Lecture Notes on
Top-Down Predictive LL Parsing

15-411: Compiler Design
Frank Pfenning*

Lecture 8

1 Introduction

In this lecture we discuss a parsing algorithm that traverses the input string
from left to right giving a left-most derivation and makes a decision on
which grammar production to use based on the first character/token of the
input string. This parsing algorithm is called LL(1). If that were ambigu-
ous, the grammar would have to be rewritten to fall into this class, which
is not always possible. Most hand-written parsers are recursive descent
parsers, which follow the LL(1) principles.

Alternative presentations of the material in this lecture can be found in
a paper by Shieber et al. [SSP95]. The textbook [App98, Chapter 3] covers
parsing. For more detailed background on parsing, also see [WM95].

2 LL(@) Parsing

We have seen in the previous section, that the general idea of recursive de-
scent parsing without restrictions forces us to non-deterministically choose
between several productions which might be applied and potentially back-
track if parsing gets stuck after a choice, or even loop (if the grammar is
left-recursive). Backtracking is not only potentially very inefficient, but
it makes it difficult to produce good error messages in case the string is
not grammatically well-formed. Say we try three different ways to parse
a given input and all fail. How could we say which of these is the source

*With edits by André Platzer

LECTURE NOTES

L8.2 Top-Down Predictive LL Parsing

of the error? How could we report an error location? This is compounded
because nested choices multiply the number of possibilities. We therefore
have to look for ways to disambiguate the choices, making parsing more
efficient and syntax errors easier to locate.

One way is to require of the grammar that at each potential choice point
we can look at the next input token and based on that token decide which
production to take. This is called 1 token lookahead, and grammars that sat-
isty this restriction are called LL(1) grammars. Here, the first L stands for
Left-to-right reading of the input; the second L stands for Leftmost parse
(which a recursive descent parser generates) and 1 stands for 1 token looka-
head. We can also define LL(2), LL(3), etc. But for higher %k, LL(k) parsers
become fairly inefficient and are used less frequently. The LL parser genera-
tors (or SLL parser generators which are a simplification of LL) themselves,
however, are much more efficient than the LR parser generators.

Since we are restricting ourselves to parsing by a left-to-right traver-
sal of the input string, we will consider only tails, or suffixes of the input
strings, and also of the strings in the grammar, when we restrict our infer-
ence rules. Those suffixes capture what still has to be parsed or worked on.
For short, we will say 7 is a suffix substring of the grammar, or w is a suffix
substring of the input string wy. For example, in the grammar

emp] S —
[pars] S — [S]
[dup] S — SS

the only suffix substrings aree, [S1, 51, 1, S, and S5, but not the prefix
[S.

Firsts & Nulls The main idea behind LL(1)-parsing is that we restrict our
attention to grammars where we can use a 1 token lookahead to disam-
biguate which grammar production to use. That is, by peeking at the next
input token, we want to know which grammar production helps us. The
first thing we want to know for this is what the tokens are that could be gen-
erated from a sequence (3 of terminals and non-terminals at all. So imagine
B describes a shape of how far we have come with parsing and what we
expect for the rest of the input. It could be something like S]. We begin
by defining two kinds of predicates (later we will have occasion to add a
third), where f3 is either a non-terminal or suffix substring of the grammar.
The predicate first(3, a) captures if token a can be the first token occurring
in a word that matches the expression 3. What we also need to know is if

LECTURE NOTES

Top-Down Predictive LL Parsing L8.3

B could possibly match the empty word €, because then the first token of
B~y could actually come from the first token of . This is what we use the
predicate null(3) for.

first(3,a) Token a can be first in any string produced by 3
null(3) String /3 can produce the empty string e

These predicates must be computed entirely statically, by an analysis of
the grammar before any concrete string is ever parsed. This is because we
want to be able to tell if the parser can do its work properly with 1 token
look-ahead regardless of the actual input strings it will later have to parse.
We want the parser generator to tell us right away if it will work on all
input. We do not want to wait till runtime to tell us that it doesn’t know
what to do with some particular input.

We define the relation first(3, a) by the following rules.

B
first(a g8, a)

This rule seeds the first predicate with the knowledge that parse strings
starting with a token a always start with that token a, no matter what
yields. Then is it propagated to other strings appearing in the grammar by
the following three rules.

[r]X — vy
first(X, a) null(X) first(8, a) first(v, a)
PP ; 3 o Fa(r)
first(X 3, a) first(X 3, a) first(X, a)

Rule F5 says that if X can start with a, then so can X 5. Rule F3 says that if
X can produce € and /3 can start with a, then X 3 can start with a as well.
Rule Fy(r) captures that X can start with whatever any of the right-hand
sides v of its productions [r|X — v can start with. Even though ¢ may be
technically a suffix substring of every grammar, it can never arise in the
tirst argument of the first predicate, because it is not a proper token, so we
do not need any information about it. The auxiliary predicate null is also
easily defined.

X — v
N null(X) null(3) N null(y)
null(e) null(X 8) ? nll(X)

LECTURE NOTES

L8.4 Top-Down Predictive LL Parsing

Ni expresses that e can produce e — surprise. That X 3 can produce ¢ if both
X and f can (V2). And that X can produce e if one of its productions has a
right-hand side « hat can (/V3).

We can run these rules to saturation because there are only O(|G|) pos-
sible strings in the first argument to both of these predicates, and at most
the number of possible terminal symbols in the grammar, O(|X|), in the sec-
ond argument. Naive counting the number of prefix firings (see [GMO02])
gives a complexity bound of O(|G| x |=| x |X|) where |Z| is the number of
non-terminals in the grammar. Since usually the number of symbols is a
small constant, this is roughly equivalent to ~ O(|G|) and so is reasonably
efficient. Moreover, it only happens once, before any parsing takes place.

Constructing LL(1) Parsing Rules Next, we modify the rules for recur-
sive descent parsing from the last lecture to take these restrictions into ac-
count. The first two compare rules stay the same.
w:y
— Ly — Lo
€€ aw:ary

The third generate rule,
[r]X — B
w: By
Ls(r)
w: Xy

is split into two, each of which has an additional precondition on when to
use it:

[r] X — B [r|X — B
first(3,a) null(3)

aw: By w: By
— I — L¥?

aw: Xy w: Xy

We would like to say that a grammar is LL(1) if the additional precondi-
tions in these last two rules make all choices unambiguous when an arbi-
trary non-terminal X is matched against a string starting with an arbitrary
terminal a. Unfortunately, this does not quite work yet in the presence non-
terminals that can rewrite to ¢, because the second rule above does not even
look at the input string. This nondeterministic rule cannot possibly ensure
the appropriate parse without looking at the input. To disambiguate, we
need to know what tokens could follow X. Only if the first token of w
could follow X would we want to use a production for X that would make
it vanish.

LECTURE NOTES

Top-Down Predictive LL Parsing L8.5

Follows We thus need to know which tokens could follow X in order to
know if it would make sense to skip over it by using one of its productions
that produces e. For that, we define one additional predicate, again on
suffix strings in the grammar and non-terminals.

follow(3,a) Token a can follow string 3 in a valid string

See Figure 1 for an illustration of where first and follow come from in a
parse tree. The set of all a for which first(X, a) characterizes what tokens
X itself can start with. The set of all a for which follow(X, a) characterizes
what tokens can follow X.

nonterminals: X

tokens:]
first(X,-) follow(X, -)

Figure 1: Illustration of first and follow sets of non-terminal X in a parse tree
in which X occurs

We seed this follows relation with the rules
X~ suffix
first(y, a)

- W
follow (X, a)

Here, X+ suffix means that the string X~ appears as a suffix substring
on the right-hand side of some production, because then we would want
to know if we should choose the productions for X that ultimately pro-
duce ¢, because the lookahead token comes from ~. Whatever can come
first in v can follow X if X~ occurs in the right-hand sides of some pro-
duction. We then propagate this information applying the following rules
from premises to conclusion until saturation is reached.

follow(X v, a) [r] X — v
follow(b 7, a) follow(X v, a) null(7y) follow (X, a)

2 3 Wy ——
follow(~, a) follow(~, a) follow(X, a) follow(~, a)

LECTURE NOTES

L8.6 Top-Down Predictive LL Parsing

Rule W5 says that whatever can follow by can also follow the last part ~.
Similarly, rule W3 says that whatever can follow X~ can also follow the
last part 7. Rule W, says that, in addition, everything that can follow X~y
can follow X itself if v can produce € (otherwise the follows of X~ are no
follows of X, because there is always at least one token from + in between).
Rule W5 says that whatever follows a nonterminal X can also follow the
right-hand side v of each production [r]X — 7.

The first argument of follow should remain a non-empty suffix or a non-
terminal here, because we are not interested in what could follow e.

Final LL(1) Parser Rules Now we can refine the proposed L rule from
above into one which is no longer ambiguous (for LL(1) grammars).

[rX —p
[r] X — B null(53)
first(53, a) follow (X, a)
aw: By aw: By
— L} — L
aw: Xy aw: X~y

We avoid creating an explicit rule to treat the empty input string by ap-
pending a special end-of-file symbol $ symbol at the end before starting the
parsing process. We repeat the remaining compare rules for completeness.

w:y
— L — Ly
€€ aw:ary

These rules are interpreted as a parser by proof search, applying them
from the conclusion to the premise. We say the grammar is LL(1) if for any
goal w : v at most one rule applies.

1. If X cannot derive ¢, this amounts to checking that there is at most
one production X — 3 such that first(3, a).

2. Otherwise there is a first/first conflict between the two ambiguous pro-
ductions X — and X — ~ that share a first(3, a) and first(~, a).

For nullable non-terminals there are more complicated extra conditions,
because it also depends on the follow sets. The conflicts can still easily be
read off from the rules. First/first conflicts stay the same.

In addition,

LECTURE NOTES

Top-Down Predictive LL Parsing L8.7

3. There is a first/follow conflict if we cannot always decide between L
and LY. This happens if there is a token a with first(3, a) for a pro-
duction X — f that would trigger L}, but that token also satisfies
follow(X, a) with a nonterminal X that is nullable and trigger LY.

Example We now use a very simple grammar to illustrate these rules.
We have transformed it in the way indicated above, by assuming a special
token $ to indicate the end of the input string.

[start] S — 9'S
emp] S" — €
[pars] S" — [5]

This grammar generates all strings starting with an arbitrary number of
opening parentheses followed by the same number of closing parentheses
and an end-of-string marker, i.e., the language []"$.

We have:
null(e) Ny
null(S”) N3
first(1.S"1, 1) o
first(1,1) n
first(S"1,1) F;
first(S’, [) Fy [pars]
first(S" 1, 1) Fy
first(s,$) F
first(S’ $, $) F3
first(S”$, 1) Fy
first(S, $) F, [start]
first(S,) Fy [start]
follow(S5’, $) 241
follow(S’, 1) Wi
follow([S"1,8) W;s
follow([S"1,1) Ws
follow(S'1,8) W3
follow(S" 1,1) W
follow(1,3) Wy
follow(1,1) Wy

LECTURE NOTES

L8.8 Top-Down Predictive LL Parsing

3 Parser Generation

Parser generation is now a very simple process. Once we have computed
the null, first, and follow predicates by saturation from a given grammar, we
specialize the inference rules Lf(r) and L(r) by matching the first two and
three premises against grammar productions and saturated null, first, and
follow database. This is essentially partial evaluation on inference rules. In
this case, this leads to the following specialized rules (repeating once again
the two initial rules).

w:
€:€ aw:ay
[w:S5"s Sw: 9SS
Rt L’ (start) s Li(start)
[w: Sy Sw: Sy
[w: [5] Jw: Sw:
S pars) - Dj(emp) 1 Lf(emp)
[w:Sy Jw: Sy Sw: Sy

Recall that these rules are applied from the bottom-up, starting with
the goal wo $: S, where wy is the input string. It is easy to observe by
pattern matching that each of these rules are mutually exclusive: if one
of the rules applies, none of the other rules apply. Moreover, each rule
except for L1 (which accepts) has exactly one premise, so the input string is
traversed linearly from left-to-right, without backtracking. When none of
the rules applies, then the input string is not in the language defined by the
grammar. This proves that our simple language [™ 1™ is LL(1).

Besides efficiency, an effect of this LL approach to parser generation is
that it supports good error messages in the case of failure. For example, if
we see the parsing goal (w :) v we can report: Found ’ (" while expecting
") " along with a report of the error location. Similarly for other cases that
match none of the conclusions of the rules.

4 Grammar Transformations

This predictive parsing or LL(1) parsing works quite well. But now sup-
pose we have a grammar

X — Yb
X — Ye

LECTURE NOTES

Top-Down Predictive LL Parsing L8.9

for a nonterminal Y that may produce token streams of unbounded length.
This grammar is left-recursive, which is a problem, because we cannot
know which production to use in predictive parsing without unbounded
token lookahead. Yet we can left-factorize the grammar in order to capture
the common prefix of the two productions and only distinguish their suffix
in a new common nonterminal X’. This gives

X — YX
X — b
X — ¢

This left-factorization is also useful to remove a First/First conflict from
grammar
S — 1if Fthen Selse S
S — if EthenS

turning it into a form where common prefixes have been factored out

S — if EthenS S
S — elseS
S — €
More generally, consider the grammar
X — ay
X — ad
where we have difficulties deciding between the two productions based on
token lookahead, because both start with oe. We can left-factorize it into the

following grammar where common prefixes have been factored out and
the distinction between « and ¢ happens at a new nonterminal X’

X — aX
X — ~
X — 46

The same phenomenon can also happen indirectly, though, even if the
grammar rules do not literally start with the same expression Y. Suppose
that we have a left-recursive grammar (snippet)

F — E4+T
FE — T
T — ...

LECTURE NOTES

L8.10 Top-Down Predictive LL Parsing

We cannot choose which grammar rule to use because both E productions
can start with terms (7), which may be arbitrarily long. We can change its
left recursion into a right recursion by pulling commonalities up. Then we
start with what the productions of the nonterminal have in common and
postpone the distinction to a new subsequent nonterminal E’:

E — TF
E — 4TFE
E — ¢

This process eliminates left recursion using right recursion. These changes
of the grammar have also changed the structure of the parse trees, which
needs to be taken into account, e.g., through postprocessing transforma-
tions.

Quiz

1. Is there a language that CYK can parse but LL cannot parse? Give
example or explain why none exists.

2. Is there a language that LL can parse but CYK cannot parse? Give
example or explain why none exists.

3. Is there a language that recursive descent can parse but LL cannot
parse? Give example or explain why none exists.

4. Is there a language that LL can parse but recursive descent cannot
parse? Give example or explain why none exists.

5. Why do we limit the token lookahead to 1? Does it make a big differ-
ence if we would instead limit it to 5?

6. Should we allow token lookahead oco?

7. Suppose you only have an LL parser generator. Can you still write a
compiler for any programming language?

8. Which features of programming languages are difficult or inconve-
nient for LL parsers?

9. Give an example of a grammar with a first/first conflict and show
how you can resolve it.

LECTURE NOTES

Top-Down Predictive LL Parsing L8.11

10.

11.

12.

13.

14.

Give an example of a grammar with a first/follow conflict and show
how you can resolve it.

Can follow(X,-) be computed from the grammar productions for X
alone? Can first(X,-) be computed from only X productions?

Why should parser combinator libraries worry about whether a gram-
mar is LL? Isn’t that irrelevant?

What is very likely wrong with a compiler when you see a grammar
production
S = E n_monsmn E u,. "

Your combinator parser is beautiful, but for some input files it just
produces a stack overflow without giving you any other information.
What is wrong?

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-

bridge University Press, Cambridge, England, 1998.

[GMO02] Harald Ganzinger and David A. McAllester. Logical algorithms.

In P.Stuckey, editor, Proceedings of the 18th International Conference
on Logic Programming, pages 209-223, Copenhagen, Denmark,
July 2002. Springer-Verlag LNCS 2401.

[SSP95] Stuart M. Shieber, Yves Schabes, and Fernando C. N. Pereira. Prin-

ciples and implementation of deductive parsing. J. Log. Program.,
24(1&2):3-36, 1995.

[WM95] Reinhard Wilhelm and Dieter Maurer. Compiler Design. Addison-

Wesley, 1995.

LECTURE NOTES

	Introduction
	LL(1) Parsing
	Parser Generation
	Grammar Transformations

