
15-411 Compilers

Who are we?
● Andre Platzer

○ Out of town the first week
○ GHC 9103

● TAs
○ Alex Crichton, senior in CS and ECE
○ Ian Gillis, senior in CS

Logistics
● symbolaris.com/course/compiler12.html

○ symbolaris.com -> Teaching -> Compiler 12
● autolab.cs.cmu.edu/15411-f12
● Lectures

○ Tues/Thurs 1:30-2:50pm
○ GHC 4211

● Recitations - none!
● Office Hours

○ More coming soon...

Contact us
● 15411@symbolaris.com

○ Course staff
● Individually

○ Andre - aplatzer@cs.cmu.edu
○ Alex - acrichto@andrew.cmu.edu
○ Ian - igillis@andrew.cmu.edu

● Office Hours

Waitlisted?
● Long waitlist

○ Room may become available!
● Beware of partnering

○ If admitted but no singles left, you must solo
● Talk to me after lecture

Course Overview
● No exams

○ Not even a final!
● 5 homeworks
● 6 Labs

○ Required tests for each lab
● Paper at the end

Textbook(s)
● Modern Compiler Implementations in ML

○ Andrew W. Appel
○ Optional

● Compiler Construction
○ William M. Waite and Gerhard Goos
○ Optional

● Supplement lecture
○ Do not replace it

Homeworks
● One before each lab is due

○ About a week to work on each one
● Submitted through autolab individually
● Must be your own work
● 30% of the final grade (300 points total)

○ Each homework is 6% of your grade
● Due at the beginning of lecture

○ Can turn two homeworks in late
○ Only up to the next lecture
○ Excludes Thanksgiving

Labs - Overview
● Also submitted through autolab
● May be done in pairs (same pair for all labs)

○ Must be entirely team's work
○ Acknowledge outside sources in readme

● 70% of final grade (700 points total)
● 6 labs

○ First 5 are 100 points each
○ Last is 200

Labs - Overview
● Cumulatively build a compiler for C0

○ Expressions
○ Control flow
○ Functions
○ Structs and arrays
○ Memory safety and optimizations
○ Choose your own adventure

● Each lab is a subset of C0
○ Also superset of previous lab

Labs - Language
● Can write compiler in language of choice
● Starter code (initial parser/layout)

○ SML
○ Haskell
○ Scala
○ Java

● Grading process
○ make
○ ./bin/l{1,2,3,4,5,6}c

Labs - Layout
● Each lab has two parts
● Part 1: submit 10 tests

○ 20% of the lab grade
○ Based on number of tests submitted
○ Can be as creative as you like

● Part 2: submit a compiler
○ 80% of the lab grade
○ Based on number of tests passed
○ Tested against everyone's tests

■ And previous labs
■ And last years'
■ And the year before that

Labs - Tests
● Very good way to test compilers

○ Aren't comprehensive, however
○ Purpose is to find individual bugs

● You are graded on everyone's tests
● assert(1 + 1 == 2)

Labs - Submission
● SVN repositories set up
● Work is submitted through SVN into autolab

○ Only most recent submission is relevant
● We publish updates to tests and runtime

○ You just run 'svn update'
● Only one autolab submission is necessary

per team for labs
○ We don't grade SVN, so submit updates to autolab!

Labs - Timing
● Two weeks for each lab

○ Tests due at end of first week (11:59)
○ Compiler due at end of second (11:59)

● No late days for tests
● 6 late days for compiler

○ At most two per lab

Labs - Partners
● Can do labs alone
● Can also do with a partner

○ Should remain the same for all labs
● Email 15411@symbolaris.com with partner

○ We will then assign you a team name

Labs - Partners
● If partnering, choose wisely

○ Must work as a team to be effective
○ Cannot let the other "do all the work"

● Trouble arises
○ Email 15411@symbolaris.com before too late
○ Day before lab is due is too late
○ Beginning of second lab is not too late

Labs - Warnings
● Labs are hard and take time
● Don't start the compiler only after submitting

tests
● Errors in one lab carry over to the next

○ Each lab still runs previous tests
● Do not take labs lightly, plan accordingly

○ This class will consume much time
● 15-411 is by no means easy

○ Compilers take a lot of work

Labs - Suggestions
● Start early

○ Fixing tests takes a long time
● If submitted compiler has errors, fix quickly

○ Errors for lab 1 must be fixed for lab 2!
● Schedule with partner

○ Specifically set aside time for 15-411
● Talk to us!

○ Talk about design plans
○ Especially if soloing
○ Office hours or email

● Remember that this is exciting!

Labs - My suggestions
● Do not cram entire compiler into one week
● Compiler passes own tests when tests due
● Get to know the driver well

○ You will be running this many many times
○ Ask us if you want it do have feature X

● Write difficult tests
○ Forces you to think

● Submit early to autolab
○ Avoid the rush

Paper
● After 6th lab, a paper is required
● Technical paper demonstrating what you

learned
○ What design decisions did you make?
○ What design decisions were good?
○ Which ones ended badly?
○ Were certain tests good or tricky?

● More details when time comes

Questions?
● Waitlist
● Course outline
● Homework
● Labs

○ Partners
● Paper

Writing a
Compiler

Course Goals
● Understand how compilers work

○ General structure of compilers
○ Influence of target/source language on design
○ Restrictions of hardware

● Gain experience with a complex project
○ Both maintain it and work with others

● Develop in a modular fashion
○ Each lab builds on the next

What is a compiler?
● Translator from one language to another

○ Might have a few changes in the middle
● Adheres to 5 principles

○ Correctness
○ Efficiency
○ Interoperability
○ Usability
○ Retargetability

Compiler Principles - 1
● Correctness

○ How useful is an incorrect compiler?
○ What if it were extremely fast?

● How do you know?
○ Language specification
○ Formal proof
○ Tests, lots of tests

Compiler Principles - 1
● What to test for correctness?

○ 1 + 1 == 2
○ 1 + 1 != 1
○ *a == 3
○ *NULL is a segv
○ while (1) ; loops forever

● Language design
○ Can make correctness a lot easier
○ Or harder
○ C0 is much better specified than C

Compiler Principles - 2
● Efficiency

○ Generated code is fast
○ Compiling process is also fast

● Cannot forsake correctness
○ "But I got the wrong answer really fast!"

Compiler Principles - 3
● Interoperability

○ Most binaries are not static
○ Run with code from other compilers

● Interface, or an ABI
○ C0 uses the C ABI
○ x86 is different than x86-64
○ arm is very different

● Usability
● Error messages

○ Error.
○ Error in file foo.c
○ Error at foo.c:3
○ Error at foo.c:3:5
○ Type Error at foo.c:3:5
○ Type Error at foo.c:3:5, did you mean ...?

● Not formally tested in this class
○ You're still writing code!

Compiler Principles - 4

Compiler Principles - 5
● Retargetability

○ Multiple sources?
○ Multiple targets?

● We will not emphasize this
○ Does not mean you should disregard it

Designing a Compiler
● Correctness
● Efficiency
● Interoperability
● Usability
● Retargetability

Designing a Compiler
Source Executable

Compiler

Designing a Compiler
Source Executable

C to x86

Designing a Compiler
Source Executable

C to x86

C to x86-64

Designing a Compiler
Source Executable

Need common language

Designing a Compiler
Source Executable

Intermediate
Representation

Designing a Compiler
Source Executable

Java

C x86-64

x86

Intermediate
Representation

Designing a Compiler
Source Executable

Intermediate
Representation

C0 x86-64

Designing a Compiler
Source Executable

What is this line?

Intermediate
Representation

C0 x86-64

Designing a Compiler
C0 Source Executable

Lex Intermediate
Representation

x86-64

Designing a Compiler
C0 Source Executable

Lex

tokens

Intermediate
Representation

x86-64

Designing a Compiler
C0 Source Executable

Lex

Parse

tokens

Intermediate
Representation

x86-64

Designing a Compiler
C0 Source Executable

Lex

Parse

tokens

AST

Intermediate
Representation

x86-64

Designing a Compiler
C0 Source Executable

Lex

Parse

tokens

Semantic
Analysis

AST

Intermediate
Representation

x86-64

Designing a Compiler
C0 Source Executable

Lex

Parse

tokens

Semantic
Analysis

AST

Intermediate
Representation

x86-64

AST
attributed

Designing a Compiler
C0 Source Executable

Lex

Parse

tokens

Semantic
Analysis

AST

Intermediate
Representation

x86-64
Tr

an
sla

te

AST
attributed

Designing a Compiler
C0 Source Executable

Lex

Parse

tokens

Semantic
Analysis

AST

Intermediate
Representation

x86-64
Tr

an
sla

te

AST
attributed

How about this?

Designing a Compiler
C0 Source Executable

Lex

Parse

tokens

Semantic
Analysis

AST

Intermediate
Representation

Tr
an

sla
te

AST
attributed

O
ptim

ize

Designing a Compiler
C0 Source Executable

Lex

Parse

tokens

Semantic
Analysis

AST

Intermediate
Representation

Tr
an

sla
te

AST
attributed

O
ptim

ize

IR

Designing a Compiler
C0 Source Executable

Lex

Parse

tokens

Semantic
Analysis

AST

Intermediate
Representation

Tr
an

sla
te

AST
attributed

O
ptim

ize

IR

Reg. Alloc
&

Codegen

Designing a Compiler
C0 Source Executable

Lex

Parse

tokens

Semantic
Analysis

AST

Intermediate
Representation

Tr
an

sla
te

AST
attributed

O
ptim

ize

IR

Reg. Alloc
&

Codegen

ASM

Designing a Compiler
C0 Source Executable

Lex

Parse

tokens

Semantic
Analysis

AST

Intermediate
Representation

Tr
an

sla
te

AST
attributed

O
ptim

ize

IR

Reg. Alloc
&

Codegen

ASM

ASM+Link

The Compiler 'W'
C0 Source Executable

Lex

Parse

tokens

Semantic
Analysis

AST

Intermediate
Representation

Tr
an

sla
te

AST
attributed

O
ptim

ize

IR

Reg. Alloc
&

Codegen

ASM

ASM+Link

The Compiler 'W'
● Easy to re-target all source languages

○ Just add a new back end from the IR
● Easy to optimize all sources

○ Just add a pass to the IR
● Easy to add a new source language

○ Just add a new front end into the IR

The Compiler 'W'
● Variants

○ Split register allocation and code generation
○ Another optimize pass in codegen
○ Reorder passes in backend

● Simple
○ Goal is to learn how compilers work, not feature X

● Safe
○ Semantics should be well defined
○ Enables many optimizations

What to compile?

What to compile?
● What should happen here?

int foo(int a, int b, int *c) {
 if (a / b == 1 || *c == 3)
 return 3;
 return 4;
}

What to compile?
● C

○ Simple
○ Unsafe

● Java
○ Not simple
○ Safe(er)

● C0?

What to compile?
● C0 is a safe variant of C

○ Developed at CMU by Frank Pfenning and others
● All C0 programs are deterministic given

same input
● Differences

○ No pointer arithmetic
○ No casting
○ No stack allocated structs
○ Hard(er) to shoot yourself in the foot
○ Can enable memory safety

What to target?

ISA Runnable? Oddities?

x86 CISC ✓ ✓

x86-64 CISC ✓ ✓

arm, mips RISC simulators ✓

What to target?
● We have chosen x86-64

○ You generate assembly, gcc links it
● Lots of fun caveats to deal with still

Questions?
● Compiler Principles
● The compiler 'W'

○ Lexing/Parsing
○ Semantic analysis
○ IR/optimizations
○ Codegen/register allocation

● C0
○ Well-defined semantics
○ "safer C"

Remember...
● symbolaris.com
● Choose a partner

○ Email 15411@symbolaris.com
● Labs are cumulative

○ Don't fall behind
● Think about language you'll write in

