Lecture Notes on
Garbage Collection

15-411: Compiler Design
André Platzer

Lecture 20

1 Introduction

In the previous lectures we have considered a programming language CO
with pointers and memory and array allocation. Until now, C0 had no
way of getting rid of allocated memory again when it is not needed any-
more. There are basically two solutions. One is to use manual memory
management by adding a free operation to the language. The other is to
add automatic garbage collection instead, which will take care of freeing
memory automatically when it is not used anymore. Requiring free seems
like it would be convenient for the compiler designer, because it places all
the burden on the programmer to insert appropriate frees. But that is not
quite accurate.

The problem is that, in the presence of explicit free operations, the pro-
grammer may also mess things up by freeing memory that, in fact, is still
used elsewhere. If, after freeing memory at address a, the reference to a
is still around somewhere else, say in pointer p, then dereferencing p by
*p will lead to fairly unpredictable behavior. Unlike dereferencing point-
ers that had never been allocated before, which would immediately raise a
SEGFAULT due to a null pointer dereference, dereferencing pointers that
point to no longer allocated memory can have a range of strange effects.

In the “best” case, the whole memory page where a resides has become
inaccessible. Then the runtime system would signal a memory access vi-
olation and nothing worse than that can happen. But the memory page
may still belong to the process, and then the pointer dereference of a pre-
viously properly allocated pointer will now yield some random memory
content. Either the old contents or some arbitrary new contents if the mem-

LECTURE NOTES

L20.2 Garbage Collection

ory location has been reused for a different memory allocation meanwhile.
For performance reasons, memory allocation is implemented in a way that
allocates a whole block of memory from the operating system and then
subdivides the memory block into pieces according to subsequent calls to
alloc. The set of all free memory regions that have not been given back to
the operating system is managed in free lists.

In either case, CO is not safe when relying on proper placement of free
operations. For instance, the following program is unsafe

intx x;

int* y;

x = alloc(int);

*x = 5;

y = %

free (x);

return *y; // bad access

More information on garbage collection can be found in [App98, Ch
13.1-13.3] and [Wil94, Section 1-2] at http://www.cs.cmu.edu/~fp/
courses/15411-f08/misc/wilson94—gc.pdfweb.

2 Garbage Collection

The way out of that dilemma is to rely solely on garbage collection to free
memory resources when not used anymore. A regular claim is that this is
a lot easier than having to do explicit free operations. While that is true,
garbage collection still does not solve all memory problems. Obviously, it
can only work if all references to unused objects have actually been deleted
by the programmer. That is not much more trivial than placing explicit
free operations. The two aspects that still make it a lot easier is that, unlike
for free, the order of erasing pointers is less critical. Also improper place-
ment of reference erase operations like x = NULL at least does not corrupt
memory access.

intx x;

int* y;

x = alloc(int);

*x = 5;

y = %;

x = NULL; // x is happy to have memory freed
return xy; // good access

LECTURE NOTES

http://www.cs.cmu.edu/~fp/courses/15411-f08/misc/wilson94-gc.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f08/misc/wilson94-gc.pdf

Garbage Collection L20.3

The biggest problem for programmers using garbage collection thus is to
make sure all unnecessary can be freed by erasing references. But if they
miss one object, the worst that will happen is that the memory cannot be
reclaimed, but the program won't crash or have strange effects (except for
running out of memory).

The burden on implementing garbage collection and managing all re-
quired data structures to track pointer usage is on the compiler designer.
That is a non-negligible computational effort. It can be more than 10%
of the overall runtime for programs with frequent allocation and discard.
Typical uses of the java.lang.String class to compose strings in earlier
JVMs are typical examples of what can go wrong when not being careful,
which is why the use of the thread-safe java.lang.StringBuffer has
been encouraged instead. InJVM 1.5, the non-thread-safe java.lang.StringBuilder
has been introduced for performance reasons and is even used automati-
cally if possible.

Extremely critical parts of garbage collection implementations is that
they need to be highly optimized to avoid lengthy interruptions of the
program. The worst impact on garbage collection performance is usually
caused by cache misses. And the worst of those is when garbage collec-
tion starts when the main memory is almost completely used up, for then
swapping in and out of memory will dominate the computational cost.

The basic principle of garbage collectors is to mark all used heap ob-
jects by following spanning trees from all references buried on the stack or
in registers. The garbage collector either maintains free lists of the free frag-
ments found in the heap space. Or it compactifies the used heap blocks in
the heap space in order to reduce fragmentation. Or it just copies all used
objects into a new heap. For the last two choices, the garbage collector
needs to be able to change all pointers pointing to the objects. In particu-
lar, it would be fatal if a pointer would be ignored during the change or a
non-pointer (e.g., floating point data) mistaken for a pointer and changed.

3 Uninformed Boehm Garbage Collector

Without information from the compiler, garbage collection can still be im-
plemented in what is called uninformed garbage collection. In Boehm'’s
garbage collector, for instance, that is based on conservative overapprox-
imations of checking all bit patterns for if they could possibly represent
references. The Boehm garbage collector checks register, stack, and heap
contents and conservatively decides whether they could represent refer-

LECTURE NOTES

L20.4 Garbage Collection

ences. If a bit pattern could be a pointer, then pretend it would be and
represent a reference. Information used to determine if something could be
a reference include the question whether that page table has actually been
allocated, whether it belongs to the heap space that the garbage collector
manages, and whether the lower bit information matches alignment rules
(only possible in languages without arbitrary pointer arithmetic and when
optimizers are not using it). Obviously, floating point information could
be mistaken to represent pointers. With this approach, objects cannot be
relocated in memory, which can lead to issues of fragmented memory.

4 Uninformed Reference Counting Garbage Collector

Another uninformed option to perform garbage collection is based on ex-
plicit reference counting where each object contains a a size information
and a reference counter memorizing how many references point to it. Upon
reference copying or removal, this reference counter is incremented or decre-
mented. When it hits zero, the object can safely be removed. Reference
counting libraries are popular in C++.

The downside is that there is a non-negligible overhead for each pointer
assignment. In addition, memory leaks can result from cyclic pointer chains
that are not referenced from the program anymore, but still reference each
other. Then their reference counts will stay nonzero and the objects per-
sist. So the programmer has to take care to erase pointers recursively in all
(cyclic) data structures.

5 Informed Garbage Collectors

Informed garbage collectors, instead, use information obtained from the com-
piler about the positions of all pointers and the sizes of all objects. They
need to know about the locations of all pointers and the allocated object
sizes. This information can either be obtained by runtime type informa-
tion, e.g., in object-oriented programming languages or in the presence of
polymorphism. Or it can be obtained from static typing information, which
can be stored as information associated appropriately with the pointers for
use at runtime. In CO implicit typing information is perfectly sufficient be-
cause there is no polymorphism and we have static typing information for
all variables, including pointers. We also know the size of each type stat-
ically, because there are no dynamically allocated sizes, except for arrays,

LECTURE NOTES

Garbage Collection L20.5

which need a length information. Yet we have already needed this length
information for arrays for compiling array access safely.

We discuss this in more detail in the next lecture after the garbage col-
lection algorithms have been discussed.

6 Mark and Free

In order to find out which heap objects are still used, garbage collectors visit
each reachable object by either a depth-first search or a breadth-first search.
It marks every reachable heap object. After marking is finished, the garbage
collector walks each heap object again and frees all objects that have not
been marked. This phase also clears the marking in order to prepare for the
next garbage collector run. For this we need one bit of marking storage per
object. The marking bit also helps us not to revisit objects twice, because
we do not have to revisit a marked object. Note that the garbage collector
still needs enough memory of its own to work. In order to implement the
search procedures, we also need space to manage to search data structures.
For depth-first search, we either need to use the stack and take care not to
cause a stack-overflow or use separate stack data structures.

1. mark each object reachable from roots ~ O(R)
Use mark bit to prevent double exploration

2. for all objects i: if mark(i) then unmark(i) else free(i) ~ O(H)

The time complexity in terms of the number R of reachable words and the
size H of the heap is as indicated on the right. The space complexity is
O(H) plus the memory for the garbage collector and its search implemen-
tation and its free list memory management data structures.

After marking, we can choose how to free memory. When working
with free lists, it makes sense to manage a list of all allocated objects that
is maintained during alloc and alloc_array calls. During the free phase,
we can directly accumulate the next free list. The major downside of free
lists is that they can lead to unnecessary external fragmentation, because
we cannot even easily join adjacent free memory blocks, since the list is
not sorted by memory addresses. Another downside of free lists is the
extra data storage of doubly linked lists that is needed for fast insertion
and deletion at alloc and free respectively. The advantage is that we do not
need to change memory addresses.

LECTURE NOTES

L20.6 Garbage Collection

7 Mark and Sweep

When working with compactification in space, the algorithm is called mark
and sweep. It needs three passes through memory. A first pass during the
mark phase to find the free parts of memory. A second pass to change all
addresses by a depth-first search. And a third pass to relocate the objects to
a consecutive block in memory, which will finally erase the marking again.

1. mark each object reachable from roots ~ O(R)
Use mark bit to prevent double exploration

2. for all objects i: if mark(i) then change all addresses ~ O(H)
3. for all objects i: if mark(i) then relocate ~ O(H)

A common variation of mark and sweep is due to Wegbreit [Weg72]. It
changes the addresses before relocating objects based on the difference a—s
where a is the address to change and s is the current sum of the sizes of free
memory blocks. Overall, simple mark algorithms are fairly easy to imple-
ment yet with complicated address arithmetic. But the program needs to be
suspended during the garbage collector run and the memory needs to be
visited twice (once during mark, once during sweep). The major downside
is the effort needed to calculate all new addresses.

8 Mark and Copy

When working with copies into a new memory location, the algorithm is
called mark and copy. It allocates a new memory region and copies objects
that are still in use from the old memory region over to the new memory
region, leaving a forwarding address in the old memory region.

1. mark each object reachable from roots ~ O(R)
Use mark bit to prevent double exploration

2. for all objects i: if mark(i) then copy(i) with forward address ~» O(H)

Especially when working with breadth-first search, this algorithm can in-
crease locality in memory access, because objects that belong together will
be allocated close to one another in the new memory. The algorithm also re-
moves fragmentation, which simplifies object allocation. When allocating
an object, we do not have to search along a free list to look for a memory

LECTURE NOTES

Garbage Collection L20.7

fragment that is large enough to hold the object. This is especially cru-
cial for functional languages that allocate new objects on a regular basis to
prevent object mutation. The major downside is that the virtual memory
consumption doubles and the procedure even needs to copy heap objects
that do not contain any pointers (which are in some languages 30% of all
objects). The mark and copy garbage collector or copying collector is really
easy to implement.

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, Cambridge, England, 1998.

[Weg72] Ben Wegbreit. A generalised compactifying garbage collector.
Comput. J., 15(3):204-208, 1972.

[Wil94] Paul R. Wilson. Uniprocessor garbage collection tech-
niques. Submitted to ACM Computing Surveys. Available
at http://www.cs.cmu.edu/~fp/courses/15411-£08/
misc/wilson94—-gc.pdf, 1994.

LECTURE NOTES

http://www.cs.cmu.edu/~fp/courses/15411-f08/misc/wilson94-gc.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f08/misc/wilson94-gc.pdf

	Introduction
	Garbage Collection
	Uninformed Boehm Garbage Collector
	Uninformed Reference Counting Garbage Collector
	Informed Garbage Collectors
	Mark and Free
	Mark and Sweep
	Mark and Copy

