
Compilers: Compiler Design

Lecture Notes on
Program Semantics and Analysis

André Platzer

Carnegie Mellon University ∥ Karlsruhe Institute of Technology
Lecture 12

1 Introduction

Now we have seen how parsing works in the front-end of a compiler and how instruc-
tion selection and register allocation works in the back-end. We have also seen how
intermediate representations can be used in the middle-end. One important question
is the last phase of the front-end: semantic analysis that is used to determine if the input
program is actually syntactically well-formed. Another important question arises in
the first phase of the middle-end: translation of the dynamic aspects of advanced data
structures. Even though both questions belong to different phases of the compiler, we
answer them together in this lecture. The static and dynamic semantical aspects need
to fit together anyhow. Furthermore, the entire compiler has to respect the semantics of
the programming language, so that the behavior of the target assembly program is the
same as the behavior of the source program according to the programming language
semantics.

Some smaller subset of what is covered in this lecture can be found in the textbook
[App98, Ch 7.2], which covers data structures.

2 Semantic Analysis and Static Semantics

Essentially, the semantic analysis makes up for syntactical aspects of the language that
are important for understanding if the program makes sense, but cannot be represented
(easily) in the context-free domain of deterministic parsing. That is, all consistency
checks that need information from the context of the current program location. Typical
parts of semantic analysis include name analysis that is used to identify which particular
variable an identifier x refers to, especially where it has been declared. Is it a local vari-
able? Is it an formal parameter of a function? Is it a global variable (for programming

COMPILERS LECTURE NOTES ANDRÉ PLATZER

https://symbolaris.com/course/compiler.html

L12.2 Program Semantics and Analysis

languages that allow this)? Is it an identifier in a struct? Of course, correct name analy-
sis is important to make sure the right registers or memory locations are accessed when
looking up or changing the value of x. Name analysis is usually solved by reading off
a symbol table with all definitions and their type information from the abstract syntax
tree.

Another part of semantic analysis is type analysis that is used to look up the types of
all identifiers based on the results of name analysis and make sure the types fit. It is
also responsible for simple type inference. If we find an expression

e[t.f + x]

in the source code, then what exactly is the type of the result? And is it a well-typed
expression at all? The answer depends on the type of e which had better be an array
type (otherwise the array access would be ill-typed). The answer also depends on the
type of t which had better be a struct type s and will then be used to lookup the type
of t.f according to the type of the field f declared in s. Finally, the answer depends
on x. And if the result of the addition t.f + x does not produce an integer, the whole
expression still does not type check. It is crucial to find out whether a program with
such an expression is well-typed at all. Otherwise, we would compile it to something
with a strange and arbitrary effect without knowing that the source program made no
sense at all.1

All these answers depend on information from the context of the program. One in-
teresting indicator for a language is how many passes of analysis through the abstract-
syntax tree are necessary to perform semantical analysis successfully. Minimizing the
number of passes used to be a strong design goal in the past with limited computa-
tional resources but modern languages emphasize the convenience and eloquence of
the language.

A simple typing rule is that for plus expressions:

e1 : int e2 : int

e1 + e2 : int

It specifies that if e1 and e2 both have type int then e1 + e2 also has type int.
In the following, we will give typing rules that define the static semantics of source

program expressions.

3 Dynamic Semantics

The static semantics is necessary to make sense of a source code expression. It only
specifies it incompletely, though. We will also explain the dynamic semantics of ex-
pressions, i.e., what their effect is when evaluated. This information is required for the
translation phase in order to make sure that the intermediate language generated for

1Of course, that the value of t.f + x is within the bounds of the array resulting from e also needs to be
checked to avoid strange effects, but that is harder to establish than simple type checking.

COMPILERS LECTURE NOTES ANDRÉ PLATZER

Program Semantics and Analysis L12.3

a particular source code snippet actually complies with the semantics of the program-
ming language, which hopefully fits to the intention that the programmer had in mind
when writing the program.

As a side-note, the job of compiler verification is to make sure that the source program
will be compiled to something that has exactly the same effect as prescribed by the
language semantics, regardless of whether the source program is doing the right thing.
The compiler’s job is to adhere to this exactly. Contrast this to program verification,
where the job is to make sure that the program fits to the intentions that the programmer
has in mind, as expressed by some formal specification of what it is meant to achieve,
e.g., in the form of a set of pre/postconditions.

For describing the dynamic semantics of C0, we define how we evaluate expressions
and statements of the programming language. We need to describe how an expression
e will be evaluated to determine the result. For this purpose, we want to define a (big
step operational semantics) relation e⇒ v that specifies that e, when evaluated, results
in the value v. We want to define the relation e ⇒ v by rules specifying the effect of
each expression like

e1 ⇒ n1 e2 ⇒ n2 n = add(n1, n2)

e1 + e2 ⇒ n
+?

This rule is intended to specify that, when e1 evaluates to value n1 and e2 evaluates to
n2, and value n is the sum of values n1 and n2, then the expression e1 + e2 evaluates
to n. Unfortunately, it does not quite do the trick yet. To see why, we first consider
two other rules. One simple rule that states that constants just evaluate to themselves
(similarly for 5,7,11,42,...)

0⇒ 0
0

And one rule that evaluates a variable identifier x. But what should a variable evaluate
to? Well that depends on what its value is. The value of a variable identifier is stored
at some address in memory (or a register, which we talk about in a moment). Let’s
denote the memory address where x is stored by addr(x). This memory address could
be for a local variable on the stack, for a spilled function argument on the stack (near
the beginning of the stack frame), or somewhere in a global data segment for global
variables. Either way, it is in memory. Thus when we evaluate a variable identifier, the
result is going to be its value from the memory:

x variable identifier

x⇒M(addr(x))
id?

Yet we need to know the memory contents for this to make sense. So let us reflect this
in the notation and change our judgment to e@M ⇒ v to say that expression e, when
evaluated in memory state M evaluates to value v.

x variable identifier

x@M ⇒M(addr(x))
id

COMPILERS LECTURE NOTES ANDRÉ PLATZER

L12.4 Program Semantics and Analysis

Yet now what about local variables x that are stored in registers or function arguments
that have been passed in registers? The precise option would be to also include the
register state R into the judgment e@M@R → v. Then a variable x that is stored in the
register address addr(x) = %eax would evaluate to R(%eax) instead of to M(addr(x)).

x variable identifier x stored in register

x@M@R⇒ R(addr(x))
id1

x variable identifier x stored in memory

x@M@R⇒M(addr(x))
id2

That is the formally precise way to do it. The only downside is that the notation is rather
clumsy. So instead, what we will do is just simply pretend the registers would be a spe-
cial part of memory state M stored at the special addresses M(%eax),M(%rbx),M(%rdi),
This really doesn’t change anything except making the notation easier to read. Formally
this notation corresponds to considering the cross product M × R of the real memory
state and the register state and just calling the result M again.

Unfortunately, however, the above approach is still only sufficient for describing pure
programming languages where no expression can have an effect, except computing its
result. The C0 programming language already has no unnecessary side effects during
expression evaluation like preincrement/postincrement etc. Yet it still allows function
calls in expressions, and function calls can have arbitrary side effects. In order to make
sure we do not miss those effects in the semantics, we thus carry an explicit system
state M around through the evaluation. We thus look at the judgement e@M ⇒ v@M ′

capturing that an expression e in system state M evaluates to value v and that this
evaluation results in the new system state M ′. Here, we primarily consider the memory
state M , but other state can be tracked too with this principle. Thus the above rule turns
into the more precise

e1@M ⇒ n1@M ′ e2@M ′ ⇒ n2@M ′′ n = add(n1, n2)

e1 + e2@M ⇒ n@M ′′
+

Unlike the first rule (+?), the new rule now captures the semantics of left-to-right eval-
uation order. In the first rule (+?), we could still supply the premisses in an arbitrary
order and were not restricted to evaluating the subexpressions e1 and e2 in any par-
ticular order. The new rule (+) explicitly requires left-to-right evaluation, because the
memory state M ′ resulting from evaluating e1 is the starting state for evaluating e2,
whose resulting state M ′′ will be the resulting state of evaluating the whole expression
e1 + e2.

The static and dynamic semantics together give meaning to all elements of the pro-
gramming language. We treat the static and dynamic semantics for various elements
of the C0 programming language at the same time in the following, even if we may
develop it incrementally in class.

COMPILERS LECTURE NOTES ANDRÉ PLATZER

Program Semantics and Analysis L12.5

4 Small Types

So far, we have only used a programming language with minimal typing. Basically, the
only two types so far were int and bool and are easily distinguished by their respective
syntactical occurrence in the language. Only int had been allowed as a type for declared
variables, and bool only occurred in the test expressions for if, while and for.

Real programming languages, including C0, have more serious types.

Types τ ::= int | bool | structs | τ∗ | τ [] | a

where a is a name of a type abbreviation for some type τ , which has been introduced
in the form

typedef τ a

We mostly ignore the other C0 types char and string in this course, because they don’t
add anything substantially different.

For discussing the layout of the various types, we distinguish between small types
that can fit into a register and large types that have to be stored in memory. First we
discuss all small types. For the purpose of memory layout and register handling we
define the size |τ | of small types τ as follows:

|int| = 4

|bool| = 4

|τ ∗ | = 8

|τ []| = 8

That is int and bool are 32-bit and pointers τ∗ are represented by 64-bit addresses on 64-
bit machines. Arrays themselves are large values and array constants would be large,
because we cannot pass a whole array in a register. But C0 allocates arrays on the heap
like pointers and they are only represented by their starting address. Hence, variables
of array type have a small type, because we can fit the array address into a register.

Especially we have data of two different sizes. Pointers are allocated from the heap
memory by the runtime system using the alloc(τ) library function that returns fresh
chunks of memory at a location divisible by 8 ready to hold a value of type τ . In C-like
programming languages, the null address 0 (denoted by the constant NULL) is special
in that it will never be returned by alloc(τ), except to indicate that the system ran out
of memory altogether. All memory access to the null pointer is thus considered bad
memory access.

5 Large Types

Array contents and structures are large types, because they do not (usually) fit into a
register. We define their size as follows

|s| = pad(|τ1|, . . . , |τn|)

COMPILERS LECTURE NOTES ANDRÉ PLATZER

L12.6 Program Semantics and Analysis

when the structure s has been defined to be

struct s {
τ1 f1;

τ2 f2;

...
τn fn;

}

The function pad adds the sizes of its arguments, adding padding as necessary in be-
tween and at the end. That is, elements of type int and bool are aligned at memory
addresses that are divisible by 4. Elements of type τ∗ and τ [] are aligned at memory ad-
dresses divisible by 8. A compiler remembers the byte offset of field fi in the memory
layout of structure s in order to find it later. We denote it by off(s, fi).

Similarly to distinguishing between small and large types, we distinguish between
small values (values of a small type) that fit into a register and large values (values of a
large type) that have to be stored in memory.

6 Structs

The typing rule for the static semantics of structs is simple and just says that an access to
a field f of a struct value e of type s results in a value of type τ , where τ is the declared
type of field f in s:

e : s struct s {. . . τ f ; . . .}

e.f : τ

To give a dynamic semantics to structs, we define the operational semantics of what
happens when we evaluate an expression involving structs. When evaluating e.f , we
just evaluate e to an address a and then lookup the memory contents at a with the offset
off(s, f) belonging to the field f of struct s in memory, i.e., M(a+ off(s, f)):

e : s struct s {. . . τ f ; . . .} e@M ⇒ a@M ′ τ small

e.f@M ⇒M ′(a+ off(s, f))@M ′

Unfortunately, this only works well for small types whose values can be returned into
registers right away. For large types, this cannot really work well, because the mem-
ory M(a) at location a does not even contain all information, and we cannot store the
whole object in a single register anyhow. For large types, instead of a value, evaluation
produces an address instead, relative to which the content will be addressed further.

e : s struct s {. . . τ f ; . . .} e@M ⇒ a@M ′ τ large

e.f@M ⇒ a+ off(s, f)@M ′

COMPILERS LECTURE NOTES ANDRÉ PLATZER

Program Semantics and Analysis L12.7

7 Pointers

To explain the static semantics of pointers and pointer access, there are simple rules:

e : τ∗

∗e : τ alloc(τ) : τ∗ NULL : τ∗

If pointer e has the type τ∗ of a pointer to an element of type τ , then the pointer deref-
erence ∗e has the type τ of the element. Allocation of a piece of heap memory for data
of type τ gives a pointer of type τ∗, i.e., pointing to τ . The last typing rule is a little
tricky, because it gives NULL all pointer types at once. This is necessary, because the
same NULL pointer is used to represent not-allocated regions of arbitrary types. In
particular, the type of NULL depends on its context, that is, on the expected type that
the context wants NULL to have in order to make sense of it. In order to avoid ambi-
guity of the typing, we disallow ∗NULL. The expression ∗NULL is tricky to type-check
because it can lead to ambiguous situations. For instance (∗NULL).f could have a lot
of types: essentially all types of field f in arbitrary structs declared in the program.

The operational semantics of pointer evaluation can be described using the notation
M(a) to denote the content of memory address a. The operational semantics for a
pointer access ∗e evaluates e to an address and then returns the memory contents at
that address. Dereferencing the NULL pointer must raise the SIGSEGV exception. In an
implementation this can be accomplished without any checks, because the operating
system will prevent read access to address 0 and raise the appropriate exception just
by having page 0 unmapped in the virtual-memory page table. When dereferencing
pointers that store address a, which are not the null pointer, we obtain their memory
contents M(a) (for small types):

e : τ ∗ e@M ⇒ a a ̸= 02 τ small

∗e@M ⇒M(a)
?

e : τ ∗ e@M ⇒ a a ̸= 0 τ large

∗e@M ⇒ a
?

For large types, the memory M(a) at location a does not even contain all information,
and we cannot store the whole object in a register anyhow. So instead, ∗e evaluates to
a itself, relative to which the content will be addressed further. When we dereference a
pointer that is null, the program terminates with a segmentation fault:

e : τ ∗ e@M ⇒ a a = 0

∗e@M ⇒ SIGSEGV
?

For memory allocation, however, we run into some issues when we want to specify
what it is doing. After all, memory allocation modifies the memory by finding a free
chunk of memory and by clearing the memory contents to 0. Thus memory changes
from the old memory M to the new memory M ′. We model this by changing our

2Machines implement this check by having page 0 unmapped in the virtual-memory page table.

COMPILERS LECTURE NOTES ANDRÉ PLATZER

L12.8 Program Semantics and Analysis

judgement from e@M ⇒ e′ into e@M ⇒ e′@M ′, in which we also specify the new
memory state M ′.

M ′ like M but M ′(a) = . . . = M ′(a+ |τ | − 1) = 0 for fresh locations

alloc(τ)@M ⇒ a@M ′

The values stored in a freshly allocated location must be all 0. This can be achieved
with calloc() and means that values of type int are simply 0, values of type bool are
false, values of type τ ′∗ are NULL pointers, all fields of structs are recursively set to 0,
and values of array type have address 0 which is akin to a NULL array reference.

This change of judgment to e@M ⇒ e′@M ′ is reflected in the subsequent modifica-
tions of the above rules (indicated in gray) that now carries the memory state through.
When doing that, we also notice that expression evaluation during pointer dereference
(just as well as all other expression evaluation) can actually modify the memory con-
tents! We fix this deficiency in our previous specification right away:

e : τ ∗ e@M ⇒ a@M ′ a ̸= 0 τ small

∗e@M ⇒M ′(a)@M ′

e : τ ∗ e@M ⇒ a@M ′ a ̸= 0 τ large

∗e@M ⇒ a@M ′

e : τ ∗ e@M ⇒ a@M ′ a = 0

∗e@M ⇒ SIGSEGV@M ′ NULL@M ⇒ 0@M

When no function calls with side effects (like memory allocation) occur in the expres-
sions, we need not distinguish between M and M ′ during expression evaluation.

Note, however, that when combining pointers and structs, we cannot necessarily rely
on the operating system to trap null pointer dereferencing. For a very large struct s and
a pointer p : s∗, dereferencing a field p−>f (which desugars into (∗p).f), the target
address may already be beyond the unmapped virtual memory page 0 if f has a large
offset. Similar observations hold for large array indexing.

8 Arrays

Arrays are almost like pointers. Both are allocated. The difference is that C0 pointers
disallow pointer arithmetic, whereas arrays can access contents at arithmetic integer
positions randomly. In particular, in arrays, the question rises what to do with accesses
out of bounds, i.e., outside the array size. Does it just access the memory unsafely at
wild places, or will it be detected safely and raise a runtime exception? In early labs,
we will follow the unsafe C tradition and accept more arbitrary behavior. In later labs,
we will switch to safe compilation more like in Java. First, we give simple typing rules
explaining the static semantics:

e : τ [] t : int

e[t] : τ

e : int

alloc array(τ, e) : τ []

COMPILERS LECTURE NOTES ANDRÉ PLATZER

Program Semantics and Analysis L12.9

Now we consider the operational semantics. Note that the evaluation order in array
access (like everywhere else) is strictly left-to-right. So expression e[t] will be evaluated
by evaluating e first and t second, and then accessing the result of e at the result of t:

e : τ [] e@M ⇒ a@M ′ t@M ′ ⇒ n@M ′′ a ̸= 0 M ′′(a+ n|τ |) allocated τ small

e[t]@M ⇒M ′′(a+ n|τ |)@M ′′

e : τ [] e@M ⇒ a@M ′ t@M ′ ⇒ n@M ′′ a ̸= 0 M ′′(a+ n|τ |) allocated τ large

e[t]@M ⇒ a+ n|τ |@M ′′

For safe array access with array bounds check, we add checks to the above rules ensur-
ing that 0 ≤ n < N where N is the size of the array, which has to be stored at the time
of allocation. We have two choices. The liberal but unsafe choice like in C where we
leave the evaluation of array access undefined in all other cases that do not match ei-
ther rule. Or an unambiguously defined semantics choice where we say precisely how
array access fails:

e : τ [] e@M ⇒ a@M ′ t@M ′ ⇒ n@M ′′ a ̸= 0 M ′′(a+ n|τ |) not allocated

e[t]@M ⇒ SIGSEGV@M ′′

For the case where the address computation of the array itself yields NULL, we can
either raise a SIGSEGV before evaluating t or after. Both choices are reasonable. The
early choice saves operations in case of a SIGSEGV. The late choice, however, reduces
the number of times that violations have to be checked, which we thus prefer:

e : τ [] e@M ⇒ a@M ′ a = 0

e[t]@M ⇒ SIGSEGV@M ′ or

e : τ [] e@M ⇒ a@M ′ t@M ′ ⇒ n@M ′′ a = 0

e[t]@M ⇒ SIGSEGV@M ′′

The difference between those two choices is not gigantic, because it only affects the
memory state after an abnormal termination of the program. Getting this part of the
semantics exact is more important in programming languages like Java where throwing
and catching exceptions is used routinely and, in fact, some programs may rely on
exceptions being raised all the time and in the right order in order to function properly.

For the safe array access semantics with array bounds checks, failed checks for array
bounds result in SIGABRT, where N is the size of the array:

e : τ [] e@M ⇒ a@M ′ t@M ′ ⇒ n@M ′′ a ̸= 0 (n < 0 ∨ n ≥ N)

e[t]@M ⇒ SIGABRT@M ′′

Allocation of arrays is very similar to allocation of pointers, except that we also check
if the size makes sense:

e@M ⇒ n@M ′

n ≥ 0
M ′′ like M ′ but M ′′(a) = . . . = M ′′(a+ (n− 1)|τ |) = 0 for fresh locations

alloc array(τ, e)@M ⇒ a@M ′

COMPILERS LECTURE NOTES ANDRÉ PLATZER

L12.10 Program Semantics and Analysis

Values in a freshly allocated array are all initialized to 0. This can again be achieved
using calloc.

Note again, that when combining pointers and arrays, we cannot necessarily rely
on the operating system to trap null pointer dereferencing. For a pointer p : τ []∗ to a
very large array, accessing (∗p)[70000] may already lead to a target address beyond the
unmapped virtual memory page 0.

C and C0 do not have special support for multidimensional arrays, but just consider
int[][] as (int[])[], i.e., an array of arrays of integers. In ragged representation, this two-
dimensional array is represented as a one-dimensional array of pointers to arrays. This
results in row-major ordering in which the cells in each row are stored one after the
other in memory. In ragged representation, there is no guarantee in general that the
rows are stored contiguously without gaps (or reorderings). There isn’t even a guaran-
tee that all rows are of the same length.

In contrast, statically declared arrays (which are not allowed in C0) are usually stored
contiguously in row-major order, because the dimensions are known statically. For
instance,

int matrix[2][3] = {{1, 2, 3}, {4, 5, 6}};

corresponds to the matrix(
1 2 3
4 5 6

)
which is stored in memory as 1 2 3 4 5 6

Side-note: an odd thing in C is that x[i] and i[x] are both valid array accesses and
equivalent, because both are just defined as ∗(x+ i). C even allows 2[x] instead of x[2].

9 Assignments to Lvalues

So far, we have seen how to define the static and dynamic semantics of a program-
ming language like C0. While we have seen how to give a meaning to expressions by
evaluation, we have not yet given a meaning to statements.

Assignments to primitive int variables are simple and ultimately just implemented
by a MOV instruction to the respective temp (see Lecture 2 and Lecture 3). In more
complicated languages with structured data, we can assign to other expressions such
as a[10 − i] or ∗p or x.f or even ∗x.f or (∗x).f alias x−>f . Not all expressions qualify
as proper expressions to which we can assign to. It makes no sense to try to assign
a value to x + y nor to f(∗x − 1) that may only appear on the right-hand side of an
expression (rvalues). The expressions that make sense to appear on the left-hand side
of an expression as they identify a proper location (say in memory) are called lvalues.
Lvalues are well-typed expressions of the form

x | ∗ e | e.f | e[t] | e−>f

for (well-typed) expressions e, t, primitive variable x and struct field f . The only syn-
tactically valid assignments in C0 are of the form l=e or l+=e and so on for an lvalue

COMPILERS LECTURE NOTES ANDRÉ PLATZER

https://symbolaris.com/course/Compilers/02-instsel.pdf
https://symbolaris.com/course/Compilers/03-regalloc.pdf

Program Semantics and Analysis L12.11

l of type τ and an arbitrary (rvalue) expression e of type τ . No implicit type cast
conversions or coercions happen in C0. While some programming languages allow as-
signments to large types and give it a memcopy semantics, C0 does not do so, because
it is not clear for pointer types if a shallow or deep copy would make more sense. Thus,
in C0, only small types can be assigned to directly.

An lvalue represents a destination location for the assignment, which is either a vari-
able x or an address a in memory. Essentially, for determining the target of an lvalue,
we use the rules of the structural operational semantics that we have discussed so far,
except that we stop at location a before actually doing the memory access M(a). More
precisely, we define the relation v@M ⇒l d@M ′ to say that lvalue v, when evaluated in
memory state M represents location d and this evaluation changed the memory state to
M ′. It is defined as:

x@M ⇒l x@M

e@M ⇒ a@M ′

∗e@M ⇒l a@M ′
e : s e@M ⇒ a@M ′

e.f@M ⇒l a+ off(s, f)@M ′

e1 : τ [] e1@M ⇒ a@M ′ e2@M ′ ⇒ n@M ′′

e1[e2]@M ⇒l a+ n|τ |@M ′′

The side conditions and failure modes for the address computation when evaluating
lvalue e1[e2]@M ⇒l ... of an array access are elided but are just like those for the rvalue
evaluation e1[e2]@M ⇒

Using this lvalue relation ⇒l, we can define the effect of an assignment v = e. The
semantics of a statement does not produce a value, it just has an effect on memory.
Thus we just write e@M ⇒ @M ′ to describe the transition. As a shorthand notation,
we write M{a 7→ w} for the memory state M ′′ that is obtained from a memory state M
by changing the contents of memory location a to the value w

v@M ⇒l x@M e@M ⇒ w@M ′

v = e @M ⇒ @M ′{addr(x) 7→ w}

v@M ⇒l a@M ′ e@M ′ ⇒ w@M ′′ M ′′(a) allocated

v = e @M ⇒ @M ′′{a 7→ w}
v@M ⇒l a@M ′ e@M ′ ⇒ w@M ′′ a = 0

v = e @M ⇒ SIGSEGV@M ′′

The effect of an assignment is undefined otherwise. In particular, whether the assign-
ment segfaults during a bad access or not may (at present) depend on whether the
compiler implements out of bounds checks. In later labs, you will implement a safe
compiler for C0 where out of bounds problems have to be checked. The difference be-
tween the first two rules is whether the lvalue evaluates to a primitive variable name
x (in which case the memory M also cannot have changed), so that the effect will be
to change the memory contents of the corresponding address addr(x), or whether the

COMPILERS LECTURE NOTES ANDRÉ PLATZER

L12.12 Program Semantics and Analysis

lvalue evalutes to an address = right away. Notice that we would not necessarily need
the first rule had we defined the following rule instead:

x@M ⇒l addr(x)@M

We prefer to split up the rules, however, to make the difference in required actions more
apparent. For example, the memory state will not change when determining lvalues of
primitive variables and we do not need to check whether the memory has been allo-
cated because that is by construction (e.g., local variables are assigned statically either
to registers or to positions on the stack).

Note especially, that for an assignment v = e, the lvalue v will be evaluated to a
destination location before the right-hand side expression e will be evaluated. Only
when both v and e have been evaluated, the assignment to v will actually be performed
and the destination address a will only be accessed then. In particular:

1. *e = 1/0 will raise SIGFPE when e evaluates without any other exception, be-
cause e evaluates to an address (without complications) and then, before this
memory location is even accessed, the expression 1/0 is computed which throws
an exception.

2. e[-1] = 1/0 should raise a SIGABRT in safe mode, assuming e evaluates without
any other exception during evaluation of e, because the target address computa-
tion for the lvalue itself failed before evaluating the right-hand side.

3. e->f = 1/0 will raise SIGSEGV when e evaluates to NULL without any other
exception during evaluation of e.

In principle, compound assignment operators ⊕= for an operator ⊕ ∈ {+,−, ∗, /, ...}
work like assignments, but with the operation ⊕. Yet, the meaning of compound as-
signment operators changes in subtle ways compared to what it meant for just prim-
itive variables. Now compound assignments are no longer just a syntactic expansion,
because expressions can now have side effects and it matters how often an expression is
evaluated. For a compound assignment e[t] += e’, the lvalue of e[t] is only computed
once, quite unlike for the assignment e[t] = e[t] + e’, where e[t] is evaluated to an
address twice. A compound assignment

v ⊕= e

with an operator ⊕ executes as

v@M ⇒l x@M e@M ⇒ w@M ′

v = e @M ⇒ @M ′{V (x)← V (x)⊕ w}

v@M ⇒l a@M ′ e@M ′ ⇒ w@M ′′ M ′′(a) allocated

v ⊕= e @M ⇒ @M ′′{M ′′(a)←M ′′(a)⊕ w}

COMPILERS LECTURE NOTES ANDRÉ PLATZER

Program Semantics and Analysis L12.13

10 Function Calls

Suppose we have a function call f(e1, . . . , en) to a function f that has been defined as
τ f(τ1 x1, . . . , τn xn) {b}. We consider a simplified situation here and just assume there
is a return variable called %eax in the function body b.

e1@M ⇒ v1@M1, e2@M1 ⇒ v2@M2, . . . , en@Mn−1 ⇒ vn@Mn b@M ′
n ⇒ @M ′ τ small

f(e1, . . . , en)@M ⇒M ′(%eax)@M ′

where M ′
n is like Mn, except that the values vi of the arguments ei have been bound to

the formal parameters xi, i.e., M ′
n(x1) = v1, . . . ,M

′
n(xn) = vn.

And now we remember that allocation is actually a function call in C0. Consequently,
in the intermediate representation chosen for our C0 compiler, side effects due to alloca-
tion can only occur at the statement level not nested within expressions. Hence, specify-
ing the semantics for the intermediate representation is actually easier (it doesn’t need
complicated new memory M ′). But, unlike its intermediate representation, C0 itself
still needs to respect memory state passing orders carefully.

11 Type Safety

One important property of programming languages is whether they are type-safe. In
a type-safe language, the static and dynamic semantics of a programming language
should fit together. If we have an expression e in a program that has the type int, then
we would be rather surprised to find at runtime a result of evaluating e that is a float.
If this could happen, then it is rather hard to make sure that the program will always
execute reasonably even if the compiler accepted it as a well-typed program.

What we expect from the static and dynamic semantics of a type-safe language is
that types are preserved in the following sense. If we have a program that is well-
typed according to its static semantics and we follow an evaluation step of the dynamic
semantics, then the resulting program is still well-typed (type preservation). Otherwise
what can happen is that we run a well-typed program and suddenly break the well-
typing leading to values out of the type ranges. That is, the property that we want (and
need to prove for our static and dynamic semantics) is that

type preservation: If e : τ and e⇒ v then v : τ

For C0 (and other impure programming languages), the statement is a bit more in-
volved, because the dynamic semantics refers to the memory state M . The program
reads values from memory and stores values back in memory. If the program would
store an int into M(a) and then later on expect to read a pointer from M(a), then type-
safety is broken. Consequently, type-preservation is a property of the form

If e : τ and e@M ⇒ v@M ′ and M is okay then v : τ and M ′ is okay

for a suitable definition of when a memory state M is “okay”, i.e., the types of the values
that it stores are compatible with what the program expects.

COMPILERS LECTURE NOTES ANDRÉ PLATZER

L12.14 Program Semantics and Analysis

The other property that one would expect from type-safe languages is that the dy-
namic semantics always knows what do do (with well-typed programs). We do not
want to be stuck in the middle of a run or an interpretation of the program by the dy-
namic semantics rules not knowing where to go and not having a rule that allows a
transition. For instance, if the program contains the expression e+ f that is well-typed
according to the static semantics and the dynamic semantics does not know how to
evaluate the odd expression “test”+0.5, then we better make sure that the evaluation of
e can never lead to a string “test” while, at the same time, the evaluation of f leads to
the float 0.5.

progress: If e : τ and e is not a final value then e→ e′ for some e′

Again, the real definition of progress is complicated by the fact that we need to consider
memory M .

The conjunction of type preservation and progress properties is called type safety
[WF94]. Without the progress property, every language could be given a trivially type-
preserving dynamic semantics that just stops evaluating whenever it hits an expression
that would not preserve types. But that doesn’t help write safer programs.

Quiz

1. Which of the rules conveys important secret information about how to implement
a compiler correctly that are easy to miss?

2. How many ways are there to implement accesses like (∗a)[i]?

3. Why is 2[i] not allowed in the C0 language when it is allowed in C?

4. Is it important how exactly the compiler implements things like e[-1] = 1/0 or
not?

5. How can you make sure that you always generate the most effective code for the
subtleties in the rules? What information do you need for that? Define a dataflow
analysis that solves (some) of these issues.

6. In the rules discussed here, what would happen if you would move the primes of
memory M around? Which permutations still give a good language semantics?
And which permutations are still good for implementation purposes? And which
permutations spoil everything?

7. Under which assumptions can you implement a compiler correctly using the rules
that do not track @M?

8. Can you write a compiler that does not distinguish between Lvalues and Rvalues?
Can you write a parser that does not?

COMPILERS LECTURE NOTES ANDRÉ PLATZER

Program Semantics and Analysis L12.15

9. Should programming languages have multidimensional arrays or should they
have an understanding of nested arrays of arrays of arrays instead?

10. Some old C libraries use one-dimensional arrays. These libraries were often trans-
lated from Fortran. They probably just didn’t know how to write proper C, did
they?

11. Suppose you hired a high-school student to translate a Fortran library for numer-
ical computation to C. Suppose it doesn’t work or occasionally produces unex-
pected results. What is your first question?

12. Why is there a difference comparing e=e+a and e+=a? Should there be a differ-
ence? Doesn’t this difference only confuse the user?

13. List all advantages and disadvantages that type preservation has when writing a
compiler.

14. List all advantages and disadvantages that type preservation has when using a
compiler.

15. List all advantages and disadvantages that type progress has when writing a com-
piler.

16. List all advantages and disadvantages that type progress has when using a com-
piler.

17. Is your job as a compiler designer easier if you can change the static semantics of
the programming language? How?

18. Is your job as a compiler designer easier if you can change the dynamic semantics
of the programming language? How?

19. Is your job as a compiler designer easier if you can change the type preservation
aspects of the programming language? How?

20. Is your job as a compiler designer easier if you can change the type progress as-
pects of the programming language? How?

21. In the last questions: what are the downsides for the user?

22. You want to add threads to C0. Which rules do you need to change for that and
how? Where are the difficulties?

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge Uni-
versity Press, Cambridge, England, 1998.

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type
soundness. Inf. Comput., 115(1):38–94, 1994. doi:10.1006/inco.1994.1093.

COMPILERS LECTURE NOTES ANDRÉ PLATZER

https://doi.org/10.1006/inco.1994.1093

	Introduction
	Semantic Analysis and Static Semantics
	Dynamic Semantics
	Small Types
	Large Types
	Structs
	Pointers
	Arrays
	Assignments to Lvalues
	Function Calls
	Type Safety

