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1 Introduction

Lecture 10 on Differential Equations & Differential Invariants and Lecture 11 on Differ-
ential Equations & Proofs equipped us with powerful tools for proving properties of
differential equations without having to solve them. Differential invariants (DI) [Pla10a]
prove properties of differential equations by induction based on the right-hand side of
the differential equation, rather than its much more complicated global solution. Differ-
ential cuts (DC) [Pla10a] made it possible to prove another property C of a differential
equation and then change the dynamics of the system around so that it can never leave
region C. Differential cuts turned out to be very useful when stacking inductive prop-
erties of differential equations on top of each other, so that easier properties are proved
first and then assumed during the proof of the more complicated properties. Differ-
ential weakening (DW) [Pla10a] proves simple properties that are entailed by the evo-
lution domain, which becomes especially useful after the evolution domain constraint
has been augmented sufficiently by way of a differential cut.

Just like in the case of loops, where the search for invariants is nontrivial, differen-
tial invariants also require some smarts (or good automatic procedures) to be found.
Once a differential invariant has been identified, the proof follows easily, which is a
computationally attractive property.

Finding invariants of loops is very challenging. It can be shown to be the only
fundamental challenge in proving safety properties of conventional discrete programs
[HMP77]. Likewise, finding invariants and differential invariants is the only funda-
mental challenge in proving safety properties of hybrid systems [Pla08, Pla10b, Pla12a].
A more careful analysis even shows that just finding differential invariants is the only
fundamental challenge for hybrid systems safety verification [Pla12a].
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L14.2 Differential Invariants & Proof Theory

That is reassuring, because we know that the proofs will work1 as soon as we find
the right differential invariants. But it also tells us that we can expect the search for dif-
ferential invariants (and invariants) to be challenging, because cyber-physical systems
are extremely challenging, albeit very important.

Since, at the latest after this revelation, we fully realize the importance of studying
and understanding differential invariants, we subscribe to developing a deeper un-
derstanding of differential invariants right away. The part of their understanding that
today’s lecture develops is how various classes of differential invariants relate to each
other in terms of what they can prove. That is, are there properties that only differential
invariants of the formA can prove, because differential invariants of the form B cannot
prove them. Or are all properties provable by differential invariants of the form A also
provable by differential invariants of the form B.

These relations between classes of differential invariants tell us which forms of differ-
ential invariants we need to search for. A secondary goal of today’s lecture besides this
theoretical understanding is the practical understanding of developing more intuition
about differential invariants and seeing them in action more thoroughly.

This lecture is based on [Pla12b]. In this lecture, we try to strike a balance between
comprehensive handling of the subject matter and core intuition. This lecture will
mostly focus on the core intuition of the heart of the proofs and leaves a more com-
prehensive argument and further study for articles [Pla12b]. Many proofs in this lec-
ture are simplified and only prove the core argument, while leaving out other aspects.
Those very important further details are beyond the scope of this course and can be
found elsewhere [Pla12b]. For example, this lecture will not study whether indirect
proofs could conclude the same properties. With a more careful analysis [Pla12b], it
turns out that indirect proofs do not change the results reported in this lecture, but the
proofs become significantly more complicated and require a more precise choice of the
sequent calculus formulation. In this lecture, we will also not always prove all state-
ments conjectured in a theorem. The remaining proofs can be found in the literature
[Pla12b].

Note 1 (Proof theory of differential equations). The results in this lecture are part of
the proof theory of differential equations. They are proofs about proofs, because they prove
relations between the provability of logical formulas with different (sequent) proof calculi.

2 Recap

Recall the following proof rules for differential equations from Lecture 11 on Differen-
tial Equations & Proofs:

1Although it may still be a lot of work in practice to make the proofs work. At least they become possible.
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Differential Invariants & Proof Theory L14.3

Note 2 (Proof rules for differential equations).

(DI)
H ` F ′θx′

F ` [x′ = θ&H]F
(DW)

H ` F
Γ ` [x′ = θ&H]F,∆

(DC)
Γ ` [x′ = θ&H]C,∆ Γ ` [x′ = θ& (H ∧ C)]F ,∆

Γ ` [x′ = θ&H]F,∆

With cuts and generalizations, earlier lectures have also shown that the following can
be proved:

A ` F F ` [x′ = θ&H]F F ` B
A ` [x′ = θ&H]B

(1)

3 Comparative Deductive Study

We study the relations of classes of differential invariants in terms of their relative de-
ductive power. That is, we study whether some properties are only provable using
differential invariant from the class A, not using differential invariants from the class
B, or whether all properties provable with differential invariants from class A are also
provable with class B.

As a basis, we consider a propositional sequent calculus with logical cuts (which sim-
plify glueing derivations together) and real-closed field arithmetic (we denote all uses
by proof rule R); see [Pla12b]. By DI we denote the proof calculus that, in addition,
has general differential invariants (rule DI with arbitrary quantifier-free first-order for-
mula F ) but no differential cuts (rule DC). For a set Ω ⊆ {≥, >,=,∧,∨} of operators,
we denote by DIΩ the proof calculus where the differential invariant F in rule DI is
further restricted to the set of formulas that uses only the operators in Ω. For example,
DI=,∧,∨ is the proof calculus that allows only and/or-combinations of equations to be
used as differential invariants. Likewise, DI≥ is the proof calculus that only allows
atomic weak inequalities p ≥ q to be used as differential invariants.

We consider classes of differential invariants and study their relations. IfA and B are
two classes of differential invariants, we write A ≤ B if all properties provable using
differential invariants from A are also provable using differential invariants from B.
We write A 6≤ B otherwise, i.e., when there is a valid property that can only be proven
using differential invariants of A \ B. We write A ≡ B if A ≤ B and B ≤ A. We write
A < B if A ≤ B and B 6≤ A. Classes A and B are incomparable if A 6≤ B and B 6≤ A.

4 Equivalences of Differential Invariants

First, we study whether there are equivalence transformations that preserve differential
invariance. Every equivalence transformation that we have for differential invariant
properties helps us with structuring the proof search space and also helps simplifying
meta-proofs.
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L14.4 Differential Invariants & Proof Theory

Lemma 1 (Differential invariants and propositional logic). Differential invariants
are invariant under propositional equivalences. That is, if F ↔ G is an instance of a
propositional tautology then F is a differential invariant of x′ = θ&H if and only if G is.

Proof. Let F be a differential invariant of a differential equation system x′ = θ&H and
let G be a formula such that F ↔ G is an instance of a propositional tautology. Then G
is a differential invariant of x′ = θ&H , because of the following formal proof:

∗
H ` G′θx′

DIG ` [x′ = θ&H]G

F ` [x′ = θ&H]F

The bottom proof step is easy to see using (1), because precondition F implies the new
precondition G and postcondition F is implied by the new postcondition G proposi-
tionally. Subgoal H ` G′θx′ is provable, because H ` F ′θx′ is provable and G′ is defined
as a conjunction over all literals of G. The set of literals of G is identical to the set
of literals of F , because the literals do not change by using propositional tautologies.
Furthermore, we assumed a propositionally complete base calculus [Pla12b].

In subsequent proofs, we can use propositional equivalence transformations by Lemma 1.
In the following, we will also implicitly use equivalence reasoning for pre- and post-
conditions as we have done in Lemma 1. Because of Lemma 1, we can, without loss of
generality, work with arbitrary propositional normal forms for proof search.

5 Differential Invariants & Arithmetic

Not all logical equivalence transformations carry over to differential invariants. Differ-
ential invariance is not necessarily preserved under real arithmetic equivalence trans-
formations.

Lemma 2 (Differential invariants and arithmetic). Differential invariants are not in-
variant under equivalences of real arithmetic. That is, if F ↔ G is an instance of a first-
order real arithmetic tautology then F may be a differential invariant of x′ = θ&H yet G
may not.

Proof. There are two formulas that are equivalent over first-order real arithmetic but,
for the same differential equation, one of them is a differential invariant, the other one
is not (because their differential structures differ). Since 5 ≥ 0, the formula x2 ≤ 52 is
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Differential Invariants & Proof Theory L14.5

equivalent to −5 ≤ x ∧ x ≤ 5 in first-order real arithmetic. Nevertheless, x2 ≤ 52 is a
differential invariant of x′ = −x by the following formal proof:

∗
R ` −2x2 ≤ 0

` (2xx′ ≤ 0)−xx′
DIx2 ≤ 52 ` [x′ = −x]x2 ≤ 52

but −5 ≤ x ∧ x ≤ 5 is not a differential invariant of x′ = −x:

not valid
` 0 ≤ −x ∧ −x ≤ 0

` (0 ≤ x′ ∧ x′ ≤ 0)−xx′
DI−5 ≤ x ∧ x ≤ 5 ` [x′ = −x](−5 ≤ x ∧ x ≤ 5)

When we want to prove the property in the proof of Lemma 2, we need to use the
principle (1) with the differential invariant F ≡ x2 ≤ 52 and cannot use−5 ≤ x ∧ x ≤ 5.

By Lemma 2, we cannot just use arbitrary equivalences when investigating differen-
tial invariance, but have to be more careful. Not just the elementary real arithmetical equiv-
alence of having the same set of satisfying assignments matters, but also the differential
structures need to be compatible. Some equivalence transformations that preserve the
solutions still destroy the differential structure. It is the equivalence of real differential
structures that matters. Recall that differential structures are defined locally in terms of
the behavior in neighborhoods of a point, not the point itself.

Lemma 2 illustrates a notable point about differential equations. Many different for-
mulas characterize the same set of satisfying assignments. But not all of them have
the same differential structure. Quadratic polynomials have inherently different dif-
ferential structure than linear polynomials even when they have the same set of so-
lutions over the reals. The differential structure is a more fine-grained information.
This is similar to the fact that two elementary equivalent models of first-order logic
can still be non-isomorphic. Both the set of satisfying assignments and the differen-
tial structure matter for differential invariance. In particular, there are many formulas
with the same solutions but different differential structures. The formulas x2 ≥ 0 and
x6 + x4 − 16x3 + 97x2 − 252x+ 262 ≥ 0 have the same solutions (all of R), but very dif-
ferent differential structure; see Fig. 1.

The first two rows in Fig. 1 correspond to the polynomials from the latter two cases.
The third row is a structurally different degree 6 polynomial with again the same set of
solutions (R) but a rather different differential structure. The differential structure also
depends on what value x′ assumes according to the differential equation. Fig. 1 illus-
trates that p′ alone can already have a very different characteristic even if the respective
sets of satisfying assignments of p ≥ 0 are identical.
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L14.6 Differential Invariants & Proof Theory
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Figure 1: Equivalent solutions (p ≥ 0 on the left) with different differential structure (p′

plotted on the right)
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Differential Invariants & Proof Theory L14.7

We can, however, always normalize all atomic subformulas to have right-hand side
0, that is, of the form p = 0, p ≥ 0, or p > 0. For instance, p ≤ q is a differential invariant
if and only if q − p ≥ 0 is, because p ≤ q is equivalent (in first-order real arithmetic)
to q − p ≥ 0 and, moreover, for any variable x and term θ, (p′ ≤ q′)θx′ is equivalent to
(q′ − p′ ≥ 0)θx′ in first-order real arithmetic.

6 Differential Invariant Equations

For equational differential invariants, a.k.a. differential invariant equations, proposi-
tional operators do not add to the deductive power.

Proposition 3 (Equational deductive power [Pla10a, Pla12b]). The deductive power
of differential induction with atomic equations is identical to the deductive power of dif-
ferential induction with propositional combinations of polynomial equations: That is, each
formula is provable with propositional combinations of equations as differential invariants
iff it is provable with only atomic equations as differential invariants:

DI= ≡ DI=,∧,∨

How could we prove that?
Before you read on, see if you can find the answer for yourself.
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L14.8 Differential Invariants & Proof Theory

One direction is simple. Proving DI= ≤ DI=,∧,∨ is obvious, because every proof us-
ing a differential invariant equation p1 = p2 also is a proof using a propositional com-
bination of differential invariant equations. The propositional combination that just
consists of the only conjunct p1 = p2.

The other way around DI= ≥ DI=,∧,∨ is more difficult. If a formula can be proved
using a differential invariant that is a propositional combination of equations, such
as p1 = p2 ∧ q1 = q2, how could it possibly be proved using just a single equation?

Note 6 (Proofs of equal provability). A proof of Proposition 3 needs to show that every
such provable property is also provable with a structurally simpler differential invariant.
It effectively needs to transform proofs with propositional combinations of equations as
differential invariants into proofs with just differential invariant equations. And, of course,
the proof of Proposition 3 needs to prove that the resulting equations are actually provably
differential invariants and prove the same properties as before.

Proof of Proposition 3. Let x′ = θ be the (vectorial) differential equation to consider. We
show that every differential invariant that is a propositional combination F of poly-
nomial equations is expressible as a single atomic polynomial equation (the converse
inclusion is obvious). We can assume F to be in negation normal form by Lemma 1 (re-
call that negations are resolved and 6= can be assumed not to appear). Then we reduce F
inductively to a single equation using the following transformations:

• If F is of the form p1 = p2 ∨ q1 = q2, then F is equivalent to the single equation
(p1 − p2)(q1 − q2) = 0. Furthermore, F ′θx′ ≡ (p′1 = p′2 ∧ q′1 = q′2)θx′ directly implies(

((p1 − p2)(q1 − q2))′ = 0
)θ
x′
≡

(
(p′1 − p′2)(q1 − q2) + (p1 − p2)(q′1 − q′2) = 0

)θ
x′

• If F is of the form p1 = p2 ∧ q1 = q2, then F is equivalent to the single equation
(p1 − p2)2 + (q1 − q2)2 = 0. Furthermore, F ′θx′ ≡

(
p′1 = p′2 ∧ q′1 = q′2

)θ
x′

implies

( (
(p1 − p2)2 + (q1 − q2)2

)′
=0

)θ
x′
≡

(
2(p1 − p2)(p′1 − p′2) + 2(q1 − q2)(q′1 − q′2) = 0

)θ
x′

Note that the polynomial degree increases quadratically by the reduction in Propo-
sition 3, but, as a trade-off, the propositional structure simplifies. Consequently, differ-
ential invariant search for the equational case can either exploit propositional structure
with lower degree polynomials or suppress the propositional structure at the expense
of higher degrees.
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Differential Invariants & Proof Theory L14.9

7 Equational Incompleteness

Focusing exclusively on differential invariants with equations, however, reduces the
deductive power, because sometimes only differential invariant inequalities can prove
properties.

Proposition 4 (Equational incompleteness). The deductive power of differential induc-
tion with equational formulas is strictly less than the deductive power of general differential
induction, because some inequalities cannot be proven with equations.

DI= ≡ DI=,∧,∨ < DI
DI≥ 6≤ DI= ≡ DI=,∧,∨

DI> 6≤ DI= ≡ DI=,∧,∨

How could such a proposition be proved?
Before you read on, see if you can find the answer for yourself.

15-424 LECTURE NOTES ANDRÉ PLATZER



L14.10 Differential Invariants & Proof Theory

The proof strategy in Proposition 3 involved transforming proofs into proofs to prove
the inclusion DI= ≥ DI=,∧,∨. Could the same strategy prove Proposition 4? No, be-
cause we need to show the opposite! Proposition 4 conjectures DI≥ 6≤ DI=,∧,∨, which
means that there are true properties that are only provable using a differential invariant
inequality p1 ≥ p2 and not using any differential invariant equations or propositional
combinations thereof.

For one thing, this means that we ought to find a property that a differential invariant
inequality can prove. That ought to be easy enough, because Lecture 11 on Differential
Equations & Proofs showed us how useful differential invariants are. But then a proof
of Proposition 4 also requires a proof why that very same formula cannot possibly ever
be proved with any way of using differential invariant equations or their propositional
combinations. That is a proof about nonprovability. Proving provability in proof theory
amounts to producing a proof (in sequent calculus). Proving nonprovability most cer-
tainly does not mean it would be enough to write something down that is not a proof.
After all, just because one proof attempt fails does not mean that others would not be
successful. You have experienced this while you were working on proving your labs
for this course. The first proof attempt might have failed miserably and was impossible
to ever work out. But, come next day, you had a better idea with a different proof, and
suddenly the same property turned out to be provable even if the first proof attempt
failed.

How could we prove that all proof attempts do not work?
Before you read on, see if you can find the answer for yourself.
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Differential Invariants & Proof Theory L14.11

One way of showing that a logical formula cannot be proved is by giving a counterex-
ample, i.e. a state which assigns values to the variables that falsify the formula. That is,
of course, not what can help us proving Proposition 4, because a proof of Proposition 4
requires us to find a formula that can be proved with DI≥ (so it cannot have a coun-
terexample, since it is valid), just cannot be proved with DI=,∧,∨. Proving that a valid
formula cannot be proved with DI=,∧,∨ requires us to show that all proofs in DI=,∧,∨
do not prove that formula.

By analogy, recall sets. The way to prove that two setsM,N have the same “number”
of elements is to come up with a pair of functions Φ : M → N and Ψ : N → M
between the sets and then prove that Φ,Ψ are inverses of each other, i.e. Φ(Ψ(y)) = y
and Ψ(Φ(x)) = x for all x ∈ M,y ∈ N . Proving that two sets M,N do not have the
same “number” of elements works entirely differently, because that has to prove for all
pairs of functions Φ : M → N and Ψ : N → M that there is is an x ∈ M such that
Ψ(Φ(x)) 6= x or an y ∈ N such that Φ(Ψ(y)) 6= y. Since that is a lot of work, indirect
criteria such as cardinality or countability are often used instead, e.g. for proving that
the reals R and rationals Q do not have the same number of elements, because Q are
countable but R are not (by Cantor’s diagonal argument).

By analogy, recall vector spaces from linear algebra. The way to prove that two vector
spaces V,W are isomorphic is to think hard and construct a function Φ : V → W and
a function Ψ : W → V and then prove that Φ,Ψ are linear functions and inverses
of each other. Proving that two vector spaces V,W are not isomorphic works entirely
differently, because that has to prove that all pairs of functions Φ : V → W and Ψ :
W → V are either not linear or not inverses of each other. Proving the latter literally
is a lot of work. So instead, indirect criteria are being used. One proof that V,W are
not isomorphic could show that both have different dimensions and then prove that
isomorphic vector spaces always have the same dimension, so V andW cannot possibly
be isomorphic.

Consequently, proving non-provability leads to a study of indirect criteria about
proofs of differential equations.

Note 8 (Proofs of different provability). Proving non-reducibility A 6≤ B for classes of
differential invariants requires an example formula φ that is provable inA plus a proof that
no proof using B proves φ. The preferred way of doing that is finding an indirect criterion
that all proofs in B possess but that φ does not have.

Proof of Proposition 4. Consider any term a > 0 (e.g., 5 or x2 + 1 or x2 + x4 + 2). The
following formula is provable by differential induction with the weak inequality x ≥ 0:

∗
R ` a ≥ 0
DIx ≥ 0 ` [x′ = a]x ≥ 0

It is not provable with an equational differential invariant. Any univariate polynomial
p that is zero on x ≥ 0 is the zero polynomial and, thus, p = 0 cannot be equivalent to
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L14.12 Differential Invariants & Proof Theory

the half space x ≥ 0. By the equational deductive power theorem 3, the above formula
then is not provable with any Boolean combination of equations as differential invariant
either.

The other parts of the theorem are proved elsewhere [Pla12b].

It might be tempting to think that at least equational postconditions only need equa-
tional differential invariants for proving them. But that is not the case either [Pla12b].

8 Strict Differential Invariant Inequalities

We show that, conversely, focusing on strict inequalities also reduces the deductive
power, because equations are obviously missing and there is at least one proof where
this matters. That is, strict barrier certificates do not prove (nontrivial) closed invari-
ants.

Formal definitions of open and closed sets come from real analysis (or topology).
Roughly: A closed set is one whose boundary belongs to the set. For example the solid
unit disk. An open set is one whose boundary does not belong to the set, for example
the unit disk without the circle of radius 1.

Proposition 5 (Strict barrier incompleteness). The deductive power of differential in-
duction with strict barrier certificates (formulas of the form p > 0) is strictly less than the
deductive power of general differential induction.

DI> < DI
DI= 6≤ DI>

Proof. The following formula is provable by equational differential induction:

∗
R ` 2xy + 2y(−x) = 0
DIx2 + y2 = c2 ` [x′ = y, y′ = −x]x2 + y2 = c2

But it is not provable with a differential invariant of the form p > 0. An invariant of
the form p > 0 describes an open set and, thus, cannot be equivalent to the (nontrivial)
closed domain where x2 + y2 = c2. The only sets that are both open and closed in Rn
are ∅ and Rn.

The other parts of the theorem are proved elsewhere [Pla12b].

9 Differential Invariant Equations as Differential Invariant
Inequalities

Weak inequalities, however, do subsume the deductive power of equational differential
invariants. This is obvious on the algebraic level but we will see that it also does carry
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Differential Invariants & Proof Theory L14.13

over to the differential structure.

Proposition 6 (Equational definability). The deductive power of differential induction
with equations is subsumed by the deductive power of differential induction with weak
inequalities:

DI=,∧,∨ ≤ DI≥

Proof. By Proposition 3, we only need to show that DI= ≤ DI≥. Let p = 0 be an equa-
tional differential invariant of a differential equation x′ = θ&H . Then we can prove
the following:

∗
H ` (p′ = 0)θx′

DIp = 0 ` [x′ = θ&H]p = 0

Then, the inequality −p2 ≥ 0, which is equivalent to p = 0 in real arithmetic, also is a
differential invariant of the same dynamics by the following formal proof:

∗
H ` (−2pp′ ≥ 0)θx′

DI−p2 ≥ 0 ` [x′ = θ&H](−p2 ≥ 0)

The subgoal for the differential induction step is provable: if we can prove that H im-
plies (p′ = 0)θx′ , then we can also prove that H implies (−2pp′ ≥ 0)θx′ , because (p′ = 0)θx′

implies (−2pp′ ≥ 0)θx′ in first-order real arithmetic.

Note that the local state-based view of differential invariants is crucial to make the last
proof work. By Proposition 6, differential invariant search with weak inequalities can
suppress equations. Note, however, that the polynomial degree increases quadratically
with the reduction in Proposition 6. In particular, the polynomial degree increases quar-
tically when using the reductions in Proposition 3 and Proposition 6 one after another
to turn propositional equational formulas into single inequalities. This quartic increase
of the polynomial degree is likely a too serious computational burden for practical pur-
poses even if it is a valid reduction in theory.

10 Differential Invariant Atoms

Next we see that, with the notable exception of pure equations (Proposition 3), propo-
sitional operators increase the deductive power.
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L14.14 Differential Invariants & Proof Theory

Theorem 7 (Atomic incompleteness). The deductive power of differential induction
with propositional combinations of inequalities exceeds the deductive power of differential
induction with atomic inequalities.

DI≥ < DI≥,∧,∨
DI> < DI>,∧,∨

Proof. Consider any term a ≥ 0 (e.g., 1 or x2+1 or x2+x4+1 or (x−y)2+2). Then the for-
mula x ≥ 0 ∧ y ≥ 0→ [x′ = a, y′ = y2](x ≥ 0 ∧ y ≥ 0) is provable using a conjunction in
the differential invariant:

∗
R ` a ≥ 0 ∧ y2 ≥ 0

` (x′ ≥ 0 ∧ y′ ≥ 0)ax′
y2

y′

DIx ≥ 0 ∧ y ≥ 0 ` [x′ = a, y′ = y2](x ≥ 0 ∧ y ≥ 0)

By a sign argument similar to that in the proof of [Pla10a, Theorem 2] no atomic formula
is equivalent to x ≥ 0 ∧ y ≥ 0. Thus, the above property cannot be proven using a single
differential induction. The proof for a postcondition x > 0 ∧ y > 0 is similar.

The other—quite substantial—parts of the proof are proved elsewhere [Pla12b].

Note that the formula in the proof of Theorem 7 is provable, e.g., using differential
cuts (DC) with two atomic differential induction steps, one for x ≥ 0 and one for y ≥ 0.
Yet, a similar argument can be made to show that the deductive power of differential
induction with atomic formulas (even when using differential cuts) is strictly less than
the deductive power of general differential induction; see [Pla10a, Theorem 2].

11 Summary

Fig. 2 summarizes the findings of this lecture and others reported in the literature [Pla12b].
We have considered the differential invariance problem, which, by a relative complete-
ness argument [Pla12a], is at the heart of hybrid systems verification. To better under-
stand structural properties of hybrid systems, we have identified and analyzed more
than a dozen (16) relations between the deductive power of several (9) classes of differ-
ential invariants, including subclasses that correspond to related approaches.

Our results require a symbiosis of elements of logic with real arithmetical, differen-
tial, semialgebraic, and geometrical properties. Future work includes investigating this
new field further that we call real differential semialgebraic geometry, whose development
has only just begun.
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Differential Invariants & Proof Theory L14.15

DI= DI=,∧,∨

DI> DI>,∧,∨

DI≥ DI≥,∧,∨

DI

DI≥,=,∧,∨

DI>,=,∧,∨

Figure 2: Differential invariance chart

Exercises

Exercise 1. Prove the relation DI> ≤ DI>,∧,∨.

Exercise 2. Prove the relation DI≥ ≡ DI≤,∧,∨.

Exercise 3. Prove the relation DI≥,∧,∨ ≡ DI≥,=,∧,∨.

Exercise 4. Prove the relation DI=,∧,∨ < DI≥,∧,∨.

Exercise 5. Prove the relation DI>,∧,∨ < DI>,=,∧,∨.
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