Compilers: Compiler Design

Lecture Notes on
Abstract Interpretation

André Platzer

Carnegie Mellon University || Karlsruhe Institute of Technology
Lecture 28

1 Introduction

Simple examples of abstract interpretation type ideas in more classical situations in-
clude sign abstraction of values into {—, 0, +, 7} or abstraction of values by remainders
mod 4 [WM95, Chapter 10]. The focus is on abstract interpretation uses and their con-
nections with compilation and program analysis. This is a wide field and easily the
topic of a whole semester. More information on abstract interpretation can be found in
[CC92, CC77, CC79] and [WM95, Chapter 10].

2 Abstract Interpretation by Example

Abstract interpretation generalizes the theory of monotone frameworks and dataflow
analysis to a general principle of analyzing programs by defining an abstract semantics
for it [CC92, CC77, CC79, WM95]. In order to show the principle of abstract interpre-
tation, without having to dig too much into the details, we consider an example where
we abstractly interpret a program but still keep using monotone frameworks.

Suppose we want to check the property whether a variable x may be 0, which is a
principle that can be useful for null pointer exception tests. As domain L for this we just
choose the Boolean lattice {true, , false}. The operator | | is just logical disjunction (V).
The flow relation is the forward control flow. Initialization is false, because we now
assume that pointers cannot be null unless they are assigned null. Transfer functions at
the nodes make sense to choose from the constant functions true, false and the identity
function id.

COMPILERS LECTURE NOTES ANDRE PLATZER

https://symbolaris.com/course/compiler.html

L28.2 Abstract Interpretation

The transfer function for z := 1 will be ¢rue, the one for z := 0 will be false and the
transfer function for y := ... will be i¢d. By fixed-point iteration on the above example we
find that = 1 is possible after the program terminates. For a must analysis, instead,
we would get that z = 1 is not necessarily true after the program terminates.

For multiple variables, we can choose a Cartesian product {¢rue, false}™ of the Boolean
lattice and use projections to coordinates as further transfer functions for copying the
value for y over to x ata move x := y.

Another example is an abstract interpretation that performs general analysis for con-
stant propagation. The property space has the form {x = L,z =7} U{z =v : v € Z},
where | means is the bottom of the semilattice for undefined, x = ? means that z has
different possible nondeterministic values and z = v for a number v means that we
can be certain that « will always have value v at this program point. Let’s look at an
example. We initialize with no information (L) at all points, except the program init
block, where we start with a nondeterministic initial value ¢ = ?:

{i=7?,j=?k=2?}

i=5;j7=0k=0;

{i=Ll,j=1,k=1}

while (j <= 1) {
{i=Ll,j=1,k=1}
i=1i+2, k=k+j;j=j+1
{i=L,j=1 ,k=1}
i=1i-2
{i=1,j=1 ,k=1}

}

{i:J_,j:J_,k:J_}

Now we can execute the first line in the abstract semantics and then enter the loop in
the abstract semantics and execute the loop body once

{i=?,j=?,k=?}

i=5j7=20;k=0;

{i=5,j=0,k=0}

while (j <= 1) {
{i=5,j=0,k=0}

COMPILERS LECTURE NOTES ANDRE PLATZER

Abstract Interpretation L28.3

i=1i+2, k=k+j;j=j+1
{i=7,j=1,k=0}
i=1i-2
{i=5,j=1,k=0}
}
{i=Ll,j=1 ,k=1}

With those abstract values, we will repeat the loop, but we have to merge the previous
information {i=5,j=0,k=0} from before the loop with the current information {i=5,j=1,k=0}
from the end of the loop body and find a joint representation in the property space lat-
tice by the |_| operator, giving {i=5,j=? k=0} to keep the common i=5,k=0 but nonderter-
ministically overapproximate j with its multiple possible values. Then we execute the
loop body again

{i=?,j=2?,k=?}
i=5;j=20k=0;
{i=5,j=0,k=0}

while (j <= 1) {

{i=5,j=?,k=0}

i=1i+2, k=k+j;,j=j+1
{i=7,j=?k=2}

i=1i-2

{i=5,j=?,k=2}

}

{i=L,j=1,k=1}

Again, merging the property values by the | | operator and executing the loop body
gives

{i=7?,j=?,k=2}

i=5;j=20,k=0;

{i=5,j=0,k=0}

while (j <= 1) {
{i=5,j=?,k=?}

i=1i+2, k=k+j;j=j+1
{i=7,j=?,k=2?}

i=1i-2

{i=5,j=?,k=?}

}
{i=5,]=?,k=?}

Here the property value at the loop entry didn’t change, so we can propagate to the
loop exit and the analysis terminates. Now we know, as good as our abstract semantics
could represent, what values the variables can have at the various program points.

COMPILERS LECTURE NOTES ANDRE PLATZER

O O N ONUT W IN RO

O O N ONUl W IN RO

Q= WP~ o

L28.4 Abstract Interpretation

3 Abstract Interpretation by Example

Consider the following simple program

x =1

while (x<1000) {

A run in the concrete semantics of the above program would start with the concrete
state x = L,y = L where the initial value of z,y in line 0 is unknown. The program
would do 999 iterations through the loop after which it terminates with the state y =
x = 1000. Concrete execution just does not help much for static analysis of programs in
general, because we won’t know the dynamic data until runtime.

Instead, let us consider an abstract run in an abstract semantics where variables take
on intervals as values (due to Cousot and Cousot [CC77]):

L ={[a,b] : a,b € NU{+o0, —0c0}}

To unify notation, we write [—o0, 5] for the left-open interval (—oo, 5] here. Now a run
of the above program in the interval abstract domain gives after 1 iteration

{1‘ = [_00700]79 = [_OO’OO]}

x =1

{:E = [171]>y = [—O0,00]}

while (x<1000) {
{$:[1’1]7y:[_oovoo]}
x =x + 1
{x:[2’2]7y:[_oovoo]}

y =X

{CE = [—O0,00],y = [_OO’OO]}

x =1

{z =[1,1],y = [-00, 00| }

while (x<1000) {
{x:[172]7y:[_oovoo]}
x =x + 1

COMPILERS LECTURE NOTES ANDRE PLATZER

NeRNe N o)

O O N ONUl W IN RO

O O N ONUl W IN PO

(en]

Abstract Interpretation L28.5

{x = [233]7y = [_OO>OO]}

}

y =X
and after 3 iterations where the information from lines 2 and 6 is merged to line 4
{z = [-00,00],y = [-00, 0]}
x =1
{z = [1,1],y = [-00,00]}
while (x<1000) {
{z=[1,3],y = [-00,00]}
x =x +1
{z =124,y = [-00,00]}

We could keep on iterating, but this still takes an awfully large number of iterations to
figure out, since the loop count is 1000. If the bound is not computable statically, we do
not even know how often to iterate.

We can iterate until we reach a fixpoint. And we can also speed up convergence by
jumping ahead in the lattice using a widening operator V : L x L — L that combines
information from two lattice elements to a joint overapproximation of the two. For
intervals let us jump ahead to +0o0 whenever our interval bounds are not inclusive:

a ifa<ad b ift <b

—oo otherwise |~ | +oo otherwise
So in the 4th iteration, instead of doing a standard image iteration, let us widening for
computing line 4 from the previous two values [1,3] V [1, 4] = [1, o0o]:

[a,b] V [d/,b] =

{.’L': [O0,00],y— [S OO]}
x =1
{CL‘ = [171 Y = [_OO’OO}}
while (x<1000) {
{z = [1,00],y = [—00, 00|}
x =x +1
{z = [2,00],y = [—00, 00|}
t
y =X
In iteration 5, we obtain precise information by intersecting with the loop guards
{# = [~o0,00],y = [~00, oq]}
x =1

COMPILERS LECTURE NOTES ANDRE PLATZER

S O O NJONU1 =W

—_

IO UOT = WIDN - O

L28.6 Abstract Interpretation

{z =[1,1],y = [~o0,] }

while (x<1000) {
{x =1[1,999],y = [—00, 0] since z =[1,00]N[1,999] = [1,999]}
x =x+1
{x =12,1000],y = [—o0, 0] }

{x = [1000, 1000}, y = [-o00,00] since x = [2,1000] N [1000, 0] = [1000,1000]}
y =X
{z = [1000, 1000}, y = [1000, 1000] }
What we want the widening operator V to satisfy is that it is like a union (U) but
could be a bigger element of the lattice:

z<aVy y<zVy

We also want iterated uses of the widening operator to become a fixpoint eventually.
That is
:EoVﬂ?lVfEQVSL‘gv e

is a finite sequence, for any z; € L.

This seems very powerful and it is, as a framework for static program analysis. The
particular abstract domain of intervals alone, however, is insufficient. A simple vari-
ation of the above example shows that the example is misleading and real programs
more complicated:

{CCZE—OO,OO],y—[OO’OO]}
{LU = [171]73/ = [—O0,00]}
y =1
{.T:[l,l,y:[l,l]}
while (x<1000) {
{z=11,999],y = [1,00] since z =[1,00]N[1,999] = [1,999]}
x =x + 1
{x =[2,1000],y = [1,00] }
y=y+1
{x =[2,1000],y = [2,00] }

}
{ = [1000,1000],y = [1,00] since = = [2,1000] N [1000,c0] = [1000, 1000]}

This result is perfectly correct but rather useless as far as y is concerned, because it
does not constrain the values of y, except for positivity, simply because y did not occur
directly in the loop exit condition.

But the abstract interpretation framework still applies. Abstract domains that can
handle the above example need correlations of variables, i.e, they need to capture vari-
able correlations like 0 < x—y < 1. Difference-bounds matrix [Min01] are a fast abstract
domain for this purpose. General convex polyhedra can be useful too. This is possible
but out of scope for this lecture. We only show the cheaper difference logic, where a

COMPILERS LECTURE NOTES ANDRE PLATZER

Abstract Interpretation L28.7

fast implementation are difference-bounds matrices. We adjoin an extra information of
difference-bounds to the abstract domain L. As an optimization, we simply bootstrap
from the converged values of and y in our interval domain, since those would be
found after some number of iterations anyhow. Better values are possible now, but not
worse values. First, we need to figure out what the effect of the assignment x = = + 1
will be on the abstract value I < z — y < u in the difference-bounds.

r:=x+1
AN

[<z-y<u [+1<(z+1)-y<u+1
——

Tnew

Similarly for the assignment y = y + 1:

|<z—y<u "3& l-1<z—(y+1)—-y<u-1

After the first iteration, we get

COMPILERS LECTURE NOTES ANDRE PLATZER

NG WDN -~ O

L28.8 Abstract Interpretation

{z =[—00,0],y = [-00,0],00 <x—y < o0}

x =1

{z=[1,1],y =[-00,00,00 <z —y < oo}

y =1

{z=[11],y=[1,1,0<z—y <0}

while (x<1000) {
{z=11,999],y = [1,00,0 <2z —y <0}
x =x + 1
{z =1[2,1000],y = [1,00,1 <z —y <1}
y=y +1
{z =1{2,1000],y = [2,00],0 <z —y <0}

}

{2 = [1000,1000],y = [1000, 1000],0 < z — y < 0}

At which the fixpoint is reached immediately. Note that line 4 uses that the abstract
value z = [1,1],y = [1,1] in the interval domain is communicated to the best corre-
sponding constraint expressible as difference bounds: 0 < z —y < 0:

x=[a,bly=[c,d ~ a-d<z-y<b-c

Hence, it is important that the abstract domains “talk” to each other. Conversely, in line
12, the abstract state 0 < x — y < 0 in the difference bounds can “talk” to the interval
domain and synchronize to the best constraint that follows from the difference bounds
in combination with the known individual interval bounds as follows:

x=la,b,y=|c,d,l <z —y<u ~ x=[max(a,c+1),min(b,d+ u)]

since !l < x — yimplies z > y + [, yet y > c. Similarly — y < w implies z < y 4+ u with
y <d.

When widening was too aggressive, a dual operator called narrowing A : L x L — L
can be used as well. It is supposed to be like an intersection (M) but could be bigger:

Ny < xAy

We also want iterated uses of the widening operator to become a fixedpoint eventually.
That is
IEoAZElAl‘QA{L‘gA PN

is a finite sequence, for any x; € L.
Quiz
1. What would happen if you had initialized x = [—o00, o] everywhere to express

that you don’t know initially what value would have? Would that be the same
as initializing = = 17

COMPILERS LECTURE NOTES ANDRE PLATZER

Abstract Interpretation L28.9

O O NI ONUl bk WDN -~ O

Can abstract interpretation with interval bounds be used to perform analysis for
possible occurrences of divisions by zero?

Show how abstract interpretation with the interval bounds domain can be used
to perform array bounds checking optimizations.

To convince yourself under which circumstance narrowing A may become neces-
sary after widening, consider the example

x =1

while (x<1000) {

if (x > 20) break;

}

Define a narrowing operator A for the above case and show how to use it suc-
cessfully.

References

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice

model for static analysis of programs by construction or approximation of
fixpoints. In POPL, pages 238-252, 1977.

[CC79] Patrick Cousot and Radhia Cousot. Systematic design of program analysis

frameworks. In POPL, pages 269-282, 1979.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation and application to

logic programs. J. Log. Program., 13(2&3):103-179, 1992.

[Min01] Antoine Miné. A new numerical abstract domain based on difference-bound

matrices. In Olivier Danvy and Andrzej Filinski, editors, PADO, volume 2053,
pages 155-172. Springer, 2001.

[WM95] Reinhard Wilhelm and Dieter Maurer. Compiler Design. Addison-Wesley, 1995.

doi:10.1007/978-3-642-59081-8.

COMPILERS LECTURE NOTES ANDRE PLATZER

https://doi.org/10.1007/978-3-642-59081-8

	Introduction
	Abstract Interpretation by Example
	Abstract Interpretation by Example

