
Lecture Notes on
Intermediate Representation

15-411: Compiler Design
Frank Pfenning∗

Lecture 10

1 Introduction

In this lecture we discuss the “middle end” of the compiler. After the source
has been parsed we obtain an abstract syntax tree, on which we carry out
various static analyses to see if the program is well-formed. In the L2 lan-
guage, this consists of checking that every finite control flow path ends in
a return statement, that every variable is initialized before its use along
every control flow path, and that break and continue statements occur
only inside loops. In later languages, type-checking will be an important
additional task.

After we have constructed and checked the abstract syntax tree, we
transform the program through several forms of intermediate representa-
tion on the way to abstract symbolic assembly and finally actual x86-64
assembly form. How many intermediate representations and their precise
form depends on the context: the complexity and form of the language, to
what extent the compiler is engineered to be retargetable to different ma-
chine architectures, and what kinds of optimizations are important for the
implementation. Some of the most well-understood intermediate forms are
intermediate representation trees (IR trees), static single-assignment form
(SSA), quads and triples. Quads (that is, three-address instructions) and
triples (two-address instructions) are closer to the back end of the compiler
and you will probably want to use one of them, maybe both. In this lecture
we focus on IR trees.

∗With edits by André Platzer

LECTURE NOTES

L10.2 Intermediate Representation

2 Abstract Syntax Trees

We describe abstract syntax trees in a BNF form (Backus-Naur Form) which
was originally designed for describing grammars. An abstract syntax tree
is the output of parsing and is formed by removing immaterial information
from the parse tree (e.g., tokens that are not important in the tree structure)
and transforming into a more canonical form. Here we use BNF to describe
the recursive structure of the abstract syntax trees.

Expressions e ::= n | x | e1 ⊕ e2 | e1 � e2 | e1&&e2 | e1||e2 | f(e1, . . . , en)
Statements s ::= assign(x, e) | if(e, s1, s2)

| while(e, s) | break | continue
| return(e) | nop | seq(s1, s2)

We use n for constants, x for variables, ⊕ for effect-free operators, � for
potentially effectful operators (such as division, which could raise an ex-
ception), && and || for logical “and” and “or”, respectively. The latter
have the meaning as in C, always returning either 0 or 1, and short-circuit
evaluation if the left-hand side is false (for &&) or true (for ||).

The break and continue statements must occur inside a while loop and
also have the semantics of C: break jumps to the first statement after the
current loop, and continue skips the remaining statements in the body of
the loop and jumps directly to the testing of the exit condition.

3 IR Trees

In the translation to IR trees we want to achieve several goals. One is to
isolate potentially effectful expressions, making their order of execution ex-
plicit. This simplifies instruction selection and also means that the remain-
ing pure expressions can be optimized much more effectively. Another goal
is to make the control flow explicit in the form of conditional or uncondi-
tional branches, which is closer to the assembly language target and allows
us to apply standard program analyses based on an explicit control flow
graph. The treatment in the textbook achieves this [App98, Chapters 7 and
8] but it does so in a somewhat complicated manner using tree transforma-
tions that would not be motivated for our language.

We describe the IR through pure expressions p and commands c. Programs
are just sequences of commands; typically these would be the bodies of
function definitions. An empty sequence of commands is denoted by “·”,
and we write r1; r2 for the concatenation of two sequences of commands.

LECTURE NOTES

Intermediate Representation L10.3

Pure Expressions p ::= n | x | p1 ⊕ p2

Commands c ::= x← p
| x← p1 � p2
| x← f(p1, . . . , pn)
| if (p) goto l
| goto l
| l :
| return(p)

Programs r ::= c1; . . . ; cn

Pure expressions are a subset of all expressions that do not have any
(side)effects. We choose an IR tree representation in which potentially ef-
fectful operations and function calls can only appear at the top-level of as-
signments. The logical operators are no longer present and must be elim-
inated in the translation in favor of conditionals. These transformations
help optimizations and analysis. Function calls only take pure arguments,
which guarantees the left-to-right evaluation order prescribed in the C0
language semantics. Since function calls may have effects, we also lift func-
tion calls to the command level rather than embedded inside expression
evaluation.

4 Translating Expressions

The first idea may be to translate abstract syntax expressions to pure ex-
pressions, but this does not quite work because potentially effectful expres-
sions have to be turned into commands, and commands are not permitted
inside pure expressions. Returning just a command, or sequence of com-
mands, is also insufficient because we somehow need to refer to the result
of the translation as a pure expression so we can use it, for example, in a
conditional jump or return command.

A solution is to translate from an expression e to a pair consisting of a
sequence of instructions r and a pure expression p. After executing r, the
value of p will the value of e (assuming the computation does not abort).
We write

tr(e) = 〈ě, ê〉

where ě is a sequence of commands r that we need to write down to com-
pute the effects of e and ê is a pure expression p that we can use to compute

LECTURE NOTES

L10.4 Intermediate Representation

the value of e back up. Here are the first three clauses in the definition of
tr(e):

tr(n) = 〈·, n〉
tr(x) = 〈·, x〉
tr(e1 ⊕ e2) = 〈(ě1; ě2), ê1 ⊕ ê2〉

Constants and variables translate to themselves. If we have a pure opera-
tion e1 ⊕ e2 it is possible that the subexpressions have effects, so we con-
catenate the command sequences for these to expressions ě1 and ě2. Now ê1
and ê2 are pure expressions referring to the values of e1 and e2, respectively,
so we can combine them with a pure operation to get a pure expression rep-
resenting the result.

We can see that the translation of any pure expression p yields an empty
sequence of commands followed by the same pure expression p, that is,
tr(p) = 〈·, p〉. Effectful operations and function calls require us to intro-
duce some commands and a fresh temporary variable to refer to the value
resulting from the operation or call.

tr(e1 � e2) = 〈(ě1; ě2; t← ê1 � ê2), t〉 (t new)
tr(f(e1, . . . , en)) = 〈(ě1; . . . ; ěn; t← f(ê1, . . . , ên)), t〉 (t new)

In this and other cases of the translation we need to make sure that new la-
bels are created as targets for conditional jumps, just like we need to create
new temporary variables.

Finally, a possible translation of one of the logical operators; the second
one is left as an exercise. Note that ě2 is executed only if ê1 is true.

tr(e1&&e2) = 〈(ě1;
if (!ê1) goto l1;
ě2;
if (!ê2) goto l1;
t← 1;
goto l2;
l1 : ; t← 0;
l2 :),

t〉 (t, l1, l2 new)

5 Translating Statements

Translating statements is in some ways simpler, because we only need to
return a sequence of instructions. It is slightly more complicated in other

LECTURE NOTES

Intermediate Representation L10.5

ways, because inside loops we need to track the targets for break and continue
statements. So the statement translation takes three arguments: the state-
ment to translate, and two optional labels. We elide these labels for sim-
plicity: they are absent on the top-level and passed down in recursive calls
and change when entering a while loop. We write tr(s) = š, where š is a
sequence of commands r.

Assigments and conditionals are simple, given the translation of expres-
sion from the previous section.

tr(assign(x, e)) = ě;
x← ê

tr(if(e, s1, s2)) = ě;
if (ê) goto l1;
š2;
goto l2;
l1 : ; š1;
l2 : (l1, l2 new)

There are several plausible translation for a while loop. Due to the way
many instantiations of the target architecture do branch prediction, it is
efficient for the conditional branch in the loop to go backwards. It is also
useful to have only one jump per loop execution (as opposed to the most
obvious representation).

tr(while(e, s)) = goto l2;
l1 : ; š;
l2 : ; ě;
if (ê) goto l1;
l3 :

During the recursive translation of s, the break label is set to l3 and the
continue label is set to l2.

The jump into the middle of the loop can interfere with optimizations,
so it is often beneficial to replicate the test before loop entry, especially in
the common case when the code for ě and ê is small.

tr(while(e, s)) = ě;
if (!ê) goto l3;
l1 : ; š;
l2 : ; ě;
if (ê) goto l1;
l3 :

LECTURE NOTES

L10.6 Intermediate Representation

The remaining cases are simple: break and continue statements jump
unconditionally to their corresponding labels; the cases for return, nop and
seq are below.

tr(return(e)) = ě;
return(ê)

tr(nop) = ·

tr(seq(s1, s2)) = š1;
š2

6 Ambiguity in Language Specification

The C standard explicity leaves the order of evaluation of expressions un-
specified [KR88, p. 200]:

The precedence and associativity of operators is fully specified, but the
order of evaluation of expressions is, with certain exceptions, unde-
fined, even if the subexpressions involve side effects.

At first, this may seem like a virtue: by leaving evaluation order unspec-
ified, the compiler can freely optimize expressions without running afoul
the specification. The flip side of this coin is that programs are almost by
definition not portable. They may check and execute just fine with a certain
compiler, but subtly or catastrophically break when a compiler is updated,
or the program is compiled with a different compiler.

A possible reply to this argument is that a program whose proper execu-
tion depends on the order of evaluation is simply wrong, and the program-
mer should not be surprised if it breaks. The flaw in this argument is that
dependence on evaluation order may be a very subtle property, and neither
language definition nor compiler give much help in identifying such flaws
in a program. No amount of testing with a single compiler can uncover
such problems, because often the code will execute correctly under the de-
cision made for this compiler. It may even be that all available compilers
at the time the code is written may agree, say, evaluating expressions from
left to right, but the code could break in a future version.

Therefore I strongly believe that language specifications should be en-
tirely unambiguous. In this course, this is also important because we want
to hold all compilers to the same standard of correctness. This is also why
the behavior of division by 0 and division overflow, namely an exception,
is fully specified. It is not acceptable for an expression such as (1/0)*0 to
be “optimized” to 0. Instead, it must raise an exception.

LECTURE NOTES

Intermediate Representation L10.7

The translation to intermediate code presented here therefore must make
sure that any potentially effectful expressions are indeed evaluated from
left to right. Careful inspection of the translation will reveal this to be the
case. On the resulting pure expressions, many valid optimizations can still
be applied which would otherwise be impossible, such as commutativity,
associativity, or distributivity, all of which hold for modular arithmetic.

Quiz

1. In the section on abstract syntax trees it looks like we have defined a
language instead of an abstract syntax tree. What is the difference?
Why is there a difference? What can be represented in the language
but not the AST? What can be represented in the AST but not the
language?

2. Is this a valid transformation tr(e1 ⊕ e2) = e1 ⊕ e2?

3. Can we define the translation tr(e1&&s2) more directly and without
using t? How and when?

4. Which choices of i, j, k, l ∈ {1, 2}make the following translation valid?

tr(e1 + e2) = 〈(ěi; ěj), êk + êl〉

5. You can make your translation more uniform by requiring all transla-
tions to put their results into temp variables using commands. Is this
a good idea? What is the effect on the translation? Is the translation
the identity whenever you expect it to be?

6. The following translation makes the handling of break and continue
more explicit. Discuss whether it is a good idea, what possible issues
are, and whether variations of it work better or worse.

tr(while(e, s)) = ě;
if (!ê) goto l3;
l1 : ; š;
continue : ; ě;
if (ê) goto l1;
break :

tr(break) = goto break;

tr(continue) = goto continue;

LECTURE NOTES

L10.8 Intermediate Representation

7. Does each basic block in the intermediate representation for C0 have
at most 2 predecessors?

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, Cambridge, England, 1998.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming
Language. Prentice Hall, second edition, 1988.

LECTURE NOTES

	Introduction
	Abstract Syntax Trees
	IR Trees
	Translating Expressions
	Translating Statements
	Ambiguity in Language Specification

