# Final Exam 

15-317/657 Constructive Logic<br>André Platzer

May 8, 2020
Name: $\qquad$ André Platzer

Andrew ID: $\qquad$

## Instructions

- For fairness reasons all answers must be typed on a computer in text editors/text-processing (e.g. LaTeX) and submitted as PDF. Besides PDF viewers, no other software is allowed and no handwritten answers/scans are accepted. You can use scratch paper but not hand it in.
- Only the following resources can be used during this exam:

1. 15317 lecture and recitation notes
2. editors or text-processing software
3. private Piazza posts or email with course staff

All other communications with anyone about the exam or this course during the exam period constitute an academic integrity violation.

- You have 24 hours from when the exam was available to complete it.
- There are 4 problems on 6 pages.
- Submit on GradeScope $\rightarrow$ Final $\rightarrow$ Submit assignment

|  |  | Max | Score |
| :---: | :---: | :---: | :---: |
| Proof Terms |  | 90 |  |
| Propositional Theorem Proving | 80 |  |  |
| Prolog Principles |  |  | 50 |
| Tinear Logic Cuts |  |  | 80 |
| Total: | 300 |  |  |

This is a sample solution, not a model solution. Problems admit multiple correct answers, and the answer the instructor thought of may not necessarily be the best or most elegant.

## 1 Proof Terms (90 points)

This question studies proof terms of natural deduction. Recall that a proof term is called abnormal if it can be reduced by some local reduction of proof terms. Otherwise normal/irreducible.

10 Task 1 Give a normal proof term for $((A \supset C) \wedge(B \supset C)) \supset((A \vee B) \supset(C \vee C))$ or explain why that is impossible.

$$
\text { Solution: } \mathrm{fn} u \Rightarrow \mathrm{fn} v \Rightarrow \operatorname{inl}_{C}(\mathbf{c a s e} v \text { of } \operatorname{inl} w \Rightarrow(\mathbf{f s t} u) w \mid \operatorname{inr} w \Rightarrow(\mathbf{s n d} u) w)
$$

10 Task 2 Give an abnormal proof term for $(A \supset(B \wedge C)) \supset(A \supset C)$ or explain why that is impossible.
Solution: $(\mathrm{fn} x \Rightarrow x)(\mathrm{fn} u \Rightarrow \mathrm{fn} v \Rightarrow \mathbf{s n d}(u v))$
10 Task 3 Give a normal proof term justifying $A \supset((A \vee B) \supset A)$ or explain why that is impossible.
Solution: $\mathrm{fn} u \Rightarrow \mathrm{fn} v \Rightarrow u$
10 Task 4 Give an abnormal proof term justifying $A \supset((A \vee B) \supset A)$ or explain why that is impossible.
Solution: $\mathrm{fn} u \Rightarrow \mathrm{fn} v \Rightarrow \mathbf{f s t}\langle u, u\rangle$
10 Task 5 Give an abnormal proof term justifying $(A \vee B) \supset A$ or explain why that is impossible.
Solution: By soundness, neither normal nor abnormal proof terms can exist for formulas that are not true as, e.g., witnessed by its instance $(\perp \vee \top) \supset \perp$ which is even classically false.

20 Task 6 Briefly explain whether there is a true proposition $A$ of intuitionistic propositional logic for which there is no proof term $M$ such that $M: A$ proves.

Solution: Every true intuitionistic proposition $A$ has a proof in natural deduction whose corresponding proof term $M$ proves $M: A$. By completeness of the certified proof checker it proves $M: A \uparrow$. Alternatively, use completeness of the proof-termgenerating sequent calculus.

20 Task 7 Briefly explain whether there is a true proposition $A$ of intuitionistic propositional logic for which there is no abnormal proof term $M$ such that $M: A$ proves.

Solution: By the previous task, a proof term always exists for true $A$. Such a proof term can be made abnormal with any local expansion anywhere, e.g., on the outside by wrapping proof term $M$ as follows fst $\langle M, M\rangle$ to make it reducible/abnormal. The proof of $M: A \uparrow$ can be duplicated and prolonged by $\wedge I$ to prove $\langle M, M\rangle: A \wedge A \uparrow$, which can be prolonged by $\wedge E_{1}$ to prove fst $\langle M, M\rangle: A \uparrow$.

## 2 Propositional Theorem Proving (80 points)

The contraction-free sequent calculus $\longrightarrow$ is sound and complete w.r.t. $\Longrightarrow$ and terminates: all its premises are strictly smaller in a well-founded ordering. Each of the following tasks drops one rule from our original contraction-free sequent calculus and replaces it with another. Explain whether these properties still hold when replacing only the indicated rule and mark (s) for sound wrt. $\Longrightarrow$, $\mathbf{( u )}$ for unsound, (c) for complete wrt. $\Longrightarrow$, (i) for incomplete, ( $\mathbf{t}$ ) for terminating, ( $\mathbf{n}$ ) for nonterminating. If they fail, show an example demonstrating the failure. To get you started here's a simple example: Replacing rule $\wedge R$ by rule $P 0$ would make it

$$
\frac{\Gamma \longrightarrow A \cap \longrightarrow B}{\Gamma \longrightarrow A \wedge B} \wedge R \quad \frac{\Gamma \longrightarrow A}{\Gamma \longrightarrow A \wedge B} P 0
$$

(u) because $\longrightarrow \top \wedge \perp$ proves by $P 0+T R$ but is (constructively) false as it implies $\perp$ by $\wedge L$. (c) every sequent provable by $\wedge R$ is provable by $P 0$, which has a subset of the premises of $\wedge R$. ( $\mathbf{t})$ the same ordering shows termination because $P 0$ produces a subset of the premises of $\wedge R$.
20 Task 1 Explain what happens when we only replace rule $\vee \supset L$ by rule $P$ :

$$
\frac{\Gamma, A_{1} \supset B, A_{2} \supset B \longrightarrow C}{\Gamma,\left(A_{1} \vee A_{2}\right) \supset B \longrightarrow C} \vee \supset L \quad \frac{\Gamma, A_{1} \supset B \longrightarrow C}{\Gamma,\left(A_{1} \vee A_{2}\right) \supset B \longrightarrow C} P 1
$$

## Solution:

(s) $P 1$ derives from $\vee \supset L$ by weakening.
(i) $(\perp \vee \top) \supset B \longrightarrow B$ proves by $\vee \supset L+T \supset L+T R+i d$ but is no longer provable as $P 1$ is the only applicable rule and leads to classically false $\perp \supset B \longrightarrow B$.
$(\mathbf{t})$ the same ordering shows termination because $P 1$ produces the same sequents as $\vee \supset L$ with less antecedents.

20 Task 2 Explain what happens when we only replace rule $\vee R_{2}$ by rule $P 2$ :

$$
\frac{\Gamma \longrightarrow B}{\Gamma \longrightarrow A \vee B} \vee R_{2} \quad \frac{\Gamma \longrightarrow B \vee A}{\Gamma \longrightarrow A \vee B} P 2
$$

## Solution:

(s) succedent $B \vee A$ is equivalent to $A \vee B$.
(c) $\vee R_{2}$ derives from $P 2+\vee R_{1}$.
(n) $P 2$ can be used infinitely often on $\longrightarrow \top \vee \perp$ without progress.

20 Task 3 Explain what happens when we only replace rule $\perp \supset L$ by rule $P 3$ :
$\stackrel{\Gamma \longrightarrow C}{\Gamma, \perp \supset B \longrightarrow C} \perp \supset L \quad \frac{\Gamma, \top \supset B \longrightarrow C}{\Gamma, \perp \supset B \longrightarrow C} P 3$

## Solution:

(u) $\perp \supset \perp \longrightarrow \perp$ proves by $P 3+\mathrm{T} \supset L+\perp L$ but is classically false.
(c) $\perp \supset L$ derives from P3 by weakening
(t) an ordering that considers $T$ smaller than $\perp$ works for $P 3$ and other rules

20 Task 4 Explain what happens when we only replace rule $P \supset L$ by rule $P$ :
$\frac{P \in \Gamma \quad \Gamma, B \longrightarrow C}{\Gamma, P \supset B \longrightarrow C} P \supset L \quad \frac{\Gamma \longrightarrow P \quad \Gamma, B \longrightarrow C}{\Gamma, P \supset B \longrightarrow C} P 4$

## Solution:

(s) $P 4$ derives from $\supset L$ by weakening:

$$
\frac{\Gamma, P \supset P \longrightarrow P \quad \Gamma, B \longrightarrow C}{\Gamma, P \supset B \longrightarrow C} \supset L
$$

(c) the complete $P \supset L$ derives from $P 4$ by $i d$ or initial rule when $P \in \Gamma$.
$(\mathbf{t})$ the same ordering shows termination, because the modified premise $\Gamma \longrightarrow P$ has a smaller formula and no larger ones.

## 3 Prolog Principles (50 points)

This question studies symbolic computation in Prolog with polynomials in one variable (written x ). Polynomials are represented as a list of integer coefficients, e.g.:

```
\([5,6,7,8]\) represents the polynomial \(5+6 * x+7 * x^{\wedge} 2+8 * x^{\wedge} 3\)
```

In this question you will define predicates padd $/ 3, \mathrm{pscale} / 3, \mathrm{pmul} / 3$ to compute the representation of polynomials representing polynomial addition, scaling, and multiplication, respectively. For example, the following queries are expected to succeed:

```
padd([1, 2, 3],[5,6],[6,8,3]),pscale(3, [1, 2], [3,6]),pmul([1,2,3],[5,7],[5,17, 29, 21]).
```

Modes describe the intended ways of using a predicate. Mode +pol indicates an input argument that needs to be provided satisfying pol/1. Mode -pol indicates an output argument satisfying pol/1 that will be computed by the predicate when all inputs are provided, where:

```
pol([A|As]) :- integer(A), pol(As).
```

pol([]).

10 Task 1 Write a Prolog program padd ( $+\mathrm{pol},+\mathrm{pol},-\mathrm{pol}$ ) that takes two pol representations as inputs in the first and second arguments and produces a pol representation of their sum as the output in the third argument.

```
Solution:
%% (A+X*As) + (B+X*Bs) = (A+B) + X*(As+Bs)
padd(A, [], A).
padd([], B, B).
padd([A|As], [B|Bs], [R|Rs]) :- R is A+B, padd(As,Bs,Rs).
```

10 Task 2 Write a Prolog program pscale (+integer, +pol,-pol) that takes an integer as input in the first argument, a pol representation as input in the second argument and produces a pol representation of the second argument multiplied/scaled by the first argument as the output in the third argument.

## Solution:

$\% \% \mathrm{~L} *(\mathrm{~A}+\mathrm{X} * \mathrm{As})=\mathrm{L} * \mathrm{~A}+\mathrm{X} *(\mathrm{~L} * \mathrm{As})$
pscale(L, [], []).
pscale(L, [A|As], [R|Rs]) :- R is L*A, pscale(L,As,Rs).

30 Task 3 Write a Prolog program pmul ( $+\mathrm{pol},+\mathrm{pol},-\mathrm{pol}$ ) that takes two pol representations as inputs in the first and second arguments and produces a pol representation of the product of the input polynomials as the output in the third argument.

## Solution:

$\% \%(\mathrm{~A}+\mathrm{X} * \mathrm{As}) * \mathrm{~B}=(\mathrm{A} * \mathrm{~B})+\mathrm{X} *(\mathrm{As} * \mathrm{~B})$ pmul([], B, []).
pmul([A|As], B, R) :- pscale(A,B,AB), pmul(As,B,AsB), padd(AB,[0|AsB],R).

4 Linear Logic Cuts (80 points)
This question studies cuts in linear logic. We simply write $\Delta, A \Vdash C$ for $\Delta, A$ res $\Vdash C$ true. Recall that the linear cut theorem for linear logic constructs a deduction $\mathcal{F}$ from deductions $\mathcal{D}$ and $\mathcal{E}$ and (just like the ordinary cut theorem for intuitionistic logic) is also proved by induction on the structure of the formula $A$ as well as the deductions $\mathcal{D}$ and $\mathcal{E}$.

20 Task 1 Provide and briefly explain a counterexample justifying from its resource semantics why the ordinary structural cut theorem of intuitionistic logic does not hold for linear logic:

$$
\text { If } \Delta \Vdash A \text { and } \Delta, A \Vdash C \text { then } \Delta \Vdash C
$$

Solution: $A \Vdash A$ and $A, A \Vdash A \otimes A$ but not $A \Vdash A \otimes A$, because one $A$ cannot be duplicated into two $A$.

20 Task 2 Commodore Horgiatiki performed one case of linear cut elimination. But he is missing some parts and is unsure whether he got a correct proof. Fill in all missing arguments and justifications and steps so that you obtain a complete proof. If there are any errors or missing justifications in Horgiatiki's proof, clearly mark and explain in one line. Unnecessary steps are not necessarily incorrect but still need a justification of their (in)correctness.

$$
\mathcal{D}=\frac{\begin{array}{c}
\mathcal{D}_{1} \\
\Delta \Vdash A_{1} \quad \Delta \Vdash A_{2} \\
\Delta \Vdash A_{1} \& A_{2}
\end{array} R \quad \text { and } \quad \mathcal{E}=\frac{\mathcal{E}_{1}}{\Delta^{\prime}, A_{1} \Vdash C}}{\Delta^{\prime}, A_{1} \& A_{2} \Vdash C} \& L_{1}
$$



20 Task 3 Prove the case of the linear cut theorem where $\mathcal{D}$ ends with $\multimap R$ and $\mathcal{E}$ ends with $\multimap L$ :

$$
\mathcal{D}=\frac{\mathcal{D}_{1}}{\Delta, A_{1} \Vdash A_{2}} \underset{\Delta, \Vdash A_{1} \multimap A_{2}}{\multimap} \quad \text { and } \quad \mathcal{E}=\frac{\mathcal{E}_{1}}{\Delta_{1}^{\prime} \Vdash A_{1}} \begin{gathered}
\Delta_{2}^{\prime}, A_{2} \Vdash C \\
\Delta_{1}^{\prime}, \Delta_{2}^{\prime}, A_{1} \multimap A_{2} \Vdash C \\
\end{gathered}
$$

Solution:

$$
\begin{array}{ll}
\Delta, \Delta_{1}^{\prime} \Vdash A_{2} & 1 \text { By IH on } A_{1} \prec A_{1} \multimap A_{2} \text { from } \mathcal{D}_{1} \prec \mathcal{D} \text { and } \mathcal{E}_{1} \prec \mathcal{E} \\
\Delta, \Delta_{1}^{\prime}, \Delta_{2}^{\prime} \Vdash C & 2 \text { By IH on } A_{2} \prec A_{1} \multimap A_{2} \text { from line } 1 \text { and } \mathcal{E}_{2} \prec \mathcal{E}
\end{array}
$$

20 Task 4 When replacing $\longrightarrow$ by $\supset$ and $\Vdash$ by $\Longrightarrow$ does a proof of Task 3 justify the case of cut formula $A_{1} \supset A_{2}$ as principal formula of the ordinary cut theorem for intuitionistic logic? Explain.

Solution: No, it does not, because the $\supset L$ rule of intuitionistic propositional logic has a crucial extra antecedent $A_{1} \supset A_{2}$ in its left premise (and could optionally have a redundant extra antecedent $A_{1} \supset A_{2}$ in the second premise). This first needs an extra cut by IH on the same cut formula $A_{1} \supset A_{2}$ but smaller proofs $\mathcal{D}$ and $\mathcal{E}_{1} \prec \mathcal{E}$.

