
15-424: Foundations of Cyber-Physical Systems

Lecture Notes on
Differential Equations & Domains
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1. Introduction

In the last lecture, we have learned about the characteristic features of cyber-physical sys-
tems (CPS): they combine cyber capabilities (computation and/or communication) with
physical capabilities (motion or other physical processes). Cars, aircraft, and robots are
prime examples, because they move physically in space in a way that is determined by
discrete computerized control algorithms. Designing these algorithms to control CPSs
is challenging due to their tight coupling with physical behavior. At the same time, it is
vital that these algorithms be correct, since we rely on CPSs for safety-critical tasks like
keeping aircraft from colliding.

Since CPS combine cyber and physical capabilities, we need to understand both to
understand CPS. It is not enough to understand both in isolation, though, because we
also need to understand how the cyber and the physics work together, i.e. what hap-
pens when they interface and interact, because this is what CPSs are all about.

You already have experience with models of computation and algorithms for the
cyber part of CPS, because you have seen the use of programming languages for com-
puter programming in previous courses. In CPS, we do not program computers, but
program CPS instead. So we program computers that interact with physics to achieve
their goals. In this lecture, we study models of physics and the most elementary part of
how they can interact with cyber. Physics by and large is obviously a deep subject. But
for CPS one of the most fundamental models of physics is sufficient, that of ordinary
differential equations.

While this lecture covers the most important parts of differential equations, it is not
to be understood as doing complete diligence to the area of ordinary differential equa-
tions. You are advised to refer back to your differential equations course and follow the
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L2.2 Differential Equations & Domains

supplementary information1 available on the course web page as needed during this
course. We refer to the book by Walter [Wal98] for details and proofs about differen-
tial equations. For further background on differential equations, we refer you to the
literature [Har64, Rei71, EEHJ96].

These lecture notes are based on material on cyber-physical systems, hybrid pro-
grams, and logic [Pla12, Pla10, Pla08, Pla07]. Cyber-physical systems play an important
role in numerous domains [PCA07, LS10, LSC+12] with applications in cars [DGV96],
aircraft [TPS98], robots [PKV09], and power plants [FKV04], chemical processes [RKR10,
KGDB10], medical models [GBF+11, KAS+11], and even an importance for understand-
ing biological systems [Tiw11].

More information about CPS can be found in [Pla10, Chapter 1]. Differential equa-
tions and domains are described in [Pla10, Chapter 2.2,2.3] in more detail.

2. Differential Equations as Models of Continuous Physical
Processes

Differential equations model processes in which the (state) variables of a system evolve
continuously in time. A differential equation concisely describes how the system evolves
over time. It describes how the variables change locally, so it, basically, indicates the
direction in which the variables evolve at each point in space. Fig. 1 shows the respec-
tive directions in which the system evolves by a vector at each point and illustrates
one solution which follows those vectors everywhere. Of course, the figure would be
rather cluttered if we would literally try to indicate the vector at each and every point,
of which there are uncountably infinitely many. But this is a shortcoming only of our
illustration. Differential equations actually define such a vector for the direction of evo-
lution at every point in space.

Figure 1: Vector field and one solution of a differential equation

1http://symbolaris.com/course/fcps13-resources.html
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Differential Equations & Domains L2.3

As an example, suppose we have a car whose position is denoted by x. How the
value of variable x changes over time depends on how fast the car is driving. Let v
denote the velocity of the car. Since v is the velocity of the car, its position x changes
such that its derivative x′ is v, which we write by the differential equation x′ = v. This
differential equation is supposed to mean that the time-derivative of the position x is
the velocity v. So how x evolves depends on v. If the velocity is v = 0, then the position
x does not change at all. If v > 0, then the position x keeps on increasing. How fast x
increases depends on the value of v, bigger v give quicker changes in x.

Of course, the velocity v, itself, may also be subject to change over time. The car
might accelerate, so let a denote its acceleration. Then the velocity v changes with time-
derivative a, so v′ = a. Overall, the car then follows the differential equation (system):2

x′ = v, v′ = a

That is, the position x of the car changes with time-derivative v, which, in turn, changes
with time-derivative a.

What we mean by this differential equation, intuitively, is that the system has a vector
field where all vectors point into direction a. What does this mean exactly?

3. The Meaning of Differential Equations

We relate some intuitive concept to how differential equations describe the direction
of the evolution of a system as a vector field Fig. 1. But what exactly is a vector field?
What does it mean to describe directions of evolutions at every point in space? Could
these directions not possibly contradict each other so that the description becomes am-
biguous? What is the exact meaning of a differential equation in the first place?

The only way to truly understand any system is to understand exactly what each
of its pieces does. CPSs are demanding and misunderstandings about their effect often
have far-reaching consequences. The physical impacts of CPSs do not leave much room
for failure, so we immediately want to get into the mood of consistently studying the
behavior and exact meaning of all relevant aspects of CPS.

An ordinary differential equation in explicit form is an equation y′(t) = f(t, y) where y′(t)
is meant to be the derivative of y with respect to time t. A solution is a differentiable
function Y which satisfies this equation when substituted in the differential equation,
i.e., when substituting Y (t) for y and the derivative Y ′(t) of Y at t for y′(t).

Definition 1 (Ordinary differential equation). Let f : D → Rn be a function on a do-
main D ⊆ R × Rn. The function Y : I → Rn is a solution on the interval I ⊆ R of the
initial value problem [

y′(t) = f(t, y)
y(t0) = y0

]
(1)

2 Note that the value of x changes over time, so it is really a function of time. Hence, the notation
x′(t) = v(t), v′(t) = a is sometimes used. It is customary, however, to suppress the argument t for time
and just write x′ = v, v′ = a instead.
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L2.4 Differential Equations & Domains

with ordinary differential equation (ODE) y′ = f(t, y), if, for all t ∈ I

1. (t, Y (t)) ∈ D,

2. Y ′(t) exists and Y ′(t) = f(t, Y (t)),

3. Y (t0) = y0.

If f : D → Rn is continuous, then it is easy to see that Y : I → Rn is continuously
differentiable. Similarly if f is k-times continuously differentiable then Y is k+ 1-times
continuously differentiable. The definition is accordingly for higher-order differential
equations, i.e., differential equations involving higher-order derivatives y(n)(t) for n >
1.

Let us consider the intuition for this definition. A differential equation (system) can
be thought of as a vector field such as the one in Fig. 1, where, at each point, the vector
shows in which direction the solution evolves. At every point, the vector would cor-
respond to the right-hand side of the differential equation. A solution of a differential
equation adheres to this vector field at every point, i.e., the solution (e.g., the solid line
in Fig. 1) locally follows the direction indicated by the vector of the right-hand side of
the differential equation. There are many solutions of the differential equation corre-
sponding to the vector field illustrated in Fig. 1. For the particular initial value prob-
lem, however, a solution also has to start at the position y0 at time t0 and then follow
the differential equations or vector field from this point. In general, there could still be
multiple solutions for the same initial value problem.

Example 2. Some differential equations are easy to solve. The initial value problem[
x′(t) = 5
x(0) = 2

]
has a solution x(t) = 5t+ 2. This can be checked easily by inserting the solution into
the differential equation and initial value equation:[

(x(t))′ = (5t+ 2)′ = 5
x(0) = 5 · 0 + 2 = 2

]
Example 3. Consider the initial value problem[

x′(t) = −2x
x(1) = 3

]
which has a solution x(t) = 3e−2(t−1). The test, again, is to insert the solution into the
(differential) equations of the initial value problems and check:[

(3e−2(t−1))′ = −6e−2(t−1) = −2x(t)

x(1) = 3e−2(1−1) = 3

]
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Example 4. Consider the differential equation system z′ = v, v′ = a and the initial value
problem 

z′(t) = v(t)
v′(t) = a
z(0) = z0
v(0) = v0


Note that this initial value problem is a symbolic initial value problem with symbols z0, v0
as initial values (not specific numbers like 5 and 2.3). Moreover, the differential equa-
tion has a constant symbol a, and not a specific number like 0.6, in the differential
equation. In vectorial notation, the initial value problem with this differential equation
system corresponds to a vectorial system when we denote y(t) := (z(t), v(t)), i.e., with
dimension n = 2 in Def. 1:  y′(t) =

(
z
v

)′
(t) =

(
v(t)
a

)
y(0) =

(
z
v

)
(0) =

(
z0
v0

)


The solution of this initial value problem is

z(t) =
a

2
t2 + v0t+ z0

v(t) = at+ v0

We can show that this is the solution by inserting the solution into the (differential)
equations of the initial value problems and checking:

(a2 t
2 + v0t+ z0)

′ = 2a2 t+ v0 = v(t)
(at+ v0)

′ = a
z(0) = a

202 + v00 + z0 = z0
v(0) = a0 + v0 = v0


Example 5. Consider the differential equation system x′ = y, y′ = −x and the initial
value problem 

x′(t) = y(t)
y′(t) = −x(t)
x(0) = 1
y(0) = 1


The solution of this initial value problem is

x(t) = cos(t) + sin(t)

y(t) = cos(t)− sin(t)
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L2.6 Differential Equations & Domains

We can show that this is the solution by inserting the solution into the (differential)
equations of the initial value problems and checking:

(cos(t) + sin(t))′ = − sin(t) + cos(t) = y(t)
(cos(t)− sin(t))′ = − sin(t)− cos(t) = −x(t)

x(0) = cos(0) + sin(0) = 1
y(0) = cos(0)− sin(0) = 1



Note 1 (Descriptive power of differential equations). As a general phenomenon, ob-
serve that solutions of differential equations can be much more involved than the differ-
ential equations themselves, which is part of the representational and descriptive power of
differential equations.

4. Domains of Differential Equations

Now we understand exactly what a differential equation is and how it describes a con-
tinuous physical process. In CPS, however, physical processes interact with cyber ele-
ments such as computers. When and how do physics and cyber elements interact? The
first thing we need to understand for that is how to describe when physics stops so that
the cyber elements take control of what happens next. Obviously, physics does not lit-
erally stop evolving, but rather keeps on evolving all the time. Yet, the cyber parts only
take effect every now and then. So, our intuition may imagine physics “pauses” for a
period of duration 0 and lets the cyber take action to influence the inputs that physics
is based on.

The cyber and the physics could interface in more than one way. Physics might
evolve and the cyber elements interrupt to inspect measurements about the state of
the system periodically to decide what to do next. Or the physics might trigger certain
conditions that cause cyber elements to compute their responses. Another way to look
at that is that a differential equation that a system follows forever without further inter-
vention by anything would not describe a particularly well-controlled system. All those
ways have in common that our model of physics needs to come up with information
about when it stops evolving to give cyber a chance to perform its task.

This information is what is a called an evolution domain H of a differential equation,
which describes a region that the system cannot leave. If the system were ever about
to leave this region, it would stop evolving right away before it leaves the evolution
domain.
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Note 2. A differential equation x′ = f(x) with evolution domain H is denoted by

x′ = f(x) &H

This notation x′ = f(x) &H signifies that the system follows the differential equation
x′ = f(x) for any duration, but is never allowed to leave the region described by H . So the
system evolution has to stop while the state is still in H .

If, e.g., t is a time variable with t′ = 1, then x′ = v, v′ = a, t′ = 1 & t ≤ ε describes a
system that follows the differential equation at most until time t = ε and not any fur-

ther. The evolution domainH
def≡ (v ≥ 0), instead, restricts the system x′ = v, v′ = a& v ≥ 0

to nonnegative velocities. Should the velocity ever become negative while following
the differential equation x′ = v, v′ = a, then the system stops before that happens.

In the scenario illustrated in Fig. 2, the system starts at time 0 inside the evolution
domain that is depicted as a shaded green region in Fig. 2. Then the system follows the
differential equation x′ = f(x) for any period of time, but has to stop before it leavesH .
Here, it stops at time r.

t

x

H

x′ = f(x)

0 r t

x

H

Hx′ = f(x)

0 r s

Figure 2: System x′ = f(x) &H follows the differential equation x′ = f(x) but cannot
leave the (shaded) evolution domain H .

In contrast, consider the scenario shown on the right of Fig. 2. The system is not
allowed to evolve until time s, because—even if the system is back in the evolution
domain H at that time—it has left the evolution domain H between time r and s (in-
dicated by dotted lines), which is not allowed. Consequently, the continuous evolution
on the right of Fig. 2 will also stop at time r at the latest.

How can we properly describe the evolution domain H? We will need some logic for
that.

5. Continuous Programs: Syntax

After these preparations for understanding differential equations and domains, we
start developing a programming language for cyber-physical systems. Ultimately, this
programming language of hybrid programs will contain more features than just differen-
tial equations. But this most crucial feature is what we start with. This course develops
this programming language and its understanding and its analysis in layers one after
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the other.

Continuous Programs. The first element of the syntax of hybrid programs is the
following.

Note 3. Version 1 of hybrid programs (HPs) are continuous programs. These are
defined by the following grammar (α is a HP, x a variable, θ a term possibly containing x,
and H a formula of first-order logic of real arithmetic):

α ::= x′ = θ&H

This means that a hybrid programα consists of a single statement of the form x′ = θ&H .
In later lectures, we will add more statements to hybrid programs, but focus on differ-
ential equations for now. The formula H is called evolution domain constraint of the con-
tinuous evolution x′ = θ&H . Further x is allowed to be a vector of variables and, then, θ
is a vector of terms of the same dimension. This corresponds to the case of differential
equation systems such as:

x′ = v, v′ = a& (v ≥ 0 ∧ v ≤ 10)

Differential equations are allowed without an evolution domain constraint H as well,
for example:

x′ = y, y′ = x+ y2

which corresponds to choosing true for H , since the formula true is true everywhere
and imposes no condition on the state.

Terms. A rigorous definition of the syntax of hybrid programs also depends on defin-
ing what a term θ is and what a formula H of first-order logic of real arithmetic is. A
term θ is a polynomial term defined by the grammar (where θ, ϑ are terms, x a variable,
and c a rational number constant):

θ, ϑ ::= x | c | θ + ϑ | θ · ϑ

This means that a term θ is either a variable x, or a rational number constant c ∈ Q,
or a sum of terms θ, ϑ, or a product of terms θ, ϑ. Subtraction θ − ϑ is another useful
case, but it turns out that it is already included, because subtraction can be defined by
θ + (−1) · ϑ.

First-order Formulas. The formulas of first-order logic of real arithmetic are defined
as usual in first-order logic, yet using the language of real arithmetic. The formulas
of first-order logic of real arithmetic are defined by the following grammar (where F,G
are formulas of first-order logic of real arithmetic, θ, ϑ are (polynomial) terms, and x a
variable):

F,G ::= θ = ϑ | θ ≥ ϑ | ¬F | F ∧G | F ∨G | F → G | F ↔ G | ∀xF | ∃xF
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The usual abbreviations are allowed, such as θ ≤ ϑ for ϑ ≥ θ and θ < ϑ for ¬(θ ≥ ϑ).

6. Continuous Programs: Semantics

Note 4 (Syntax vs. Semantics). Syntax just defines a notation. Its meaning is defined by
the semantics.

Terms. The meaning of a continuous evolution x′ = θ&H depends on understand-
ing the meaning of terms θ. A term θ is a syntactic expression. Its value depends on
the interpretation of the variables contained in θ. What values those variables have
changes depending on the state of the CPS. A state ν is a mapping from variables to real
numbers. The set of states is denoted S.

Definition 6 (Valuation of terms). The value of term θ in state ν is denoted [[θ]]ν and
defined by induction on the structure of θ:

[[x]]ν = ν(x) if x is a variable
[[c]]ν = c if c is a rational constant

[[θ + ϑ]]ν = [[θ]]ν + [[ϑ]]ν
[[θ · ϑ]]ν = [[θ]]ν · [[ϑ]]ν

In particular, the value of a variable-free term like 4+5·2 does not depend on the state
ν. In this case, the value is 14. The value of a term with variables, like 4 +x · 2, depends
on ν. Suppose ν(x) = 5, then [[4 + x · 2]]ν = 14. If ω(x) = 2, then [[4 + x · 2]]ω = 8.

First-order Formulas. Unlike for terms, the value of a logical formula is not a number
but instead true or false . Whether a logical formula evaluates to true or false depends
on the interpretation of its symbols. In first-order logic of real arithmetic, the meaning
of all symbols except variables is fixed. The meaning of terms and of formulas of first-
order logic of real arithmetic is as usual in first-order logic, except that + really means
addition, ·means multiplication,≥means greater or equals, and that the quantifiers ∀x
and ∃x quantify over the reals.

Let νdx denote the state that agrees with state ν except for the interpretation of vari-
able x, which is changed to the value d ∈ R:

νdx(y) =

{
d if y is the variable x
ν(y) otherwise

We write ν |= F to indicate that F evaluates to true in state ν and define it as follows.

Definition 7 (First-order logic semantics). The satisfaction relation ν |= F for a first-order
formula F of real arithmetic in state ν is defined inductively:
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• ν |= (θ1 = θ2) iff [[θ1]]ν = [[θ2]]ν .

• ν |= (θ1 ≥ θ2) iff [[θ1]]ν ≥ [[θ2]]ν .

• ν |= ¬F iff ν 6|= F , i.e. if it is not the case that ν |= F .

• ν |= F ∧G iff ν |= F and ν |= G.

• ν |= F ∨G iff ν |= F or ν |= G.

• ν |= F → G iff ν 6|= F or ν |= G.

• ν |= F ↔ G iff (ν |= F and ν |= G) or (ν 6|= F and ν 6|= G).

• ν |= ∀xF iff νdx |= F for all d ∈ R.

• ν |= ∃xF iff νdx |= F for some d ∈ R.

If ν |= F , then we say that F is true at ν or that ν is a model of F . A formula F is valid,
written � F , iff ν |= F for all states ν. A formula F is a consequence of a set of formulas
Γ, written Γ � F , iff, for each ν: ν |= G for all G ∈ Γ implies that ν |= F .

With this definition, we know how to evaluate whether a evolution domain H of a
continuous evolution x′ = θ&H is true in a particular state ν or not. If ν |= H , then H
holds in that state. Otherwise (i.e. if ν 6|= H), H does not hold in ν. Yet, in which states
ν do we need to check the evolution domain?

Continuous Programs. There is more than one way to define the meaning of a pro-
gram, including defining a denotational semantics, an operational semantics, a struc-
tural operational semantics, an axiomatic semantics. For our purposes, what is most
relevant is how a hybrid program changes the state of the system. Consequently, the
semantics of HPs is based on which final states are reachable from which initial state.
It considers which (final) state ω is reachable by running a HP α from an (initial) state
ν. Semantical models that expose more detail, e.g., about the internal states during the
run of an HP are possible [Pla10, Chapter 4] but not needed for our usual purposes.

If a differential equation starts in a state ν, the system could reach many possible
states when following this particular differential equation. Even though the solutions of
initial value problems (differential equation with an initial state) are unique under mild
conditions (Appendix B), they still do not lead to a single unique state. Which state one
ends up at when following a differential equation depends not only on the initial state
ν, but also on how long the system follows that differential equation. Consequently,
the meaning of a continuous program will invariably have to allow for many possible
reachable states. Recall that S denotes the set of states.

The meaning of an HP α is given by a reachability relation ρ(α) ⊆ S × S on states.
That is, (ν, ω) ∈ ρ(α) means that final state ω is reachable from initial state ν by running
HP α. From any initial state ν, there might be many states ω that are reachable, so
many different ω for which (ν, ω) ∈ ρ(α). Form other initial states ν, there might be
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no reachable states ω at all for which (ν, ω) ∈ ρ(α). So ρ(α) is a proper relation, not a
function.

Note 5. The reachability relation ρ(x′ = θ&H) of a continuous program holds for all
pairs of states that can be connected by a solution of the differential equation that is entirely
within H :

ρ(x′ = θ&H) = {(ϕ(0), ϕ(r)) : ϕ(t) |= H for all 0 ≤ t ≤ r
for a solution ϕ : [0, r]→ S of x′ = θ of any duration r ∈ R}.

The first line in the definition of ρ(x′ = θ&H) means that the solution satisfies H at all
times. The second line means that ϕ solves the differential equation, which essentially

means that ϕ(t) |= x′ = θ for all 0 ≤ t ≤ r, when interpreting ϕ(t)(x′)
def
= dϕ(ζ)(x)

dζ (t). Let
us elaborate what this means and explicitly consider differential equation systems:

Definition 8 (Semantics of continuous programs). (ν, ω) ∈ ρ(x′1 = θ1, . . . , x
′
n = θn &H)

iff there is a flow ϕ of some duration r ≥ 0 along x′1 = θ1, . . . , x
′
n = θn &H from state ν

to state ω, i.e. a function ϕ : [0, r]→ S such that:

• ϕ(0) = ν, ϕ(r) = ω;

• ϕ respects the differential equations: For each variable xi, the valuation [[xi]]ϕ(ζ) = ϕ(ζ)(xi)
of xi at state ϕ(ζ) is continuous in ζ on [0, r] and has a derivative of value [[θi]]ϕ(ζ)
at each time ζ ∈ (0, r);

• the value of other variables z 6∈ {x1, . . . , xn} remains constant, that is, we have
[[z]]ϕ(ζ) = [[z]]ν for all ζ ∈ [0, r];

• and ϕ respects the invariant: ϕ(ζ) |= H for each ζ ∈ [0, r].

Observe that this definition is explicit about the fact that variables without differ-
ential equations do not change during a continuous program. The semantics of HP is
explicit change: nothing changes unless (an assignment or) a differential equation spec-
ifies how. Also observe the explicit passing from syntax to semantics by the use of the
valuation function [[·]] in Def. 8.
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L2.12 Differential Equations & Domains

A. Existence Theorems

For your reference, this appendix contains a short primer on some important results
about differential equations [Pla10, Appendix B].

There are several classical theorems that guarantee existence and/or uniqueness of
solutions of differential equations (not necessarily closed-form solutions with elemen-
tary functions, though). The existence theorem is due to Peano [Pea90]. A proof can be
found in [Wal98, Theorem 10.IX].

Theorem 9 (Existence theorem of Peano). Let f : D → Rn be a continuous function on an
open, connected domain D ⊆ R × Rn. Then, the initial value problem (1) with (t0, y0) ∈ D
has a solution. Further, every solution of (1) can be continued arbitrarily close to the boundary
of D.

Peano’s theorem only proves that a solution exists, not for what duration it exists.
Still, it shows that every solution can be continued arbitrarily close to the boundary of
the domain D. That is, the closure of the graph of the solution, when restricted to
[0, 0]× Rn, is not a compact subset of D. In particular, there is a global solution on the
interval [0,∞) if D = Rn+1 then.

Peano’s theorem shows the existence of solutions of continuous differential equations
on open, connected domains, but there can still be multiple solutions.

Example 10. The initial value problem with the following continuous differential equa-
tion [

y′ = 3
√
|y|

y(0) = 0

]
has multiple solutions:

y(t) = 0

y(t) =

(
2

3
t

) 3
2

y(t) =

{
0 for t ≤ s(
2
3(t− s)

) 3
2 for t > s

where s ≥ 0 is any nonnegative real number.

B. Existence and Uniqueness Theorems

As usual, Ck(D,Rn) denotes the space of k times continuously differentiable functions
from domain D to Rn.

If we know that the differential equation (its right-hand side) is continuously dif-
ferentiable on an open, connected domain, then the Picard-Lindelöf theorem gives a
stronger result than Peano’s theorem. It shows that there is a unique solution (except,
of course, that the restriction of any solution to a sub-interval is again a solution). For
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this, recall that a function f : D → Rn with D ⊆ R × Rn is called Lipschitz continuous
with respect to y iff there is an L ∈ R such that for all (t, y), (t, ȳ) ∈ D,

‖f(t, y)− f(t, ȳ)‖ ≤ L‖y − ȳ‖.

If, for instance, ∂f(t,y)
∂y exists and is bounded on D, then f is Lipschitz continuous

with L = max(t,y)∈D ‖
∂f(t,y)
∂y ‖ by mean value theorem. Similarly, f is locally Lipschitz

continuous iff for each (t, y) ∈ D, there is a neighbourhood in which f is Lipschitz con-
tinuous. In particular, if f is continuously differentiable, i.e., f ∈ C1(D,Rn), then f is
locally Lipschitz continuous.

Most importantly, Picard-Lindelöf’s theorem [Lin94], which is also known as the
Cauchy-Lipschitz theorem, guarantees existence and uniqueness of solutions. As re-
strictions of solutions are always solutions, we understand uniqueness up to restric-
tions. A proof can be found in [Wal98, Theorem 10.VI]

Theorem 11 (Uniqueness theorem of Picard-Lindelöf). In addition to the assumptions of
Theorem 9, let f be locally Lipschitz continuous with respect to y (for instance, f ∈ C1(D,Rn)
is sufficient). Then, there is a unique solution of the initial value problem (1).

Picard-Lindelöf’s theorem does not show the duration of the solution, but shows
only that the solution is unique. Under the assumptions of Picard-Lindelöf’s theorem,
every solution can be extended to a solution of maximal duration arbitrarily close to
the boundary of D by Peano’s theorem, however. The solution is unique, except that
all restrictions of the solution to a sub-interval are also solutions.

Example 12. The initial value problem[
y′ = y2

y(0) = 1

]
has the unique maximal solution y(t) = 1

1−t on the domain t < 1. This solution cannot
be extended to include the singularity at t = 1.

The following global uniqueness theorem shows a stronger property when the do-
main is [0, a]× Rn. It is a corollary to Theorems 9 and 11, but used prominently in
the proof of Theorem 11, and is of independent interest. A direct proof of the follow-
ing global version of the Picard-Lindelöf theorem can be found in [Wal98, Proposi-
tion 10.VII].

Corollary 13 (Global uniqueness theorem of Picard-Lindelöf). Let f : [0, a] × Rn → Rn
be a continuous function that is Lipschitz continuous with respect to y. Then, there is a unique
solution of the initial value problem (1) on [0, a].

Exercises

Exercise 1. Review the basic theory of ordinary differential equations and examples.

Exercise 2. Review the syntax and semantics of first-order logic.
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[Pla12] André Platzer. Logics of dynamical systems. In LICS, pages 13–24. IEEE,
2012. doi:10.1109/LICS.2012.13.

[Rei71] William T. Reid. Ordinary Differential Equations. John Wiley, 1971.

[RKR10] Derek Riley, Xenofon Koutsoukos, and Kasandra Riley. Reachability anal-
ysis of stochastic hybrid systems: A biodiesel production system. European
Journal on Control, 16(6):609–623, 2010.

[Tiw11] Ashish Tiwari. Logic in software, dynamical and biological systems. In
LICS, pages 9–10. IEEE Computer Society, 2011. doi:10.1109/LICS.2011.
20.

[TPS98] Claire Tomlin, George J. Pappas, and Shankar Sastry. Conflict resolution
for air traffic management: a study in multi-agent hybrid systems. IEEE T.
Automat. Contr., 43(4):509–521, 1998.

[Wal98] Wolfgang Walter. Ordinary Differential Equations. Springer, 1998.

15-424 LECTURE NOTES ANDRÉ PLATZER
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