
Formal Verification of
Obstacle Avoidance and
Navigation of Ground Robots

International Journal of Robotics
XX(X):1–35
c�The Author(s) 2016

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Stefan Mitsch1, Khalil Ghorbal1,2, David Vogelbacher1,3 and André Platzer1

Abstract
This article answers fundamental safety questions for ground robot navigation: Under which circumstances does
which control decision make a ground robot safely avoid obstacles? Unsurprisingly, the answer depends on the exact
formulation of the safety objective as well as the physical capabilities and limitations of the robot and the obstacles.
Because uncertainties about the exact future behavior of a robot’s environment make this a challenging problem, we
formally verify corresponding controllers and provide rigorous safety proofs justifying why they can never collide with
the obstacle in the respective physical model. To account for ground robots in which different physical phenomena
are important, we analyze a series of increasingly strong properties of controllers for increasingly rich dynamics and
identify the impact that the additional model parameters have on the required safety margins.
We analyze and formally verify: (i) static safety, which ensures that no collisions can happen with stationary obstacles,
(ii) passive safety, which ensures that no collisions can happen with stationary or moving obstacles while the robot
moves, (iii) the stronger passive friendly safety in which the robot further maintains sufficient maneuvering distance
for obstacles to avoid collision as well, and (iv) passive orientation safety, which allows for imperfect sensor coverage
of the robot, i. e., the robot is aware that not everything in its environment will be visible. We formally prove that safety
can be guaranteed despite sensor uncertainty and actuator perturbation. We complement these provably correct
safety properties with liveness properties: we prove that provably safe motion is flexible enough to let the robot
navigate waypoints and pass intersections. In order to account for the mixed influence of discrete control decisions
and the continuous physical motion of the ground robot, we develop corresponding hybrid system models and use
differential dynamic logic theorem proving techniques to formally verify their correctness. Since these models identify
a broad range of conditions under which control decisions are provably safe, our results apply to any control algorithm
for ground robots with the same dynamics. As a demonstration, we, thus, also synthesize provably correct runtime
monitor conditions that check the compliance of any control algorithm with the verified control decisions.

Keywords
provable correctness, obstacle avoidance, ground robot, navigation, hybrid systems, theorem proving

Introduction

Autonomous ground robots are increasingly promising
as consumer products, ranging from today’s autonomous
household appliances Fiorini and Prassler (2000) to the
driverless cars of the future being tested on public roadsa.
With the robots leaving the tight confounds of a lab
or a locked-off industrial production site, robots face an
increased need for ensuring safety, both for the sake of
the consumer and the manufacturer. At the same time, less
tightly structured environments outside a limited-access
factory increase the flexibility and uncertainty of what
other agents may do. This complicates the safety question,
because it becomes even harder to achieve sufficiently
exhaustive coverage of all possible behaviors.

Since the design of robot control algorithms is subject
to many considerations and tradeoffs, the most useful
safety results provide a broad characterization of the

1 Computer Science Department, Carnegie Mellon University,
Pittsburgh, USA
2Current address: INRIA, Rennes, France
3Current address: Karlsruhe Institute of Technology, Germany

Corresponding author:
Stefan Mitsch, Computer Science Department, Carnegie Mellon
University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
Email: smitsch@cs.cmu.edu
a

http://www.nytimes.com/2010/10/10/science/

10google.html?_r=0

Prepared using sagej.cls [Version: 2015/06/09 v1.01]

http://www.nytimes.com/2010/10/10/science/10google.html?_r=0
http://www.nytimes.com/2010/10/10/science/10google.html?_r=0

2 International Journal of Robotics XX(X)

set of control decisions that are safe in each of the
states of the system. The control algorithms can then
operate freely within the safe set of control decisions
to optimize considerations such as reaching a goal or
achieving secondary objectives without having to worry
about safety. The resulting characterization of safe control
actions serves as a “safety net” underneath any control
algorithm, which isolates the safety question and provides
strong safety guarantees for any ground robot following the
respective physical dynamics.

One of the most important and challenging safety
considerations in mobile robotics is to ensure that the
robot does not collide with any obstacles Bouraine et al.
(2012); Täubig et al. (2012); Wu and How (2012). Which
control actions are safe under which circumstance crucially
depends on the physical capabilities and limitations of
the robot and moving obstacles in the environment. It
also crucially depends on the exact formulation of the
safety criterion, of which there are many for mobile robots
Maček et al. (2009). We capture the former in a physical
model describing the differential equations of continuous
motion of a ground robot as well as a description of what
discrete control actions can be chosen. This mix of discrete
and continuous dynamics leads to a hybrid system. The
safety criteria are formalized unambiguously in differential
dynamic logic dL Platzer (2008, 2012a, 2017).

In order to justify the safety of the so-identified set
of control decisions in the respective physical model,
we formally verify the resulting controller and provide
a rigorous proof in the dL theorem prover KeYmaera X
Fulton et al. (2015). This proof provides undeniable
mathematical evidence for the safety of the controllers,
reducing safety of the robot to the question whether the
appropriate physical model has been chosen for the robot
and its environment. Due to the uncertainties in the exact
behavior of the robot and the agents in its environment, a
range of phenomena are important in the models.

We consider a series of models with static obstacles at
fixed positions, dynamic obstacles moving with bounded
velocities, sensors with limited field of vision, sensor
uncertainties, and actuator disturbances. We identify the
influence of each of those on the required design of safe
controllers. We also consider a series of safety criteria that
account for the specific features of these models, since one
of the subtle conceptual difficulties is what safety even
means for an autonomous robot. We would want it to be
always collision-free, but that requires other vehicles to be
reasonable, e. g., not actively try to run into our robot when
it is just stopped in a corner. One way of doing that is to
assume stringent constraints on the behavior of obstacles
Loos et al. (2011); Bouraine et al. (2012).

In this article, we refrain from doing so and allow
obstacles with an arbitrary continuous motion respecting a

known upper bound on their velocity. Then our robot is safe,
intuitively, if no collision can ever happen where the robot is
to blame. For static obstacles, the situation is easy, because
the robot is to blame for every collision that happens, so
our safety property and its proof show that the robot will
never collide with any static obstacle (static safety). For
dynamic obstacles, safety is subtle, because other moving
agents might actively try to ruin safety and cause collisions
even if our robot did all it could to prevent them. We
analyze passive safety Maček et al. (2009), which requires
that the robot does not actively collide, i. e., collisions only
happen when a moving obstacle ran into the robot while the
robot was stopped. Our proofs guarantee passive safety with
minimal assumptions about obstacles. The trouble with
passive safety is that it still allows the robot to stop in unsafe
places, creating unavoidable collision situations in which
an obstacle has no control choices left that would prevent
a collision. Passive friendly safety Maček et al. (2009)
addresses this challenge with more careful robot decisions
that respect the dynamic limitations of moving obstacles
(e. g., their braking capabilities). A passive-friendly robot
not only ensures that it is itself able to stop before a collision
occurs, but it also maintains sufficient maneuvering room
for obstacles to avoid a collision as well. Finally, we
introduce passive orientation safety, which restricts the
responsibility of the robot to avoid collisions to only parts of
the robot’s surroundings (e. g., the robot is responsible for
collisions with obstacles to its front and sides, but obstacles
are responsible when hitting the robot from behind). We
complement these safety notions with liveness proofs to
show that our provably safe controllers are flexible enough
to let the robot navigate waypoints and cross intersections.

All our models use symbolic bounds so our proofs hold
for all choices of the bounds. As a result, we can account
for uncertainty in several places (e. g., by instantiating
upper bounds on acceleration or time with values including
uncertainty). We show how further uncertainty that cannot
be attributed to such bounds (in particular location
uncertainty, velocity uncertainty, and actuator uncertainty)
can be modeled and verified explicitly.

The class of control algorithms we consider is inspired
by the dynamic window algorithm Fox et al. (1997), but
is equally significant for other control algorithms when
combining our results of provable safety with verified
runtime validation Mitsch and Platzer (2016). Unlike
related work on obstacle avoidance (e. g., Althoff et al.
(2012); Pan et al. (2012); Täubig et al. (2012); Seward
et al. (2007); van den Berg et al. (2011)), we use hybrid
system models and verification techniques that describe and
verify the robot’s discrete control choices along with its
continuous, physical motion.

In summary, our contributions are (i) hybrid system
models of navigation and obstacle avoidance control

Prepared using sagej.cls

Mitsch et al. 3

algorithms of robots, (ii) safety proofs that guarantee
static safety, passive safety, passive friendly safety, and
passive orientation safety in the presence of stationary and
moving obstacles despite sensor uncertainty and actuator
perturbation, and (iii) liveness proofs that the safety
measures are flexible enough to allow the robot to reach
a goal position and pass intersections. The models and
proofs of this article are availableb in the theorem prover
KeYmaera X Fulton et al. (2015) unless otherwise noted.
They are also cross-verified with our previous prover
KeYmaera Platzer and Quesel (2008). This article extends
our previous safety analyses Mitsch et al. (2013) with
orientation safety for less conservative driving, as well as
with liveness proofs to guarantee progress. In order to
take the vagaries of the physical environment into account,
these guarantees are for hybrid system models that include
discrete control decisions, reaction delays, differential
equations for the robot’s physical motion, bounded sensor
uncertainty, and bounded actuator perturbation.

Related Work
Isabelle has recently been used to formally verify that a
C program implements the specification of the dynamic
window algorithm Täubig et al. (2012). We complement
such effort by formally verifying the correctness of the
dynamic window algorithm while considering continuous
physical motion.

PASSAVOID Bouraine et al. (2012) is a navigation
scheme designed to operate in unknown environments
by stopping the robot before it collides with obstacles
(passive safety). The validation was however only based
on simulations. In this work, we provide formal guarantees
while proving the stronger passive friendly safety ensuring
that the robot does not create unavoidable collision
situations by stopping in unsafe places.

Wu and How (2012) assume unpredictable behavior for
obstacles with known forward speed and maximum turn
rate. The robot’s motion is however explicitly excluded
from their work which differs from the models we prove.

We generalize the safety verification of straight line
motions Loos et al. (2011); Mitsch et al. (2012) and the
two-dimensional planar motion with constant velocity Loos
et al. (2013a); Platzer and Clarke (2009) by allowing
translational and rotational accelerations.

Pan et al. (2012) proposes a method to smooth
the trajectories produced by sampling-based planners in
a collision-free manner. Our article proves that such
trajectories are indeed safe when considering the control
choices of a robot and its continuous dynamics.

LQG-MP van den Berg et al. (2011) is a motion
planning approach that takes into account the sensors,
controllers, and motion dynamics of a robot while working
with uncertain information about the environment. The

approach attempts to select the path that decreases the
collision probability. Althoff et al. (2012) use a probabilistic
approach to rank trajectories according to their collision
probability. They propose a collision cost metric to refine
the ranking based on the relative speeds and masses
of the collision objects. Seward et al. (2007) try to
avoid potentially hazardous situations by using Partially
Observable Markov Decision Processes. Their focus,
however, is on a user-definable trade-off between safety
and progress towards a goal. Safety is not guaranteed under
all circumstances. We rather focus on formally proving
collision-free motions under reasonable assumptions of the
environment.

It is worth noting that formal methods were also used for
other purposes in the hybrid systems context. For instance,
in Plaku et al. (2009, 2013), the authors combine model
checking and motion planning to efficiently falsify a given
property. Such lightweight techniques could be used to
increase the trust in the model but are not designed to prove
the property. LTLMoP Sarid et al. (2012) enables the user
to specify high-level behaviors (e. g., visit all rooms) when
the environment is continuously updated. The approach
synthesizes plans, expressed in linear temporal logic, of
a hybrid controller, whenever new map information is
discovered while preserving the state and task completion
history of the desired behavior. In a similar vein, the
automated synthesis of controllers restricted to straight-
line motion and satisfying a given property formalized in
linear temporal logic has been recently explored in Kress-
Gazit et al. (2009), and adapted to discrete-time dynamical
systems in Wolff et al. (2014). Karaman and Frazzoli (2012)
explore optimal trajectory synthesis from specifications in
deterministic µ-calculus.

Preliminaries: Differential Dynamic Logic
A robot and the moving obstacles in its environment form
a hybrid system: they make discrete control choices (e. g.,
compute the actuator set values for acceleration, braking,
or steering), which in turn influence their actual physical
behavior (e. g., slow down to a stop, move along a curve).
In test-driven approaches, simulators or field tests provide
insight into the expected physical effects of the control
code. In formal verification, hybrid systems provide joint
models for both discrete and continuous behavior, since
verification of either component alone does not capture
the full behavior of a robot and its environment. In this
section, we first give an overview of the relationship
between testing, simulation, and formal verification, before
we introduce the syntax and semantics of the specification
language that we use for formal verification.

b

http://web.keymaeraX.org/show/ijrr/robix.kyx

Prepared using sagej.cls

http://web.keymaeraX.org/show/ijrr/robix.kyx

4 International Journal of Robotics XX(X)

Testing, Simulation, and Formal Verification
Testing, simulation, and formal verification complement
each other. Testing helps to make a system robust under
real-world conditions, whereas simulation lets us execute
a large number of tests in an inexpensive manner (at
the expense of a loss of realism). Both, however, show
correctness for the finitely many tested scenarios only.
Testing and simulation discover the presence of bugs, but
cannot show their absence. Formal verification, in contrast,
provides precise and undeniable guarantees for all possible
executions of the modeled behavior. Formal verification
either discovers bugs if present, or shows the absence of
bugs in the model, but, just like simulation, cannot show
whether or not the model is realistic. In Section Monitoring
for Compliance At Runtime, we will see how we can
use runtime monitoring to bridge both worlds. Testing,
simulation, and formal verification all base on similar
ingredients, but apply different levels of rigor as follows.

Software. Testing and simulation run a specific control
algorithm with specific parameters (e. g., run a specific
version of an obstacle avoidance algorithm with maximum
velocity V = 2m/s). Formal verification can specify
symbolic parameters and nondeterministic inputs and
effects and, thereby, capture entire families of algorithms
and many scenarios at once (e. g., verify all velocities 0
v V for any maximum velocity V � 0 at once).

Hardware and physics. Testing runs a real robot in a
real environment. Both simulation and formal verification,
in contrast, work with models of the hardware and physics
to provide sensor values and compute how software
decisions result in real-world effects.

Requirements. Testing and simulation can work with
informal or semi-formal requirements (e. g., a robot should
not collide with obstacles, which leaves open the question
whether a slow bump is considered a collision or not).
Formal verification uses mathematically precise formal
requirements expressed as a logical formula (without any
ambiguity in their interpretation distinguishing precisely
between correct behavior and faults).

Process. In testing and simulation, requirements are
formulated as test conditions and expected test outcomes.
A test procedure then runs the robot several times under
the test conditions and one manually compares the actual
output with the expected outcome (e. g., run the robot in
different spaces, with different obstacles, various software
parameters, and different sensor configurations to see
whether or not any of the runs fail to avoid obstacles). The
test protocol serves as correctness evidence and needs to
be repeated when anything changes. In formal verification,
the requirements are formulated as a logical formula. A
theorem prover then creates a mathematical proof showing
that all possible executions—usually infinitely many—of

the model are correct (safety proof), or showing that the
model has a way to achieve a goal (liveness proof). The
mathematical proof is the correctness certificate.

Differential Dynamic Logic
This section briefly explains the language that we use for
formal verification. It explains hybrid programs, which
is a program notation for describing hybrid systems,
and differential dynamic logic dL Platzer (2008, 2010a,
2012a, 2017), which is the logic for specifying and
verifying correctness properties of hybrid programs. Hybrid
programs can specify how a robot and obstacles in the
environment make decisions and move physically. With
differential dynamic logic we specify formally which
behavior of a hybrid program is considered correct. dL
allows us to make statements that we want to be true for
all runs of a hybrid program (safety) or for at least one run
(liveness).

One of the many challenges of developing robots is that
we do not know the behavior of the environment exactly.
For example, a moving obstacle may or may not slow down
when our robot approaches it. In addition to programming
constructs familiar from other languages (e. g., assignments
and conditional statements), hybrid programs, therefore,
provide nondeterministic operators that allow us to describe
such unknown behavior of the environment concisely.
These nondeterministic operators are also useful to describe
parts of the behavior of our own robot (e. g., we may not
be interested in the exact value delivered by a position
sensor, but only that it is within some error range), which
then corresponds to verifying an entire family of controllers
at once. Using nondeterminism to model our own robot
has the benefit that later optimization (e. g., mount a better
sensor or implement a faster algorithm) does not necessarily
require re-verification since variations are already covered.

Table 1 summarizes the syntax of hybrid programs
together with their informal semantics. Many of the
operators will be familiar from regular expressions, but the
discrete and continuous operators are crucial to describe
robots. A common and useful assumption when working
with hybrid systems is that time only passes in differential
equations, but discrete actions do not consume time
(whenever they do consume time, it is easy to transform the
model to reflect this just by adding explicit extra delays).

We now briefly describe each operator with an example.
Assignment x := ✓ instantaneously assigns the value of
the term ✓ to the variable x (e. g., let the robot choose
maximum braking). Nondeterministic assignment x := ⇤
assigns an arbitrary real value to x (e. g., an obstacle may
choose any acceleration, we do not know which value
exactly). Sequential composition ↵;� says that � starts
after ↵ finishes (e. g., a := 3; r := ⇤ first let the robot
choose acceleration to be 3, then choose any steering angle).

Prepared using sagej.cls

Mitsch et al. 5

Table 1. Hybrid program representations of hybrid systems.

Statement Effect

x := ✓ assign current value of term ✓ to variable x
(discrete assignment)

x := ⇤ assign arbitrary real number to variable x
↵; � sequential composition, first run ↵, then �
↵ [� nondeterministic choice, follow either ↵

or �
↵⇤ nondeterministic repetition repeats ↵ any

n � 0 number of times
?F check that a condition F holds in the

current state, and abort run if it does not�
x0
1 = ✓1, . . . ,

x0
n

= ✓
n

& Q
�

evolve x
i

along differential equation sys-
tem x0

i

= ✓
i

for any amount of time
restricted to maximum evolution domain Q

The nondeterministic choice ↵ [� follows either ↵ or
� (e. g., the obstacle may slow down or speed up). The
nondeterministic repetition operator ↵⇤ repeats ↵ zero or
more times (e. g., the robot may encounter obstacles over
and over again, or wants to switch between the options
of a nondeterministic choice, but we do not know exactly
how often). The continuous evolution x0

= ✓ & Q evolves
x along the differential equation x0

= ✓ for any arbitrary
amount of time within the evolution domain Q (e. g., the
velocity of the robot decreases along v0 = �b & v � 0

according to the applied brakes �b, but does not become
negative since hitting the brakes won’t make the robot drive
backwards). The test ?F checks that the formula F holds,
and aborts the run if it does not (e. g., test whether the
distance to an obstacle is large enough to continue driving).
Other nondeterministic choices may still be possible if
one run fails, which explains why an execution of hybrid
programs with backtracking is a good intuition.

A typical pattern with nondeterministic assignment and
tests is to limit the assignment of arbitrary values to known
bounds (e. g., limit an arbitrarily chosen acceleration to
the physical limits of the robot, as in a := ⇤; ?(a A),
which says a is any value less or equal A). Another useful
pattern is a nondeterministic choice with complementary
tests (?P ;↵) [(?¬P ;�), which models an if-then-else
statement if (P) ↵ else �.

The dL formulas can be formed according to the
following grammar (where ⇠ is any comparison operator
in {<,,=,�, >, 6=} and ✓1, ✓2 are arithmetic expressions
in +,�, ·, / over the reals):

� ::= ✓1 ⇠ ✓2 | ¬� | � ^ | � _ | �! |
8x� | [↵]� | h↵i�

Further operators, such as Euclidean norm k✓k and
infinity norm k✓k1 of a vector ✓, are definable from these.
The formula [↵]� is true in a state if and only if all runs
of hybrid program ↵ from that state lead to states in which

formula � is true. The formula h↵i� is true in a state if and
only if there is at least one run of hybrid program ↵ to a
state in which formula � is true.

In particular, dL formulas of the form F ! [↵]G mean
that if F is true in the initial state, then all executions of
the hybrid program ↵ only lead to states in which formula
G is true. Dually, formula F ! h↵iG expresses that if F is
true in the initial state then there is a state reachable by the
hybrid program ↵ that satisfies formula G.

Proofs in Differential Dynamic Logic
Differential dynamic logic comes with a verification
technique to prove correctness properties Platzer (2008,
2010a, 2012a, 2017). The underlying principle behind
a proof in dL is to symbolically decompose a large
hybrid program into smaller and smaller pieces until the
remaining formulas no longer contain the actual programs,
but only their logical effect. For example, the effect of
a simple assignment x := 1 + 1 in a proof of formula
[x := 1 + 1]x = 2 results in the proof obligation 1 + 1 = 2.
The effects of more complex programs may of course not
be as obviously true. Still, whether or not these remaining
formulas in real arithmetic are valid is decidable by a
procedure called quantifier elimination Collins (1975).

Proofs in dL consist of three main aspects: (i) find
invariants for loops and differential equations, (ii) sym-
bolically execute programs to determine their effect, and
finally (iii) verify the resulting real arithmetic with external
solvers for quantifier elimination. High modeling fidelity
becomes expensive in the arithmetic parts of the proof,
since real arithmetic is decidable but of high complexity
Davenport and Heintz (1988). As a result, proofs of high-
fidelity models may require arithmetic simplifications (e.g.,
reduce the number of variables by abbreviating complicated
terms, or by hiding irrelevant facts) before calling external
solvers.

The reasoning steps in a dL proof are justified by dL
axioms. The equivalence axiom [↵ [�]�[↵ [�]�

[↵ [�]�$ [↵]� ^ [�]�,
for example, allows us to prove safety about a program
with a nondeterministic choice ↵ [� by instead proving
safety of the program ↵ in [↵]� and separately proving
safety of the program � in [�]�. Reducing all occurrences of
[↵ [�]� to corresponding conjunctions [↵]� ^ [�]�, which
are handled separately, successively decomposes safety
questions for a hybrid program of the form ↵ [� into safety
questions for simpler subsystems.

The theorem prover KeYmaera X Fulton et al. (2015)
implements a uniform substitution proof calculus for
dL Platzer (2017) that checks all soundness-critical side
conditions during a proof. KeYmaera X also provides
significant automation by bundling axioms into larger
tactics that perform multiple reasoning steps at once. For
example, when proving safety of a program with a loop

Prepared using sagej.cls

6 International Journal of Robotics XX(X)

A ! [↵⇤
]S, a tactic for loop induction tries to find a

loop invariant J to split the proof into three separate,
smaller pieces: one branch to show that the invariant is
true in the beginning (A ! J), one branch to show that
running the program ↵ without loop once preserves the
invariant (J ! [↵]J), and another branch to show that the
invariant is strong enough to guarantee safety (J ! S).
If an invariant J cannot be found automatically, users
can still provide their own guess or knowledge about J
as input to the tactic. Differential invariants provide a
similar inductive reasoning principle for safety proofs about
differential equations (A ! [x0

= ✓]S) without requiring
symbolic solutions, so they can be used to prove properties
about non-linear differential equations, such as for robots.
Differential invariants can be synthesized for certain classes
of differential equations Sogokon et al. (2016).

The tactic language Fulton et al. (2017) of KeYmaera X
can also be used by users for scripting proofs to
provide human guidance when necessary. We performed all
proofs in this paper in the verification tool KeYmaera X
Fulton et al. (2015) and/or its predecessor KeYmaera
Platzer and Quesel (2008). While all our proofs ship
with KeYmaera, we provide all but one proof also
in its successor KeYmaera X, which provides rigorous
verification from a small soundness-critical core, comes
with high-assurance correctness guarantees from cross-
verification results Bohrer et al. (2017) in the theorem
provers Isabelle and Coq, and enables us to provide
succinct tactics that produce the proofs and facilitate easier
reuse of our verification results. Along with the fact
that KeYmaera X supports hybrid systems with nonlinear
discrete jumps and nonlinear differential equations, these
advantages make KeYmaera X more readily applicable to
robotic verification than other hybrid system verification
tools. SpaceEx Frehse et al. (2011), for example, focuses
on (piecewise) linear systems. KeYmaera X implements
automatic proof strategies that decompose hybrid systems
symbolically. This compositional verification principle
helps scaling up verification, because KeYmaera X verifies
a big system by verifying properties of subsystems. Strong
theoretical properties, including relative completeness, have
been shown for dL Platzer (2008, 2012b, 2017).

Preliminaries: Obstacle Avoidance with the
Dynamic Window Approach

The robotics community has come up with an impressive
variety of robot designs, which differ not only in their
tool equipment, but also (and more importantly for the
discussion in this article) in their kinematic capabilities.
This article focuses on wheel-based ground vehicles. In
order to make our models applicable to a large variety of
robots, we use only limited control options (e. g., do not

move sideways to avoid collisions since Ackermann drive
could not follow such evasion maneuvers). We consider
robots that drive forward (non-negative translational
velocity) in sequences of arcs in two-dimensional space. If
the radius of such a circle is large, the robot drives (forward)
on an approximately straight line. Such trajectories can be
realized by robots with single-wheel drive, differential drive
(wheels may rotate in opposite directions), Ackermann
drive (front wheels steer), synchro-drive (all wheels steer),
or omni-directional drive (wheels rotate in any direction)
Bräunl (2006). In a nutshell, in order to stay on the safe side,
our models conservatively underestimate the capabilities of
our robot while conservatively overestimating the dynamic
capabilities of obstacles.

Many different navigation and obstacle avoidance
algorithms have been proposed for such robots, e. g.
dynamic window Fox et al. (1997), potential fields Khatib
(1985), or velocity obstacles Fiorini and Shiller (1998).
For an introduction to various navigation approaches for
mobile robots, see Bonin-Font et al. (2008); Choset et al.
(2005). The inspiration for the algorithm we consider in
this article is the dynamic window algorithm Fox et al.
(1997), which is derived from the motion dynamics of the
robot and thus discusses all aspects of a hybrid system
(models of discrete and continuous dynamics). But other
control algorithms including path planners based on RRT
LaValle and Kuffner (2001) or A⇤ Hart et al. (1968) are
compatible with our results when their control decisions are
checked with a runtime verification approach Mitsch and
Platzer (2016) against the safety conditions we identify for
the motion here.

The dynamic window algorithm is an obstacle avoidance
approach for mobile robots equipped with synchro drive
Fox et al. (1997) but can be used for other drives too
Brock and Khatib (1999). It uses circular trajectories
that are uniquely determined by a translational velocity v
together with a rotational velocity !, see Section Robot
and Obstacle Motion Model below for further details.
The algorithm is organized into two steps: (i) The
range of all possible pairs of translational and rotational
velocities is reduced to admissible ones that result
in safe trajectories (i. e., avoid collisions since those
trajectories allow the robot to stop before it reaches
the nearest obstacle) as follows (Fox et al. 1997, (14)):
V
a

=

�
(v,!) | v

p
2dist(v,!)v0

b

^ !
p
2dist(v,!)!0

b

This definition of admissible velocities, however, neglects
the reaction time of the robot. Our proofs reveal the
additional safety margin that is entailed by the reaction
time needed to revise decisions. The admissible pairs
are further restricted to those that can be realized by
the robot within a short time frame t (the dynamic
window) from current velocities v

a

and !
a

to account
for acceleration effects despite assuming velocity to be a

Prepared using sagej.cls

Mitsch et al. 7

piecewise constant function in time (Fox et al. 1997, (15)):
V
d

={(v,!) | v 2 [v
a

� v0t, v
a

+ v0t]
^ ! 2 [!

a

� !0t,!
a

+ !0t]}. Our models, instead,
control acceleration and describe the effect on velocity in
differential equations. If the set of admissible and realizable
velocities is empty, the algorithm stays on the previous
safe curve (such curve exists unless the robot started in an
unsafe state). (ii) Progress towards the goal is optimized by
maximizing a goal function among the set of all admissible
controls. For safety verification, we can omit step (ii)
and verify the stronger property that all choices fed into
the optimization are safe. Even if none is identified, the
previous safe curve can still be continued.

Robot and Obstacle Motion Model
This section introduces the robot and obstacle motion
models that we are using throughout the article. Table 2
summarizes the model variables and parameters of both the
robot and the obstacle for easy reference. In the following
subsections, we illustrate their meaning in detail.

Robot State and Motion
The dynamic window algorithm safely abstracts the robot’s
shape to a single point by increasing the (virtual) shapes of
all obstacles correspondingly (cf. Minguez et al. (2006) for
an approach to attribute robot shape to obstacles). We also
use this abstraction to reduce the verification complexity.
Fig. 1 illustrates how we model the position p, orientation
d, and trajectory of a robot.

The robot has state variables describing its current posi-
tion p = (p

x

, p
y

), translational velocity s � 0, translational
acceleration a, orientation vectorc d = (cos ✓, sin ✓), and
angular velocityd ✓0 = !. The translational and rotational
velocities are linked w.r.t. the rigid body planar motion by

Table 2. Parameters, state variables of robot and obstacle

2D Description

p (p
x

, p
y

) Position of the robot
s Translational speed
a Translational acceleration, s.t. �b a A
! Rotational velocity, s.t. !r = s
d (d

x

, d
y

) Orientation of the robot, s.t. kdk = 1

c (c
x

, c
y

) Curve center, s.t. d = (p� c)?

r Curve radius, s.t. r = kp� ck
o (o

x

, o
y

) Position of the obstacle
v (v

x

, v
y

) Translational velocity, including orientation,
s.t. kvk V

A Maximum acceleration A � 0

b Minimum braking b > 0

" Maximum control loop reaction delay " > 0

V Maximum obstacle velocity V � 0

⌦ Maximum rotational velocity ⌦ � 0

(c
x

, c
y

) = c

(p
x

, p
y

) = p

p̃ after time "

r = kp� ck

trajectory (length s")

d = (d
x

, d
y

)

!"

d
x

= cos ✓

sin ✓ = d
y

Figure 1. State illustration of a robot on a two-dimensional
plane. The robot has position p = (p

x

, p
y

), orientation
d = (d

x

, d
y

), and drives on circular arcs (thick arc) of radius r
with translational velocity s, rotational velocity ! and thus
angle !" around curve center points c = (c

x

, c
y

). In time " the
robot will reach a new position p̃, which is s" away from the
initial position p when measured along the robot’s trajectory
arc.

the formula r! = s, where the curve radius r = kp� ck
is the distance between the robot and the center of its
current curve c = (c

x

, c
y

). The usual modeling approach
with angle ✓ and trigonometric functions sin ✓ and cos ✓ to
determine the position along a curve, however, results in
undecidable arithmetic. Instead, we encode sine and cosine
functions in the dynamics using the extra variables d

x

=

cos ✓ and d
y

= sin ✓ by differential axiomatization Platzer
(2010b). The continuous dynamics for the dynamic window
algorithm Fox et al. (1997) can, thus, be described by the
differential equation system of ideal-world dynamics of the
planar rigid body motion:

p0 = sd, s0 = a, d0 = !d?, (r!)0 = a

where

• p0 = sd represents p0
x

= sd
x

, p0
y

= sd
y

in vectorial
notation,

• the condition d0 = !d? is vector notation for the
rotational dynamics d0

x

= �!d
y

, d0
y

= !d
x

where ?

is the orthogonal complement, and
• the condition (r!)0 = a encodes the rigid body

planar motion r! = s that we consider.

The dynamic window algorithm assumes piecewise
constant velocity s between decisions despite accelerating,
which is physically unrealistic. We, instead, control
acceleration a and do not perform instant changes of the
velocity. Our model is closer to the actual dynamics of a
robot. The realizable velocities follow from the differential
equation system according to the controlled acceleration a.

We assume bounds for the permissible acceleration a in
terms of a maximum acceleration A � 0 and braking power

cAs stated earlier, we study unidirectional motion: the robot moves along
its direction, that is the vector d gives the direction of the velocity vector.
dThe derivative with respect to time is denoted by prime (0).

Prepared using sagej.cls

8 International Journal of Robotics XX(X)

b > 0, as well as a bound ⌦ on the permissible rotational
velocity !. We use " to denote the upper bound for the
control loop time interval (e. g., sensor and actuator delays,
sampling rate, and computation time). That is, the robot
might react quickly, but it can take no longer than time "
to react. The robot would not be safe without such a time
bound, because its control might then never run. In our
model, all these bounds will be used as symbolic parameters
and not concrete numbers. Therefore, our results apply
to all values of these parameters and can be enlarged to
include uncertainty.

Obstacle State and Motion
An obstacle has (vectorial) state variables describing its
current position o = (o

x

, o
y

) and velocity v = (v
x

, v
y

).
The obstacle model is deliberately liberal to account for
many different obstacle behaviors. The only restriction
about the dynamics is that the obstacle moves continuously
with bounded velocity kvk V while the physical system
evolves for " time units. The original dynamic window
algorithm considers the special case of V = 0 (obstacles
are stationary). Depending on the relation of V to ", moving
obstacles can make quite a difference, e. g., when other fast
robots or the soccer ball meet slow communication-based
virtual sensors as in RoboCup.e

Safety Verification of Ground Robot Motion
We want to prove motion safety of a robot whose controller
tries to avoid obstacles. Starting from a simplified robot
controller, we develop increasingly more realistic models,
and discuss different safety notions. Static safety describes a
vehicle that never collides with stationary obstacles. Passive
safety Maček et al. (2009) considers a vehicle to be safe if
no collisions happen while it moves (i. e., the vehicle does
not itself collide with obstacles, so if a collision occurs at
all then while the vehicle was stopped). The intuition is that
if collisions happen while our robot is stopped, then it must
be the moving obstacle’s fault. Passive safety, however, puts
some of the burden of avoiding collisions on other objects.
We, thus, also prove the stronger passive friendly safety
Maček et al. (2009), which guarantees that our robot will
come to a stop safely under all circumstances and will leave
sufficient maneuvering room for moving obstacles to avoid
a collision.f Finally, we prove passive orientation safety,
which accounts for limited sensor coverage of the robot and
its orientation to reduce the responsibility of the robot in
structured spaces, such as on roads with lanes.

Table 3 gives an overview of the safety notions (both
formally and informally) and the assumptions made about
the robot and the obstacle in our models. We consider all
four models and safety properties to show the differences
between the required assumptions and the safety guarantees

that can be made. The verification effort and complexity
difference is quite instructive. Static safety provides a
strong guarantee with a simple safety proof, because only
the robot moves. Passive safety can be guaranteed by
proving safety of all robot choices, whereas passive friendly
safety requires additional liveness proofs for the obstacle. In
the following sections, we discuss models and verification
of the collision avoidance algorithm in detail.

For the sake of clarity, we initially make the following
simplifying assumptions to get an easier first model:

A1 in its decisions, the robot will use maximum braking
or maximum acceleration, no intermediate controls,

A2 the robot will not reverse its direction, but only drive
smooth curves in forward direction, and

A3 the robot will not keep track of the center of the circle
around which its current trajectory arc is taking it, but
chooses steering through picking a curve radius.

In Section Refined Models for Safety Verification we will
see how to remove these simplifications again.

The subsections are structured as follows: we first discuss
the rationale behind the model (see paragraphs Modeling)
and provide an intuition why the control choices in this
model are safe (see paragraphs Identification of Safe
Controls). Finally, we formally verify the correctness of
the model, i. e., use the model in a correctness theorem
and summarize the proof that the control choices indeed
guarantee the model to satisfy the safety condition (see
paragraphs Verification). Whether the model adequately
represents reality is a complementary question that we
discuss in Section Monitoring for Compliance At Runtime.

Static Safety with Maximum Acceleration
In environments with only stationary obstacles, static safety
ensures that the robot will never collide.

Modeling The prerequisite for obtaining a formal safety
result is to first formalize the system model in addition to its
desired safety property. We develop a model of the collision
avoidance algorithm as a hybrid program, and express static
safety as a safety property in dL.

As in the dynamic window algorithm, the collision
avoidance controller uses the distance to the nearest
obstacle for every possible curve to determine admissible
velocities (e. g., compute distances in a loop and pick
the obstacle with the smallest). Instead of modeling the
algorithm for searching the nearest obstacle and computing

e

http://www.robocup.org/

fThe robot ensures that there is enough room for the obstacle to stop
before a collision occurs. If the obstacle decides not to, then the obstacle
is to blame and our robot is still considered safe.

Prepared using sagej.cls

http://www.robocup.org/

Mitsch et al. 9

Table 3. Overview of safety notions, responsibilities of the robot and its assumptions about obstacles

Safety Responsibility of Robot Assumptions about Obstacles

Static
(Model 2)

Positive distance to all stationary obstacles Obstacles remain stationary and never move
kp� ok > 0 v = 0

Safety (cf. Theorem 1, feasible initial conditions �ss): �ss ! [Model 2]
�
kp� ok > 0

�

Passive
(Model 3)

Positive distance to all obstacles while driving Known maximum velocity V of obstacles
s 6= 0 ! kp� ok > 0 0 v V

Safety (cf. Theorem 2, feasible initial conditions �ps): �ps ! [Model 3]
�
s 6= 0 ! kp� ok > 0

�

Passive
Friendly
(Model 4+5)

Sufficient maneuvering space for obstacles Known maximum velocity V , minimum braking
capability b

o

, and maximum reaction time ⌧
s 6= 0 ! kp� ok > V

2

2b
o

+ ⌧V 0 v V ^ b
o

> 0 ^ ⌧ � 0

Safety (cf. Theorem 3, feasible initial conditions �pfs):
robot retains space �pfs ! [Model 4]

�
s 6= 0 ! kp� ok > V

2

2b
o

+ ⌧V
�

obstacles can avoid collision �pfs ^ s = 0 ^ kp� ok > V

2

2b
o

+ ⌧V ! hModel 5i
�
kp� ok > 0 ^ v = 0

�

Passive
Orientation
(Model 6)

Positive distance to all obstacles while driving, unless
an invisible obstacle interfered with the robot while the
robot cautiously stayed inside its observable region

Known maximum velocity V of obstacles

s 6= 0 !
�
kp� ok > 0

_ (isVisible 0 ^ |�| < �)
� 0 v V

Safety (cf. Theorem 4): �pos ! [Model 6]
⇣
s 6= 0 ! kp� ok > 0 _ (isVisible 0 ^ |�| < �)

⌘

its closest perimeter point explicitly, our model exploits
the power of nondeterminism to model this concisely.
It nondeterministically picks any obstacle o := (⇤, ⇤) and
tests its safety. Since the choice of the obstacle to
consider was nondeterministic and the model is only
safe if it is safe for all possible ways of selecting any
obstacle nondeterministically, this includes safety for the
closest perimeter point of the nearest obstacle (ties are
included) and is thus safe for all possible obstacles. Explicit
representations of multiple obstacles will be considered in
Section Arbitrary Number of Obstacles.

In the case of non-point obstacles, o denotes the obstacle
perimeter point that is closest to the robot (this fits naturally
to obstacle point clouds delivered by radar and Lidar
sensors, from which the closest point on the arc will be
chosen). In each controller run of the robot, the position
o is updated nondeterministically (to consider any obstacle
including the ones that now became closest). In this process,
the robot may or may not discover a new safe trajectory. If
it does, the robot can follow that new safe trajectory w.r.t.
any nondeterministically chosen obstacle. If not, the robot
can still brake on the previous trajectory, which was shown
to be safe in the previous control cycle for any obstacle,
including the obstacle chosen in the current control cycle.

Model 1 summarizes the robot controller, which is
parameterized with a drive action and a condition safe
identifying when it is safe to take this drive action. The

formula safe is responsible for selecting control choices that
keep the robot safe when executing control action drive.

Model 1 Parametric robot controller model

ctrl
r

(drivedrivedrive, safesafesafe) ⌘
(a :=�b) (1)

[(?(s = 0); a := 0; ! := 0) (2)
[(drivedrivedrive; ! := ⇤; ?(�⌦ ! ⌦); (3)

r := ⇤; o := (⇤, ⇤); ?(curve ^ safesafesafe)) (4)
curve ⌘ r 6= 0 ^ r! = s (5)

The robot is allowed to brake at all times since the
assignment that assigns full braking to a in (1) has no
test. If the robot is stopped (s = 0), it may choose to stay
in its current spot without turning, cf. (2). Finally, if it is
safe to accelerate, which is what formula parameter safe
determines, then the robot may choose a new safe curve in
its dynamic window. That is, it performs action drive (e.g.
maximum acceleration) and chooses any rotational velocity
in the bounds, cf. (3) and computes the corresponding
radius r according to the condition (5). This corresponds
to testing all possible rotational velocity values at the same
time and choosing some that passes condition safe. An
implementation in an imperative language would use loops
to enumerate all possible values and all obstacles and test

Prepared using sagej.cls

10 International Journal of Robotics XX(X)

each pair (s,!) separately w.r.t. every obstacle, storing the
admissible pairs in a data structure (as e. g., in Täubig et al.
(2012)).

obstacle o

stopping area
around robot p

curve center c

p� o

Figure 2. Illustration of static safety: the robot must stop
before reaching the closest obstacle on a curve (three of
infinitely many curves illustrated). Obstacles with shapes
reduce to single points by considering the perimeter point that
is closest to the robot.

The curve is determined by the robot following a circular
trajectory of radius r with angular velocity ! starting
in initial direction d, cf. (4). The trajectory starts at p
with translational velocity s and rotational velocity !,
as defined by r! = s in (5). This condition ensures that
we simultaneously pick an admissible angular velocity !
according to (Fox et al. 1997, (14)) when choosing an
admissible velocity s. Together with the orientation d of the
robot, which is tangential to the curve, this also implicitly
characterizes the rotation center c; see Fig. 2. We will
explicitly represent the rotation center in Appendix Passive
Safety for Sharp Turns for more aggressive maneuvering.
For starters, we only need to know how to steer by r.
For the sake of clarity we restrict the study to circular
trajectories with non-zero radius (r 6= 0 so that the robot
is not spinning on the spot). We do not include perfectly
straight lines in our model, but instead mimic the control
principle of a real robot that will control periodically to
adjust for actuator perturbation and drift when trying to
drive straight lines, so it suffices to approximate straight-
line driving with large curve radii (r approaches infinity).
The sign of the radius signifies if the robot follows the curve
in clockwise (r < 0) or counter-clockwise direction (r >
0). Since r 6= 0, the condition (r!)0 = a can be rewritten
as differential equation !0

=

a

r

. The distance to the nearest
obstacle on that curve is measured by o := (⇤, ⇤) in (4).

Model 2 represents the common controller-plant model:
it repeatedly executes the robot control choices followed
by dynamics, cf. (6). Recall that the arbitrary number of
repetitions is indicated by the ⇤ at the end. The continuous
dynamics of the robot from Section Robot and Obstacle
Motion Model above is defined in (8)–(10) of Model 2.

Identification of Safe Controls The most critical element
of Model 2 is the choice of the formula safess in (7) that

Model 2 Dynamic window with static safety

dwss ⌘
�
ctrl

r

(a :=A , safess); dynss
�⇤ (6)

safess ⌘ kp� ok1 >
s2

2b
+

✓
A

b
+ 1

◆✓
A

2

"2 + "s

◆
(7)

dynss ⌘ t := 0; {t0 = 1, p0 = sd, s0 = a, (8)

d0 = !d?, !0
=

a

r
(9)

& s � 0 ^ t "} (10)

we chose for parameter safe. This formula is responsible
for selecting control choices that keep the robot safe.
While its ultimate justification will be the safety proof
(Theorem 1), this section explains intuitively why we chose
the particular design in (7). Generating such conditions is
possible, see Quesel et al. (2016) for an approach how to
phrase conjectures with unknown constraints in dL and use
theorem proving to discover constraints that make a formula
provable.

A circular trajectory of radius r ensures static safety if it
allows the robot to stop before it collides with the nearest
obstacle. Consider the extreme case where the radius r =

1 is infinitely large and the robot, thus, travels on a straight
line. In this case, the distance between the robot’s current
position p and the nearest obstacle o must account for
the following components: First, the robot needs to be
able to brake from its current velocity s to a complete
stop (equivalent to (Fox et al. 1997, (14)) characterizing
admissible velocities), which takes time s

b

and requires
distance s

2

2b :

s

2

2b =

Z
s/b

0
(s� bt)dt . (11)

Second, it may take up to " time until the robot can take
the next control decision. Thus, we must take into account
the distance that the robot may travel w.r.t. the maximum
acceleration A and the distance needed for compensating
its acceleration of A during that reaction time with braking
power b (compensating for the speed increase A" takes time
A"

b

):

�
A

b

+ 1

� �
A

2 "
2
+ "s

�
=

Z
"

0
(s+At)dt

+

Z
A"/b

0
(s+A"� bt)dt .

(12)

The safety distance chosen for safess in (7) of Model 2
is the sum of the distances (11) and (12). The safety proof
will have to show that this construction was indeed safe and

Prepared using sagej.cls

Mitsch et al. 11

that it is also safe for all other curved trajectories that the
obstacle and robot could be taking in the model instead.

To simplify the proof’s arithmetic, we measure
the distance between the robot’s position p and the
obstacle’s position o in the infinity-norm kp� ok1,
i. e., either |p

x

� o
x

| or |p
y

� o
y

| must be safe. In the
illustrations, this corresponds to replacing the circles
representing reachable areas with outer squares. This over-
approximates the Euclidean norm distance kp� ok2 =p
(p

x

� o
x

)

2
+ (p

y

� o
y

)

2 by a factor of at most
p
2.

Verification With the proof calculus of dL Platzer (2008,
2012a, 2010a, 2017), we verify the safety of the control
algorithm in Model 2. The robot is safe, if it maintains
positive distance kp� ok > 0 to (nondeterministic so any)
obstacle o (see Table 3), i. e., it always satisfies:

 ss ⌘ kp� ok > 0 . (13)

In order to guarantee ss always holds, the robot must
stay at a safe distance, which still allows the robot to
brake to a complete stop before hitting any obstacle.
The following condition captures this requirement as an
invariant 'ss that we prove to hold for all executions of the
loop in (6):

'ss ⌘ kp� ok >
s2

2b
. (14)

Formula (14) says that the robot and the obstacle are safely
apart. In this case, the safe distance in the loop invariant
coincides with (11), which describes the stopping distance.

We prove that the property (13) holds for all executions
of Model 2 (so also all obstacles) under the assumption
that we start in a state satisfying the symbolic parameter
assumptions (A � 0, V � 0, ⌦ � 0, b > 0, and " > 0) as
well as the following initial conditions:

�ss ⌘ s = 0 ^ kp� ok > 0 ^ r 6= 0 ^ kdk = 1 . (15)

The first two conditions of the conjunction formalize that
the robot is stopped at a safe distance initially. The third
conjunct states that the robot is not spinning initially. The
last conjunct kdk = 1 says that the direction d is a unit
vector. Any other formula �ss implying invariant 'ss is a
safe starting condition as well (e. g., driving with sufficient
space, so invariant 'ss itself).

Theorem 1. Static safety. Robots following Model 2
never collide with stationary obstacles as expressed by the
provable dL formula �ss ! [dwss] ss .

Proof. We proved Theorem 1 for circular trajectories in
KeYmaera X. The proof uses the invariant 'ss (14)
for handling the loop. It uses differential cuts with
differential invariants (16)–(20)—an induction principle for
differential equations Platzer (2012c)—to prove properties
about dyn without requiring symbolic solutions.

t � 0 (16)
kdk = 1 (17)

s = old(s) + at (18)

�t
⇣
s� a

2

t
⌘
 p

x

� old(p
x

) t
⇣
s� a

2

t
⌘

(19)

�t
⇣
s� a

2

t
⌘
 p

y

� old(p
y

) t
⇣
s� a

2

t
⌘

(20)

The differential invariants capture that time progresses
(16), that the orientation stays a unit vector (17), that the
new speed s is determined by the previous speed old(s)
and the acceleration a (18) for time t, and that the robot
does not leave the bounding square of half side length
t(s� a

2 t) around its previous position old(p) (19)–(20).
The function old(·) is shorthand notation for an auxiliary
or ghost variable that is initialized to the value of · before
the ODE.

Passive Safety with Maximum Acceleration
In the presence of moving obstacles, collision freedom gets
significantly more involved, because, even if our robot is
doing the best it can, other obstacles could still actively try
to crash into it. Passive safety, thus, considers the robot safe
if no collisions can happen while it is driving. The robot,
thus, needs to be able to come to a full stop before making
contact with any obstacle, see Fig. 3.

obstacle reach area
until robot stopped

obstacle o

stopping area robot p

curve
center c

Figure 3. Illustration of passive safety: the area reachable by
the robot until it can stop must not overlap with the area
reachable by the obstacle during that time.

Intuitively, when every moving robot and obstacle
follows passive safety then there will be no collisions.
Otherwise, if careless or malicious obstacles are moving
in the environment, passive safety ensures that at least our
own robot is stopped so that collision impact is kept small.
In this section, we will develop a robot controller that
provably ensures passive safety. We remove the restriction
that obstacles cannot move, but the robot and the obstacle
will decide on their next maneuver at the same time and they
are still subject to the simplifying assumptions A1–A3.

Modeling We refine the collision avoidance controller
and model to include moving obstacles, and state its passive

Prepared using sagej.cls

12 International Journal of Robotics XX(X)

Model 3 Dynamic window with passive safety

dwps ⌘ (ctrlo; ctrlr(a :=A , safeps); dynps)
⇤ (21)

ctrloctrloctrlo ⌘ v := (⇤, ⇤); ?kvk V⌘ v := (⇤, ⇤); ?kvk V⌘ v := (⇤, ⇤); ?kvk V (22)

safeps ⌘ kp� ok1 >
s2

2b
+ V

s

b
V
s

b
V
s

b
+

✓
A

b
+ 1

◆✓
A

2

"2 + "(s+V+V
+V)

◆
(23)

dynps ⌘ t := 0; {t0 = 1, p0
o

= vp0
o

= vp0
o

= v, p0
r

= sd, v0
r

= a, d0
r

= !d?, !0
r

=

a

r
& s � 0 ^ t "} (24)

safety property in dL. In the presence of moving obstacles
all obstacles must be considered and tested for safety.
The main intuition here is that all obstacles will respect a
maximum velocity V , so the robot is safe when it is safe for
the worst-case behavior of the nearest obstacle. Our model
again exploits the power of nondeterminism to model this
concisely by picking any obstacle o := (⇤, ⇤) and testing its
safety. In each controller run of the robot, the position o is
updated nondeterministically (which includes the ones that
are now closest because the robot and obstacles moved).
If the robot finds a new safe trajectory, then it will follow
it (the velocity bound V ensures that all obstacles will
stay more distant than the worst-case of the nearest one
chosen nondeterministically). Otherwise, the robot will stop
on the current trajectory, which was tested to be safe in the
previous controller decision.

Model 3 follows a setup similar to Model 2. The
continuous dynamics of the robot and the obstacle as
presented in Section Robot and Obstacle Motion Model
above are defined in (24) of Model 3.

The control of the robot is executed after the control of
the obstacle, cf. (21). Both robot and obstacle only write
to variables that are read in the dynamics, but not in the
controller of the respective other agent. Therefore, we could
swap the controllers to ctrl

r

; ctrl
o

, or use a nondeterministic
choice of (ctrl

o

; ctrl
r

) [(ctrl
r

; ctrl
o

) to model independent
parallel execution Müller et al. (2016). Fixing one specific
ordering ctrl

o

; ctrl
r

reduces proof effort, because it avoids
branching the proof into all the different possible execution
orders (which in this case differ only in their intermediate
computations but have the same effect on motion).

The obstacle may choose any velocity in any direction
up to the maximum velocity V assumed about obstacles
(kvk V), cf. (22). This uses the modeling pattern
from Section Preliminaries: Differential Dynamic Logic.
We assign an arbitrary (two-dimensional) value to the
obstacle’s velocity (v := (⇤, ⇤)), which is then restricted
by the maximum velocity with a subsequent test (?kvk
V). Overall, (22) allows obstacles to choose an arbitrary
velocity in any direction, but at most of speed V . Analyzing
worst-case situations with a powerful obstacle that supports

sudden direction and velocity changes is beneficial, since
it keeps the model simple while it simultaneously allows
KeYmaera X to look for unusual corner cases.

The robot follows the same control as in Model 2
but includes differential equations for the obstacle. The
main difference to Model 2 is the safe condition (23),
which now has to account for the fact that obstacles may
move according to (24) while the robot tries to avoid
collision. The difference of Model 3 compared to Model 2
is highlighted in boldface.

Identification of Safe Controls The most critical element
is again the formula safeps that control choices need to
satisfy in order to always keep the robot safe. We extend
the intuitive explanation from static safety to account for
the additional obstacle terms in (23), again considering the
extreme case where the radius r = 1 is infinitely large
and the robot, thus, travels on a straight line. The robot
must account for the additional impact over the static safety
margin (12) from the motion of the obstacle. During the
stopping time ("+ s+A"

b

) entailed by (11) and (12), the
obstacle might approach the robot, e. g., on a straight line
with maximum velocity V to the point of collision:

V

✓
"+

s+A"

b

◆
= V

✓
s

b
+

✓
A

b
+ 1

◆
"

◆
. (25)

The safety distance chosen for safeps in (23) of Model 3
is the sum of the distances (11), (12), and (25). The safety
proof will have to show that this construction was safe and
that it is also safe for all other curved trajectories that the
obstacle and robot could be taking instead.

Verification The robot in Model 3 is safe, if it maintains
positive distance kp� ok > 0 to the obstacle while the
robot is driving (see Table 3):

 ps ⌘ s 6= 0 ! (kp� ok > 0) . (26)

In order to guarantee ps, the robot must stay at a safe
distance, which still allows the robot to brake to a complete
stop before the approaching obstacle reaches the robot.
The following condition captures this requirement as an

Prepared using sagej.cls

Mitsch et al. 13

invariant 'ps that we prove to hold for all loop executions:

'ps ⌘ s 6= 0 !
✓
kp� ok >

s2

2b
+ V

s

b

◆
. (27)

Formula (27) says that, while the robot is driving, the
positions of the robot and the obstacle are safely apart.
This accounts for the robot’s braking distance s

2

2b while the
obstacle is allowed to approach the robot with its maximum
velocity V in time s

b

. We prove that formula (26) holds for
all executions of Model 3 when started in a non-collision
state as for static safety, i. e., �ps ⌘ �ss (15).

Theorem 2. Passive safety. Robots following Model 3 will
never collide with static or moving obstacles while driving,
as expressed by the provable dL formula �ps ! [dwps] ps .

Proof. The KeYmaera X proof uses invariant 'ps (27). It
extends the differential invariants (16)–(20) for static safety
with invariants (28)–(29) about obstacle motion. Similar to
the robot, the obstacle does not leave its bounding square of
half side length tV around its previous position old(o).

�tV o
x

� old(o
x

) tV (28)
�tV o

y

� old(o
y

) tV (29)

Passive Friendly Safety of Obstacle Avoidance
In this section, we explore the stronger requirements of
passive friendly safety, where the robot not only stops
safely itself, but also allows for the obstacle to stop before
a collision occurs. Passive friendly safety requires the
robot to take careful decisions that respect the dynamic
capabilities of moving obstacles. The intuition behind
passive friendly safety is that our own robot should
retain enough space for other obstacles to stop. Unlike
passive safety, passive friendly safety ensures that there
will not be collisions, as long as every obstacle makes a
corresponding effort to avoid collision when it sees the
robot, even when some obstacles approach intersections
carelessly and turn around corners without looking. The
definition of Maček et al. (2009) requires that the robot
respects the worst-case braking time of the obstacle, which
depends on its velocity and control capabilities. In our
model, the worst-case braking time is a consequence of
the following assumptions. We assume an upper bound ⌧
on the obstacle’s reaction time and a lower bound b

o

on
its braking capabilities. Then, ⌧V is the maximal distance
that the obstacle can travel before beginning to react and
V

2

2b
o

is the maximal distance for the obstacle to stop from
the maximal velocity V with an assumed minimum braking
capability b

o

.

Modeling Model 4 uses the same basic obstacle avoid-
ance algorithm as Model 3. The difference is reflected in
what the robot considers to be a safe distance to an obstacle.
As shown in (31) the safe distance not only accounts for
the robot’s own braking distance, but also for the braking
distance V

2

2b
o

and reaction time ⌧ of the obstacle. The
verification of passive friendly safety is more complicated
than passive safety as it accounts for the behavior of the
obstacle discussed below.

Model 4 Dynamic window with passive friendly safety

dwpfs ⌘
�
ctrl

o

; ctrl
r

(a :=A , safepfs); dynps
�⇤ (30)

safepfs ⌘ kp� ok1 >
s2

2b
+ V

s

b
+

V 2

2b
o

+ ⌧V
V 2

2b
o

+ ⌧V
V 2

2b
o

+ ⌧V

+

✓
A

b
+ 1

◆✓
A

2

"2 + "(s+ V)

◆ (31)

In Model 4 the obstacle controller ctrl
o

is a coarse model
given by equation (22) from Model 3, which only constrains
its non-negative velocity to be less than or equal to V . Such
a liberal obstacle model is useful for analyzing the robot,
since it requires the robot to be safe even in the presence
of rather sudden obstacle behavior (e. g., be safe even if
driving behind an obstacle that stops instantaneously or
changes direction radically). However, now that obstacles
must avoid collision once the robot is stopped, such
instantaneous behavior becomes too powerful. An obstacle
that can stop or change direction instantaneously can
trivially avoid collision, which would not tell us much
about real vehicles that have to brake before coming to a
stop. Here, instead, we consider a more interesting refined
obstacle behavior with braking modeled similar to the
robot’s braking behavior by the hybrid program obstacle
given in Model 5.

Model 5 Refined obstacle with acceleration control

obstacle ⌘ (ctrl
õ

; dyn
õ

)

⇤ (32)
ctrl

õ

⌘ a
o

:= ⇤; ?v + a
o

⌧ V (33)

dyn
õ

⌘ t := 0; {t0 = 1, o0 = vd
o

, v0 = a
o

& t ⌧ ^ v � 0}
(34)

The refined obstacle may choose any acceleration a
o

,
as long as it does not exceed the velocity bound V
(33). In order to ensure that the robot does not force
the obstacle to avoid collision by steering (e. g., other
cars at an intersection should not be forced to change
lanes), we keep the obstacle’s direction unit vector d

o

Prepared using sagej.cls

14 International Journal of Robotics XX(X)

constant. The dynamics of the obstacle are straight ideal-
world translational motion in the two-dimensional plane
with reaction time ⌧ , see (34).

Verification We verify the safety of the robot’s control
choices as modeled in Model 4. Unlike the passive safety
case, the passive friendly safety property �pfs should
guarantee that if the robot stops, moving obstacles (cf.
Model 5) still have enough time and space to avoid a
collision. The conditions v =

q
v2
x

+ v2
y

^ d
ox

v = v
x

^
d
oy

v = v
y

link the combined velocity and direction vector
(v

x

, v
y

) of the abstract obstacle model from the robot
safety argument to the velocity scalar v and direction
unit vector (d

ox

, d
oy

) of the refined obstacle model in the
liveness argument. This requirement can be captured by the
following dL formula:

⌘pfs ⌘
�
⌘obs ^ 0 v ^ v =

q
v2
x

+ v2
y

^

vd
ox

= v
x

^ vd
oy

= v
y

�
!

hobstaclei (kp� ok > 0 ^ v = 0)

(35)

where the property ⌘obs accounts for the stopping distance
of the obstacle:

⌘obs ⌘ kp� ok >
V 2

2b
o

+ ⌧V .

Formula (35) says that there exists an execution of the
hybrid program obstacle, (existence of a run is formalized
by the diamond operator hobstaclei in dL), that allows
the obstacle to stop (v = 0) without having collided (kp�
ok > 0). Passive friendly safety pfs is now stated as

 pfs ⌘ (s 6= 0 ! ⌘obs) ^ ⌘pfs .

We study passive friendly safety with respect to initial states
satisfying the following property:

�pfs ⌘ ⌘
obs

^ r 6= 0 ^ kdk = 1 . (36)

Observe that, in addition to the condition ⌘pfs, the difference
to passive safety is reflected in the special treatment of the
case s = 0. Even if the robot starts with speed s = 0 (which
is passively safe), ⌘obs must be satisfied to prove passive
friendly safety, since otherwise the obstacle may initially
start out too close and thus unable to avoid collision.
Likewise, we are required to prove ⌘pfs as part of pfs to
guarantee that obstacles can avoid collision after the robot
came to a full stop.

Theorem 3. Passive friendly safety. Robots following
Model 4 will never collide while driving and will retain
sufficient safety distance for others to avoid collision, as
expressed by the provable dL formula �pfs ! [dwpfs] pfs .

Proof. The proof in KeYmaera X splits into a safety
argument for the robot and a liveness argument for the
obstacle. The loop and differential invariants in the robot
safety proof are similar in spirit to passive safety, but
account for the additional obstacle reaction time and
stopping distance V

2

2b
o

+ ⌧V . The obstacle liveness proof
bases on loop convergence, i. e., it uses conditions that
describe how much progress the loop body of the hybrid
program obstacle can make towards stopping. Intuitively,
the obstacle has made sufficient progress if either it is
stopped already or can stop by braking n times:

v � n⌧b
o

 0 _ v = 0 .

Additionally, the convergence conditions include the
familiar bounds on the parameters (kd

o

k = 1, b
o

> 0, ⌧ >
0, and 0 v V) and the remaining stopping distance
kp� ok > v

2

2b
o

.

The symbolic bounds on velocity, acceleration, braking,
and time in the above models represent uncertainty
implicitly (e. g., the braking power b can be instantiated
with the minimum specification of the robot’s brakes, or
with the actual braking power achievable w.r.t. the current
terrain). Whenever knowledge about the current state is
available, the bounds can be instantiated more aggressively
to allow efficient robot behavior. For example, in a rare
worst case we may face a particularly fast obstacle, but
right now there are only slow-moving obstacles around. Or
the worst case reaction time " may be slow when difficult
obstacle shapes are computed, but is presently quick as
circular obstacles suffice to find a path. Theorems 1–3 are
verified for all those values. Section Arbitrary Number of
Obstacles illustrates how to explicitly model different kinds
of obstacles simultaneously in a single model. Other aspects
of uncertainty need explicit changes in the models and
proofs, as discussed in subsequent sections.

Passive Orientation Safety
So far, we did not consider orientation as part of the
safety specification. The notion of passive safety requires
the robot to stop to avoid imminent collision, which can
be inefficient or even impossible when sensor coverage is
not exhaustive. For example, if an obstacle is close behind
the robot (cf. Fig. 4), the robot would have to stop to
obey passive safety. This may be the right behavior in an
unstructured environment like walking pedestrians but is
not helpful when driving on the lanes of a road. With a
more liberal safety notion, the robot could choose a new
curve that leads away from the obstacle.

We introduce passive orientation safety that only requires
the robot to remain safe with respect to the obstacles in its
orientation of responsibility. Overall system safety depends
on the sensor coverage of the robot and the obstacles. For

Prepared using sagej.cls

Mitsch et al. 15

obstacle area

obstacle o

area reachable
by robot

robot p

curve center c

Figure 4. When ignoring orientation, passive safety requires
the robot to stop when the robot’s reachable area and the
trajectory overlap with the obstacle area, even when moving
away would increase the safety distance.

example, if two robots drive side-by-side with only very
narrow sensor coverage to the front, they might collide
when their paths cross. Even with limited sensor coverage,
if both robots can observe some separation markers in
space (e. g., lane markers) that keeps their paths separated,
then passive orientation safety ensures that there will not
be collisions. Likewise, passive orientation safety ensures
that there will be no collisions when every robot and
obstacle covers 180� in its orientation of responsibility, i. e.,
everyone is responsible for obstacles ahead, but not for
those behind.

This notion of safety is suitable for structured spaces
where obstacles can easily determine the trajectory and
observable region of the robot (e. g., lanes on streets). The
robot is responsible for collisions inside its observable area
(“field of vision”, cf. Fig. 5) and has to ensure that it can
stop if needed before leaving the observable region, because
it could otherwise cause collisions when moving into the
blind spot just outside its observable area.

The robot does not make guarantees for obstacles that
it cannot see. If an obstacle starts outside the observable
region and subsequently hits the robot, then it is considered
the fault of the obstacle. If the robot guarantees passive
orientation safety and every obstacle outside the observable
region guarantees that it will not interfere with the robot, a
collision between the robot and an obstacle never happens
while the robot is moving. In fact, collisions can be avoided
when obstacles do not cross the trajectory of the robot.
Any obstacles inside the observable region can drive with
passive safety restrictions (i. e., guarantee not to exceed a
maximum velocity) because the robot will brake or choose
a new curve to avoid collisions. Obstacles that start outside
the observable region can rely on the robot to only enter
places it can see (i. e. the robot will be able to stop before
it drives to places that it did not see when evaluating the
safety of a curve).

invisible
obstacle
behind

invisible
obstacle ahead

visible
obstacle
ahead

area reachable by robot

robot p

Figure 5. Passive orientation safety: The area observable by
the robot (circular sector centered at robot): the distance to all
visible obstacles must be safe. The robot must also ensure
that it can stop inside its current observable area, since an
obstacle might sit just outside the observable area. Obstacles
outside the visible area are responsible for avoiding collision
with the robot until they become visible, i. e., obstacles are
assumed to not blindside the robot.

Modeling To express that an obstacle was invisible to the
robot when it chose a new curve, in Model 6 we introduce a
variable Visible with Visible > 0 indicating that an obstacle
was visible to the robot when it chose a new curve. The
observable region is aligned with the orientation of the
robot and extends symmetrically to the left and right of the
orientation vector d by a constant design parameter � that
captures the angular width of the field of vision. The robot
can see everything within angle �

2 to its left or right. With
these, passive orientation safety can be expressed as:

 pos ⌘ s 6= 0 ! kp� ok > 0 _ (Visible 0 ^ |�| < �)

This means that, when the robot is driving (s 6= 0),
every obstacle is either sufficiently far away or it came
from outside the observable region (so Visible 0) while
the robot stayed inside |�| < �. For determining whether
or not the robot stayed inside the observable region, we
compare the robot’s angular progress � along the curve
with the angular width � of the observable region, see
Fig. 6 for details. The angular progress � is reset to zero
when the robot chooses a new curve in (37) and evolves
according to �0

= ! when the robot moves (40). Thus, �
always holds the value of the angle on the current curve
between the current position of the robot and its position
when it chose the curve. Passive safety is a special case
of passive orientation safety for � = 1. The model does
not take advantage of the fact that 360� already subsumes
unrestricted visibility. Passive orientation safety restricts
admissible curves to those where the robot can stop before
|�| > �.

The new robot controller now only takes obstacles in its
observable region into account (modeled by variable Visible

Prepared using sagej.cls

16 International Journal of Robotics XX(X)

Model 6 Passive orientation safety

dwpos ⌘
�
ctrl

o

; ctrl
r

(a :=A;� := 0;Visible := ⇤� := 0;Visible := ⇤� := 0;Visible := ⇤ , safepos ^ cdacdacda); dynpos
�⇤ (37)

safepos ⌘Visible > 0 !Visible > 0 !Visible > 0 ! kp� ok1 >
s2

2b
+ V

s

b
+

✓
A

b
+ 1

◆✓
A

2

"2 + "(s+ V)

◆
(38)

cdacdacda ⌘ �|r| > s2

2b
+

✓
A

b
+ 1

◆✓
A

2

"2 + "s

◆
⌘ �|r| > s2

2b
+

✓
A

b
+ 1

◆✓
A

2

"2 + "s

◆
⌘ �|r| > s2

2b
+

✓
A

b
+ 1

◆✓
A

2

"2 + "s

◆
(39)

dynpos ⌘ t := 0; {p0
r

= sd, d0
r

= !d?, v0
r

= a, �0
= !�0
= !�0
= !, !0

r

=

a

r
, p0

o

= v, t0 = 1 & s � 0 ^ t "} (40)

to distinguish between obstacles that the sensors can see and
those that are invisible) when computing the safety of a new
curve in safepos (38). In an implementation of the model,
Visible is naturally represented since sensors only deliver
distances to visible obstacles anyway. It chooses curves
such that it can stop before leaving the observable region,
i. e., it ensures a clear distance ahead (cda): such a curve is
characterized by the braking distance of the robot being less
than �|r|, which is the length of the arc between the starting
position when choosing the curve and the position where
the robot would leave the observable region, cf. Fig. 6. In
the robot’s drive action (37) for selecting a new curve, the
angular progress � along the curve is reset and the status
of the obstacle (i. e. whether or not it is visible) is stored in
variable Visible so that the visibility state is available when
checking the safety property.

Verification Passive orientation safety (Theorem 4) is
proved in KeYmaera X.

Theorem 4. Passive orientation safety. Robots following
Model 6 will never collide with the obstacles in sight while

observable area

curve exit

�

�

robot p

�

2

d

curve center c

Figure 6. Determining the point where the curve exits the
observable region of angular width � by keeping track of the
angular progress � along the curve: = 90

� � �

2 because �
extends equally to both sides of the orientation d, which is
perpendicular to the line from the robot to c (because d is
tangential to the curve). � = because the triangle is
isosceles. Thus, � = 180

� � � � = � at exactly the moment
when the robot would leave the observable region.

driving, and will never drive into unobservable areas, as
expressed by the provable dL formula �pos ! [dwpos] pos .

Proof. The proof in KeYmaera X extends the loop
invariant conditions for passive safety so that the robot
not only maintains the familiar stopping distance s

2

2b to all
obstacles, but also to the border of the visible region in case
the nearest obstacle is invisible:

s > 0 ! kp� ok1 >
s2

2b

_ Visible 0 ^ |r�|� |r�| > s2

2b
.

Here, we characterize the angular progress � with the
differential invariant � = old(�) + 1

r

�
old(s)t+ a

2 t
2
�
, in

addition to the differential invariants for passive safety used
in the proof of Theorem 2.

Refined Models for Safety Verification
The models used for safety verification so far made simpli-
fying assumptions to focus on the basics of different safety
notions. In this section, we discuss how to create more
realistic models with different accelerations, measurement
uncertainty, actuator disturbance, asynchronous control of
obstacle and robot, and explicit representation of arbitrary
many obstacles. We introduce the model extensions for
passive safety (Model 3) as an example. The extensions
apply to static safety and passive friendly safety in a similar
fashion by adapting safess and safepfs; passive orientation
safety needs to account for the changes both in the transla-
tional safety margin safepos and the angular progress cda.

Passive Safety with Actual Acceleration
Model 3 uses the robot’s maximum acceleration A in its
safety requirement (23) when it determines whether or not a
new curve will be safe. This condition is conservative, since
the robot of Model 3 can only decide between maximum
acceleration (a :=A) or maximum braking (a :=�b from
Model 1). If (23) does not hold (which is independent from
the chosen curve, i. e. the radius r), then Model 3 forces a

Prepared using sagej.cls

Mitsch et al. 17

driving robot to brake with maximum deceleration �b, even
if it might be sufficiently safe to coast or slightly brake or
just not accelerate in full. As a result, Model 3 is passively
safe but lacks efficiency in that it may take the robot longer
to reach a goal because it can only decide between extreme
choices. Besides efficiency concerns, extreme choices are
undesirable for comfort reasons (e. g., decelerating a car
with full braking power should be reserved for emergency
cases).

obstacle area
obstacle o

unsafe accelerations A

maximum braking �b

safe accelerations

robot p

curve
center c

Figure 7. Passive safety with actual acceleration: the actual
acceleration choice �b a A must not take the robot into
the area reachable by the obstacle. Dotted circle around robot
position p: earliest possible stop with maximum braking �b;
solid blue area between dotted circle and dashed area: safe a;
dashed area: reachable with unsafe accelerations.

Fig. 7 illustrates how safety constraint (23) represents
the maximally conservative choice: it forces the robot to
brake (the outermost circle around the robot p intersects
with the obstacle), even though many points reachable with
�b a < A would have been perfectly safe (solid blue
area does not intersect with the obstacle).

Modeling Model 7 refines Model 3 to work with the
actual acceleration, i. e., in the acceleration choice (41) the
robot picks any arbitrary acceleration a within the physical
limits �b a A instead of just maximum acceleration.

Model 7 Passive safety with actual acceleration

dwpsa ⌘
�
ctrl

o

; ctrl
r

(a := ⇤; ?� b a A?� b a A
?� b a A ,a := ⇤; ?� b a A?� b a A
?� b a A ,a := ⇤; ?� b a A?� b a A
?� b a A ,

safepsa); dynps
�⇤ (41)

safepsa ⌘ kp� ok1 >

(
dist� if s+ a" � 0

dist
<

otherwise

(
dist� if s+ a" � 0

dist
<

otherwise

(
dist� if s+ a" � 0

dist
<

otherwise
(42)

This change requires us to adapt the control condition
(42) that keeps the robot safe. We first give the intuition
behind condition (42), then justify its correctness with a
safety proof.

Identification of Safe Constraints Following Loos et al.
(2013b) we relax constraint (23) so that the robot can

choose any acceleration �b a A and checks this actual
acceleration a for safety. That way, it only has to fall back to
the emergency braking branch a :=�b if there is no other
safe choice available. We distinguish two cases:

• s+ a" � 0: the acceleration choice �b a A
always keeps a nonnegative velocity during the full
cycle duration ".

• s+ a" < 0: the acceleration choice �b a < 0

cannot be followed for the full duration " without
stopping the evolution to prevent a negative velocity.

In the first case, we continue to use formula (23) with actual
a substituted for A to compute the safety distance:

dist� =

s2

2b
+ V

s

b
+

⇣a
b
+ 1

⌘⇣a
2

"2 + "(s+ V)

⌘

(43)
In the second case, distance (43) is unsafe, because the

terminal velocity when following a for " time is negative
(unlike in case 1). Thus, the robot may have collided at a
time before ", while the term in (43) only indicates that it
will no longer be in a collision state at time " after having
moved backwards. Consider the time t

b

when the robot’s
velocity becomes zero (s+ at

b

= 0) so that its motion stops
(braking does not make the robot move backwards but
merely stop). Hence, t

b

= � s

a

since case 1 covers a = 0.
Within duration t

b

the robot will drive a total distance of
dist

r

= � s

2

2a =

R
t

b

0 s+ at dt. The obstacle may drive up to
dist

o

= V t
b

until the robot is stopped. Thus, we compute
the distance using (44) to account for the worst case that
both robot and obstacle drive directly towards each other
(note that �b a < 0).

dist
<

= � s2

2a
� V

s

a
(44)

Verification We verify the safety of the actual acceler-
ation control algorithm as modeled in Model 7 in KeY-
maera X.

Theorem 5. Passive safety with actual acceleration.
Robots following Model 7 to base their safety margins
on the current acceleration choice instead of worst-case
acceleration will never collide while driving, as expressed
by the provable dL formula �ps ! [dwpsa] ps .

Even though the safety constraint safepsa now considers
the actual acceleration instead of the maximum possible
acceleration when estimating the required safety margin,
it can still be conservative when the robot makes sharp
turns. During sharp turns, the straight-line distance from the
origin is shorter than the distance along the circle, which
can be exploited when computing the safety margin. This
extension is in Appendix Passive Safety for Sharp Turns.

Prepared using sagej.cls

18 International Journal of Robotics XX(X)

Passive Safety Despite Uncertainty
Robots have to deal with uncertainty in almost every
aspect of their interaction with the environment, ranging
from sensor inputs (e. g., inaccurate localization, distance
measurement) to actuator effects (e. g., uncertain wheel
slip depending on the terrain). In this section, we show
how the three most important classes of uncertainty can
be handled explicitly in the models. First, we allow
localization uncertainty, so that the robot knows its
position only approximately, which has a considerable
impact on uncertainty over time. We then consider
imperfect actuator commands, which means that the
effective physical braking and acceleration will differ
from the controller’s desired output. Finally, we allow
velocity uncertainty, so the robot knows its velocity only
approximately, which also has an impact over time. We
use nondeterministic models of uncertainty as intervals
around the real position, acceleration, and velocity, without
any probabilistic assumptions about their distribution.g
Such intervals are instantiated, e. g., according to sensor
or actuator specification (e. g., GPS error), or w.r.t.
experimental measurements.h

Location Uncertainty Model 8 introduces location uncer-
tainty. It adds a location measurement p̂ before the control
decisions are made such that the controller only bases
its decisions on the most recent location measurement p̂,
which can deviate from the true location p. This location
measurement may deviate from the real position p by no
more than the symbolic parameter �

p

� 0, cf. (46). The
measured location p̂ is used in all control decisions of the
robot (e. g., in (47) to compute whether or not it is safe to
change the curve). The robot’s physical motion still follows
the real position p even if the controller does not know it.

Model 8 Passive safety despite location uncertainty,
extends Model 3

dwpslu ⌘
�
locatelocatelocate; ctrl

o

;

ctrl
r

(a :=A , safepslu); dynps
�⇤ (45)

locatelocatelocate ⌘ p̂ := (⇤, ⇤); ?kp̂� pk �

p

⌘ p̂ := (⇤, ⇤); ?kp̂� pk �

p

⌘ p̂ := (⇤, ⇤); ?kp̂� pk �

p

(46)

safepslu ⌘ kp̂p̂̂p� ok1 >
s2

2b
+ V

s

b
+�

p

�

p

�

p

+

✓
A

b
+ 1

◆✓
A

2

"2 + "(s+ V)

◆ (47)

Theorem 6. Passive safety despite location uncertainty.
Robots computing their safety margins from location
measurements with maximum uncertainty �

p

by Model 8
will never collide while driving, as expressed by the
provable dL formula �ps ^�

p

� 0 ! [dwpslu] ps .

Uncertainty about the obstacle’s position is already
included in the nondeterministic behavior of previous
models by increasing the shapes according to uncertainty.

Actuator Perturbation Model 9 introduces actuator pertur-
bation between control and dynamics, cf. (48). Actuator
perturbation affects the acceleration by a damping factor
�
a

, known to be at most a maximum damping �

a

, i. e., �
a

2
[�

a

, 1], cf. (49). Note that the damping factor �
a

can change
arbitrarily often, but is assumed to be constant during
the continuous evolution that takes a maximum of " time
units. The perturbation may cause the robot to now have
full acceleration (�

a

= 1) but later fully reduced braking
(�

a

= �

a

). This combination results in the largest possible
stopping distance (for a certain speed s). For instance, the
robot accelerates on perfect terrain, but is unlucky enough
to be on slippery terrain again when it needs to brake. The
robot considers this worst-case scenario during control in
its safety constraint (50).

Model 9 Passive safety despite actuator perturbation,
extends Model 3

dwpsap ⌘
�
ctrl

o

; ctrl
r

(a :=A , safepsap);

actactact; dynps
�⇤ (48)

actactact ⌘ �
a

:= ⇤; ?(0 < �

a

 �
a

 1); ã := �
a

a⌘ �
a

:= ⇤; ?(0 < �

a

 �
a

 1); ã := �
a

a⌘ �
a

:= ⇤; ?(0 < �

a

 �
a

 1); ã := �
a

a (49)

safepsap ⌘ kp� ok1 >
s2

2b�
a

�

a

�

a

+ V
s

b�
a

�

a

�

a

+

✓
A

b�
a

�

a

�

a

+ 1

◆✓
A

2

"2 + "(s+ V)

◆ (50)

dynps of Model 3 with a replaced by disturbed ãã̃a

Theorem 7. Passive safety despite actuator perturbation.
Robots with inaccurate actuation being subject to maximum
disturbance �

a

according to Model 9 will never collide
while driving, as expressed by the provable dL formula

�ps ^�

a

> 0 ! [dwpsap] ps .

Velocity Uncertainty Model 10 introduces velocity uncer-
tainty. To account for the uncertainty, at the beginning of
its control phase the robot reads off a (possibly inexact)
measurement ŝ of its speed s. It knows that the measured
speed ŝ deviates by at most a measurement error �

s

from

gOther error models are supported, as long as they are clipped to
guaranteed intervals, because in the safety proof we have to analyze all
measured values, regardless of their probability. For an advanced analysis
technique considering probabilities, see stochastic dL Platzer (2011a).
hInstantiation with probabilistic bounds means that the symbolically
guaranteed safety is traded for a probability of safety.

Prepared using sagej.cls

Mitsch et al. 19

Model 10 Passive safety despite velocity uncertainty,
extends Model 3

dwpsvu ⌘
�
sensesensesense; ctrl

o

; ctrl
r

(a :=A , safepsvu); dynps
�⇤

(51)

sensesensesense ⌘ ŝ := ⇤; ?(ŝ � 0 ^ s��

s

 ŝ s+�

s

)

⌘ ŝ := ⇤; ?(ŝ � 0 ^ s��

s

 ŝ s+�

s

)⌘ ŝ := ⇤; ?(ŝ � 0 ^ s��

s

 ŝ s+�

s

)

(52)

safepsvu ⌘ kp� ok1 >
(ŝ+�

s

ŝ+�

s

ŝ+�

s

)

2

2b
+ V

ŝ+�

s

ŝ+�

s

ŝ+�

s

b
(53)

+

✓
A

b
+ 1

◆✓
A

2

"2 + "(ŝ+�

s

ŝ+�

s

ŝ+�

s

+ V)

◆

the actual speed s, see (52). Also, the robot knows that its
speed is non-negative. Thus, we can assume that ŝ is always
equal to or greater than zero by transforming negative
measurements. In order to stay safe, the controller has to
make sure that the robot stays safe even if its true speed is
maximally larger than the measurement, i. e. s = ŝ+�

s

.
The idea is now that the controller makes all control choices
with respect to the maximal speed ŝ+�

s

instead of the
actual speed s. The continuous evolution, in contrast, still
uses the actual speed s, because the robot’s physics will not
be confused by a sensor measurement error.

Since we used the maximal possible speed when
considering the safety of new curves in the controller we
can prove that the robot will still be safe. A modeling
subtlety arises when using ŝ instead of s in the second
branch (52) of ctrlr: Because of the velocity uncertainty
we no longer know if s is zero (i. e. the robot is stopped).
However, the branch for stopped situations models discrete
physics rather than a conscious robot decision (even if a
real robot controller chooses to hit the brakes, as soon as
the robot is stopped physics turns this decision into a = 0),
so we still use the test ?(s = 0) instead of ?(ŝ = 0).

Theorem 8. Passive safety despite velocity uncertainty.
Robots computing their safety margins from velocity
measurements with maximum uncertainty �

v

according to
Model 10 will never collide while driving, as expressed by
the provable dL formula �ps ^�

v

� 0 ! [dwpsvu] ps .

Asynchronous Control of Obstacle and Robot
In the models so far, the controllers of the robot and the
obstacle were executed synchronously, i. e., the robot and
the obstacle made their control decisions at the same time.
While the obstacle could always choose its previous control
choices again if it does not want to act, the previous models
only allowed the obstacle to decide when the robot made a
control decision, too.i This does not reflect reality perfectly,
since we want liberal obstacle models without assumptions

about when an obstacle makes a control decision. So, we
ensure that the robot remains safe regardless of how often
and at which times the obstacles change their speed and
orientation.

Model 11 Asynchronous obstacle and robot control,
extends Model 3

dwpsns ⌘
�
ctrlr(a :=A , safeps); t := 0; (ctrlo; dynps)

⇤
(ctrlo; dynps)

⇤
(ctrlo; dynps)

⇤�⇤

(54)

In Model 11 we now model the control of the obstacle
ctrl

o

in an inner loop around the continuous evolution
dyn in (54) so that the obstacle control can interrupt
continuous evolution at any time to make a decision, and
then continue the dynamics immediately without giving
the robot’s controller a chance to run. This means that
the obstacle can make as many control decisions as it
wants without the robot being able to react every time.
The controller ctrl

r

of the robot is still guaranteed to be
invoked after at most time " has passed, as modeled with
the evolution domain constraint t " in dynps.

Theorem 9. Passive safety for asynchronous controllers.
Robots following Model 11 will never collide while driving,
even if obstacles change their direction arbitrary often
and fast, as expressed by the provable dL formula �ps !
[dwpsns] ps .

Proof. The KeYmaera X proof of Theorem 9 uses �ps as
an invariant for the outer loop, whereas the invariant for the
inner loop additionally preserves the differential invariants
used for handling the dynamics dynps.

Arbitrary Number of Obstacles
The safety proofs so far modeled obstacles with a sensor
system that nondeterministically delivers the position of
any obstacle, including the nearest obstacle, to the control
algorithm. In this section, we also explicitly analyze how
that sensor system lets the robot avoid collision with each
one of many obstacles. In order to prevent duplicating
variables for each of the objects, which is undesirable even
for a very small, known number of objects, we need a way
of referring to countably many objects concisely.

Quantified Differential Dynamic Logic With quantified
differential dynamic logic QdL Platzer (2010c, 2012d), we
can explicitly refer to each obstacle individually by using
quantification over objects of a sort (here all objects of the

iNote that dL follows the common assumption that discrete actions do not
take time; time only passes in ODEs. So all discrete actions happen at the
same real point in time, even though they are ordered sequentially.

Prepared using sagej.cls

20 International Journal of Robotics XX(X)

sort O of obstacles). QdL is an extension of dL suited for
verifying distributed hybrid systems by quantifying over
sorts. QdL extends hybrid programs to quantified hybrid
programs, which can describe the dynamics of distributed
hybrid systems with any number of agents. Instead of using
a single state variable o

x

: R to describe the x coordinate
of one obstacle, we can use a function term o

x

: O ! R in
QdL to denote that obstacle i has x-coordinate o

x

(i), for
each obstacle i of obstacle sort O. Likewise, instead of a
single two-dimensional state variable o : R2 to describe the
planar position of one obstacle, we can use a function term
o : O ! R2 in QdL to denote that obstacle i is at position
o(i), for each obstacle i. We use a non-rigid function
symbol o, which means that the value of all o(i) may change
over time (e. g., the position o(car) of an obstacle named
car). Other function symbols are rigid if they do not change
their values over time (e. g., the maximum velocity V (i) of
obstacle i never changes). Pure differential dynamic logic
dL uses the sort R. QdL formulas can use quantifiers to
make statements about all obstacles of sort O with 8i 2 O
and 9i 2 O, similar to the quantifiers for the special sort R
that dL already provides.

QdL allows us to explicitly track properties of all
obstacles simultaneously. Of course, it is not just the
position data that is important for obstacles, but also
that the model allows all moving obstacles to change
their positions according to their respective differential
equations. Quantified hybrid programs allow the evolution
of properties expressed as non-rigid functions for all objects
of the same sort simultaneously (so all obstacles move
simultaneously).

Table 4 lists the additional statements that quantified
hybrid programs add to those of hybrid programs Platzer
(2010c, 2012d).

Table 4. Statements of quantified hybrid programs

Statement Effect

8i2C x(i) := ✓ Assigns the current value of term ✓ to
x(i) simultaneously for all objects of
sort C.

8i2C
�
x(i)0 = ✓(i)

& Q
�

Evolves all x(i) for any i along
differential equations x(i)0 = ✓(i)
restricted to evolution domain Q

We can use QdL to look up characteristics of specific
obstacles, such as their maximum velocity, which allows
an implementation to react to different kinds of obstacles
differently if appropriate sensors are available.

Modeling In Model 12 we move from hybrid programs
to quantified hybrid programs for distributed hybrid
systems Platzer (2010c, 2012d), i. e., systems that combine
distributed systems aspects (lots of obstacles) with hybrid
systems aspects (discrete control decisions and continuous

motion). We introduce a sort O representing obstacles so
that arbitrarily many obstacles can be represented in the
model simultaneously. Each obstacle i of the sort O has
a maximum velocity V (i), a current position o(i), and a
current vectorial velocity v(i). We use non-rigid function
symbols o : O ! R2, v : O ! R2, and V : O ! R. Both
o(i) and v(i) are two-dimensional vectors.

This new modeling paradigm also allows for another
improvement in the model. So far, an arbitrary obstacle
was chosen by picking any position nondeterministically
in ctrlr. Such a nondeterministic assignment includes the
closest one. A controller implementation needs to compute
which obstacle is actually the closest one (or consider them
all one at a time). Instead of assigning the closest obstacle
nondeterministically in the model, QdL can consider all
obstacles by quantifying over all obstacles of sort O.

In the obstacle controller ctrlo (56) we use a loop to
allow multiple obstacles to make a control decision. Each
run of that loop selects one obstacle instance i arbitrarily
and updates its velocity vector (but no longer its position,
since obstacles are now tracked individually). The loop
can be repeated arbitrarily often, so any arbitrary finite
number of obstacles can make control choices in (56). In
the continuous evolution, we quantify over all obstacles
i of sort O in order to express that all obstacles change
their state simultaneously according to their respective
differential equations (58).

Initial condition, safety condition, and loop invariants are
as before (26)–(27) except that they are now phrased for
all obstacles i 2 O. Initially, our robot is assumed to be
stopped and we do not need to assume anything about the
obstacles initially because passive safety does not consider
collisions when stopped:

�nobs ⌘ s = 0 ^ r 6= 0 ^ kdk = 1 (59)

The safety condition is passive safety for all obstacles:

 nobs ⌘ s 6= 0 ! 8i2O kp� o(i)k1 > 0 (60)

Verification We use QdL to prove passive safety in
the presence of arbitrarily many obstacles. Note that the
controller condition safenobs for multiple obstacles needs to
distinguish obstacles that will stop during the next control
cycle from those that will not.

Theorem 10. Passive safety for arbitrarily many obstacles.
Robots tracking any number of obstacles of their respective
maximum velocities by Model 12 will never collide with any
obstacle while driving, as expressed by the provable QdL
formula �nobs ! [dwnobs] nobs .

Proof. Since QdL is not yet implemented in KeYmaera X,
we proved Theorem 10 with its predecessor KeYmaera. The

Prepared using sagej.cls

Mitsch et al. 21

Model 12 Explicit representation of countably many obstacles, extends Model 7

dwnobs ⌘
�
ctrlo; ctrlr(a := ⇤; ?(�b a A) , safenobs); dynnobs

�⇤ (55)

ctrlo ⌘
�
i := ⇤i := ⇤i := ⇤; v(i)v(i)v(i) := (⇤, ⇤); ?kv(i)k V (i)?kv(i)k V (i)

?kv(i)k V (i)
�⇤ (56)

safenobs ⌘ 8i2O8i2O8i2O kp� o(i)o(i)o(i)k1 >

(
� s

2

a

� V (i)V (i)V (i) s
a

� s

2

a

� V (i)V (i)V (i) s
a

� s

2

a

� V (i)V (i)V (i) s
a

if s+ a" < 0

if s+ a" < 0if s+ a" < 0

s

2

2b + V (i)V (i)V (i) s
b

+

�
a

b

+ 1

� �
a

2"
2
+ "(s+ V (i)V (i)V (i))

�
otherwise

(57)

dynnobs ⌘ 8i2O8i2O8i2O (t0 = 1, p0 = sd, d0 = �!d?, s0 = a, !0
=

a

r
, o0(i) = v(i)o0(i) = v(i)o0(i) = v(i) & s � 0 ^ t ") (58)

proof uses (27) with explicit 8i 2 O as loop invariant:

'nobs ⌘ s 6= 0 ! 8i2O kp� o(i)k1 >
s2

2b
+ V (i)

s

b

The proof uses quantified differential invariants to prove
the properties of the quantified differential equations Platzer
(2011b).

Liveness Verification of Ground Robot
Navigation
Safety properties formalize that a precisely-defined bad
behavior (such as collisions) will never happen. Liveness
properties formalize that certain good things (such as
reaching a goal) will ultimately happen. It is easy to
design a trivial controller that is only safe (just never
moves) or only live (full speed toward the goal ignoring all
obstacles). The trick is to design robot controllers that meet
both goals. The safe controllers identified in the previous
sections guarantee safety (no collisions) and still allow
motion. This combination of guaranteed safety under all
circumstances (by a proof) and validated liveness under
usual circumstances (validated only by some tests) is often
sufficient for practical purposes. Yet, without a liveness
proof, there is no guarantee that the robot controller will
reach its respective goal except in the circumstances that
have been tested before. In this section, we verify liveness
properties, since the precision gained by formalizing the
desired liveness properties as well as the circumstances
under which they can be guaranteed are insightful.

Formalizing liveness properties is even more difficult
and the resulting questions in practice much harder than
safety (even if liveness can be easier in theory Platzer
(2015)). Both safety and liveness properties only hold when
they are true in the myriad of situations with different
environmental behavior that they conjecture. They are
diametrically opposed, because liveness requires motion
but safety considerations inhibit motion. For the safe robot
models that we consider here, liveness is, thus, quite a
challenge, because there are many ways that environmental
conditions or obstacle behavior would force the robot to

stop or turn around for safety reasons, preventing it from
reaching its goal. For example, an unrestricted obstacle
could move around to block the robot’s path and then, as the
robot re-plans to find another trajectory, dash to block the
new path too. To guarantee liveness, one has to characterize
all necessary conditions that allow the robot to reach its
goal, which are often prohibitively many. Full adversarial
behavior can be handled but is challenging Platzer (2015).

For a liveness proof, we deem three conditions important:

Adversarial behavior. Carefully defines acceptable adver-
sarial behavior that the robot can handle. For exam-
ple, sporadically crossing a robot’s path might be
acceptable in the operating conditions, but perma-
nently trapping the robot in a corner might not.

Conflicting goals. Identifies conflicting goals for different
agents. For example, if the goal of one robot is to
indefinitely occupy a certain space and that of another
is to reach this very space it is impossible for both to
satisfy their respective requirements.

Progress. Characterizes progress formally. For example, in
the presence of obstacles, a robot sometimes needs to
move away from the goal in order to ultimately get to
the goal. But how far is a robot allowed to deviate on
the detour?

Liveness properties that are actually true need to define
some reasonable restrictions on the behavior of other agents
in the environment. For example, a movable obstacle may
block the robot’s path for some limited amount of time, but
not indefinitely. And when the obstacle moves on, it may
not turn around immediately again. Liveness conditions
might define a compromise between reaching the goal and
having at least invested reasonable effort of trying to get to
the goal, if unacceptable adversarial behavior occurred or
goals conflicted, or progress is physically impossible.

In this section, we start with a stationary environment,
so that we first can concentrate on finding a notion for
progress for the robot itself. Next, we let obstacles cross the
robot’s path and define what degree of adversarial behavior
is acceptable for guaranteeing liveness.

Prepared using sagej.cls

22 International Journal of Robotics XX(X)

Reach a Waypoint on a Straight Lane
As a first liveness property, we consider a stationary
environment without obstacles, which prevents adversarial
behavior as well as conflicting goals, so that we can
concentrate on the conditions to describe how the robot
makes progress without the environment interfering. We
focus on low-level motion planning where the robot has to
make decisions about acceleration and braking in order to
drive to a waypoint on a straight line. We want our robot to
provably reach the waypoint, so that a high-level planning
algorithm knows that the robot will reliably execute its plan
by stitching together the complete path from straight-line
segments between waypoints. To model the behavior at the
final waypoint when the robot stops (because it reached
its goal) and at intermediate waypoints in a uniform way,
we consider a simplified version where the robot has to
stop at each waypoint, before it turns toward the next
waypoint. That way, we can split a path into straight-line
segments that make it easier to define progress, because
they are describable with solvable differential equations
when abstracted into one-dimensional space.

Modeling We say that the robot reached the waypoint
when it stops inside a region of size 2�

g

around the
waypoint. That is: (i) at least one execution enters the
goal region, and (ii) all executions stop before exiting
the goal region g +�

g

. The liveness property wp (61)
characterizes these conditions formally.

 wp ⌘ hdwwpi(g ��

g

< p) ^ [dwwp](p < g +�

g

) (61)

Remark 1. The liveness property wp (61) is formulated as
a conjunction of two formulas: at least one run enters the
goal region hdwwpi g ��

g

< p, while none exit the goal
region on the other end [dwwp] p < g +�

g

. In particular,
there is a run that will stop inside the goal region, which,
explicitly, corresponds to extending formula (61) to the
following liveness property:

hdwwpi
�
g ��

g

< p ^ 0 s V
g

^ hdwwpi s = 0

�

^[dwwp](p < g +�

g

)

(68)

Formula (68) means that there is an execution of model
dwwp where the robot enters the goal region without
exceeding the maximum approach velocity V

g

, and from
where the model has an execution that will stop the robot
hdwwpi s = 0. The proof for formula (68) uses the formula
s = 0 _ (s > 0 ^ s� n"b 0) to characterize progress
(i. e., braking for duration n" will stop the robot).

Model 13 describes the behavior of the robot for
approaching a goal region. In addition to the three familiar
options from previous models of braking unconditionally
(63), staying stopped (64), or accelerating when safe (65),

the model now contains a fourth control option (66) to
slowly approach the goal region, because nondeterministi-
cally big acceleration choices might overshoot the goal.

The liveness proof has to show that the robot will
get to the goal under all circumstances except those
explicitly characterized as being assumed not to happen,
e. g., unreasonably small goal regions, high robot velocity,
or hardware faults, such as engine or brake failure. Similar
to safety proofs, these assumptions are often linked.
For example, what makes a goal region unreasonably
small depends on the robot’s braking and acceleration
capabilities. The robot cannot stop at the goal if accelerating
just once from its initial position will already make it
impossible for the robot to brake before shooting past the
goal region. In this case, both options of the robot will
violate our liveness condition: it can either stay stopped and
not reach the goal, or it can start driving and miss the goal.

Therefore, we introduce a maximum velocity V
g

that the
robot has to obey when it is close to the goal. That velocity
must be small enough so that the robot can stop inside
the goal region and is used as follows. While obeying the
approach velocity V

g

outside the goal region (66), the robot
can choose any acceleration that will not let it exceed the
maximum approach velocity. The dynamics of the robot in
this model follows a straight line, assuming it is already
oriented directly towards the goal (67).

Identification of Live Controls Now that we know what
the goal of the robot is, we provide the intuition behind the
conditions that make achieving the goal possible. The robot
is only allowed to adapt its velocity with controls other than
full braking when those controls will not overshoot the goal
region, see g +�

g

in (65) and g ��

g

in (66). Condition
�b a V

g

�s

"

 A in (66) ensures that the robot will
only pick acceleration values that will never exceed the
approach velocity V

g

in the next " time units, i. e., until
it can revise its decision. Once inside the goal region, the
only remaining choice is to brake, which makes the robot
stop reliably in the waypoint region.

The robot is stopped initially (s = 0) outside the goal
region (p < g ��

g

), its brakes b > 0 and engine A > 0 are
working,j and it has some known reaction time " > 0:

�wp ⌘ s = 0 ^ p < g ��

g

^ b > 0 ^A > 0

^ " > 0 ^ 0 < V
g

^ V
g

"+
V 2
g

2b
< 2�

g

(69)

Most importantly, the approach velocity V
g

and the size
of the goal region 2�

g

must be compatible. That way, we
know that the robot has a chance to approach the goal with
a velocity that fits to the size of the goal region.

jFor safety, A � 0 was sufficient, but in order to reach a goal the robot
must be able to accelerate to non-zero velocities.

Prepared using sagej.cls

Mitsch et al. 23

Model 13 Robot follows a straight line to reach a waypoint

dwwp ⌘ (ctrl; dyn)⇤ (62)
ctrl ⌘ (a :=�b) (63)

[(?s = 0; a := 0) (64)

[(?p+
s2

2b
+

✓
A

b
+ 1

◆✓
A

2

"2 + "s

◆
< g +�

g

^ s+A" V
g

; a :=A) (65)

[(?p g ��

g

^ s V
g

; a := ⇤; ?� b a V
g

� s

"
 A) (66)

dyn ⌘ t := 0; {p0 = s, s0 = a, t0 = 1 & t " ^ s � 0} (67)

Verification Similar to safety verification, for liveness
verification we combine the initial condition �wp (69), the
model dwwp (Model 13), and the liveness property wp (61)
in Theorem 11.

Theorem 11. Reach waypoint. Robots following Model 13
can reach the goal area g ��

g

< p and will never
overshoot p < g +�

g

, as expressed by the provable dL
formula �wp ! wp, i. e., with wp from (61) expanded:

�wp !
�
hdwwpi(g ��

g

< p)

^ [dwwp](p < g +�

g

)

�
.

Proof. We proved Theorem 11 using KeYmaera X. Instead
of an invariant characterizing what does not change, we
now need a variant characterizing what it means to make
progress towards reaching the goal region Platzer (2008,
2012a). If the progress measure indicates the goal would be
reachable with n iterations of the main loop of Model 13,
then we have to show that by executing the loop once we
can get to a state where the progress measure indicates
the goal would be reachable in the remaining n� 1 loop
iterations.

Informally, the robot reaches the goal if it has a positive
speed s > 0 and can enter the goal region by just driving for
time n" with that speed, as summarized by the loop variant
'wp ⌘ 0 < s V

g

^ g ��

g

< p+ n"s.

After having proved how the robot can always reach its
goal when it is on its own, we next analyze liveness in the
presence of other moving agents.

Cross an Intersection
In this section, we prove liveness for scenarios in which the
robot has to pass an intersection, while a moving obstacle
may cross the robot’s path, so that the robot may need to
stop for safety reasons to let the obstacle pass. We want to
prove that it is always possible for the robot to successfully
pass the intersection. The model captures the general case
of a point-intersection with two entering roads and two

exits at the opposing side, so that it subsumes any scenario
where a robot and an obstacle drive straight to cross an
intersection, as illustrated in Fig. 8.

robot p
o obstacle

x = (x
r

, x
o

) intersection

Figure 8. Illustration of the paths of a robot (black solid line)
and an obstacle (red dashed line) crossing an intersection at
point x.

Modeling Since there is a moving obstacle, the robot
needs to follow a collision avoidance protocol in order
to safely cross the intersection. We choose passive safety
for simplicity. Collision avoidance alone, however, will not
reliably let the robot make progress. Thus, we will model a
robot that favors making progress towards the other side of
the intersection, and only falls back to collision avoidance
when the obstacle is too close to pass safely.

Intersections enable the obstacle to trivially prevent
the robot from ever passing the intersection. All that the
obstacle needs to do is just block the entire intersection
forever by stopping there (e. g., somebody built a wall so
that the intersection disappeared). Clearly, no one could
demand the robot passes the intersection in such impossible
cases. We prove that the robot can pass the intersection
when obstacles behave reasonably, for a precisely defined
characterization of what is reasonable for an obstacle to
do. We, therefore, include a restriction on how long the
obstacle may reside at the intersection. We choose a strictly
positive minimum velocity Vmin to prevent the obstacle from
stopping. Other fairness conditions (e. g., an upper bound
on how long the intersection can be blocked, enforced with
a traffic light) are representable in hybrid programs as well.

Identification of Live Controls For ensuring progress,
the model uses three conditions (AfterX, PassFaster, and

Prepared using sagej.cls

24 International Journal of Robotics XX(X)

Model 14 Robot safely crosses an intersection

dwcx ⌘ (ctrl
o

; ctrl
r

; dyn)⇤ (70)
ctrl

o

⌘ a
o

:= ⇤; ?(�b a
o

 A) (71)

ctrl
r

⌘

8
>>>>>>>><

>>>>>>>>:

a := ⇤; ?(�b a A) if AfterX
a := ⇤; ?(0 a A) if PassFaster
a := 0 if PassCoast
(a :=�b)

[(?s = 0; a := 0) otherwise Model 3
[(?safe; . . .)

(72)

dyn ⌘ t := 0; {p0
r

= s, v0
r

= a, (73)
p0
o

= v, v0
o

= a
o

, t0 = 1 (74)
& t " ^ s � 0 ^ v � Vmin} (75)

PassCoast) that tell the robot admissible conditions for
choosing its acceleration, depending on its own position
and the obstacle position in relation to the intersection.
The robot can choose any acceleration after it passed the
intersection (p > x

r

) or after the obstacle passed (o > x
o

):

AfterX ⌘ p > x
r

_ o > x
o

.

The robot is allowed to increase its speed if it manages to
pass safely in front of the obstacle (even if the obstacle
speeds up during the entire process), or if speeding up
would still let the robot pass safely behind the obstacle
(even if the obstacle drives with only minimum speed Vmin):

PassFaster ⌘ s > 0 ^ (PassFront _ PassBehind)

PassFront ⌘ o+ v
x
r

� p

s
+

A

2

✓
x
r

� p

s

◆2

< x
o

PassBehind ⌘ x
o

< o+ Vmin
x
r

� p

s+A"

The robot is allowed to just maintain its speed if it either
passes safely in front or behind the obstacle with that speed:

PassCoast ⌘ s > 0 ^ x
o

< o+ Vmin
x
r

� p

s
.

In all other cases, the robot has to follow the collision
avoidance protocol from Model 3 to choose its speed,
modified accordingly for the one-dimensional variant here.

Verification As a liveness condition, we prove that the
robot will make it past the intersection without colliding
with the obstacle.

Theorem 12. Pass Intersection. Robots following
Model 14 can pass an intersection while avoiding collisions

with obstacles at the intersection, as expressed in the
provable dL formula

�cx ! [dwcx] (p = x
r

! o 6= x
o

)

^hdwcxi (p > x
r

) .

Proof. We proved Theorem 12 in KeYmaera X. In the
loop invariant of the safety proof we combine the familiar
stopping distance p+ s

2

2b < x
r

with the conditions AfterX,
PassCoast, and PassFront that allow driving in its loop
invariant:

0 s ^ Vmin v ^
�
p+

s2

2b
< x

r

_AfterX _ PassCoast _ PassFront
�
.

The main insight in the liveness proof is that achieving
the goal can be split into two phases: first, the robot waits
for the obstacle to pass; afterwards, the robot accelerates to
pass the intersection. We split the loop into these two phases
with hdwcx

⇤i(p > x
r

) $ hdwcx
⇤ihdwcx

⇤i(p > x
r

) so that
we can analyze each of the resulting two loops with its
own separate loop variant. In the first loop, we know that
the obstacle drives with at least speed v � Vmin, so with n
steps it will pass the intersection, which is characterized
in the loop variant o+ n"Vmin > x

o

. This loop variant
implies o > x

o

when n 0. Once the obstacle is past the
intersection, in the second loop the robot controller can
safely favor its AfterX control. Since the robot might be
stopped, we unroll the loop once to hdwcxihdwcx

⇤i(p > x
r

)

in order to ensure that the robot accelerates with A to
a positive speed. The loop variant then exploits that the
robot’s speed is s � A" after accelerating once for time ",
so it will pass the intersection x

r

with n steps of duration "
as follows: p+ n"(A") > x

r

.

The liveness proofs show that the robot can achieve a
useful goal if it makes the right choices. When the robot
controller is modeled such that it always makes the right
choices, we prove that the controller will always safely
make it to the goal within a specified time budget. We
discuss robot controllers that provably meet deadlines in
Appendix Liveness with Deadlines.

Monitoring for Compliance At Runtime
The previous sections discussed models of obstacle
avoidance control and of the physical behavior of ground
robots in their environment, and we proved that these
models are guaranteed to possess crucial safety and liveness
properties. The proofs present absolute mathematical
evidence of the correctness of the models. If the models
used for verification are an adequate representation of the
real robot and its environment, these proofs transfer to the

Prepared using sagej.cls

Mitsch et al. 25

real system. But any model necessarily deviates from the
real system at least to some extent.

In this section, we discuss how to use ModelPlex Mitsch
and Platzer (2016) to bridge the gap between models and
reality by verification. The idea is to provably detect and
safely respond to deviations between the model and the
real robot in its environment by monitoring appropriate
conditions at runtime. ModelPlex complements offline
proofs with runtime monitoring. It periodically executes
a monitor, which is systematically synthesized from the
verified models by an automatic proof of correctness,
and checks input from sensors and output to actuators
for compliance with the verified model. If a deviation
is detected, ModelPlex initiates a fail-safe action, e.g.
stopping the robot or cutting its power to avoid actively
running into obstacles, and, by that, ensure that safety
proofs from the model carry over to the real robot. Of
course, such fail-safe actions need to be triggered early
enough to make sure the robot stops on time, which is what
the monitors synthesized by ModelPlex ensure.

A monitor checks the actual evolution of the real robot
implementation to discover failures and mismatches with
the verified model. The acceleration chosen by the robot’s
control software implementation must fit to the current
situation. For example, accelerate only when the verified
model considers it safe. And the chosen curve must fit
to the current orientation. No unintended change to the
robot’s speed, position, orientation has happened, and no
violations of the assumptions about the obstacles have
occurred. This means, any variable that is allowed to change
in the model must be monitored. In the examples here, these
variables include the robot’s position p, longitudinal speed
s, rotational speed !, acceleration a, orientation d, curve r,
obstacle position o and velocity v.

A ModelPlex monitor is designed for periodic sampling.
For each variable there will be two observed values, one
from the previous sample time (for example, previous robot
position p) and one from the current sample time (for
example, next robot position p+). It is not important for
ModelPlex that the values are measured exactly at the
sampling period, but merely that there is an upper bound
" on the amount of time that passed between two samples.
A ModelPlex monitor checks in a provably correct way
whether the evolution observed in the difference of the
sampled values can be explained by the model. If it does,
the current behavior fits to a verified behavior and is, thus,
safe. If it does not, the situation may have become unsafe
and a fail-safe action is initiated to mitigate safety hazards.

Fig. 9 illustrates the principle behind a ModelPlex
monitor. The values from the previous sample time serve as
starting state for executing the model. The values produced
by executing the model are then compared to the values
observed in the current sample time by the monitor.

prior state

o

p

c

posterior state

o+

p+

c+
evolve,

e.g., drive

Model
a :=�b

[?s = 0; . . .

[a :=A; . . .
o

. . .
p

o+

. . .
p+

ô+

. . .
p̂+

check 3

measure measure

Figure 9. The principle behind a ModelPlex monitor: can the
model reproduce or explain the observed real-world behavior?

The verified models themselves are too slow to execute,
because they involve nondeterminism and differential
equations. Hence, provably correct monitor expressions in
real arithmetic are synthesized from a model using an
offline proof in KeYmaera X. These expressions capture
the behavior of the models, projected onto the pairwise
comparisons of sampled values that are needed at runtime.

Monitor techniques for model compliance monitors and
state prediction monitors are reported in Mitsch and Platzer
(2016). Here, we focus on a controller monitor expression
synthesized from Model 3, which captures all possible
control decisions of the robot that are verified to be
safe. The controller monitor checks the decisions of an
(unverified) controller implementation for consistency with
the verified discrete model without differential equations.
ModelPlex automatically extracts the discrete model by a
proof with the ordinary differential equation (ODE) being
conservatively over-approximated by its evolution domain.
The resulting condition monitor (76) in Fig. 10, which is
synthesized by an automatic proof in KeYmaera X, mimics
the structure of the model: it captures the assumptions on
the obstacle mon

o

, the evolution domain from dynamics
mondyn, as well as the specification for each of the three
controller branches (braking mon

b

, staying stopped mon
s

,
or accelerating mon

a

).
The obstacle monitor part mon

o

in (77), checks that
the measured obstacle velocity v+ must not exceed the
assumptions made in the model about their maximum
velocity. The dynamics monitor part mondyn in (78) checks
the evolution domain of the ODE and that the controller
did reset its clock (t+ = 0). The braking monitor mon

b

in
(79) defines that emergency brakes can only hit the brakes
and do not change anything else (acceleration a+ = �b,
while everything else is of the form x+

= x meaning that
no change is allowed). Monitor mon

s

in (80) expresses
that staying stopped is possible if the speed is zero (s =

Prepared using sagej.cls

26 International Journal of Robotics XX(X)

monitor ⌘ mon
o

^ mondyn ^ (mon
b

_ mon
s

_ mon
a

) (76)

mon
o

⌘ kv+k V (77)

mondyn ⌘ 0 " ^ s � 0 ^ t+ = 0 (78)

mon
b

⌘ o+ = o ^ p+ = p ^ d+ = d ^ s+ = s ^ !+
= ! ^ a+ = �b ^ r+ = r (79)

mon
s

⌘ s = 0 ^ o+ = o ^ p+ = p ^ d+ = d ^ s+ = s ^ !+
= 0 ^ a+ = 0 ^ r+ = r (80)

mon
a

⌘ a+ = A ^ r+ 6= 0 ^ !+r+ = s ^ p+ = p ^ d+ = d ^ s+ = s (81)

^ kp� o+k1 >
s2

2b
+ V

s

b
+

✓
A

b
+ 1

◆✓
A

2

"2 + "(s+ V)

◆
(82)

Figure 10. Synthesized safety conditions. The generated monitor captures conditions on obstacles mon
o

, on dynamics mondyn,
and on the robot’s decisions on braking mon

b

, staying stopped mon
s

, and accelerating mon
a

. The monitor distinguishes two
observed values per variable, separated by a controller run (for example, p denotes the position before running the controller,
whereas p+ denotes the position after running the controller).

0) and the controller must have chosen no acceleration
and no rotation (a = 0 and ! = 0), while everything else
is unchanged. Finally, the acceleration monitor mon

a

in
(81)–(82) says that, if the distance is safe, the robot
can choose maximum acceleration a+ = A, a new non-
spinning steering r+ 6= 0 that fits to the current speed
!+r+ = s; position, orientation, and speed must not be set
by the controller (those follow from the acceleration and
steering choice).

Conclusion and Future Work
Robots are modeled by hybrid systems, because they
share continuous physical motion with advanced computer
algorithms controlling their behavior. We demonstrate that
this understanding also helps proving robots safe. We
develop hybrid system models for collision avoidance
algorithms for autonomous ground vehicles and prove that
the algorithms guarantee static safety for static obstacles
and both passive safety and passive friendly safety in the
presence of moving obstacles.

We augment the models and safety proofs with
robustness for localization uncertainty and imperfect
actuation. Incremental revision of models and proofs helps
reducing the verification complexity, since in lower-fidelity
models the safety-critical effects of computations on the
physical behavior are easier to predict and characterize
in control conditions. Additional details can then be
understood incrementally as extensions to these previously
found control conditions (e. g., it helps to first understand
the safety margins for perfect sensing, and later add the
impact of uncertainty on the behavior of the robot). All
parameters in our models—such as those for maximum
obstacle velocity and sensor/actuator uncertainty—are fully
symbolic and can be instantiated arbitrarily, including
bounds from probabilistic models (e. g., assume the 2�

confidence interval of the distribution of obstacle velocities
as maximum obstacle velocity). In this case, our verified
safety guarantees translate into a probability of safety.

Theorems 1–9, 11, and 12 were proved with significant
automation and succinct reusable proof tactics in the
dL theorem prover KeYmaera X. All theorems were
additionally proved in its predecessor KeYmaera. The most
important insight in all proofs were the loop and differential
invariants. Some proofs needed simple insights on how to
eliminate variables to reduce the complexity of the resulting
arithmetic.

Overall, the tactics follow a similar structure across
all theorems, with only minor variation. The tactics use
proof automation for symbolic execution of programs,
for proving differential invariants, and for simplifying
arithmetic, which all perform a large number of internal
steps automatically to turn the proof hints provided by users
into actual proofs. Table 5 summarizes the proof statistics:
the tactic size characterizes the manual effort of the user
(mostly proof hints on differential invariants and minor
arithmetic simplifications), while the proof steps are the
corresponding internal steps taken by KeYmaera X to fill
in gaps in the proof hints with automated proof search and
justify the proof from the axioms of dL. As a performance
indicator, we list the total time needed to run the proofs on
a 2.4GHz Intel Core i7 with 16GB memory, most of which
is spent in external tools for handling real arithmetic with
quantifier elimination (QE time column).

As part of the verification activity, we identified crucial
safety constraints that have to be satisfied in order to choose
a new curve or accelerate safely. These constraints are
entirely symbolic and summarized in Table 6. The static
safety invariant is equivalent to the admissible velocities
identified in Fox et al. (1997), which assumes instantaneous
control. Our proofs identified the invariants required

Prepared using sagej.cls

Mitsch et al. 27

Table 5. Proof statistics in KeYmaera X

Theorem Tactic size Proof
steps

Time [s]

LOC Steps QE Total

Safety proofs
1: Static 12 71 30355 74 89
2: Passive 12 73 51956 229 268
3: Passive-friendly 45 140 68620 342 407
4: Orientation 15 108 173989 934 1006

Passive safety extensions
5: Acceleration 16 84 67604 405 463
6: Uncertain location 12 73 57775 445 485
7: Perturbation 21 120 56297 254 299
8: Uncertain velocity 12 94 54601 359 404
9: Async control 42 122 61772 284 335

Liveness proofs
11: Reach waypoint 32 93 46530 69 125
12: Pass intersection 234 440 61878 83 182

for safety in the presence of moving obstacles, sensor
uncertainty and coverage, and actuator perturbation, as well
as the additional margins in column “safe control” that
account for the reaction time of the robot. When instantiated
with concrete numerical values of a robot design, these
safety constraints can be used for design decision tradeoffs
and to get an intuition about how conservative or aggressive
our robot can drive, such as:

• how fast can the robot pass through a narrow door?
• how fast can the robot drive on a given corridor?

Appendix Interpretation of Verification Results analyzes
the constraints for common values of acceleration force,
braking force, control cycle time, and obstacle distance
(i. e., door width, corridor width). These examples illustrate
that the verified collision avoidance protocol is suitable for
indoor navigation at reasonable speeds.

Future work includes exploiting more kinematic capabil-
ities (e. g., going sideways with omni-drive) and explicit
accounts for distance measurement uncertainty, which is,
however, easier than location uncertainty.

Funding

This material is based upon work supported by NSF CAREER
Award CNS-1054246, NSF EXPEDITION CNS-0926181, NSF
CNS-1446712, by DARPA FA8750-12-2-0291, AFOSR FA9550-
16-1-0288, and by Bosch. This project is funded in part by
Carnegie Mellon University’s Technologies for Safe and Efficient
Transportation, the National USDOT University Transportation
Center for Safety (T-SET UTC) which is sponsored by the US
Department of Transportation. This work was also supported by
the Austrian BMVIT under grant FIT-IT 829598, FFG BRIDGE
838526, and FFG Basisprogramm 838181. Ta

bl
e

6.
In

va
ria

nt
an

d
sa

fe
ty

co
ns

tra
in

ts
um

m
ar

y.
S

af
e

co
nt

ro
lm

ar
gi

ns
ac

co
un

tf
or

th
e

re
ac

tio
n

tim
e

of
th

e
ro

bo
t.

S
af

et
y

In
va

ri
an

t+
S

af
e

C
on

tr
ol

S
ta

tic
(M

od
el

2,
Th

eo
re

m
1)

kp
�

ok
1

>
s

2

2
b

+

� A
b

+
1

��
A

2
"2

+
"s
�

Pa
ss

iv
e

(M
od

el
3,

Th
eo

re
m

2)
s
6=

0
!

kp
�

ok
1

>
s

2

2
b

+
V

s

b

+

� A
b

+
1

��
A

2
"2

+
"(
s
+

V
)

�

Pa
ss

iv
e

fri
en

dl
y

(M
od

el
4+

5,
Th

eo
re

m
3)

kp
�

ok
1

>
s

2

2
b

+
V
� s b

+
⌧
�
+

V

2

2
b

o

+

� A
b

+
1

��
A

2
"2

+
"(
s
+

V
)

�

Pa
ss

iv
e

or
ie

nt
at

io
n

(M
od

el
6,

Th
eo

re
m

4)
is

V
is

ib
le

>
0
!

kp
�

ok
1

>
s

2

2
b

+
V

s

b

+

� A
b

+
1

��
A

2
"2

+
"(
s
+

V
)

�

an
d
�
|r
|>

s

2

2
b

+

� A
b

+
1

��
A

2
"2

+
"s
�

E
xt

en
si

on
s

(p
as

si
ve

sa
fe

ty
ex

am
pl

es
)

w
ith

ac
tu

al
ac

ce
le

ra
tio

n
(M

od
el

7,
Th

eo
re

m
5)

s
6=

0
!

kp
�

ok
1

>

(
�

s

2

2
a

�
V

s

a

s

2

2
b

+
V

s

b

if
s
+

a
"
<

0

+

⇣
a b
+

1

⌘
⇣
a 2

"2
+
"(
s
+

V
)

⌘
ot

he
rw

is
e

+
lo

ca
tio

n
un

ce
rt

ai
nt

y
(M

od
el

8,
Th

eo
re

m
6)

s
6=

0
!

kp̂
�

ok
1

>
s

2

2
b

+
V

s

b

+

� A
b

+
1

��
A

2
"2

+
"(
s
+

V
)

�
+

�

p

+
ac

tu
at

or
pe

rt
ur

ba
tio

n
(M

od
el

9,
Th

eo
re

m
7)

s
6=

0
!

kp
�

ok
1

>
s

2

2
b
�

a

+
V

s

b
�

a

+

⇣
A

b
�

a

+
1

⌘
� A

2
"2

+
"(
s
+

V
)

�

+
ve

lo
ci

ty
un

ce
rt

ai
nt

y
(M

od
el

10
,T

he
or

em
8)

s
6=

0
!

kp
�

ok
1

>
(ŝ

+
�

v

)2

2
b

+
V

ŝ
+
�

v

b

+

� A
b

+
1

��
A

2
"2

+
"(
ŝ
+

�

v

+
V
)

�

as
yn

ch
ro

no
us

ro
bo

ta
nd

ob
st

ac
le

co
nt

ro
l

(M
od

el
11

,T
he

or
em

9)
se

e
Pa

ss
iv

e
sa

fe
ty

ar
bi

tra
ry

m
an

y
ob

st
ac

le
s

(M
od

el
12

,T
he

or
em

10
)

s
6=

0
!

8i
2O

kp
�

o(
i)
k 1

>
s

2

2
b

+
V

s

b

+

� A
b

+
1

��
A

2
"2

+
"(
s
+

V
(
i)
)

�

Prepared using sagej.cls

28 International Journal of Robotics XX(X)

References

Althoff D, Kuffner JJ, Wollherr D and Buss M (2012) Safety
assessment of robot trajectories for navigation in uncertain
and dynamic environments. Auton. Robots 32(3): 285–302.
doi:10.1007/s10514-011-9257-9.

Bohrer B, Rahli V, Vukotic I, Völp M and Platzer A (2017)
Formally verified differential dynamic logic. In: Bertot Y
and Vafeiadis V (eds.) Proceedings of the 6th ACM SIGPLAN
Conference on Certified Programs and Proofs, CPP 2017,
Paris, France, January 16-17, 2017. ACM, pp. 208–221.
doi:10.1145/3018610.3018616.

Bonin-Font F, Ortiz A and Oliver G (2008) Visual navigation for
mobile robots: A survey. Journal of Intelligent and Robotic
Systems 53(3): 263–296. doi:10.1007/s10846-008-9235-4.

Bouraine S, Fraichard T and Salhi H (2012) Provably safe
navigation for mobile robots with limited field-of-views in
dynamic environments. Auton. Robots 32(3): 267–283.
doi:10.1007/s10514-011-9258-8.

Bräunl T (2006) Driving robots. In: Embedded Robotics: Mobile
Robot Design and Applications with Embedded Systems.
Springer, pp. 97–111.

Brock O and Khatib O (1999) High-speed navigation
using the global dynamic window approach. In:
1999 IEEE International Conference on Robotics and
Automation, Marriott Hotel, Renaissance Center, Detroit,
Michigan, May 10-15, 1999, Proceedings. pp. 341–346.
doi:10.1109/ROBOT.1999.770002.

Choset H, Lynch K, Hutchinson S, Kantor G, Burgard W, Kavraki
L and Thrun S (2005) Principles Of Robot Motion. MIT Press.

Collins GE (1975) Hauptvortrag: Quantifier elimination for
real closed fields by cylindrical algebraic decomposition.
In: Automata Theory and Formal Languages, 2nd GI
Conference, Kaiserslautern, May 20-23, 1975. pp. 134–183.
doi:10.1007/3-540-07407-4 17.

Davenport JH and Heintz J (1988) Real quantifier elimination
is doubly exponential. J. Symb. Comput. 5(1/2): 29–35.
doi:10.1016/S0747-7171(88)80004-X.

Fiorini P and Prassler E (2000) Cleaning and household robots:
A technology survey. Auton. Robots 9(3): 227–235.
doi:10.1023/A:1008954632763.

Fiorini P and Shiller Z (1998) Motion planning in dynamic
environments using velocity obstacles. I. J. Robotics Res.
17(7): 760–772. doi:10.1177/027836499801700706.

Fox D, Burgard W and Thrun S (1997) The dynamic window
approach to collision avoidance. IEEE Robot. Automat. Mag.
4(1): 23–33. doi:10.1109/100.580977.

Frehse G, Guernic CL, Donzé A, Cotton S, Ray R, Lebeltel O,
Ripado R, Girard A, Dang T and Maler O (2011) SpaceEx:
Scalable verification of hybrid systems. In: Gopalakrishnan
G and Qadeer S (eds.) Computer Aided Verification -
23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings, LNCS, volume 6806.

Springer, pp. 379–395. doi:10.1007/978-3-642-22110-1 30.
Fulton N, Mitsch S, Bohrer B and Platzer A (2017) Bellerophon:

Tactical Theorem Proving for Hybrid Systems. In: Ayala-
Rincón M and Muñoz CA (eds.) ITP, LNCS, volume 10499.
Springer. doi:10.1007/978-3-319-66107-0 14.

Fulton N, Mitsch S, Quesel JD, Völp M and Platzer A
(2015) KeYmaera X: An axiomatic tactical theorem prover
for hybrid systems. In: Felty AP and Middeldorp A
(eds.) CADE, LNCS, volume 9195. Springer, pp. 527–538.
doi:10.1007/978-3-319-21401-6 36.

Hart PE, Nilsson NJ and Raphael B (1968) A formal basis for
the heuristic determination of minimum cost paths. IEEE
Trans. Systems Science and Cybernetics 4(2): 100–107.
doi:10.1109/TSSC.1968.300136.

Karaman S and Frazzoli E (2012) Sampling-based algorithms
for optimal motion planning with deterministic µ-calculus
specifications. In: American Control Conference, ACC 2012,
Montreal, QC, Canada, June 27-29, 2012. IEEE, pp. 735–
742.

Khatib O (1985) Real-time obstacle avoidance for manipulators
and mobile robots. In: Proceedings of the 1985 IEEE
International Conference on Robotics and Automation, St.
Louis, Missouri, USA, March 25-28, 1985. pp. 500–505.
doi:10.1109/ROBOT.1985.1087247.

Kress-Gazit H, Fainekos GE and Pappas GJ (2009)
Temporal-Logic-Based Reactive Mission and Motion
Planning. IEEE Trans. Robotics 25(6): 1370–1381.
doi:10.1109/TRO.2009.2030225.

LaValle SM and Kuffner JJ (2001) Randomized kinody-
namic planning. I. J. Robotic Res. 20(5): 378–400.
doi:10.1177/02783640122067453.

Loos SM, Platzer A and Nistor L (2011) Adaptive cruise control:
Hybrid, distributed, and now formally verified. In: Butler M
and Schulte W (eds.) FM, LNCS, volume 6664. Springer, pp.
42–56. doi:10.1007/978-3-642-21437-0 6.

Loos SM, Renshaw DW and Platzer A (2013a) Formal verification
of distributed aircraft controllers. In: Belta C and Ivancic
F (eds.) Proceedings of the 16th international conference
on Hybrid systems: computation and control, HSCC 2013,
April 8-11, 2013, Philadelphia, PA, USA. ACM, pp. 125–130.
doi:10.1145/2461328.2461350.

Loos SM, Witmer D, Steenkiste P and Platzer A (2013b)
Efficiency analysis of formally verified adaptive cruise
controllers. In: Hegyi A and Schutter BD (eds.) ITSC. pp.
1565–1570. doi:10.1109/ITSC.2013.6728453.

Maček K, Vasquez Govea DA, Fraichard T and Siegwart R
(2009) Towards Safe Vehicle Navigation in Dynamic Urban
Scenarios. Automatika 50(3–4): 184–194.

Minguez J, Montano L and Santos-Victor J (2006) Abstract-
ing vehicle shape and kinematic constraints from obsta-
cle avoidance methods. Auton. Robots 20(1): 43–59.
doi:10.1007/s10514-006-5363-5.

Prepared using sagej.cls

https://doi.org/10.1007/s10514-011-9257-9
https://doi.org/10.1007/s10514-011-9257-9
https://doi.org/10.1007/s10514-011-9257-9
http://dx.doi.org/10.1007/s10514-011-9257-9
http://doi.acm.org/10.1145/3018610.3018616
http://dx.doi.org/10.1145/3018610.3018616
https://doi.org/10.1007/s10846-008-9235-4
https://doi.org/10.1007/s10846-008-9235-4
http://dx.doi.org/10.1007/s10846-008-9235-4
https://doi.org/10.1007/s10514-011-9258-8
https://doi.org/10.1007/s10514-011-9258-8
https://doi.org/10.1007/s10514-011-9258-8
http://dx.doi.org/10.1007/s10514-011-9258-8
https://doi.org/10.1109/ROBOT.1999.770002
https://doi.org/10.1109/ROBOT.1999.770002
http://dx.doi.org/10.1109/ROBOT.1999.770002
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1007/3-540-07407-4_17
http://dx.doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.1016/S0747-7171(88)80004-X
http://dx.doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.1023/A:1008954632763
https://doi.org/10.1023/A:1008954632763
http://dx.doi.org/10.1023/A:1008954632763
https://doi.org/10.1177/027836499801700706
https://doi.org/10.1177/027836499801700706
http://dx.doi.org/10.1177/027836499801700706
https://doi.org/10.1109/100.580977
https://doi.org/10.1109/100.580977
http://dx.doi.org/10.1109/100.580977
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-22110-1_30
http://dx.doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-319-66107-0_14
https://doi.org/10.1007/978-3-319-66107-0_14
http://dx.doi.org/10.1007/978-3-319-66107-0_14
http://dx.doi.org/10.1007/978-3-319-21401-6_36
http://dx.doi.org/10.1007/978-3-319-21401-6_36
http://dx.doi.org/10.1007/978-3-319-21401-6_36
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1109/TSSC.1968.300136
http://ieeexplore.ieee.org/document/6315419/
http://ieeexplore.ieee.org/document/6315419/
http://ieeexplore.ieee.org/document/6315419/
https://doi.org/10.1109/ROBOT.1985.1087247
https://doi.org/10.1109/ROBOT.1985.1087247
http://dx.doi.org/10.1109/ROBOT.1985.1087247
https://doi.org/10.1109/TRO.2009.2030225
https://doi.org/10.1109/TRO.2009.2030225
http://dx.doi.org/10.1109/TRO.2009.2030225
http://dx.doi.org/10.1177/02783640122067453
http://dx.doi.org/10.1177/02783640122067453
http://dx.doi.org/10.1177/02783640122067453
http://dx.doi.org/10.1007/978-3-642-21437-0_6
http://dx.doi.org/10.1007/978-3-642-21437-0_6
http://dx.doi.org/10.1007/978-3-642-21437-0_6
http://doi.acm.org/10.1145/2461328.2461350
http://doi.acm.org/10.1145/2461328.2461350
http://dx.doi.org/10.1145/2461328.2461350
http://dx.doi.org/10.1109/ITSC.2013.6728453
http://dx.doi.org/10.1109/ITSC.2013.6728453
http://dx.doi.org/10.1109/ITSC.2013.6728453
http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=73159
http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=73159
https://doi.org/10.1007/s10514-006-5363-5
https://doi.org/10.1007/s10514-006-5363-5
https://doi.org/10.1007/s10514-006-5363-5
http://dx.doi.org/10.1007/s10514-006-5363-5

Mitsch et al. 29

Mitsch S, Ghorbal K and Platzer A (2013) On provably
safe obstacle avoidance for autonomous robotic ground
vehicles. In: Newman P, Fox D and Hsu D (eds.)
Robotics: Science and Systems. ISBN 978-981-07-3937-9.
doi:10.15607/RSS.2013.IX.014.

Mitsch S, Loos SM and Platzer A (2012) Towards formal
verification of freeway traffic control. In: Lu C (ed.)
ICCPS. IEEE. ISBN 978-0-7695-4695-7, pp. 171–180.
doi:10.1109/ICCPS.2012.25.

Mitsch S and Platzer A (2016) ModelPlex: Verified run-
time validation of verified cyber-physical system mod-
els. Formal Methods in System Design 49(1): 33–74.
doi:10.1007/s10703-016-0241-z. Special issue of selected
papers from RV’14.

Müller A, Mitsch S, Retschitzegger W, Schwinger W and
Platzer A (2016) A component-based approach to hybrid
systems safety verification. In: Ábrahám E and Huisman
M (eds.) Integrated Formal Methods - 12th International
Conference, IFM 2016, Reykjavik, Iceland, June 1-5, 2016,
Proceedings, LNCS, volume 9681. Springer, pp. 441–456.
doi:10.1007/978-3-319-33693-0 28.

Pan J, Zhang L and Manocha D (2012) Collision-free
and smooth trajectory computation in cluttered envi-
ronments. I. J. Robotics Res. 31(10): 1155–1175.
doi:10.1177/0278364912453186.

Plaku E, Kavraki LE and Vardi MY (2009) Hybrid systems: from
verification to falsification by combining motion planning and
discrete search. Formal Methods in System Design 34(2):
157–182. doi:10.1007/s10703-008-0058-5.

Plaku E, Kavraki LE and Vardi MY (2013) Falsification of LTL
safety properties in hybrid systems. STTT 15(4): 305–320.
doi:10.1007/s10009-012-0233-2.

Platzer A (2008) Differential dynamic logic for hybrid systems. J.
Autom. Reas. 41(2): 143–189. doi:10.1007/s10817-008-9103-
8.

Platzer A (2010a) Logical analysis of hybrid systems: Proving
theorems for complex dynamics. Springer. ISBN 978-3-642-
14508-7. doi:10.1007/978-3-642-14509-4.

Platzer A (2010b) Differential-algebraic dynamic logic for
differential-algebraic programs. J. Log. Comput. 20(1): 309–
352. doi:10.1093/logcom/exn070.

Platzer A (2010c) Quantified differential dynamic logic for
distributed hybrid systems. In: Dawar A and Veith H (eds.)
Computer Science Logic, 24th International Workshop, CSL
2010, 19th Annual Conference of the EACSL, Brno, Czech
Republic, August 23-27, 2010. Proceedings, LNCS, volume
6247. Springer, pp. 469–483. doi:10.1007/978-3-642-15205-
4 36.

Platzer A (2011a) Stochastic differential dynamic logic for
stochastic hybrid programs. In: Bjørner N and Sofronie-
Stokkermans V (eds.) CADE, LNCS, volume 6803. Springer,
pp. 431–445. doi:10.1007/978-3-642-22438-6 34.

Platzer A (2011b) Quantified differential invariants. In:
Frazzoli E and Grosu R (eds.) HSCC. ACM, pp. 63–72.
doi:10.1145/1967701.1967713.

Platzer A (2012a) Logics of dynamical systems. In:
LICS. IEEE. ISBN 978-1-4673-2263-8, pp. 13–24.
doi:10.1109/LICS.2012.13.

Platzer A (2012b) The complete proof theory of hybrid systems.
In: LICS. IEEE. ISBN 978-1-4673-2263-8, pp. 541–550.
doi:10.1109/LICS.2012.64.

Platzer A (2012c) The structure of differential invariants and
differential cut elimination. Logical Methods in Computer
Science 8(4): 1–38. doi:10.2168/LMCS-8(4:16)2012.

Platzer A (2012d) A complete axiomatization of quanti-
fied differential dynamic logic for distributed hybrid sys-
tems. Logical Methods in Computer Science 8(4): 1–44.
doi:10.2168/LMCS-8(4:17)2012. Special issue for selected
papers from CSL’10.

Platzer A (2015) Differential game logic. ACM Trans. Comput.
Log. 17(1): 1:1–1:51. doi:10.1145/2817824.

Platzer A (2017) A complete uniform substitution calculus for
differential dynamic logic. J. Autom. Reas. 59(2): 219–265.
doi:10.1007/s10817-016-9385-1.

Platzer A and Clarke EM (2009) Formal verification of curved
flight collision avoidance maneuvers: A case study. In:
Cavalcanti A and Dams D (eds.) FM, LNCS, volume 5850.
Springer, pp. 547–562. doi:10.1007/978-3-642-05089-3 35.

Platzer A and Quesel JD (2008) KeYmaera: A hybrid theorem
prover for hybrid systems. In: Armando A, Baumgartner P
and Dowek G (eds.) IJCAR, LNCS, volume 5195. Springer,
pp. 171–178. doi:10.1007/978-3-540-71070-7 15.

Quesel JD, Mitsch S, Loos S, Aréchiga N and Platzer A (2016)
How to Model and Prove Hybrid Systems with KeYmaera: A
Tutorial on Safety. STTT 18(1): 67–91. doi:10.1007/s10009-
015-0367-0.

Sarid S, Xu B and Kress-Gazit H (2012) Guaranteeing high-
level behaviors while exploring partially known maps.
In: Robotics: Science and Systems VIII, University
of Sydney, Sydney, NSW, Australia, July 9-13, 2012.
doi:10.15607/RSS.2012.VIII.048.

Seward DW, Pace C and Agate R (2007) Safe and effective
navigation of autonomous robots in hazardous environments.
Auton. Robots 22(3): 223–242. doi:10.1007/s10514-006-
9721-0.

Sogokon A, Ghorbal K, Jackson PB and Platzer A (2016) A
method for invariant generation for polynomial continuous
systems. In: Jobstmann B and Leino KRM (eds.)
VMCAI, LNCS, volume 9583. Springer, pp. 268–288.
doi:10.1007/978-3-662-49122-5 13.

Täubig H, Frese U, Hertzberg C, Lüth C, Mohr S, Vorobev E and
Walter D (2012) Guaranteeing functional safety: design for
provability and computer-aided verification. Auton. Robots
32(3): 303–331. doi:10.1007/s10514-011-9271-y.

Prepared using sagej.cls

http://dx.doi.org/10.15607/RSS.2013.IX.014
http://dx.doi.org/10.15607/RSS.2013.IX.014
http://dx.doi.org/10.15607/RSS.2013.IX.014
http://dx.doi.org/10.15607/RSS.2013.IX.014
http://dx.doi.org/10.1109/ICCPS.2012.25
http://dx.doi.org/10.1109/ICCPS.2012.25
http://dx.doi.org/10.1109/ICCPS.2012.25
http://dx.doi.org/10.1007/s10703-016-0241-z
http://dx.doi.org/10.1007/s10703-016-0241-z
http://dx.doi.org/10.1007/s10703-016-0241-z
http://dx.doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/978-3-319-33693-0_28
https://doi.org/10.1007/978-3-319-33693-0_28
http://dx.doi.org/10.1007/978-3-319-33693-0_28
https://doi.org/10.1177/0278364912453186
https://doi.org/10.1177/0278364912453186
https://doi.org/10.1177/0278364912453186
http://dx.doi.org/10.1177/0278364912453186
http://dx.doi.org/10.1007/s10703-008-0058-5
http://dx.doi.org/10.1007/s10703-008-0058-5
http://dx.doi.org/10.1007/s10703-008-0058-5
http://dx.doi.org/10.1007/s10703-008-0058-5
http://dx.doi.org/10.1007/s10009-012-0233-2
http://dx.doi.org/10.1007/s10009-012-0233-2
http://dx.doi.org/10.1007/s10009-012-0233-2
http://dx.doi.org/10.1007/s10817-008-9103-8
http://dx.doi.org/10.1007/s10817-008-9103-8
http://dx.doi.org/10.1007/s10817-008-9103-8
http://dx.doi.org/10.1007/978-3-642-14509-4
http://dx.doi.org/10.1007/978-3-642-14509-4
http://dx.doi.org/10.1007/978-3-642-14509-4
http://dx.doi.org/10.1093/logcom/exn070
http://dx.doi.org/10.1093/logcom/exn070
http://dx.doi.org/10.1093/logcom/exn070
https://doi.org/10.1007/978-3-642-15205-4_36
https://doi.org/10.1007/978-3-642-15205-4_36
http://dx.doi.org/10.1007/978-3-642-15205-4_36
http://dx.doi.org/10.1007/978-3-642-15205-4_36
http://dx.doi.org/10.1007/978-3-642-22438-6_34
http://dx.doi.org/10.1007/978-3-642-22438-6_34
http://dx.doi.org/10.1007/978-3-642-22438-6_34
http://dx.doi.org/10.1145/1967701.1967713
http://dx.doi.org/10.1145/1967701.1967713
http://dx.doi.org/10.1109/LICS.2012.13
http://dx.doi.org/10.1109/LICS.2012.13
http://dx.doi.org/10.1109/LICS.2012.64
http://dx.doi.org/10.1109/LICS.2012.64
http://dx.doi.org/10.2168/LMCS-8(4:16)2012
http://dx.doi.org/10.2168/LMCS-8(4:16)2012
http://dx.doi.org/10.2168/LMCS-8(4:16)2012
http://dx.doi.org/10.2168/LMCS-8(4:17)2012
http://dx.doi.org/10.2168/LMCS-8(4:17)2012
http://dx.doi.org/10.2168/LMCS-8(4:17)2012
http://dx.doi.org/10.2168/LMCS-8(4:17)2012
http://dx.doi.org/10.1145/2817824
http://dx.doi.org/10.1145/2817824
http://dx.doi.org/10.1007/s10817-016-9385-1
http://dx.doi.org/10.1007/s10817-016-9385-1
http://dx.doi.org/10.1007/s10817-016-9385-1
http://dx.doi.org/10.1007/978-3-642-05089-3_35
http://dx.doi.org/10.1007/978-3-642-05089-3_35
http://dx.doi.org/10.1007/978-3-642-05089-3_35
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/s10009-015-0367-0
https://doi.org/10.1007/s10009-015-0367-0
http://dx.doi.org/10.1007/s10009-015-0367-0
http://dx.doi.org/10.1007/s10009-015-0367-0
http://dx.doi.org/10.15607/RSS.2012.VIII.048
http://dx.doi.org/10.15607/RSS.2012.VIII.048
http://dx.doi.org/10.15607/RSS.2012.VIII.048
https://doi.org/10.1007/s10514-006-9721-0
https://doi.org/10.1007/s10514-006-9721-0
http://dx.doi.org/10.1007/s10514-006-9721-0
http://dx.doi.org/10.1007/s10514-006-9721-0
http://dx.doi.org/10.1007/978-3-662-49122-5_13
http://dx.doi.org/10.1007/978-3-662-49122-5_13
http://dx.doi.org/10.1007/978-3-662-49122-5_13
http://dx.doi.org/10.1007/978-3-662-49122-5_13
https://doi.org/10.1007/s10514-011-9271-y
https://doi.org/10.1007/s10514-011-9271-y
http://dx.doi.org/10.1007/s10514-011-9271-y

30 International Journal of Robotics XX(X)

van den Berg J, Abbeel P and Goldberg KY (2011) LQG-MP:
Optimized path planning for robots with motion uncertainty
and imperfect state information. I. J. Robotics Res. 30(7):
895–913. doi:10.1177/0278364911406562.

Wolff EM, Topcu U and Murray RM (2014) Optimization-
based trajectory generation with linear temporal logic
specifications. In: 2014 IEEE International Conference
on Robotics and Automation, ICRA 2014, Hong Kong,
China, May 31 - June 7, 2014. IEEE, pp. 5319–5325.
doi:10.1109/ICRA.2014.6907641.

Wu A and How JP (2012) Guaranteed infinite horizon avoidance
of unpredictable, dynamically constrained obstacles. Auton.
Robots 32(3): 227–242. doi:10.1007/s10514-011-9266-8.

Supplemental material

Passive Safety for Sharp Turns
Models 3 and 7 used a safety distance in supremum norm k · k1
for the safety constraints, which conservatively overapproximates
the actual trajectory of the robot by a box around the robot. For
example, recall the safety distance (23) of Model 3

kp� ok1 >
s2

2b
+ V

s

b

+

✓
A

b
+ 1

◆✓
A

2

"2 + "(s+ V)

◆ (23*)

which needs to be large enough in either one axis, irrespective of
the actual trajectory that the robot will be taking. This constraint
is safe but inefficient when the robot chooses a trajectory that will
keep it close to its current position (e. g., when driving along a
small circle, meaning it makes a sharp turn). For example, a robot
with constant velocity s = 4 and reaction time " = 1 will traverse
a small circle with radius r =

1
⇡

and corresponding circumference
2⇡r = 2 twice within time ". Safety constraint (23) required the
total distance of 4 as a safety distance between the robot and the
obstacle, because it overapproximated its actual trajectory by a
box. However, the robot never moves away more than 2

⇡

from its
original position then because it moves on a circle (cf. Fig. 11a).
With full 360� sensor coverage the robot can exploit that the
closest obstacle does not cross its trajectory, which makes this
extension suitable for passive safety and passive friendly safety,
but not for passive orientation safety.

Modeling We change the robot controller to improve its
efficiency. One choice would be to explicitly express circular
motion in terms of sine and cosine and then compute all possible
positions of the robot explicitly. However, besides being vastly
inefficient in a real controller, this introduces transcendental
functions and would leave decidable real arithmetic. Hence, we
will use the distance of the obstacle to the trajectory itself in the
control conditions. Such a distance computation requires that we
adapt the constraint curve to express the curve center explicitly in
(89). So far, the curve was uniquely determined by the radius r and
the orientation d of the robot. Now that we need the curve center
explicitly for distance calculation to the obstacle, the controller
chooses the curve center c such that:

• (p� c) is perpendicular to the robot orientation d, i. e., d is
tangential to the curve, and

• (p� c) is located correctly to the left or right of the robot,
so that it fits to the clockwise or counter-clockwise motion
indicated by the sign of r.

Thus, the condition curve (89) in Model 15 now checks if the
chosen curve and the direction of the robot are consistent, i. e.,
|r| = kp� ck and d =

(p�c)?

r

. Additionally, we augment the
robot with a capability to turn on the spot when stopped (s = 0).

Prepared using sagej.cls

https://doi.org/10.1177/0278364911406562
https://doi.org/10.1177/0278364911406562
https://doi.org/10.1177/0278364911406562
http://dx.doi.org/10.1177/0278364911406562
https://doi.org/10.1109/ICRA.2014.6907641
https://doi.org/10.1109/ICRA.2014.6907641
https://doi.org/10.1109/ICRA.2014.6907641
http://dx.doi.org/10.1109/ICRA.2014.6907641
https://doi.org/10.1007/s10514-011-9266-8
https://doi.org/10.1007/s10514-011-9266-8
http://dx.doi.org/10.1007/s10514-011-9266-8

Mitsch et al. 31

Model 15 Passive safety when considering the trajectory of the robot in distance measurement, extends Model 7

dwpsdm ⌘ (ctrl
o

; ctrl
r

; dyn)⇤ (83)
ctrl

o

⌘ see Model 3 (84)
ctrl

r

⌘ (a :=�b) (85)

[
�
?s = 0; a := 0; w

r

:= 0; (d :=�d [d := d) ; r := ⇤; c := (⇤, ⇤); ?curve
�

(86)
[(a := ⇤; ?� b a A; ! := ⇤; ?� ⌦ ! ⌦; (87)

r := ⇤; c := (⇤, ⇤); o := (⇤, ⇤); ?curve ^ safe) (88)

curve ⌘ r 6= 0 ^ |r| = kp� ck ^ d =

(p� c)?

r
^ r! = s (89)

safe ⌘

kp� ok1 >

(
dist� if s+ a" � 0

dist
<

otherwise

!

_

||r|� ko� ck| >

(
V
�
"+ s+a"

b

�
if s+ a" � 0

�V s

a

otherwise

! (90)

dynpsdm ⌘ see Model 3 (91)

For this, (86) is extended with a choice of either turning around
(d :=�d) or remaining oriented as is (d := d) when stopped,
and the corresponding choice of a curve center c such that the

obstacle area:
V
�
"+ s+A"

b

�

obstacle o

area reachable by robot:
s

2

2b +
�
A

b

+ 1

� �
A

2 "+ "s
�

robot p

curve center c

distance to trajectory:��|r|� ko� ck
��

(a) Safe since the obstacle area does not overlap the dashed
trajectory.

obstacle area
obstacle o

area reachable by robot robot p

curve
center c

(b) Safe since obstacle area and dotted robot area do not
overlap.

Figure 11. Two different reasons for safe robot trajectories

curve variables remain consistent according to the subsequent test
?curve.

Identification of Safe Controls With the changes in
distance measurement introduced above, we relax the control
conditions that keep the robot safe. The distance of the obstacle
to the trajectory can be described in two steps:

1. Calculate the distance of the obstacle to the circle:
��|r|�

ko� ck
��, which is the absolute value of the radius minus

the distance between the obstacle and the circle center.

2. Calculate the maximum distance that the obstacle can drive
until the robot comes to a stop. This distance is equal to
the distances calculated in the previous models, i. e. in the
case s+ a" 0 it is �V s

a

and in the case s+ a" � 0 it is
V
�
"+ s+a"

b

�
.

If the distance between the obstacle and the circle describing the
robot’s trajectory is greater than the sum of those distances, then
the robot can stop before hitting the obstacle. Then choosing the
new curve is safe, which leads us to choose the following safety
condition:

��|r|� ko� ck
�� >

(
V
�
"+ s+a"

b

�
if s+ a" � 0

�V s

a

otherwise
(92)

We use condition (92), which now uses the Euclidean norm
k · k, for choosing a new curve in Model 15. With this new
constraint, the robot is allowed to choose the curve in Fig. 11a.
However, constraint (92) has drawbacks when the trajectory of
the robot is slow along a large circle and the obstacle is close to
the circle, as illustrated in Fig. 11b. In this case the robot is only

Prepared using sagej.cls

32 International Journal of Robotics XX(X)

allowed to choose very small accelerations because the obstacle
is very close to the circle. Formula (90) in Model 15 follows the
more liberal of the two constraints—i. e., (42) _ (92)—to provide
the best of both worlds.

Verification We verify the safety of the robot’s control choices
in KeYmaera X.

Theorem 13. Passive safety with trajectory distance measurement.
Robots using trajectory distance measurement according to
Model 15 in addition to direct distance measurement guarantee
passive safety, as expressed by the provable dL formula �ps !
[dwpsdm] ps .

Proof. The most important condition in the loop invariant of the
proof guarantees that the robot either maintains the familiar safe
stopping distance kp� ok1 > s

2

2b , or that the obstacle cannot
reach the robot’s curve until the robot is stopped:

s > 0 ! kp� ok1 >
s2

2b
_
��|r|� ko� ck

�� > V
s

b
.

Liveness with Deadlines
The liveness proofs in the article showed that the robot can achieve
a useful goal if it makes the right choices. The proofs neither
guarantee that the robot will always make the right decisions, nor
specify how long it will take until the goal will be achieved. In this
section, we prove that it always achieves its goals within a given
reasonable amount of time. Previously we showed that the robot
can do the right thing to ultimately get to the goal, while here we
prove that it always makes the right decisions that will take it to the
waypoint or let it cross an intersection within a bounded amount
of time. It is no longer enough to show existence of an execution
that makes the robot achieve its goals. Now we need to show that
all possible executions do so in the given time. This needs more
deterministic controllers that only brake when necessary.

We are going to illustrate two alternatives for modeling arrival
deadlines: in Section Reaching a Waypoint we use a countdown T

that is initialized to the deadline and expires when T 0, whereas
in Section Crossing an Intersection we use T as a clock that is
initialized to a starting value T 0 and counts up to a deadline
D > 0, so that two deadlines (crossing zero and exceeding D)
can be represented with a single clock variable.

Reaching a Waypoint We start by defining a correctness
condition for reaching a waypoint.

 wpdl ⌘ p < g +�

g

^ (T 0 ! s = 0 ^ g ��

g

< p) (93)

Formula (93) expresses that the robot will never be past the
goal region (p < g +�

g

), and after the deadline (T 0, i. e. after
countdown T expired) it will be stopped inside the goal region
(s = 0 ^ g ��

g

< p).

Modeling Model 16 is the familiar loop of control followed by
dynamics (94). Unlike in previous models, braking and staying put
is no longer allowed unconditionally for the sake of reaching the
waypoint reliably in time (95). The robot accelerates maximally
whenever possible without rushing past the waypoint region, cf.
(95). In all other cases, the robot chooses acceleration to control
towards the approach velocity V

g

(95). The dynamics remain
unchanged, except for the additional countdown T 0

= �1 of the
deadline in (96).

Identification of Live Controls In order to prove this model
live, we need to set achievable deadlines. The deadline has to be
large enough (i) for the robot to accelerate to velocity V

g

, (ii) drive
to the waypoint with that velocity, and (iii) once it is there, have
sufficient time to stop. It also needs a slack time ", so that the robot
has time to react to the deadline. Finally, the conditions �wp from
(69), which enable the robot to reach a waypoint at all, have to
hold as well. Formula (97) summarizes these deadline conditions.

�wpdl ⌘ �wp ^ T >
V
g

� s

A| {z }
(i)

+

g ��� p

V
g| {z }

(ii)

+

V
g

b|{z}
(iii)

+" (97)

Verification A proof of the robot always making the right
choices is a combination of a safety and a liveness proof: we have
to prove that all choices of the robot reach the goal before the
deadline expires (safety proof), and that there exists at least one
way of the robot reaching the goal before the deadline expires
(liveness proof). Both [·] and h·i are needed to express that the
robot always makes the right choices to get to the waypoint, since
[·] alone does not guarantee existence of such a choice.

Theorem 14. Reach waypoint with deadline. Robots following
Model 16 will always reach the waypoint before the deadline
expires, as expressed by the provable dL formula

�wpdl !
�
[dwwpdl] wpdl ^ hdwwpdli wpdl

�
.

Proof. We proved Theorem 14 with KeYmaera X, using
automated tactics to handle the solvable differential equation
system. The proof uses the following conditions as loop invariants:

p+
s2

2b
< g +�

g

^ 0 s V
g

^
8
>><

>>:

s = 0 _ T � s

b

if g ��

g

< p

T >
g��

g

�p

A"

+

V

g

b

+ " if p g ��

g

^ s � A"

T > "� s

A

+

g��
g

�p

A"

+

V

g

b

+ " if p g ��

g

^ s A"

The robot maintains sufficient margin to avoid overshooting the
goal area and it respects the approach velocity V

g

. Reaching the
goal is then split into increasingly critical cases: if the robot
already is at the goal (g ��

g

< p) it is either stopped already
or will manage to stop before the deadline expires. If the robot is
not yet at the goal, but at least already traveling with some non-
zero speed s � A", then it still has sufficient time to drive to the
goal with the current speed and stop. Finally, if the robot is not yet
traveling fast enough, it still has sufficient time to speed up.

Prepared using sagej.cls

Mitsch et al. 33

Model 16 Robot reaches a waypoint before a deadline

dwwpdl ⌘ (ctrl; dyn)⇤ (94)

ctrl ⌘

8
><

>:

(a :=�b) [(?s = 0; a := 0) if g ��

g

< pif g ��

g

< pif g ��

g

< p

a :=A if p+ s

2�V

2
g

2b +

�
A

b

+ 1

� �
A

2 "
2
+ "s

�
 g ��

g

if p+ s

2�V

2
g

2b +

�
A

b

+ 1

� �
A

2 "
2
+ "s

�
 g ��

g

if p+ s

2�V

2
g

2b +

�
A

b

+ 1

� �
A

2 "
2
+ "s

�
 g ��

g

a := ⇤; ?� b a V

g

�s

"

 A otherwise

(95)

dyn ⌘ t := 0; p0 = s, s0 = a, t0 = 1, T 0
= �1

T 0
= �1T 0
= �1 & t " ^ s � 0 (96)

Crossing an Intersection Crossing an intersection before a
deadline is more complicated than reaching a waypoint, because
the robot may need to wait for the intersection to clear so that the
robot can cross it safely in the first place.

Modeling Model 17 remains almost identical to Model 14,
except for the robot controller, which has an additional control
branch: when the obstacle has already passed the intersection, we
want the robot to pass as fast as it can by accelerating fully with
maximum acceleration A (no dawdling).

Model 17 Crossing an intersection before a deadline

dwcxd ⌘ (ctrl
o

; ctrl
r

; dyn)⇤ (98)
ctrl

o

⌘ ctrl
o

of Model 14 (99)

ctrl
r

⌘
(
a :=A if o > x

o

ctrl
r

of Model 14 otherwise
(100)

dyn ⌘ dyn of Model 14 (101)

Identification of Live Controls Given the robot behavior
of Model 17 above, we need to set a deadline that the robot can
actually achieve, considering when and how much progress the
robot can make while driving (recall that it should still not collide
with the obstacle). The deadline has to account for both the robot
and the obstacle position relative to the intersection, as well as
for how much the robot can accelerate. We start with the easiest
case for finding a deadline D: when the obstacle already passed
the intersection, the robot simply has to accelerate with maximum
acceleration until it itself passes the intersection. The obstacles
are assumed to never turn back, so accelerating fully is also a
safe choice. The robot might be stopped. So, assuming we start a
deadline timer T at time 0, the robot will drive a distance of A

2 D
2

until the deadline D expires (i. e., until T = D). However, since
we use a sampling interval of " in the robot controller, the robot
may not notice that the obstacle already passed the intersection for
up to time ", which means it will only accelerate for time D � ".
Formula (102) summarizes this case.

⌘Dcxd ⌘ D � " ^ x
r

� p
x

<
A

2

(D � ")2 (102)

If unlucky, the robot determines that it cannot pass safely in
front of the obstacle and will have to wait until the obstacle passed
the intersection. Hence, within the deadline we have to account for
the additional time that the obstacle may need at most to pass the
intersection. We could increase D with the appropriate additional
time and still start the timer at T = 0, if we were to rephrase the
implicit definition of the deadline x

r

� p < A

2 (D � ")2 in (102)
to its explicit form. In (103), instead, we start the deadline timer
with time k T 0, such that it becomes T = 0 when the obstacle
is located at the intersection.

⌘Tcxd ⌘ T = min

✓
0,

o� x
o

Vmin

◆
(103)

Verification Theorem 15 uses the deadline conditions (102)
and (103) in a liveness property for Model 17.

Theorem 15. Cross intersection before deadline. Model dwcxd

has a run where the robot can drive past the intersection (p > x
r

).
For appropriate deadline choices, all runs of model dwcxd, such
that when the deadline timer is expired (T � D) the robot is
past the intersection (p > x

r

). All runs prevent collision, i.e.,
robot and obstacle never occupy the intersection at the same time
(p = x

r

! o 6= x
o

).

�cxd ^ ⌘Dcxd ^ ⌘Tcxd !hdwcxdi(p > x
r

)

^[dwcxd]
�
(T � D ! p > x

r

)

�

^ (p = x
r

! o 6= x
o

)

Proof. We proved Theorem 15 with KeYmaera X. Collision
avoidance [dwcxd](p = x

r

! o 6= x
o

) and liveness hdwcxdip >

x
r

follow the approach in Theorem 12. The loop invariant used for
proving that the robot always meets the deadline ensures that there
is sufficient time remaining until the deadline expires. Similar
to the liveness proof in Theorem 12, the deadline is split into
two phases, because the robot may not be able to pass safely
in front of the obstacle, so it may need to let the obstacle pass
first. Recall that T 0 when the obstacle is not yet past the
intersection, so we characterize the worst-case remaining time
until the obstacle passed with minimum speed Vmin by T o�x

o

Vmin
.

kRecall o x

o

holds when the obstacle did not yet pass the intersection.

Prepared using sagej.cls

34 International Journal of Robotics XX(X)

In case the obstacle is not yet past the intersection, the robot must
be positioned such that it can pass in D � " time, so T 0 ^
p+ A

2 (D � ")2 > x
r

. Finally, once the obstacle passed, the robot
has D � T time left to pass itself, which is summarized in T >

0 ^ p+ smax(0, D � T) + A

2 max(0, D � T)2 > x
r

.

Interpretation of Verification Results
As part of the verification activity, we identified crucial safety
constraints that have to be satisfied in order to choose a new
curve or accelerate safely. These constraints are entirely symbolic
and summarized in Table 6. Next, we analyze the constraints for
common values of acceleration force, braking force, control cycle
time, and obstacle distance (i. e., door width, corridor width).

Safe Distances and Velocities
Static safety Recall safety constraint (13) from Model 2,

which is justified by Theorem 1 to correctly capture when it is safe
to accelerate in the presence of stationary obstacles o.

kp� ok1 >
s2

2b
+

✓
A

b
+ 1

◆✓
A

2

"2 + "s

◆
(13*)

The constraint links the current velocity s and the distance to
the nearest obstacle through the design parameters A (maximum
acceleration), b (maximum braking force), and " (maximal
controller cycle time). Table 7 lists concrete choices for these
parameters and the minimum safety distance identified by (13)
in Model 2. All except the third robot configuration (whose

Table 7. Static safety: minimum safe distance and maximum
velocity for select configurations
(a) Minimum safe distance

s
⇥
m

s

⇤
A
⇥
m

s

2

⇤
b
⇥
m

s

2

⇤
" [s] kp� ok [m]

1 1 1 0.05 0.61
0.5 0.5 0.5 0.025 0.28
2 2 2 0.1 1.42
1 1 2 0.05 0.33
1 2 1 0.05 0.66

(b) Maximum velocity through corridors and doors

A
⇥
m

s

2

⇤
b
⇥
m

s

2

⇤
" [s] s

⇥
m

s

⇤

C
or

rid
or

kp
�

ok
=

1
.2
5
m

1 1 0.05 1.48
0.5 0.5 0.025 1.09
2 2 0.1 1.85
1 2 0.05 2.08
2 1 0.05 1.43

D
oo

r
kp

�
ok

=
0
.2
5
m

1 1 0.05 0.61
0.5 0.5 0.025 0.47
2 2 0.1 0.63
1 2 0.05 0.85
2 1 0.05 0.56

movement and acceleration capabilities outperform its reaction

time) lead to a reasonable performance in in-door navigation
environments. Fig. 12 plots the minimum safety distance that a
specific robot configuration requires in order to avoid stationary
obstacles, obtained from (13) by instantiating the parameters A, b,
" and the current velocity s.

0

1

2

3

4

5

0

0.5
1

0

10

20

s "

kp
�

ok
1

(a) By velocity, control cycle

1 2 3 4 5

3

6

9

12

s

kp� ok1

(b) By velocity

Figure 12. Safety distance for static safety

Table 7b turns the question around and lists concrete choices for
these parameters and the resulting maximum safe velocity of the
robot that (13) identifies.

Table 8. Passive safety: minimum safe distance and
maximum velocity for select configurations
(a) Minimum safe distance

s
⇥
m

s

⇤
A
⇥
m

s

2

⇤
b
⇥
m

s

2

⇤
V
⇥
m

s

⇤
" [s] kp� ok [m]

1 1 1 1 0.05 0.61
0.5 0.5 0.5 0.5 0.025 0.28
2 2 2 2 0.1 1.42
1 1 2 1 0.05 0.33
1 2 1 2 0.05 0.66

(b) Maximum velocity through corridors and doors

A
⇥
m

s

2

⇤
b
⇥
m

s

2

⇤
V
⇥
m

s

⇤
" [s] s

⇥
m

s

⇤

C
or

rid
or

kp
�

ok
=

1
.2
5
m

1 1 1 0.05 0.77
0.5 0.5 0.5 0.025 0.69
2 2 2 0.1 0.61
1 2 1 0.05 0.4
2 1 2 0.05 1.3

D
oo

r
kp

�
ok

=
0
.2
5
m

1 1 1 0.05 0.12
0.5 0.5 0.5 0.025 0.18
2 2 2 0.1 0
1 2 1 0.05 0.26
2 1 2 0.05 1

Moving obstacles Below, we repeat the control constraint
(23) from Model 3 for accelerating or choosing a new curve in the
presence of movable obstacles. The constraint introduces a new
parameter V for the maximum velocity of obstacles.

kp� ok1 >
s2

2b
+ V

s

b
+

✓
A

b
+ 1

◆✓
A

2

"2 + "(s+ V)

◆

(23*)

Prepared using sagej.cls

Mitsch et al. 35

Fig. 13 plots the minimum safety distance that the robot
needs in order to maintain passive safety in the presence of
moving obstacles. The maximum velocity in presence of movable
obstacles can drop to zero when the obstacles move too fast, the
controller cycle time or the maximum acceleration force are too
large, or when the maximum available braking force is too small.

0

1

2

3

4

5

0

0.5
1

0

10

20

30

s "

kp
�
ok

1

(a) By velocity and control
cycle

1 2 3 4 5

5

10

15

20

s

kp� ok1

(b) By velocity

Figure 13. Safety distance for passive safety

Fig. 14 compares the maximum velocity that the robot can
travel in order to avoid stationary vs. moving obstacles. The
maximum velocity is obtained from (13) and from (26) by
instantiating the parameters A, b, " and the distance to the nearest
obstacle kp� ok. This way of reading the safety constraints (13)
and (26) makes it possible to adapt the maximal desired velocity
of the robot safely based on the current spatial relationships.

2 3 4 5

1.5

2

2.5

3

kp� ok1

s

(a) Static safety: by distance
for " = 0.05

0.3 0.6 0.9

0.5

1

1.5

"

s

(b) Static safety: by control
cycle time for kp� ok1 = 1

2 3 4 5

0.5
1

1.5
2

kp� ok1

s

(c) Passive safety: by
distance for " = 0.05

0.3 0.6 0.9

0.5

1

"

s

(d) Passive safety: by control
cycle time for kp� ok1 = 1

Figure 14. Comparison of safe velocities for static safety and
passive safety with acceleration A = 1 and braking b = 1

Circular and Spiral Motion
Fig. 15a depicts the position and velocity changes of a robot
accelerating on a circle around a center point c = (2, 0). The
robot starts at p = (0, 0) as initial position, with s = 2 as initial
translational velocity and ! = 1 as initial rotational velocity;

Fig. 15d shows the resulting circular trajectory. Fig. 15b and
Fig. 15e show the resulting curve when braking (the robot brakes
along the curve and comes to a complete stop before completing
the circle). If the rotational velocity is constant (!0

= 0), the robot
drives an Archimedean spiral with the translational and rotational
accelerations controlling the spiral’s separation distance (a/!2).
The corresponding trajectories are shown in Figures 15c and 15f.

Proofs for dynamics with spinning (r = 0, ! 6= 0) and
Archimedean spirals (!0

= 0, a 6= 0) are available with
KeYmaera, but we do not discuss them here.

Prepared using sagej.cls

36 International Journal of Robotics XX(X)

2 4 6 8
t

- 2

2

4

6

8

10

pr
x

pr
y

vr

wr

(a) Position (px
r

, py
r

), translational
velocity s and rotational velocity ! for
positive acceleration on a circle.

1 2 3 4

- 2

- 1

1

2

pr
x

pr
y

vr

wr

(b) Position (px
r

, py
r

), translational
velocity s and rotational velocity !
for braking to a complete stop on a
circle.

2 4 6 8 10 12

- 10

- 5

5

10

15

pr
xpr

y

vr

wr

(c) Position (px
r

, py
r

), translational
velocity s and rotational velocity !
for translational acceleration on a
spiral.

1 2 3 4

- 2

- 1

1

2

(d) (p
x

, p
y

) motion plot for
acceleration a.

0.5 1.0 1.5 2.0 2.5

- 2.0

- 1.5

- 1.0

- 0.5

(e) (p
x

, p
y

) motion plot for braking b.

- 10 - 5 5 10

- 5

5

10

(f) (p
x

, p
y

) motion plot for c.

Figure 15. Trajectories of the robot over time (top) or in planar space (bottom).

Prepared using sagej.cls

	Introduction
	Related Work
	Preliminaries: Differential Dynamic Logic
	Testing, Simulation, and Formal Verification
	Differential Dynamic Logic
	Proofs in Differential Dynamic Logic

	Preliminaries: Obstacle Avoidance with the Dynamic Window Approach
	Robot and Obstacle Motion Model
	Robot State and Motion
	Obstacle State and Motion

	Safety Verification of Ground Robot Motion
	Static Safety with Maximum Acceleration
	Passive Safety with Maximum Acceleration
	Passive Friendly Safety of Obstacle Avoidance
	Passive Orientation Safety

	Refined Models for Safety Verification
	Passive Safety with Actual Acceleration
	Passive Safety Despite Uncertainty
	Location Uncertainty
	Actuator Perturbation
	Velocity Uncertainty

	Asynchronous Control of Obstacle and Robot
	Arbitrary Number of Obstacles

	Liveness Verification of Ground Robot Navigation
	Reach a Waypoint on a Straight Lane
	Cross an Intersection

	Monitoring for Compliance At Runtime
	Conclusion and Future Work
	Passive Safety for Sharp Turns
	Liveness with Deadlines
	Reaching a Waypoint
	Crossing an Intersection

	Interpretation of Verification Results
	Safe Distances and Velocities

	Circular and Spiral Motion

