following the roundabout. Again, we can combine (8.21) with the geometric fact
that rays into different directions which never cross will be arbitrarily far apart
after sufficient time (see Figure 8.14a):

d 6= e ∧ [x′ = d ∧ y′ = e]x 6= y → ∀a 〈x′ = d ∧ y′ = e〉‖x− y‖2 > a2

By combining this geometric fact with (8.21), we obtain the final separation prop-
erty saying that—due to their different directions—the exit procedure will finally
separate the aircraft arbitrarily far:

d = ω(x− c)⊥ ∧ e = ω(y− c)⊥ ∧ d 6= e→ ∀a 〈x′ = d ∧ y′ = e〉‖x− y‖2 > a2 (8.22)

8.4. Compositional Verification

In the remainder of this chapter, we combine the previous results about the indi-
vidual phases of aircraft flight into a full model of the flyable tangential roundabout
maneuver that inherits safety by combining the individual safety properties of the
respective phases. To begin with, we show systematically how verification results
for large systems can be obtained compositionally in our calculus from verification
lemmas about small subsystems whenever the large system has been constructed
by composition from the corresponding small subsystems.

Assume we have subsystems αi with lemmas guaranteeing ψi → [αi]φi, as is the
case for the respective phases agree, entry , circ of FTRM. Then, in order to obtain
a verification result for their sequential composition α1; α2; . . . ;αn, we have to show
that postcondition φi−1 of αi−1 implies precondition ψi of αi for i ≤ n. In fact, this
is a derived proof rule of the dL calculus and can be obtained directly from the
generalisation rule G1 (with the usual cut P10 to shift the antecedent of a goal to
the succedent of a new subgoal like for rule G3’ in Section 2.5.1):

` ∀α(φi → φ)

ψ ` [αi−1]ψi ` ∀α(ψi → [αi]φi)
G1 ψ ` [αi−1][αi]φi
D2 ψ ` [αi−1; αi]φi

G1 ψ ` [αi−1; αi]φ

8.5. Flyable Tangential Roundabout Maneuver

In this section, we combine the results of this chapter about the individual phases
of flyable roundabouts into a full model of the flyable tangential roundabout man-
euver that inherits safety modularly by joining the individual safety properties of
the respective phases together. Essentially, we collect the various maneuver parts
together according to the protocol cycle of Figure 8.3a and take care to ensure that
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all safety prerequisites are met that we have identified for the respective phases
previously. Formally, safety properties about the individual phases will be glued
together in the calculus using the generalisation rule G1 following the compositional
technique from Section 8.4.

The hybrid program describing the flyable tangential roundabout maneuver is
depicted in Figure 8.15. The technical construction and protocol cycle of the entry

ψ ≡ d2
1 + d2

2 = e2
1 + e2

2 ∧ r > 0 ∧ φ(f)→ [FTRM∗]φ(p)

φ(p) ≡‖x− y‖2 ≥ p2 ≡ (x1 − y1)2 + (x2 − y2)2 ≥ p2

φ(f) ≡‖x− y‖2 ≥ 2

(
p+

2

3
πr

)2

compat ≡‖x− c‖ =
√

3r ∧ ∃λ≥0 (x+ λd = c) ∧ ‖y − c‖ =
√

3r ∧ ∃λ≥0 (y + λe = c)

FTRM ≡ free∗; agree; Π(entry; circ; exit)

free ≡ω := ∗; % := ∗;F(ω) ∧ G(%) ∧ φ(f)

agree ≡ c := ∗; r := ∗; ?compat; ?φ(f);

ω := ∗; ?(rω)2 = d2
1 + d2

2

x0 := x; d0 := d; y0 := y; e0 := e

entry ≡F(−ω) until ‖x− c‖2 = r2

circ ≡F(ω) until ∃λ≥0∃µ>0 (x+ λd = x0 + µd0)

exit ≡F(0); ?φ(f)

Figure 8.15.: Flight control with flyable tangential roundabout collision avoidance

procedure have already been illustrated in Figure 8.3. The operation F(ω) until G
expresses that the system follows differential equation F(ω) until condition G is
true. It is defined in terms of invariant regions and guards to make sure the system
neither leaves mode F(ω) later nor earlier than specified. We define F(ω) until G
as F(ω) ∧ ∼G; ?G, using the weak negation ∼G from Section 3.5.6 to retain the
border ofG in the invariant. For instance, F(ω) until x1 ≥ 0 is F(ω) ∧ x1 ≤ 0; ?x1 ≥ 0.

Finally, in FTRM, Π denotes the parallel product operator. Like in the work
of Hwang et al. [HKT07], the FTRM maneuver is assumed to operate synchron-
ously, i.e., all aircraft make simultaneous mode changes. Consequently, the parallel
product Π(entry; circ; exit) simplifies to the conjunction of the respective differ-
ential equations in the various modes and can be defined easily as follows (with
corresponding simplifications to resolve simultaneous tests):

entryx ∧ entryy; circx ∧ circy; exitx ∧ exity

where entryx is the entry procedure of the aircraft at position x etc. See Figure 8.16
for a fully instantiated version of Figure 8.15 with all abbreviations resolved.
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ψ ≡ d2
1 + d2

2 = e2
1 + e2

2 ∧ r > 0 ∧ (x1 − y1)2 + (x2 − y2)2 ≥ 2

(
p+

2

3
πr

)2

→ [FTRM∗]φ(p)

FTRM ≡
ω := ∗; % := ∗;

free: x′1 = d1 ∧ x′2 = d2 ∧ d′1 = −ωd2 ∧ d′2 = ωd1

∧ y′1 = e1 ∧ y′2 = e2 ∧ e′1 = −%e2 ∧ e′2 = %e1

∧ (x1 − y1)2 + (x2 − y2)2 ≥ 2

(
p+

2

3
πr

)2∗;
agree: c := ∗; r := ∗; ?(x1 − c1)2 + (x2 − c2)2 = 3r2;

?∃λ≥0 (x1 + λd1 = c1 ∧ x2 + λd2 = c2);

?(y1 − c1)2 + (y2 − c2)2 = 3r2;

?∃λ≥0 (y1 + λe1 = c1 ∧ y2 + λe2 = c2);

?(x1 − y1)2 + (x2 − y2)2 ≥ 2

(
p+

2

3
πr

)2

;

ω := ∗; ?(rω)2 = d2
1 + d2

2

x0
1 := x1; x0

2 := x2; d0
1 := d1; d0

2 := d2;

y0
1 := y1; y0

2 := y2; e0
1 := e1; e0

2 := e2;

entryx ∧ entryy: x′1 = d1 ∧ x′2 = d2 ∧ d′1 = −(−ω)d2 ∧ d′2 = −ωd1

∧ y′1 = e1 ∧ y′2 = e2 ∧ e′1 = −(−ω)e2 ∧ e′2 = −ωe1

∧ ∼
(
(x1 − c1)2 + (x2 − c2)2 = r2

)
;

?(x1 − c1)2 + (x2 − c2)2 = r2;

circx ∧ circy: x′1 = d1 ∧ x′2 = d2 ∧ d′1 = −ωd2 ∧ d′2 = ωd1

∧ y′1 = e1 ∧ y′2 = e2 ∧ e′1 = −ωe2 ∧ e′2 = ωe1

∧ ∼
(
∃λ≥0∃µ>0 (x1 + λd1 = x0

1 + µd0
1 ∧ x2 + λd2 = x0

2 + µd0
2)

∧ ∃λ≥0 ∃µ>0 (y1 + λe1 = y0
1 + µe0

1 ∧ y2 + λe2 = y0
2 + µe0

2)
)
;

?
(
∃λ≥0∃µ>0 (x1 + λd1 = x0

1 + µd0
1 ∧ x2 + λd2 = x0

2 + µd0
2)

∧ ∃λ≥0∃µ>0 (y1 + λe1 = y0
1 + µe0

1 ∧ y2 + λe2 = y0
2 + µe0

2)
)
;

exitx ∧ exity: x′1 = d1 ∧ x′2 = d2 ∧ y′1 = e1 ∧ y′2 = e2;

?(x1 − y1)2 + (x2 − y2)2 ≥ 2

(
p+

2

3
πr

)2


Figure 8.16.: Flight control with FTRM (synchronous instantiation)
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To verify this maneuver, we split the proof into the modular properties that we
have already shown previously following the verification plan from Section 8.2.1.
Formally, we use the generalisation rule (G1) to split the system at its sequential
compositions, giving the subproperties depicted in Figure 8.17 with the mapping
to previous results according to Table 8.1. The formula T is the characterisation
of tangential configurations due to equation (3.6) from page 122.

free

ω := ∗
% := ∗

agree

entry

circ

exit

φ(f) φ(f) ∧
com

pat

φ(
p)
∧ T

φ(p) ∧ T

φ
(f

)

Figure 8.17.: Verification loop for flyable tangential roundabout maneuvers

Table 8.1.: Verification loop properties for flyable tangential roundabout maneuvers

Property Consequence of

φ(f)→ [free]φ(f) Theorem 3.32 or Figure 8.4
φ(f)→ [agree](φ(f) ∧ compat) Property (8.11) and (8.15)

compat ∧ φ(f)→ [entry]φ(p) Property (8.6)
compat ∧ φ(f)→ [entry] T Figure 8.8a

T ∧ φ(p)→ [circ](φ(p) ∧ T ) Theorem 3.32 or Figure 8.4
T ∧ φ(p)→ [exit]φ(p) Property (8.18)
T ∧ φ(p)→ [exit]φ(f) Properties (8.18) and (8.22)

By combining the results summarised in Table 8.1 about the respective flight
phases of the FTRM according to the compositional verification approach obtained
from generalisation rule G1 according to Section 8.4, we conclude that FTRM
avoids collisions safely. In addition, we can use the modular proof structure to
derive an even stronger consequence for generalised FTRM maneuvers. Using the
same arguments as in Table 8.1, any roundabout maneuver following Figure 8.15
is collision free, even when it uses a different entry procedure that can be shown to
succeed in tangential configuration within bounded time.

8.1 Theorem (Safety of flyable tangential roundabout maneuvers). The
FTRM system depicted in Figure 8.15 is collision free, i.e., the collision avoidance
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property ψ in Figure 8.15 is valid. More generally, any variation of FTRM with
a modified entry procedure that safely reaches tangential configuration T in some
bounded time T is safe, i.e., provided that the following formula is valid

φ(f) → [τ := 0; agree ∧ τ ′ = 1]
(
(τ ≤ T → φ(p)) ∧ (τ = T → T )

)
.

8.6. Experimental Results

Table 8.2 summarises experimental results for the air traffic control case study
of flyable tangential roundabout maneuvers. The rows marked with ∗ indicate a
property where simplifications like symmetry reduction have been used to reduce
the computational complexity of quantifier elimination. The results in Table 8.2
show that even aircraft maneuvers with challenging dynamics can be verified with
our logic-based verification approach for hybrid systems.

Experimental results are from a 2.6GHz AMD Opteron with 4GB memory.
Memory consumption of quantifier elimination is shown in Table 8.2, excluding
the front-end. The dimension of the continuous state space and number of proof
steps are indicated as well. For comparison, the results reported in Table 8.2 use
the same settings as those in Table 5.3. Using different settings for initial timeouts
for differential saturation results in faster performance for larger dimensions, par-
ticularly multiple aircraft, see Table 8.3.

The experimental results in Table 8.2 for property (8.5) can be improved. Cur-
rently, they still need as much as 29 simple user interactions to overcome preliminary
simplifications in the implementation of our proof strategies in the KeYmaera tool.
An improved implementation of iterative inflation order will reduce the number of
required interactions to at most one that specifies the postcondition of the limited
progress property (8.4) as an invariant.

8.7. Summary

For demonstrating the capabilities of our logic-based verification approach for hy-
brid systems, we have analysed challenging air traffic control applications. Aircraft
can only follow sufficiently smooth flyable curves. Hence, mathematical maneuvers
that require instant turns, especially classical straight line maneuvers, give phys-
ically impossible conflict resolution advise. As a case study for verification, we
have developed a new collision avoidance maneuver that is fully flyable, i.e., it only
includes sufficiently smooth curves without discontinuities. Despite its challenging
dynamics and complicated maneuvering, we have verified collision avoidance in the
resulting flyable tangential roundabout maneuver using a modular verification ap-
proach in our calculus. Due to the intricate spatio-temporal movement of aircraft in
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Table 8.2.: Experimental results for air traffic control (initial timeout=10s)

Case study Time(s) Memory(MB) Steps Dim

tangential roundabout (2 aircraft) 10.5 6.8 197 13
tangential roundabout (3 aircraft) 636.1 15.1 342 18
tangential roundabout (4 aircraft) 918.4 31.4 520 23
tangential roundabout (5 aircraft) 3552.6 46.9 735 18
bounded speed control (3.8) 19.6 34.4 28 12
bounded maneuver speed Example 3.3 0.3 6.3 14 4
flyable roundabout entry∗ Figure 8.8a 10.2 9.6 132 8
flyable entry feasible∗ Figure 8.8b 104.4 87.9 16 10
flyable entry circular Figure 8.10 2.9 7.6 81 5
limited progress (8.4) 2 6.5 60 8
entry separation (8.5), 29 int. 140.1 20.1 512 16
negotiation feasible (8.9) 4.5 8.4 27 8
negotiation successful (8.10) 2.7 21.8 34 8
mutual negotiation successful (8.11) 0.9 6.4 60 12
mutual negotiation feasible (8.13) 7.5 23.8 21 11
mutual far negotiation (8.15) 2.4 8.1 67 14
simultaneous exit separation∗ (8.19) 4.7 12.9 44 9
different exit directions (8.21) 3 11.1 42 11
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Table 8.3.: Experimental results for air traffic control (initial timeout=4s)

Case study Time(s) Memory(MB) Steps Dim

tangential roundabout (2 aircraft) 10.4 6.8 197 13
tangential roundabout (3 aircraft) 253.6 7.2 342 18
tangential roundabout (4 aircraft) 382.9 10.2 520 23
tangential roundabout (5 aircraft) 1882.9 39.1 735 18
bounded speed control (3.8) 19.5 34.4 28 12
bounded maneuver speed Example 3.3 0.5 6.3 14 4
flyable roundabout entry∗ Figure 8.8a 10.1 9.6 132 8
flyable entry feasible∗ Figure 8.8b 104.5 87.9 16 10
flyable entry circular Figure 8.10 3.2 7.6 81 5
limited progress (8.4) 1.9 6.5 60 8
entry separation (8.5), 29 int. 140.1 20.1 512 16
negotiation feasible (8.9) 4.8 8.4 27 8
negotiation successful (8.10) 2.6 13.1 34 8
mutual negotiation successful (8.11) 0.8 6.4 60 12
mutual negotiation feasible (8.13) 7.5 23.8 21 11
mutual far negotiation (8.15) 2.4 8.1 67 14
simultaneous exit separation∗ (8.19) 4.3 12.9 44 9
different exit directions (8.21) 3.1 11.1 42 11
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roundabout maneuvers, some of the properties require intriguing arithmetic, which
we tackled using symmetry reduction and degree-based reductions.

While the flyable roundabout maneuver is a highly nontrivial and challenging
case study, there are still some modelling assumptions that can be generalised and
relaxed in future work. Like in the work of Hwang et al. [HKT07], our primary
analysis of the flyable roundabout maneuver still assumes synchronous conflict res-
olution, which implies that the collision avoidance maneuver has to be initiated
from a symmetrical position, i.e., where all aircraft have the same speed and dis-
tance from the roundabout centre c. Our analysis of the tangential roundabout
maneuver in Chapter 3 is more general on this respect already, concerning safety
for arbitrary initial velocities and timing. Due to our simple symmetric choice of
the roundabout centre c in the agree phase of the flyable roundabout maneuver,
verification results can still be improved when aircraft approach the conflict zone
with narrow angles or on almost parallel flight paths. Finally, it would be interest-
ing future work to see if the informal robustness studies of Hwang et al. [HKT07]
can be carried over to a formal proof in our calculus.
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Conclusion

9.1. Summary

Hybrid systems are an equally important and challenging class of systems, whose
numerous occurrences in safety-critical complex physical systems call for formal
verification techniques that can be used to establish the correct functioning of
these systems by rigorous mathematical analysis. The characteristic feature of the
modelling idea behind hybrid systems is that they admit interacting discrete and
continuous dynamics to capture the superposition of physical system dynamics with
control at a natural modelling level. With these superpositions, hybrid systems
can model challenging system dynamics fairly easily but also require sophisticated
analysis techniques.

Application areas of hybrid systems where correctness properties play an im-
portant role range from small embedded controllers in automotive industries that
regulate isolated processes like air bag inflation, over biomedical devices like gluc-
ose regulators following, e.g., model-predictive control, and large scale physical or
chemical process control like injection control in combustion engines or full nuclear
reactors, to complex physical traffic systems in train control or air traffic control
scenarios. In other domains, hybrid effects also become increasingly important,
including robotic applications, where mobile robots have to work reliably in safety-
critical environments, e.g., in driverless vehicle technology. Similarly, circuit designs
more often exhibit relevant hybrid effects, where increasing clock rates require to
take mixed analog/digital effects into account, because larger parts of the chip re-
main analog, e.g., when reducing the number of extra latches that stabilise values
computed by analog circuits.

Logic for Hybrid Systems As a general analysis technique for hybrid systems, we
have introduced a systematic logic-based verification approach in this thesis, which
is based on symbolic and mathematical logic, automated theorem proving, differ-
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ential algebra, computer algebra, semialgebraic geometry, calculus, and on results
from the theory of differential equations and dynamical systems, see Figure 9.1.

Logic-based
Verification of
Hybrid Systems

Logic

Model
Checking

Theorem
Proving

Proof
Calculus

Algebra

Computer
Algebra Algebraic

Geometry

Differential
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Differential
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Dynamical
Systems

Differen-
tiation

Algorithms
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Procedures

Proof
Strategies

Fixedpoint
Loops

Figure 9.1.: Topics contributing to logic-based verification of hybrid systems

We introduced a series of differential dynamic logics (dL, DAL, dTL) as con-
cise languages for specifying correctness properties of hybrid systems along with
concise practical proof calculi for verifying hybrid systems. The logic dL is a first-
order dynamic logic for hybrid programs, which extend classical discrete programs
to uniform operational models for hybrid systems with interacting discrete jumps
and continuous evolutions along differential equations. Its first-order completion,
DAL, is a first-order dynamic logic for more general differential-algebraic programs
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that allow for superpositions of first-order discrete jump constraints and first-order
differential-algebraic constraints. In a further independent dimension, we augment
dL and DAL to a temporal dynamic logic, dTL, with independent modal path
quantifiers over traces and temporal quantifiers along traces, thereby combining
the capabilities of dynamic logic to reason about possible system behaviour with
the power of temporal logic in reasoning about the temporal behaviour along traces.

Proof Calculi Our concise proof calculi for differential dynamic logics work com-
positionally by decomposing properties of hybrid systems into properties of their
parts, which improves both tracability and scalability of results. In order to handle
interacting hybrid dynamics, we lift real quantifier elimination to the deductive
calculi in a new modular way that is suitable for automation, using a combination
of real-valued free variables, Skolem terms, and invertible quantifier rules over the
reals.

As a fundamental result aligning hybrid and continuous reasoning proof-theoret-
ically, we have proven our calculi to axiomatise the transition behaviour of hybrid
systems completely relative to the handling of differential equations. This result is
based on an entirely new notion of hybrid completeness and shows that the calculi
are adequate for verification purposes.

Furthermore, we have complemented discrete induction with a new first-order
differential induction that uses differential invariants and differential variants for
proving correctness statements about first-order differential-algebraic constraints
purely algebraically based on the differential constraints themselves instead of their
solutions. This is particularly relevant for verification, because solutions of differen-
tial equations quickly yield undecidable arithmetic or may not even be expressible
in closed form. In combination with successive differential strengthening for refin-
ing the system dynamics by auxiliary differential invariants, we obtain a powerful
verification calculus for hybrid systems with challenging dynamics.

Finally, our sequent calculus for the temporal extensino dTL of differential dy-
namic logic is a completely modular combination of temporal and non-temporal
reasoning, where temporal formulas are handled using rules that augment interme-
diate state transitions with corresponding sub-specifications recursively. We have
shown that this gives a complete calculus for temporal properties relative to the
non-temporal base logic.

Logic-based Verification Algorithms To address practical scalability challenges
for larger case studies, we have introduced proof strategies that navigate among the
nondeterminisms in the proof calculi for differential dynamic logics, including iter-
ative background closure and iterative inflation order strategies. Further, we have
introduced a verification algorithm that computes differential invariants as fixed-
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points in a proof loop for differential dynamic logic, thereby using the compositional
properties of our calculi to exploit locality in system designs for verification.

Applications In a series of examples from practical application domains, we have
demonstrated that our techniques can be used successfully for verifying safety,
controllability, and liveness properties in realistic train control applications and
challenging case studies for fully parametric roundabout maneuvers in air traffic
control.

To put it in a nutshell, we have introduced and developed the theory, practice,
and applications of differential dynamic logics, leading to a concise yet complete
logic-based verification approach for hybrid systems, with which we can verify ap-
plications that were out of scope for other approaches.

9.2. Perspectives

While, broadly speaking, this thesis captures logic-based verification of hybrid sys-
tems in its full entirety, there are a number of natural extensions to an even broader
range of applications.

Model Extensions As we have shown in previous work [Pla04a, BP06], dynamic
logic can be augmented to support reasoning about dynamically reconfiguring sys-
tem structures, which we want to extend to hybrid systems in future work by com-
bining differential dynamic logic and dynamic logic with flexible functions [Pla04a,
BP06]. This will result in a coherent verification technology for dynamic networks
of hybrid systems with dynamic topology changes including dynamic appearance,
e.g., of traffic agents in car platooning. Notice that—quite unlike what other ap-
proaches for hybrid systems provide—dynamic networks of hybrid systems with
new appearance lead to dynamic adaptation of the dimension of the state space.

A further natural extension of the system modelling capabilities results from
adding probabilistic behaviour on top of the hybrid behaviour, giving stochastic
hybrid systems. While stochasticity reduces to mere nondeterminism in dL for clas-
sical worst-case verification, this modelling extension will be important whenever
applications call for verification results expressing that a safety or liveness property
holds true with a certain minimum likelihood, though not with certainty.

Specification Logic Extensions Future work further includes extending dTL with
CTL∗-like [EH86] formulas of the form [α](ψ ∧�φ). Defining a corresponding
semantics for dTL∗ is simple, but even the search for good deductive calculi for
discrete CTL∗ has been a long standing challenge in branching time temporal
logic [Rey01, PK02, Rey05].
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Theory Extensions While the dL calculus is complete relative to the continuous
fragment, it turns out to be a subtle open problem whether a converse calculus can
exist that is complete relative to various discrete fragments. We conjecture that the
answer depends in a subtle way on whether the deterministic or nondeterministic
fragment is considered and further depends on whether quantifiers are allowed.

KeYmaera Implementation Concerning the tool support of our verification ap-
proach in KeYmaera, we are convinced that further significant performance im-
provements can be achieved by combining the different kinds of computational
backends (see Section A.2) by more interleaved operations rather than independent
ones. Moreover, our general ideas of and/or-branching from Section 5.4 can defin-
itely be exploited in more detail in KeYmaera to tap the full potential of parallel
proving for verification, which arises naturally in the dL calculus. Mere tuning of
the proof strategies and KeYmaera implementation will probably also allow for a
factor of 2 to 3 in improved performance when removing some preliminary simpli-
fications in the implementation. Another area where the current implementation
is still preliminary is the coupling of numerical or explorative model checking tech-
niques with proof-based verification.

Application Domains The theoretical and practical results that we have de-
veloped in this thesis apply to several application domains other than those con-
sidered in this thesis. Inspired by the application scenario context of the AVACS
project, most case studies in this thesis are from various traffic control settings in
train or aircraft control. Yet, hybrid systems also occur quite naturally in com-
pletely different areas like computerized chemical or physical process control, bio-
medical applications, robotics, or analog-digital interaction effects on chips, which
would be interesting areas for future research.
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Synopsis

KeYmaera is a hybrid verification tool for hybrid systems that combines
deductive, real algebraic, and computer algebraic prover technologies. It is
an automated and interactive theorem prover for a natural specification and
verification logic for hybrid systems. KeYmaera supports differential dynamic
logic, which is a real-valued first-order dynamic logic for hybrid programs,
a program notation for hybrid automata. For automating the verification
process, KeYmaera implements a generalized free-variable sequent calculus
and automatic proof strategies that decompose the hybrid system specific-
ation symbolically. To overcome the complexity of real arithmetic, we in-
tegrate real quantifier elimination following our iterative background closure
strategy. Our tool is particularly suitable for verifying parametric hybrid
systems and has been used successfully for verifying collision avoidance in
case studies from train control and air traffic control.
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A.1. KeYmaera: A Hybrid Theorem Prover for
Hybrid Systems

In the interest of a comprehensive presentation, we briefly characterise the imple-
mentation of our approach in our new verification tool KeYmaera [PQ08a].

KeYmaera is a hybrid theorem prover for hybrid systems that combines deduct-
ive, real algebraic, and computer algebraic prover technologies [PQ08a]. It is an
automated and interactive theorem prover for differential dynamic logics for hybrid
systems. It implements the calculi for differential dynamic logic dL, differential-
algebraic dynamic logic DAL, and differential temporal dynamic logic dTL that we
introduced in Part I.

KeYmaera has been implemented as a combination of the deductive theorem
prover KeY [ABB+05, BGH+07, BHS07] with the computer algebra system Math-
ematica by Wolfram Research [Wol05] and the Orbital library developed by the
author, with QEPCAD B [Bro03] as an quantifier elimination tool, see Figure A.1.
KeY is a semi-interactive theorem prover with a user-friendly graphical interface for
proving correctness properties of Java programs. We generalize KeY from discrete
systems to hybrid systems by adding support for the differential dynamic logic dL
(and DAL and dTL, respectively). Figure A.2 shows a screenshot of the graphical
user interface of KeYmaera.

Strategy

Rule Engine Proof

Input File

Rule
base

Mathematica

QEPCAD

Orbital

KeYmaera Prover Solvers

Figure A.1.: Architecture and plug-in structure of the KeYmaera prover

In discrete KeY, rule applications are comparably fast, but in KeYmaera, proof
rules that use decision procedures for real arithmetic can require a substantial
amount of time to produce a result. To overcome this, we have implemented new
automatic proof strategies for the hybrid case that navigate among computationally
expensive rule applications, following the strategies we developed in Chapter 5.

We have implemented a plug-in architecture for integrating multiple implement-
ations of decision procedures for the different fields of arithmetic handling, cf. Fig-
ure A.1. We integrate arithmetical simplification and real quantifier elimination
support by interfacing Mathematica or QEPCAD. Symbolic solutions of differen-
tial equations and symbolic total differentials for differential invariants and variants,
are obtained either from Mathematica or Orbital.

To overcome the complexity pitfalls of quantifier elimination and to scale to real-
world application scenarios, we implement the iterative background closure strategy
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Figure A.2.: Screenshot of the KeYmaera user interface

from Section 5.4 that interleaves background solver calls with deductive dL rules.
For performance reasons, the KeYmaera implementation further optimises the or-
der of quantifiers in universal closures ∀αφ according to the modification order in
the hybrid program α that produced ∀αφ (see variable dependency orders from
Section 6.2.5–6.2.6).

KeYmaera provides several options for adjusting the prover strategy, see Fig-
ure A.3. For a documentation of some of the data structures, also see the master’s
thesis of Jan-David Quesel [Que07] for further detail on the internal implementation
of the KeYmaera tool.

Structure of this Chapter

In Section A.2, we summarise techniques that can be used as backends for handling
real arithmetic in theorem provers for differential dynamic logics. We discuss the
consequences of the KeYmaera architecture and implementation in Section A.3,
concerning how soundness can inherit from soundness proofs for proof calculi to
soundness of actual implementations. In Section A.4, we explain the setup for our
experimental evaluations in this thesis.

A.2. Computational Backends for Real Arithmetic

In this section, we briefly summarise a range of techniques that we use as com-
putational backends for handling real arithmetic in background provers for the
foreground prover KeYmaera. These techniques are various alternatives for imple-
menting the QE procedure in the F-rules of Figure 2.5 or Figure 3.3, respectively.
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Figure A.3.: KeYmaera strategy options
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A.2.1. Real-Closed Fields

Generalising classical techniques for finding the number of real roots for univariate
polynomials due to Sturm [Stu35], Tarski showed that validity of closed formulas
in the first-order theory of real arithmetic is equivalent to the theory of real-closed
fields and decidable [Tar51] by quantifier elimination (Definition 2.10). Due to
its importance, there are numerous refinements of this result that turn it into
a more practical decision procedure [Sei54, Rob56,  Loj64, Coh69, KK71, DE73,
Col75, ACM84a, ACM84b, CH91, CJ89, CJK90, CJK02, DH88, GV88, Wei88,
CJ98, LW93, Bas99, Str06, Tiw05, BPR06, BD07], see an article by van den Dries
for a historical overview [vdD88]. The complexity of quantifier elimination in real-
closed fields is doubly exponential in the number of quantifier alternations and
has been analysed carefully [DH88, Gri88, GV88, Ris88, Wei88, BD07, Ren92a,
Ren92b, Ren92c, Ren92b, Ren92c, BPR96, Bas99]. We refer to Basu et al. [BPR06]
for details.

A.1 Definition (Formally real field). A field R is a (formally) real field iff any
of the following (equivalent) conditions holds (see [BPR06, Theorem 2.7]):

1. −1 is not a sum of squares in R.

2. For every x1, . . . , xn ∈ R we have that
∑n

i=1 x
2
i = 0 implies x1 = · · · = xn = 0.

3. R admits an ordering that makes R an ordered field.

There are several equivalent characterisations of real-closed fields [BPR06]:

A.2 Definition (Real-closed field). A field R is a real-closed field iff any of the
following (equivalent) conditions holds (see [BPR06, Theorem 2.11]):

1. R is an ordered field where every positive element is a square and every
polynomial in R[X] of odd degree has a root in R (then this order is, in fact,
unique).

2. R is not algebraically closed but its field extension R[
√
−1] = R[i]/(i2 + 1) is

algebraically closed.

3. R is not algebraically closed but its algebraic closure is a finite extension, i.e.,
finitely generated over R.

4. R has the intermediate value property, i.e., R is an ordered field such that for
any polynomial p ∈ R[X] with a, b ∈ R, a < b and p(a)p(b) < 0, there is a ζ
with a < ζ < b such that p(ζ) = 0.

5. R is a real field such that no proper algebraic extension is a formally real
field.
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A.1 Example. The following sets are real-closed fields:

• Real numbers R.

• Real algebraic numbers Q̄ ∩ R, that is, real numbers in the algebraic closure
of Q, i.e., real numbers that are roots of a non-zero polynomial with rational
or integer coefficients

• Computable numbers [Wei05], i.e., those that can be approximated by a com-
putable function up to any desired precision.

• Definable numbers, i.e., those real numbers a ∈ R for which there is a first-
order formula ϕ in the language of set theory with one free variable such
that a is the unique real number for which ϕ holds true.

According to the important Tarski-Seidenberg Principle [Tar51, Sei54] or the
Transfer Principle for real-closed fields, the first-order theory of real arithmetic is
equivalent to the first-order theory of real-closed fields, see [BPR06, Theorems 2.80–
2.81].

A.3 Theorem (Tarski-Seidenberg principle [Tar51, Sei54]). The first-order
theory of reals is identical to the first-order theory of real-closed fields, i.e., the set
of closed first-order formulas over the signature +, ·,=, <, 0, 1 that are valid over
the reals R is the same as the corresponding set of formulas that are valid in any
real-closed field.

The technical device exploiting this result for deciding formulas of real arithmetic
is quantifier elimination via cylindrical algebraic decomposition, which we examine
next.

A.2.2. Semialgebraic Geometry and Cylindrical Algebraic
Decomposition

From an algebraic or model-theoretic perspective, a quantifier-free formula of real
arithmetic directly corresponds to the set of its satisfying assignments in Rn. Form-
ally, a semialgebraic set is a subset of Rn that is defined by a finite conjunction of
polynomial equations and inequalities or any finite union of such sets, which, up to
normalisation, is a quantifier-free formula of real-arithmetic. The most important
part about projections in the following central theorem about semialgebraic sets is
due to Tarski [Tar51, Sei54, Hod93, BCR98, vdD98].

A.4 Theorem (Semialgebraic sets). Semialgebraic sets are closed under finite
unions, finite intersections, complements, and projection (to linear subspaces).
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It is easy to see that projection of a semialgebraic set in Rn to a linear subspace
(e.g., Rn−1) corresponds to elimination of existential quantifiers. For instance, the
projection of the set of points in Rn where a formula φ(x1, . . . , xn) holds true to
the subspace Rn−1 spanned by the variables x1, . . . , xn−1 are those points in Rn−1

where the formula φ̄(x1, . . . , xn−1) ≡ ∃xn φ(x1, . . . , xn) holds true.

Simply speaking, the basic insight of Tarski [Tar51] with subsequent simplifica-
tions by Seidenberg [Sei54], Robinson [Rob56],  Lojasiewicz [ Loj64], Cohen [Coh69],
and Kreisel and Krivine [KK71], that led to the development of Cylindrical Al-
gebraic Decomposition [Col75] as a decision procedure for real-closed fields, is that
the conjunction of a set of polynomial equations and inequalities partition the real
space Rn into finitely many equivalence classes based on their sign combinations.
The basic observation is that each polynomial p ∈ k[X1, . . . , Xn] partitions the space
into three equivalence classes based on its sign:

1. +̂ := {x ∈ Rn : p(x) > 0}

2. 0̂ := {x ∈ Rn : p(x) = 0}

3. −̂ := {x ∈ Rn : p(x) < 0}

These classes can have multiple (but only finitely many) connected components,
though. Further, Tarski showed that a set of polynomials partition the real space
into finitely many equivalence classes that essentially correspond to the coarsest
joint refinement of all these sign relations (and possibly the relations of these poly-
nomials on various connected components). That is, a (natural) algebraic decom-
position of Rn is a partitioning of Rn into maximal connected regions where each
of the relevant polynomials has invariant sign. Now, a satisfying assignment for a
quantifier-free arithmetic formula exists if and only if the formula is true in one of
those equivalence classes. Consequently, working from inside out, existential quan-
tifiers can be replaced equivalently by a big disjunction, replacing the existentially
quantified variable x by any representative point inside each of these finitely many
equivalence classes. Let S be a (finite) representative system of the equivalence
classes for all polynomials in the quantifier-free formula F , then:

QE(∃xF ) ≡
∨
x∈S

F

In the following example, quantifier elimination can simply insert a range of rep-
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resentative cases into the formula and evaluate the remaining arithmetic:

QE(∃x(x > 2 ∧ x < 17

3
))

≡ (−∞ > 2 ∧ −∞ <
17

3
) extremal case “x = −∞”

∨ (∞ > 2 ∧∞ <
17

3
) extremal case “x =∞”

∨ (2 > 2 ∧ 2 <
17

3
) border case “x = 2”

∨ (
17

3
> 2 ∧ 17

3
<

17

3
) border case “x =

17

3
”

∨ (
2 + 17

3

2
> 2 ∧ 2 + 17

3

2
<

17

3
) intermediate case “x =

2 + 17
3

2
”

≡ true

Universal quantification can then be handled using duality:

QE(∀xF ) ≡ ¬QE(∃x¬F )

For multiple quantifiers, this procedure can be used recursively by applying quanti-
fier elimination from inside out, i.e., starting from inner quantifiers. The final result
for a closed formula gives a propositional formula without variables, which is de-
cidable by evaluating the remaining arithmetic expressions with concrete numbers.
Practical quantifier elimination procedures for real arithmetic improve on this the-
oretical decision procedure, e.g., by minimising the number of required equivalence
classes.

KeYmaera integrates Mathematica by Wolfram Research [Wol05] and QEPCAD B
[Bro03] as alternative implementations of quantifier elimination procedures.

A.2.3. Nullstellensatz and Gröbner Bases

Gröbner bases [Buc65, BW98, Mor05, CLO92] can be used as a sound but in-
complete procedure for proving validity of formulas in the universal fragment of
equational first-order real arithmetic. This approach is, in fact, not specific for real
arithmetic but also applies for other fields. Gröbner bases have been introduced by
Bruno Buchberger [Buc65] as a systematic theory and algorithm for symbolic com-
putations in factor rings of multivariate polynomial rings. Gröbner basis algorithms
can be considered as a multivariate joint generalisation of the Euclidean algorithm
for computing greatest common divisors in univariate polynomial rings and of Gaus-
sian elimination for solving linear equation systems. An analogous concept for local
rings, called standard bases, was developed independently by Heisuke Hironaka in
1964.
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Preliminaries First we briefly recapitulate some basic notions from algebra [Lan78,
Bou89, Bou72, Eis99, Mor05]. We do not always give the most general definition of
these notions but restrict our attention to what we actually need in our context. A
ring R is an algebraic structure that is an Abelian group with respect to addition
and a (commutative) semigroup with respect to multiplication where multiplication
distributes over addition, i.e., for all a, b, c ∈ R:

a(b+ c) = ab+ ac

(a+ b)c = ac+ bc

A field k is a ring such that 1 6= 0 and all elements x ∈ k \ {0} have a multiplicative
inverse, i.e., a y ∈ k such that xy = 1. A subset I ⊆ R is an ideal of a ring R,
denoted as I E R, iff I is a subgroup of the additive group of R and

rx ∈ I, for all x ∈ I, r ∈ R .

The ideal generated by a set G ⊆ R is the smallest ideal I E R containing G. In
that case, G is called a generating system of I.

For a field k, the set k[X1, . . . , Xn] of multivariate polynomials forms a ring and
is defined as the free commutative and associative algebra over the indeterminates
X1, . . . , Xn.

The notions of Gröbner bases and polynomial reductions are relative to an ad-
missible monomial order, which also determines the leading term in multivariate
polynomials. Here, we simply assume some fixed admissible order and refer to the
literature on Gröbner bases [BW98, Mor05, CLO92, Buc65] for details on monomial
orders, their admissibility conditions and their properties. As a multivariate gen-
eralisation of the Euclidean algorithm we need multivariate polynomial division:

A.5 Definition (Reduction). Let f, g ∈ k[X1, . . . , Xn] be polynomials and let l
be the leading term of g. If ai1,...,inX

i1
1 · · ·X in

n is some (e.g., the largest) term
of f which is divisible by l, then the following polynomial is called an elementary
reduction of f by g:

f − ai1,...,inX
i1
1 · · ·X in

n

l
g

Let G ⊂ k[X1, . . . , Xn] be a set of polynomials. Polynomial f is called reduced with
respect to G iff no elementary reduction of f with respect to some g ∈ G is possible.
Any polynomial obtained from f by repeated elementary reduction with respect to
any g ∈ G is called reduction (or remainder) of f by G if it is reduced with respect
to G and is denoted by redG f .

The theory of Gröbner bases characterises under which circumstances reduction
produces unique remainders, which is not generally so in multivariate polynomial
rings.
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A.6 Definition (Gröbner basis). A finite generating systemG of I E k[X1, . . . , Xn],
i.e., an ideal I of a polynomial ring, is called Gröbner basis iff any of the following
(equivalent) conditions holds:

1. Reduction with respect to G gives 0 for any p ∈ I.

2. redG p = 0 iff p ∈ I.

3. Reduction with respect to G gives a unique remainder.

4. The polynomials that are reduced with respect to G form representatives of
the factor ring k[X1, . . . , Xn]/I.

5. The leading ideal of I, i.e., the ideal generated by leading terms of polynomials
of I, is generated by the leading terms of G.

A Gröbner basis G is reduced if all g ∈ G are reduced with respect to G \ {g}.
We can assume Gröbner basis G to contain normalised polynomials only, i.e.,

where the leading coefficient of their leading terms is 1.
The most important result about Gröbner bases is that every ideal of a polyno-

mial ring k[X1, . . . , Xn] over a field k in finitely many variables has a unique reduced
Gröbner basis (with leading coefficient 1) that can be computed effectively by the
Buchberger algorithm [Buc65] or improvements thereof [BW98, Mor05, CLO92,
Fau99, Fau02]. Thus, Gröbner bases give an effective version of Hilbert’s basis
theorem:

A.7 Theorem (Hilbert’s basis theorem). Every ideal in the ring k[X1, . . . , Xn]
of multivariate polynomials over a field k is finitely generated.

Using Gröbner Basis Eliminations We introduce proof rules that use Gröbner
basis reductions for handling fragments of equational universal arithmetic. As-
sume we have a sequent (using rewriting to normalise equations, inequations, and
inequalities as necessary):

Γ, g1 = g̃1, . . . , gn = g̃n ` f1 = h1, . . . , fe = he, fe+1 ≥ he+1, . . . , fm ≥ hm,∆ (A.1)

Let G be a Gröbner basis of the ideal generated by the gi − g̃i, i.e., of the ideal

(g1 − g̃1, . . . , gn − g̃n) . (A.2)

If the reduction with respect to G of some fi equals the reduction of the corres-
ponding hi with respect to G, i.e., redG fi = redG hi, then the sequent (A.1) is valid
and can be closed, as summarised in rule A2 of Figure A.4.

Similarly, we introduce rule A1 that converts (weak) inequalities to equations by
exploiting that a real number is positive iff it is a square.
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(A1)
f − g = z2 `
f ≥ g `

(A2)
∗

g1 = g̃1, . . . , gn = g̃n ` f1 = h1, . . . , fe = he, fe+1 ≥ he+1, . . . , fm ≥ hm

For A1, z is a fresh (state) variable. A2 is applicable iff, redG fi = redG hi for some i and

(the) Gröbner basis G of (A.2).

Figure A.4.: Rule schemata of Gröbner calculus rules

A.8 Proposition (Soundness of Gröbner basis rules). The rules in Figure A.4
are sound.

Proof. The rules are locally sound.

A1 The local soundness of A1 is a simple consequence of the following equivalence
for reals: f ≥ 0 ≡ ∃z f = z2. Note that this equivalence is wrong when re-
stricting quantifiers over the integers or rationals. Using the equivalence and
the soundness of F2 from Theorem 2.15, soundness can be obtained easily
from the following derivation when using the state variable z, that is impli-
citly quantified universally in the sequent, in place of the Skolem symbol s:

f − g = s2 `
F2∃z f − g = z2 `

f ≥ g `

A2 Let i ∈ {1, . . . ,m} according to the applicability condition of A2, in partic-
ular, redG fi = redG hi. Suppose the premiss was false in some state ν, then
ν |= g1 = g̃1 ∧ · · · ∧ gn = g̃n ∧ fi 6= hi. Thus, ν |= g = 0 for all g ∈ G (using
the notions of algebraic geometry, this would correspond to ν being in the
algebraic variety of G). Consequently, ν |= g = 0 for all polynomials g in
the ideal (G) of G. As a consequence of the applicability condition, we have
redG(fi − hi) = 0, which, by Definition A.6, implies that fi − hi is in the ideal
of G. In combination, we have ν |= vi − hi = 0, hence ν |= fi = hi, which is
a contradiction.

As a special case of A2, we assume the (invalid) equation 1 = 0 to occur as f1 = h1

if no other equation in (nonstrict) inequation occurs in the succedent. This case
directly corresponds to the weak form of Hilbert’s Nullstellensatz:

A.9 Theorem (Hilbert’s Nullstellensatz [Lan78]). Let k be an algebraically
closed field and I E k[X1, . . . , Xn] an ideal. Then the algebraic variety

V (I) := {x ∈ kn : p(x) = 0 for all p ∈ I}
of I is empty iff I = k[X1, . . . , Xn].
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In particular, sequent g1 = g̃1, . . . , gn = g̃n ` is valid iff, g1 = g̃1 ∧ · · · ∧ gn = g̃n
is unsatisfiable over R. By Theorem A.9, the sequent is even unsatisfiable over C
iff the Gröbner basis of (A.2) is {1} (up to multiplication with nonzero constants).

Consequently, the Gröbner basis approach gives a sound but incomplete overap-
proximation. To see why Gröbner bases are incomplete for real arithmetic, consider
the following. Gröbner bases are a general approach for polynomial rings over fields
(or even rings). They do not take into account the special properties of the reals.
For instance, the sequent x2 = −1 ` is valid, i.e., the formula x2 = −1 is unsatis-
fiable over R, but the Gröbner basis of x2 + 1 is {x2 + 1} and, in fact, x2 = −1 is
satisfiable over C but not over R.

KeYmaera integrates Mathematica by Wolfram Research [Wol05] and the Orbital
library developed by the author as alternative implementations of Gröbner basis
algorithms.

A.2.4. Positivstellensatz and Semidefinite Programming

The Positivstellensatz for real-closed fields [Ste73, BCR98], which has been in-
troduced by Stengle along with a Nullstellensatz for real-closed-fields [Ste73], can
be used as a sound procedure for proving formulas in the universal fragment of
first-order real arithmetic. The Positivstellensatz has recently been exploited in
combination with relaxations from semidefinite programming [Par03, Har07].

The multiplicative monoid generated by H ⊆ R[X1, . . . , Xn] is the set of finite
products of elements of H (including the empty product 1). The cone generated
by a set F ⊆ R[X1, . . . , Xn] is the subsemiring of R[X1, . . . , Xn] generated by F
and arbitrary squares, i.e., the smallest set containing F , squares p2 of arbitrary
polynomials p ∈ R[X1, . . . , Xn] that is closed under addition and multiplication. For
more computational representations of cones and ideals, we refer to [Par03, BCR98].

A.10 Theorem (Positivstellensatz [Ste73] for real-closed fields). Let R be
a real-closed field (e.g., R = R) and F,G,H finite subsets of R[X1, . . . , Xn]. Let C
denote the cone generated by F , let I be the ideal generated by G, and let M be the
multiplicative monoid generated by H. Then

{x ∈ Rn : f(x) ≥ 0 for all f ∈ F, g(x) = 0 for all g ∈ G, h(x) 6= 0 for all h ∈ H}

is empty iff

there are f ∈ C, g ∈ I, h ∈M such that f + g + h2 = 0 .

The polynomials f, g, h are polynomial infeasibility witnesses. For bounded de-
gree, witnesses f, g, h can be searched for using numerical semidefinite program-
ming [Par03] by parameterising the resulting polynomials. As (theoretical) degree
bounds exist for the certificate polynomials f, g, h, the Positivstellensatz yields a
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decision procedure. These bounds are at least triply exponential, though [Par03].
Thus, the approach advocated by Parrilo [Par03] is to increase the bound success-
ively and solve the existence of bounded degree witnesses due to the Positivstel-
lensatz by semidefinite programming [BV04].

As a simple corollary to Theorem A.10 we have the following sound proof rule.

A.11 Corollary. The rule in Figure A.5 is sound.

(A3)
∗

f1 ≥ f̃1, . . . , fm ≥ f̃m, g1 = g̃1, . . . , gn = g̃n, h1 6= h̃1, . . . , hl 6= h̃l `
A3 is applicable iff f + g + h2 = 0 for some polynomial f of the cone generated by

{f1 − f̃1, . . . , fm − f̃m}, a polynomial g of the ideal (A.2), and a polynomial h of the

multiplicative magma generated by {h1 − h̃1, . . . , hl − h̃l}.

Figure A.5.: Rule schemata of Positivstellensatz calculus rules

While both the rules in Figure A.4 and Figure A.5 assume simple rewriting to
normalise the sequent, e.g., by resolving negated operators or f ≤ g to g ≥ f ,
observe that—when using propositional rules to split branches as necessary—all
quantifier-free formulas of real arithmetic can be converted equivalently into the
form required by A3 but not into that required by A2 (for Γ = ∆ = ∅).

KeYmaera supports a preliminary integration with CSDP [Bor99] as an imple-
mentation of semidefinite programming algorithms.

A.3. Discussion

As usual, it is a nontrivial task to ensure that the soundness that has been proven
for a calculus inherits to soundness of a tool implementing this calculus. Despite
our simple and concise calculi from Part I, the tool KeYmaera already qualifies
as a nontrivial piece of code, because of its numerous features totalling to around
22,000 SLOC1 on top of the KeY base system with 180,000 SLOC (not all parts of
the base system are used in the context of hybrid systems, though). In this section,
we discuss the relationship of the soundness of our calculi and the soundness of
KeYmaera. We refer to [BK06] for a general discussion of verification for verification
systems.

1Source lines of code, not counting comments, estimated with SLOCCount from www.dwheeler.

com/sloccount/
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Deductive Kernels One advantage for deductive verification approaches is that
they can have a comparably small trusted deductive kernel. The basic rationale
underlying also tools like LCF [Mil72], HOL [GM93], or Isabelle/HOL [NPW02] is
that programming bugs in implementations that affect completeness are much less
fatal than bugs that would make the tool unsound. Essentially, when a verification
tool like KeYmaera only allows to prove formulas by applying proof rules to them,
it is sufficient for soundness purposes to ensure the correct implementation of these
calculus rules and the proof rule application mechanism. In particular, this removes
all sophisticated implementations of proof strategies from the trusted computing
base. See, for instance, higher-order logic proof systems like Isabelle/HOL [NPW02]
for tools that follow this approach consequently.

In KeYmaera, however, there are some additional pitfalls. Most of the rules
of the calculi for our logics from Part I can be written as schematic rules (called
taclets [BGH+04]) in the KeY system, so that the careful soundness proofs carry
over from the dL/DAL/dTL calculi to the implementation KeYmaera. Yet even this
already requires the (long-tested) rule application mechanism of KeY [BGH+07,
BHS07] to be correct. Other rules like F3 and F6 from Figure 2.5, however, can-
not be written as a KeY taclet at all but have to be implemented in Java. Taclet
notations for some of the rules also require metaoperators that are implemented in
Java, e.g., for obtaining the solution of differential equations in D11–D12. To im-
prove the quality of these Java implementations, in addition to software engineering
techniques like code reviews and testing, we work with runtime assertions to try to
ensure that the results KeYmaera produces during the current verification run are
correct. For instance, the Java rules for F3 and F6 can assert at runtime that their
goal (conclusion) is actually a substitution instance of the sub-goals (premisses)
that they constructed, thereby ensuring in retrospect that their formula trans-
formation was justified by Lemma 2.13, see further explanations in Section 2.5.2.
These runtime checks eliminate most of the corresponding rule implementations in
KeYmaera from the trusted basis, leaving essentially only the implementation of
substitutions and quantifier rearrangements in the trusted deductive kernel.

External Blackbox Procedures The soundness problem is deeper, though, be-
cause, for performance reasons, KeYmaera calls external decision procedures fol-
lowing the cooperation scheme in Chapter 5, which use the techniques described in
Section A.2. Thus, soundness of KeYmaera generally requires the external decision
procedures to be implemented correctly. We discuss the respective external pro-
cedures and means for removing them from the required trusted computing base in
the sequel.

Differential Equation Handling For the implementation of differential equation
handling rules like D11–D12 from Figure 2.5, it is easy to check at runtime by simple
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symbolic differentiation and symbolic computations in polynomial rings whether a
solution produced by a (complicated) procedure for solving differential equations
actually is a solution, thereby eliminating the differential equation solver (Math-
ematica and Orbital library) from the trusted computing base completely. Similar
observations hold for differential induction rules G5–G6 from Figure 3.3, which only
require symbolic differentation and symbolic polynomial computations.

Positivstellensatz and Semidefinite Programming A pleasant property of the
Positivstellensatz Theorem A.10 and the approach in Section A.2.4 is that it pro-
duces a witness (the polynomials f, g, h) for the validity of a formula (which cor-
responds to the closing of the branch by rule A3). Once the witness has been
found, it is checkable by simple computations in the polynomial ring to determine
whether f + g + h2 = 0 by comparing the coefficients. Thus, complicated numer-
ical semidefinite programming tools [BV04] do not need to be part of the trusted
computing base concerning soundness.

Semialgebraic Geometry and Cylindrical Algebraic Decomposition Most quan-
tifier elimination procedures follow cylindrical algebraic decomposition [Col75] or
partial cylindrical algebraic decomposition [CH91], which are efficient but quite
intricate procedures. Unlike approaches using the Positivstellensatz, general quan-
tifier elimination, unfortunately, does not produce simple checkable certificates.

In order to remove the implementations of quantifier elimination procedures in
Mathematica from the trusted computing base, diversification (i.e., crossvalidating
results by multiple background solvers) only is a partial answer, because the solvers
might still agree on the same wrong result. Further, crossvalidation limits the over-
all performance to the worst-of-breed rather than best-of-breed running times. As a
more fundamental approach, we can use verified implementations, e.g., the verified
quantifier elimination procedure for linear real arithmetic by Nipkow [Nip08] in an
executable fragment of Isabelle/HOL. Another approach is to use nonverified but
proof-producing implementation of general quantifier elimination by McLaughlin
and Harrison [MH05].

Unfortunately, the practical performance achieved by those prototype implement-
ations is not yet sufficient for larger case studies. A good compromise is to use the
paradigm of reverification: The proof search procedures IBC and IIO generate sev-
eral calls to the quantifier elimination procedure to find a proof, but only those in
the final proof are soundness-critical, see Chapter 5 for details. Thus, for sound-
ness, it is sufficient to use a fast and possibly untrusted implementation of QE
during the proof search and to reverify the final proof in a proof checker with a
verified or proof-producing QE implementation [MH05, Nip08]. For this purpose,
the iterative background closure strategy from Chapter 5 is especially useful, be-
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cause it iteratively identifies the sweetspot for quantifier elimination during the
proof search.

Nullstellensatz and Gröbner Bases While Gröbner basis approaches do not have
as simple witnesses as Positivstellensatz approaches, their working principle is
strictly based on appropriate symbolic computations in the ring of polynomials.
Consequently, these polynomial reductions can be carried out from a small set of
rewrite rules within a logic. For the case of integer arithmetic, this has already
been implemented in KeY [Rüm07], which can be generalised to real arithmetic.

Further, for performance reasons, the actual polynomial reductions that are per-
formed during the construction of the Gröbner basis (Definition A.6) and the reduc-
tions with respect to that basis during the application of A2 can be tracked within
a fast Gröbner basis implementation and replayed within the logic to produce a
reliable proof script that only requires limited symbolic computation power within
the trusted prover kernel. Typically, only a few of the polynomial reductions during
the Gröbner basis constructions and reductions are finally required for proving an
equality.

Simplification KeYmaera can call simplification procedures that simplify math-
ematical expressions to improve readability. For instance, an external simplification
procedure that simplifies x/x to 1 would be unsound, however, for the compacti-
fied domain R ∪ {−∞,+∞}, because ∞/∞ is undefined and not identical to 1.
Likewise, this simplification could be unsound depending on whether x is allowed
to assume 0. In our case, the above simplification is in fact sound for the domain
of reals (R) when adopting our convention from Sections 2.2.3 and 3.2.1 that any
formula containing x/x is understood to mean that x 6= 0 holds in addition. Gen-
erally, however, arbitrary mathematical simplification algorithms might perform
non-equivalent transformations and are thus disabled in KeYmaera by default.

Summary The level of formal ensurance of the correct functioning of the imple-
mentation of KeYmaera is, unfortunately, not quite comparable to that in systems
like LCF [Mil72], HOL [GM93], or Isabelle/HOL [NPW02]. The built-in proof rule
language in KeY allows to state most proof rules of the dL calculus primarily as
taclets. Ensuring a correct implementation of the remaining code is not quite trivial
but simplified by using a deductive kernel with a smaller trusted basis and by using
runtime assertions that check for coherence of the current proof rule application
with its formal prerequisites. Still, the simplicity of the proof rules of our calculi
should make it possible to come up with a correct implementation.

The most tricky part, however, is that, for performance reasons, KeYmaera re-
lies on tuned external decision procedures to ensure scalability to our larger case
studies. These procedures can be eliminated from the trusted verification base by
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checking witnesses when working with solutions of differential equations, the Posit-
ivstellensatz and Göbner basis rules. For full quantifier elimination over real-closed
fields, verified or proof-generating implementations can be helpful.

A.4. Performance Measurements

Unless otherwise indicated, the measurements in this thesis have been performed
on a Dual-Core AMD OpteronTM 1218 Processor (F2 stepping) running at 2.6GHz
clock speed with 64kb instruction cache, 64kb first level data cache, and 1MB second
level cache per core sharing 4GB of DDR2-667 main memory with CAS latency 5.
KeYmaera has been run on a JavaTM SE Virtual Machine, build 1.6.0 06-b02, with
a HotSpotTM engine in mixed mode on a Gentoo Linux with a 2.6.25-g SMP kernel
for x86/64bit. Measurements are further based on the Mathematica 6.0.2 kernel.

Due to several effects including Java dynamic class loading and caching effects,
the timing measurements are not necessarily always statistically significant. Rather,
the timing information is intended to give a feeling for magnitudal differences.
The measurements have been repeated to ensure reproducibility of results, though.
While the Java Virtual Machine itself already contributes to nondeterministic ef-
fects that result from dynamic class loading, garbage collection and caching, the
implementation of the KeYmaera system itself is subject to nondeterminism as
well, including the proof strategies, timing effects of iterative background closures,
nondeterminstic term orderings based on memory references etc. Finally, compu-
tational backends allow for variations in overall performance.

Still, qualitative performance differences can be read off from the measurements.
For instance, it makes quite a remarkably dramatic practical difference whether a
strategy is able to prove a case study within only 100s or cannot even come up with
an answer after 5 hours.
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Hybrid Automata

Contents
B.1. Hybrid Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

B.2. Embedding Hybrid Automata into Hybrid Programs . . . . . . . . 269

Synopsis

To formally relate the notions of hybrid programs and hybrid automata,
we show that hybrid automata can be embedded canonically into hybrid
programs. Further, reachability in hybrid automata directly corresponds to
satisfying models of associated dL formulas, safety corresponds to validity of
the dL formulas.

B.1. Hybrid Automata

Even though hybrid automata are the most standard notation for hybrid systems,
there are several slightly different notions of hybrid automata or automata-based
models for hybrid systems [Tav87, ACHH92, NOSY92, ACH+95, Bra95b, Hen96,
AHH96, BBM98, LPY99, DN00, PAM+05, DHO06]. We follow the notion of hybrid
automata from Henzinger [Hen96] most closely, with corresponding care on actual
definability of the relations as in other approaches [Frä99, LPY99, PAM+05, PC07]
and with invariants that are required to hold at all times following [ACH+95,
DHO06, PC07].

Hybrid automata are graph models with two kinds of transitions: discrete jumps
in the state space caused by mode switches (edges), and continuous evolution along
flows within a mode (vertex).

B.1 Definition (Hybrid automata). A hybrid automaton A consists of
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• a continuous state space Rn;

• a finite directed graph (control graph) with vertices Q (as modes) and edges E
(control switches);

• flow conditions flowq ⊆ Rn × Rn that determine the relationship of the con-
tinuous state x ∈ Rn and its time-derivative x′ ∈ Rn during continuous
evolution in mode q ∈ Q;

• invariant conditions invq ⊆ Rn that have to be true while in mode q ∈ Q;

• jump relations jumpe ⊆ Rn × Rn that determine the new value of the con-
tinuous state x ∈ Rn depending on its old value when following edge e ∈ E;

where jumpe and invq are definable in first-order real arithmetic [Tar51] and addi-
tional restrictions apply for flowq depending on the class of hybrid automata.

Typically, the jump relation jumpe is given as a conjunction of transition guards
guarde ⊆ Rn, which determine from which states an edge can be taken, and variable
resets resete ⊆ Rn × Rn, which adjust the state value to its new value. In most cases,
the reset relation is specified by a list of assignments x1 := θ1, . . . xn := θn, which
correspond to a discrete jump set of dL (Definition 2.3). Further, flow conditions
are usually just specified by a set of differential equations x′1 = θ1, . . . , x

′
n = θn. See

Figure 1.3 on page 4 for an example.
Although often neglected, definability of the constituent relations of hybrid auto-

mata, e.g., in first-order real arithmetic, is a crucial prerequisite for dealing with
any state reachability question. In a hybrid automaton that uses the Mandelbrot
set as invariant, it would already be undecidable whether a state x ∈ Rn satisfies
the invariant of the current mode, even in the strong computational model of real
Turing machines by Blum et al. [BCSS98].

B.2 Definition (Transition semantics of hybrid automata). The transition
system of a hybrid automaton A is a transition relation y defined as follows

• the state space is defined as S := {(q, x) ∈ Q× Rn : x ∈ invq};

• the transition relation is defined by y :=
⋃
e∈E

ey ∪ ⋃q∈Q
q
y where

1. (q, x)
ey (q̃, x̃) iff (x, x̃) ∈ jumpe and e ∈ E is an edge from q ∈ Q to q̃ ∈ Q

(discrete transition).

2. (q, x)
q
y (q, x̃) iff there is a function f : [0, r]→ Rn with time-derivative

f ′ : (0, r)→ Rn with f(0) = x, f(r) = x̃ and (f(ζ), f ′(ζ)) ∈ flowq at
each ζ ∈ (0, r). Further, f(ζ) ∈ invq for each ζ ∈ [0, r] (continuous trans-
ition).
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State σ ∈ S is reachable from state σ0 ∈ S, denoted by σ0 y∗ σ, iff, for some n ∈ N,
there is a sequence of states σ1, σ2, . . . , σn = σ ∈ S such that σi−1 y σi for 1 ≤ i ≤ n.

Most often, the semantics of hybrid automata is further restricted to nonzeno
traces [Hen96, DHO06, DN00].

B.2. Embedding Hybrid Automata into Hybrid
Programs

A hybrid automaton like in Figure 1.3 on page 4 can be represented faithfully as
the hybrid program in Figure 2.1 on page 21. More generally, we show that it is
always possible to represent hybrid automata as hybrid programs, thus showing
that hybrid automata can be embedded faithfully into dL.

B.3 Proposition (Hybrid automata embedding). There is an effective map-
ping ι from hybrid automata to hybrid programs / DA-programs such that the fol-
lowing diagram commutes:

HA HP(Σ, V )

S2 Sta(Σ)2

ι

y∗ ρ�

Proof. Let Σ = {q, x1, . . . , xn, x1
+, . . . , xn

+}, using vectorial notation x for the vec-
tor (x1, . . . , xn) and x+ for (x1

+, . . . , xn
+). We define ι as the function that maps

hybrid automaton A to the following HP:(
?q = qi; flowqi

(x, x′) & invq1
∪ ?q = qi; (x+ := ∗; ?jumpe(x, x

+); x := x+); ?invqj ; q := qj
∪ . . .)∗

The respective lines in this HP are subject to a choice for each mode qi or each
edge e from some state qi to some state qj. Let α∗ denote this program ι(A).

States of the hybrid automaton A and states of its HP ι(A) immediately corres-
pond to each other using the bijection Φ : S → Sta(Σ) that maps (q̃, x̃) ∈ S to the
state ν that is defined as ν(q) = q̃ and ν(xi) = x̃i for 1 ≤ i ≤ n. Observe that Φ is
a bijection up to forgetful projections of internal variables x+. In the following, we
use the state identification Φ implicitly as necessary to simplify the notation.

We have to show that the diagram commutes, that is, y∗= ρ ◦ ι (up to identi-
fication of states by Φ, i.e., Φ ◦y∗ = ρ ◦ ι).
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“⊆” Let σ0 y∗ σ, that is, let n ∈ N and σ1, σ2, . . . , σn = σ ∈ S such that σi−1 y σi
for all 1 ≤ i ≤ n. The proof is by induction on n.

IA n = 0 then (σ0, σ) ∈ ρ(α∗) using zero repetitions.

IS By induction hypothesis, we can assume that (σ0, σn−1) ∈ ρ(α∗). We
have to show (σn−1, σn) ∈ ρ(α), thereby implying (σ0, σn) ∈ ρ(α∗).

Consider the case where the last transition σn−1 y σn is a continuous
transition in mode qi of some duration r ≥ 0. Then, up to iden-
tification by Φ, there is a state flow ϕ : [0, r]→ Sta(Σ) with ϕ(0) =
σn−1, ϕ(r) = σn and ϕ |= flowqi

∧ invqi . Thus, α can copy the transition
as (σn−1, σn) ∈ ρ(α) using the choice ?q = qi; flowqi

(x, x′) & invqi . The
test succeeds, because Φ(σn−1)(q) = qi.

Consider the case where the last transition σn−1 y σn is a discrete trans-
ition from mode qi to qj along edge e Then (σn−1, σ) ∈ jumpe. Thus, by
choosing the values of σn for x+, we have that (σn−1, σn) ∈ ρ(α) by the
choice ?q = qi; (x+ := ∗; ?jumpe(x, x

+); x := x+); ?invqj ; q := qj.

“⊇” Let (σ0, σn) ∈ ρ(α∗) following n repetitions of α, i.e., let σ1, . . . , σn−1 ∈ Sta(Σ)
such that (σi−1, σi) ∈ ρ(α) for all 1 ≤ i ≤ n. The proof is by induction on n.

IA For n = 0, there is nothing to show.

IS By induction hypothesis, we can assume that σi−1 y σi for all 1 ≤ i < n.
We have to show that σn−1 y σn, thereby showing that σ0 y∗ σn. If
qi := σn−1(q) = σn(q), then it is easy to see from the structure of α that

(σn−1, σn) ∈ ρ(?q = qi; flowqi
(x, x′) & invqi). Thus, σn−1

qiy σn by a con-
tinuous transition.

If, however, qi := σn−1(q), qj = σn(q), then it is easy to see that

(σn−1, σn) ∈ ρ(?q = qi; (x+ := ∗; ?jumpe(x, x
+);x := x+); ?invqj ; q := qj)

according to a line of α that originates from some edge e from qi to qj.

Thus, (σn−1, σn) ∈ jumpe and σn |= invqj , hence, σn−1
ey σn by a discrete

transition.

B.4 Corollary. There is an effective mapping from safety properties of hybrid
automata to dL/ DA-program formulas such that the hybrid automaton A, starting
in initial mode q0, safely remains in the region F ∈ FmlFOL(Σ, V ) if and only if the
corresponding dL formula is valid.

Proof. Let α∗ the the HP ι(A) belonging to A according to Proposition B.3. Then,
when starting A in initial mode q0, it safely remains in the region F iff the following
formula is valid

q = q0 ∧ invq0 → [α∗]F
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B.1 Example (Water tank). Consider the classical simple water tank example, which
regulates water level y between 1 and 12 by filling or emptying the water tank. The
control in the hybrid automaton of Figure B.1a further uses a clock variable x to
model delayed reactions of pumps or valves.

fill
x′ = 1
y′ = 1
y ≤ 10

stop
x′ = 1
y′ = 1
x ≤ 2

drain
x′ = 1
y′ = −2
y ≥ 5

start
x′ = 1
y′ = −2
x ≤ 2

y = 10

x := 0

x = 2

y = 5

x := 0

x = 2

B.1a: Hybrid automaton

q = fill→ [(

(?q = fill; x′ = 1, y′ = 1 & y ≤ 10)

∪ (?q = fill ∧ y = 10; x := 0; q := stop)

∪ (?q = stop; x′ = 1, y′ = 1 & x ≤ 2)

∪ (?q = stop ∧ x = 2; q := drain)

∪ (?q = drain; x′ = 1, y′ = −2 & y ≥ 5)

∪ (?q = drain ∧ y = 5;x := 0; q := start)

∪ (?q = start; x′ = 1, y′ = −2 &x ≤ 2)

∪ (?q = start ∧ x = 2; q := fill)

)∗] (1 ≤ y ∧ y ≤ 12)

B.1b: Hybrid program

Figure B.1.: Water tank

Figure B.1b shows a corresponding representation of the hybrid automaton in
Figure B.1a as a hybrid program. Each line of the hybrid program corresponds
to a discrete or continuous transition of the water tank hybrid automaton. The
constants fill, stop, drain, start are pairwise different. The water tank is provable
with the following state-dependent invariant:

1 ≤ y ≤ 12 ∧ (q = start→ y ≥ 5− 2x) ∧ (q = stop→ y ≤ 10 + x)

The transformation in Proposition B.3 is a canonical embedding but hybrid pro-
grams allow for more flexible programming structures with which more natural
characterisations of the system behaviour can be obtained.

B.2 Example (Parametric bouncing ball). Consider the well-known bouncing ball
example [EJSL99]. A ball falls from height h and bounces back from the ground
(which corresponds to h = 0) after an elastic deformation. The current speed of
the ball is denoted by v, and t is a clock measuring the falling time. We assume
an arbitrary positive gravity force g and that the ball loses energy according to a
damping factor 0 ≤ c < 1. Figure B.2 depicts the hybrid automaton, an illustration
of the system dynamics, and a representation of the system as a hybrid program.

The ball loses energy at every bounce, thus the ball never bounces higher than the
initial height. This can be expressed by the safety property 0 ≤ h ≤ H, where H
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h′= v
v′= −g
t′= 1
h≥ 0

v:= −cv
t := 0

h = 0 ∧ t > 0 Ball ≡
(

h′ = v, v′ = −g, t′ = 1 &h ≥ 0;
if (h = 0 ∧ t > 0) then
v := −cv; t := 0

fi
)∗

Figure B.2.: Parametric bouncing ball

denotes the initial energy level, i.e., the initial height if v = 0. For instance, we can
prove the following property:

(v2 ≤ 2g(H − h) ∧ h ≥ 0 ∧ g > 0 ∧H ≥ 0)→ [Ball](0 ≤ h ≤ H)

This specification follows the pattern of Hoare-triples. It expresses that the boun-
cing ball, when started in an initial state satisfying the precondition always respects
the postcondition 0 ≤ h ≤ H.
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C.1. Differential Equations

In this section, we summarise some classical results for differential equations, and
refer to [Wal98] for details. As usual, Ck(D,Rn) denotes the space of k-times
continuously differentiable functions from D to Rn.

C.1.1. Ordinary Differential Equations

An ordinary differential equation in explicit form is an equation y′(x) = f(x, y)
involving a derivative y′(x) of y with respect to x. A solution is a function that
obeys said relation of its derivative:

C.1 Definition (Ordinary differential equation). Let f : D → Rn be a func-
tion on a domain D ⊆ R × Rn. The function Y : I → Rn is a solution on the
interval I ⊆ R of the initial-value problem[

y′(x) = f(x, y)
y(x0) = y0

]
(C.1)

with ordinary differential equation (ODE ) y′ = f(x, y), if, for all x ∈ I

1. (x, Y (x)) ∈ D
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2. Y ′(x) exists and Y ′(x) = f(x, Y (x)).

3. Y (x0) = y0

If f : D → Rn is continuous, then Y : I → Rn is continuously differentiable.
The definition is accordingly for higher-order differential equations, i.e., differential
equations involving higher-order derivatives y(n)(x) for n > 1.

Several differential equations have no explicit closed-form solution with element-
ary functions, for instance, x′′(t) = et

2
, see [Zei03]. Likewise, differential equations

like y′(t) = 2
t3
y can have non-analytic smooth solutions like y(t) = e−

1
t2 .

C.1.2. Existence and Uniqueness Theorems

There are several classical theorems that guarantee existence and/or uniqueness of
solutions for differential equations (not necessarily closed-form solutions with ele-
mentary functions, though). The classical existence theorem is due to Peano [Pea90].

C.2 Theorem (Existence theorem of Peano [Wal98, Theorem 10.IX]).
Let f : D → Rn be a continuous function on an open, connected domain D ⊆
R × Rn. Then, the initial-value problem (C.1) with (x0, y0) ∈ D has a solution.
Further, every solution of (C.1) can be continued arbitrarily close to the border
of D.

A function f : D → Rn with D ⊆ R × Rn is Lipschitz-continuous with respect
to y iff there is an L ∈ R such that for all (x, y), (x, ȳ) ∈ D:

‖f(x, y)− f(x, ȳ)‖ ≤ L‖y − ȳ‖ .

If, for instance, ∂f(x,y)
∂y

exists and is bounded on D then f is Lipschitz-continuous

with max(x,y)∈D ‖∂f(x,y)
∂y
‖ by mean-value theorem. Similarly, f is locally Lipschitz-

continuous iff for each (x, y) ∈ D, there is a neighbourhood in which f is Lipschitz-
continuous.

Most importantly, the classical Picard-Lindelöf’s theorem [Lin94], which is also
known as the Cauchy-Lipschitz theorem, guarantees existence and uniqueness of
solutions. As restrictions of solutions are always solutions, we understand unique-
ness up to restrictions.

C.3 Theorem (Uniqueness theorem of Picard-Lindelöf [Wal98, Theorem 10.VI]).
In addition to the premisses of Theorem C.2, let f be locally Lipschitz-continuous
with respect to y (for instance, f ∈ C1(D,Rn) is sufficient). Then, there is a unique
solution of (C.1).
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C.1. Differential Equations

C.4 Proposition (Global uniqueness theorem of Picard-Lindelöf [Wal98,
Proposition 10.VII]). Let f : [0, a] × Rn → Rn be a continuous function that is
Lipschitz-continuous with respect to y. Then, there is a unique solution of (C.1)
on [0, a].

The following result is a minor componentwise generalisation of [Wal98, Propos-
ition 6.VI] to vectorial differential equations.

C.5 Proposition (Continuation of solutions [Wal98, Proposition 6.VI]).
Let f : D → Rn be a continuous function on the open, connected domain D ⊆
R × Rn. If ϕ is a solution of y′ = f(x, y) on [0, b) whose images lies within a
compact set A ⊆ D, then ϕ can be continued to a solution on [0, b].

C.1.3. Linear Differential Equations with Constant Coefficients

For linear differential equation systems with constant coefficients there is a well-
established constructive theory for obtaining closed-form solutions using classical
techniques from linear algebra.

C.6 Proposition (Linear systems with constant coefficients [Wal98, §18.X]).
Let the matrix A ∈ Rn×n be constant. Then, the initial-value problem[

y′(t) = Ay(t) + b(t)
y(τ) = η

]
has the solution

y(t) = eA(t−τ)η +

∫ t

τ

eA(t−s)b(s)ds

where exponentiation of matrices is defined by the usual power series

eAt =
∞∑
n=0

1

n!
Antn .
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[DHK03] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Theorem proving
modulo. J. Autom. Reasoning, 31(1):33–72, 2003.

[DHO03] Werner Damm, Hardi Hungar, and Ernst-Rüdiger Olderog. On the
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[DMC05] Gilles Dowek, César Muñoz, and Vı́ctor A. Carreño. Provably safe
coordinated strategy for distributed conflict resolution. In Proceedings
of the AIAA Guidance Navigation, and Control Conference and Exhibit
2005, AIAA-2005-6047, 2005.

[DMO+07] Werner Damm, Alfred Mikschl, Jens Oehlerking, Ernst-Rüdiger
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[Fau02] Jean-Charles Faugére. A new efficient algorithm for computing
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