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1 Overview

Cyber-physical systems (CPSs) combine cyber capabilities (computation and/or commu-
nication) with physical capabilities (motion or other physical processes). Cars, aircraft,
and robots are prime examples, because they move physically in space in a way that is
determined by discrete computerized control algorithms. Designing these algorithms
to control CPSs is challenging due to their tight coupling with physical behavior. At the
same time, it is vital that these algorithms be correct, since we rely on CPSs for safety-
critical tasks like keeping aircraft from colliding. In this course we will strive to answer
the fundamental question posed by Jeannette Wing:

”How can we provide people with cyber-physical systems they can bet their
lives on?”

Students who successfully complete this course will:

• Understand the core principles behind CPSs.

• Develop models and controls.

• Identify safety specifications and critical properties of CPSs.

• Understand abstraction and system architectures.

• Learn how to design by invariant.

• Reason rigorously about CPS models.

• Verify CPS models of appropriate scale.
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L0.2 Foundations of Cyber-Physical Systems

• Understand the semantics of a CPS model.

• Develop an intuition for operational effects.

The cornerstone of our course design are hybrid programs (HPs), which capture rel-
evant dynamical aspects of CPSs in a simple programming language with a simple
semantics. One important aspect of HPs is that they directly allow the programmer to
refer to real-valued variables representing real quantities and specify their dynamics as
part of the HP.

This course will give you the required skills to formally analyze the CPSs that are
all around us – from power plants to pace makers and everything in between – so that
when you contribute to the design of a CPS, you are able to understand important
safety-critical aspects and feel confident designing and analyzing system models. It
will provide an excellent foundation for students who seek industry positions and for
students interested in pursuing research.

2 Course Materials

Detailed lecture notes, lecture videos, homework assignments, lab assignments and
other course material are available on the course web page.1 There also is an optional
textbook:

• André Platzer, Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer, 2010.

More information on the design of the undergraduate course Foundations of Cyber-
Physical Systems can be found in the Course Syllabus.2

1http://symbolaris.com/course/fcps16.html
2http://symbolaris.com/course/15424-syllabus.pdf
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3 Lectures

These course consists of the following sequence of lectures (lecture notes are hyper-
linked here but can also be found directly from the course web page):

1. Cyber-physical systems: introduction

2. Differential equations & domains

3. Choice & control

4. Safety & contracts

5. Dynamical systems & dynamic axioms

6. Truth & proof

7. Control loops & invariants

8. Events & responses

9. Reactions & delays

10. Differential equations & differential invariants

11. Differential equations & proofs

12. Ghosts & differential ghosts

13. Logical foundations & CPS

14. Differential invariants & proof theory

15. Verified models & verified runtime validation

16. Hybrid systems & games

17. Winning strategies & regions

18. Winning & proving hybrid games

19. Game proofs & separations

20. Virtual substitution & real equations

21. Virtual substitution & real arithmetic

22. Axioms & uniform substitutions

23. Differential axioms & uniform substitutions

24. Model checking & reachability analysis

25. Distributed systems & hybrid systems
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1. Introduction

In Lecture 1, we have learned about the characteristic features of cyber-physical systems
(CPS): they combine cyber capabilities (computation and/or communication as well as
control) with physical capabilities (motion or other physical processes). Cars, aircraft,
and robots are prime examples, because they move physically in space in a way that
is determined by discrete computerized control algorithms that are adjusting the ac-
tuators (e.g., brakes) based on sensor readings of the physical state. Designing these
algorithms to control CPSs is challenging due to their tight coupling with physical be-
havior. At the same time, it is vital that these algorithms be correct, since we rely on
CPSs for safety-critical tasks like keeping aircraft from colliding.

Note 1 (Significance of CPS safety). How can we provide people with cyber-physical
systems they can bet their lives on? – Jeannette Wing

Since CPS combine cyber and physical capabilities, we need to understand both to
understand CPS. It is not enough to understand both capabilities only in isolation,
though, because we also need to understand how the cyber and the physics work to-
gether, i.e. what happens when they interface and interact, because this is what CPSs
are all about.

Note 2 (CPS). Cyber-physical systems combine cyber capabilities with physical capabili-
ties to solve problems that neither part could solve alone.

You already have experience with models of computation and algorithms for the
cyber part of CPS, because you have seen the use of programming languages for com-
puter programming in previous courses. In CPS, we do not program computers, but
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rather program CPSs instead. Hence, we program computers that interact with physics
to achieve their goals. In this lecture, we study models of physics and the most elemen-
tary part of how they can interact with the cyber part. Physics by and large is obviously
a deep subject. But for CPS one of the most fundamental models of physics is sufficient,
that of ordinary differential equations.

While this lecture covers the most important parts of differential equations, it is not to
be understood as doing complete diligence to the fascinating area of ordinary differen-
tial equations. The crucial part about differential equations that you need to get started
with the course is an intuition about differential equations as well as an understanding
of their precise meaning. This will be developed in today’s lecture. Subsequently, we
will be coming back to the topic of differential equations for a deeper understanding
of differential equations and their proof principles a number of times at a later part of
the course. The other important aspect that today’s lecture develops is first-order logic
of real arithmetic for the purpose of representing domains and domain constraints of
differential equations.

You are advised to refer back to your differential equations course and follow the
supplementary information1 available on the course web page as needed during this
course to refresh your knowledge of differential equations. We refer, e.g., to the book
by Walter [Wal98] for details and proofs about differential equations. There is a lot of
further background on differential equations in the literature [Har64, Rei71, EEHJ96].

These lecture notes are based on material on cyber-physical systems, hybrid pro-
grams, and logic [Pla12, Pla10, Pla08, Pla07]. Cyber-physical systems play an impor-
tant role in numerous domains [Pre07, LS10, Alu11, LSC+12] with applications in cars
[DGV96], aircraft [TPS98], robots [PKV09], and power plants [FKV04], chemical pro-
cesses [RKR10, KGDB10], medical models [GBF+11, KAS+11, LSC+12], and even an
importance for understanding biological systems [Tiw11].

More information about CPS can be found in [Pla10, Chapter 1]. Differential equa-
tions and domains are described in [Pla10, Chapter 2.2,2.3] in more detail.

The most important learning goals of this lecture are:

Modeling and Control: We develop an understanding of one core principle behind
CPS: the case of continuous dynamics and differential equations with evolution
domains as models for the physics part of CPS. We introduce first-order logic
of real arithmetic as the modeling language for describing evolution domains of
differential equations.

Computational Thinking: Both the significance of meaning and the descriptive power
of differential equations will play key roles, foreshadowing many important as-
pects underlying the proper understanding of cyber-physical systems. We will
also begin to learn to carefully distinguish between between syntax (which is
notation) and semantics (what carries meaning), a core principle for computer
science that continues to be crucial for CPS.

1http://symbolaris.com/course/fcps14-resources.html
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CPS Skills: We develop an intuition for the continuous operational effects of CPS and
devote significant attention to understanding the exact semantics of differential
equations, which has some subtleties in store for us.

2. Differential Equations as Models of Continuous Physical

Processes

Differential equations model processes in which the (state) variables of a system evolve
continuously in time. A differential equation concisely describes how the system evolves
over time. It describes how the variables change locally, so it, basically, indicates the di-
rection in which the variables evolve at each point in space. Fig. 1 shows the respective
directions in which the system evolves by a vector at each point and illustrates one
solution as a curve in space which follows those vectors everywhere. Of course, the
figure would be rather cluttered if we would literally try to indicate the vector at each
and every point, of which there are uncountably infinitely many. But this is a shortcom-
ing only of our illustration. Differential equations actually define such a vector for the
direction of evolution at every point in space.

Figure 1: Vector field (left) and vector field with one solution of a differential equation
(right)

As an example, suppose we have a car whose position is denoted by x. How the
value of variable x changes over time depends on how fast the car is driving. Let v
denote the velocity of the car. Since v is the velocity of the car, its position x changes
such that its derivative x′ is v, which we write by the differential equation x′ = v. This
differential equation is supposed to mean that the time-derivative of the position x is
the velocity v. So how x evolves depends on v. If the velocity is v = 0, then the position
x does not change at all. If v > 0, then the position x keeps on increasing over time.
How fast x increases depends on the value of v, bigger v give quicker changes in x.

Of course, the velocity v, itself, may also be subject to change over time. The car
might accelerate, so let a denote its acceleration. Then the velocity v changes with time-
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derivative a, so v′ = a. Overall, the car then follows the differential equation (system):2

x′ = v, v′ = a

That is, the position x of the car changes with time-derivative v, which, in turn, changes
with time-derivative a.

What we mean by this differential equation, intuitively, is that the system has a vector
field where all vectors point into direction a. And that the system is always supposed
to follow exactly in the direction of those vectors at every point. What does this mean
exactly? How can we understand it doing that at all of the infinitely many points?

To sharpen our intuition for this aspect, consider a one-dimensional differential equa-
tion with a position x that changes over time t starting at initial state 1 at initial time
0.

[

x′(t) = 1
4x(t)

x(0) = 1

]

For a number of different time discretization steps ∆ ∈ {4, 2, 1, 12}, Fig. 2 illustrates
what a pseudo-solution would look like that only respects the differential equation at
the times that are integer multiples of ∆ and is in blissful ignorance of the differen-
tial equation in between these grid points. The true solution of the differential equa-
tion should, however, also have respected the direction that the differential equation
prescribes at all the other uncountably infinitely time points in between. Because the
differential equation is well-behaved, these discretizations still approach the true con-

tinuous solution x(t) = e
t

4 as ∆ gets smaller.
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Figure 2: Discretizations of differential equations with discretization time step ∆

2 Note that the value of x changes over time, so it is really a function of time. Hence, the notation
x
′(t) = v(t), v′(t) = a is sometimes used. It is customary, however, to suppress the argument t for time

and just write x
′ = v, v

′ = a instead.
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3. The Meaning of Differential Equations

We can relate an intuitive concept to how differential equations describe the direction
of the evolution of a system as a vector field Fig. 1. But what exactly is a vector field?
What does it mean to describe directions of evolutions at every point in space? Could
these directions not possibly contradict each other so that the description becomes ambiguous?
What is the exact meaning of a differential equation in the first place?

The only way to truly understand any system is to understand exactly what each of
its pieces does. CPSs are demanding and misunderstandings about their effect often
have far-reaching consequences.

Note 3 (Importance of meaning). The physical impacts of CPSs do not leave much
room for failure, so we immediately want to get into the mood of consistently studying the
behavior and exact meaning of all relevant aspects of CPS.

An ordinary differential equation in explicit form is an equation y′(t) = f(t, y) where
y′(t) is meant to be the derivative of y with respect to time t and f is a function of time
t and current state y. A solution is a differentiable function Y which satisfies this equa-
tion when substituted into the differential equation, i.e., when substituting Y (t) for y
and the derivative Y ′(t) of Y at t for y′(t). In the next lecture, we will study an elegant
definition of solution of differential equations that is well-attuned with the concepts in
this class. But first, we consider the (equivalent) classical definition of solution.

Definition 1 (Ordinary differential equation). Let f : D → Rn be a function on a
domain D ⊆ R×Rn. The function Y : I → Rn is a solution on the interval I ⊆ R of
the initial value problem

[

y′(t) = f(t, y)
y(t0) = y0

]

(1)

with ordinary differential equation (ODE) y′ = f(t, y), if, for all t ∈ I

1. (t, Y (t)) ∈ D,

2. time-derivative Y ′(t) exists and is Y ′(t) = f(t, Y (t)),

3. Y (t0) = y0, especially t0 ∈ I .

If f : D → Rn is continuous, then it is easy to see that Y : I → Rn is continuously
differentiable, because its derivative Y ′(t) is f(t, Y (t)). Similarly if f is k-times
continuously differentiable then Y is k + 1-times continuously differentiable. The
definition is accordingly for higher-order differential equations, i.e., differential
equations involving higher-order derivatives y(n)(t) for n > 1.

Let us consider the intuition for this definition. A differential equation (system) can
be thought of as a vector field such as the one in Fig. 1, where, at each point, the vec-
tor shows in which direction the solution evolves. At every point, the vector would
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correspond to the right-hand side of the differential equation. A solution of a differen-
tial equation adheres to this vector field at every point, i.e., the solution (e.g., the solid
curve in Fig. 1) locally follows the direction indicated by the vector of the right-hand
side of the differential equation. There are many solutions of the differential equation
corresponding to the vector field illustrated in Fig. 1. For the particular initial value
problem, however, a solution also has to start at the prescribed position y0 at time t0
and then follow the differential equations or vector field from this point. In general,
there could still be multiple solutions for the same initial value problem, but not for
well-behaved differential equations (Appendix B).

4. A Tiny Compendium of Differential Equation Examples

While cyber-physical systems do not necessitate a treatment and understanding of ev-
ery differential equation you could ever think of, they do still benefit from a working
intuition about differential equations and their relationships to their solutions.

Example 2 (A constant differential equation). Some differential equations are easy to
solve. The initial value problem

[

x′(t) = 5
x(0) = 2

]

describes that x initially starts at 3 and always changes at the rate 5. It has the solution
x(t) = 5t+ 2. How could we verify that this is indeed a solution? This can be checked
easily by inserting the solution into the differential equation and initial value equation:

[

(x(t))′ = (5t+ 2)′ = 5
x(0) = 5 · 0 + 2 = 2

]

Example 3 (A linear differential equation). Consider the initial value problem

[

x′(t) = −2x(t)
x(1) = 5

]

in which the rate of change of x(t) depends on the current value of x(t) and is in fact
−2x(t), so the rate of change gets smaller as x(t) gets bigger. This problem has the
solution x(t) = 5e−2(t−1). The test, again, is to insert the solution into the (differential)
equations of the initial value problems and check:

[

(5e−2(t−1))′ = −10e−2(t−1) = −2x(t)

x(1) = 5e−2(1−1) = 5

]

Example 4 (Another linear differential equation). The initial value problem

[

x′(t) = 1
4x(t)

x(0) = 1

]
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Differential Equations & Domains L2.7

shown with different discretizations in Fig. 2 has the true continuous solution x(t) = e
t

4 ,
which can be checked in the same way as for the previous example:

[

(e
t

4 )′ = e
t

4 ( t4)
′ = e

t

4
1
4 = 1

4x(t)

e
0

4 = 1

]

Example 5 (Accelerated motion on a straight line). Consider the following important
differential equation system x′ = v, v′ = a and the initial value problem









x′(t) = v(t)
v′(t) = a
x(0) = x0
v(0) = v0









This differential equation represents that the position x(t) changes with a time-derivative
equal to the respective current velocity v(t), which, in turn, changes with a time-derivative
equal to the acceleration a, which remains constant. The position and velocity start at
the initial values x0 and v0. Note that this initial value problem is a symbolic initial value
problem with symbols x0, v0 as initial values (not specific numbers like 5 and 2.3). More-
over, the differential equation has a constant symbol a, and not a specific number like
0.6, in the differential equation. In vectorial notation, the initial value problem with
this differential equation system corresponds to a vectorial system when we denote
y(t) := (x(t), v(t)), i.e., with dimension n = 2 in Def. 1:









y′(t) =

(

x
v

)′

(t) =

(

v(t)
a

)

y(0) =

(

x
v

)

(0) =

(

x0
v0

)









The solution of this initial value problem is

x(t) =
a

2
t2 + v0t+ x0

v(t) = at+ v0

We can show that this is the solution by inserting the solution into the (differential)
equations of the initial value problems and checking:









(a2 t
2 + v0t+ x0)

′ = 2a
2 t+ v0 = v(t)

(at+ v0)
′ = a

x(0) = a
20

2 + v00 + x0 = x0
v(0) = a0 + v0 = v0









Example 6 (A two dimensional linear differential equation). Consider the differential
equation system x′ = y, y′ = −x and the initial value problem









x′(t) = y(t)
y′(t) = −x(t)
x(0) = 1
y(0) = 1
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in which the rate of change of x(t) gets bigger as y(t) gets bigger but, simultaneously,
the rate of change of y(t) is −x(t) so it gets smaller as x(t) gets bigger and vice versa.
This differential equation describes a rotational effect (Fig. 3) with solution of this initial
value being

x(t) = cos(t) + sin(t)

y(t) = cos(t)− sin(t)

We can show that this is the solution by inserting the solution into the (differential)
equations of the initial value problems and checking:









(cos(t) + sin(t))′ = − sin(t) + cos(t) = y(t)
(cos(t)− sin(t))′ = − sin(t)− cos(t) = −x(t)

x(0) = cos(0) + sin(0) = 1
y(0) = cos(0)− sin(0) = 1









Figure 3: A solution of the rotational differential equations x and y over time t (left) and
in phase space with coordinates y over x (right)

Example 7 (Time square oscillator). Consider the following differential equation system
x′(t) = t2y, y′(t) = −t2x, which explicitly mentions the time variable t, and the initial
value problem









x′(t) = t2y
y′(t) = −t2x
x(0) = 0
y(0) = 1









(2)

The solution shown in Fig. 4(left) illustrates that the system stays bounded but oscillates
increasingly fast. In this case, the solution is





x(t) = sin
(

t3

3

)

y(t) = cos
(

t3

3

)



 (3)
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Differential Equations & Domains L2.9

x

y

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

x

y
1 2 3 4 5 6

-1.5

-1.0

-0.5

0.5

1.0

Figure 4: A solution of the time square oscillator (left) and of the damped oscillator
(right) up to time 6.5

Note that there is no need to mention time variable t itself directly as we could just as
well have added an extra clock variable s with differential equation s′ = 1 and initial
value s(0) = 0 to serve as a proxy for time t. This leads to a system equivalent to (2):

















x′(t) = s2y
y′(t) = −s2x
s′(t) = 1
x(0) = 0
y(0) = 1
s(0) = 0

















Example 8 (Damped oscillator). Consider the linear differential equation x′ = y, y′ =
−4x− 0.8y and the initial value problem









x′(t) = y
y′(t) = −4x− 0.8y
x(0) = 1
y(0) = 0









(4)

The solution shown in Fig. 4(right) illustrates that the dynamical system decays over
time. In this case, the explicit global solution representing the dynamical system is
more difficult.

Note 5 (Descriptive power of differential equations). As a general phenomenon, ob-
serve that solutions of differential equations can be much more involved than the differ-
ential equations themselves, which is part of the representational and descriptive power of
differential equations. Pretty simple differential equations can describe quite complicated
physical processes.
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5. Domains of Differential Equations

Now we understand exactly what a differential equation is and how it describes a con-
tinuous physical process. In CPS, however, physical processes are not running in isola-
tion but interact with cyber elements such as computers or embedded systems. When
and how do physics and cyber elements interact? The first thing we need to under-
stand for that is how to describe when physics stops so that the cyber elements take
control of what happens next. Obviously, physics does not literally stop evolving, but
rather keeps on evolving all the time. Yet, the cyber parts only take effect every now
and then, because it only provides input into physics by way of its actuators every once
in a while. So, our intuition may imagine physics “pauses” for a period of duration 0
and lets the cyber take action to influence the inputs that physics is based on. In fact,
cyber may interact with physics over a period of time or after computing for some time
to reach a decision. But the phenomenon is still the same. At some point, cyber is done
sensing and deliberating and deems it time to act. At which moment of time physics
needs to “pause” for a conceptual period of time of imaginary duration 0 to give cyber
a chance to act.

The cyber and the physics could interface in more than one way. Physics might
evolve and the cyber elements interrupt to inspect measurements about the state of
the system periodically to decide what to do next. Or the physics might trigger certain
conditions or events that cause cyber elements to compute their respective responses to
these events. Another way to look at that is that a differential equation that a system
follows forever without further intervention by anything would not describe a particu-
larly well-controlled system. All those ways have in common that our model of physics
needs to specify when it stops evolving to give cyber a chance to perform its task.

This information is what is a called an evolution domain Q of a differential equation,
which describes a region that the system cannot leave while following that particular
continuous mode of the system. If the system were ever about to leave this region, it
would stop evolving right away (for the purpose of giving the cyber parts of the system
a chance to act) before it leaves the evolution domain.

Note 6 (Evolution domain constraints). A differential equation x′ = f(x) with evo-
lution domain Q is denoted by

x′ = f(x)&Q

using a conjunctive notation (&) between the differential equation and its evolution do-
main. This notation x′ = f(x)&Q signifies that the system obeys both the differential
equation x′ = f(x) and the evolution domain Q. That is, the system follows this differen-
tial equation for any duration while inside the region Q, but is never allowed to leave the
region described by Q. So the system evolution has to stop while the state is still in Q.

If, e.g., t is a time variable with t′ = 1, then x′ = v, v′ = a, t′ = 1& t ≤ ε describes
a system that follows the differential equation at most until time t = ε and not any

further, because the evolution domain Q
def≡ (t ≤ ε) would be violated after time ε.
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Differential Equations & Domains L2.11

That can be a useful model for the kind of physics that gives the cyber elements a

chance to act at the latest at time ε. The evolution domain Q
def≡ (v ≥ 0), instead,

restricts the system x′ = v, v′ = a& v ≥ 0 to nonnegative velocities. Should the velocity
ever become negative while following the differential equation x′ = v, v′ = a, then the
system stops before that happens.

In the left two scenarios illustrated in Fig. 5, the system starts at time 0 inside the
evolution domainQ that is depicted as a shaded green region in Fig. 5. Then the system
follows the differential equation x′ = f(x) for any period of time, but has to stop before
it leaves Q. Here, it stops at time r0 (left) or r (middle, right) respectively.

t

x

Q

x′ = f(x)

0 r0
t

x

Q

x′ = f(x)

0 r t

x

Q

Q
x′ = f(x)

0 r s

Figure 5: System x′ = f(x)&Q follows the differential equation x′ = f(x) for any dura-
tion r but cannot leave the (shaded) evolution domain Q.

In contrast, consider the scenario shown on the right of Fig. 5. The system is not
allowed to evolve until time s, because—even if the system were back in the evolution
domain Q at that time—it has already left the evolution domain Q between time r
and s (indicated by dotted lines), which is not allowed. Consequently, the continuous
evolution on the right of Fig. 5 will also stop at time r at the latest and cannot continue
any further.

Now that we know what the evolution domain constraintQ of a differential equation
is supposed to do, the question is how we can properly describe it in a CPS model? We
will need some logic for that. For one thing, we should start getting precise about how
to describe the evolution domain Q for a differential equation. Its most critical bit are
which points satisfy Q and which ones doesn’t, which is what logic is good at making
precise.

6. Continuous Programs: Syntax

After these preparations for understanding differential equations and domains, we
start developing a programming language for cyber-physical systems. Ultimately, this
programming language of hybrid programs will contain more features than just differen-
tial equations. But this most crucial feature is what we start with in this lecture. This
course develops this programming language and its understanding and its analysis in
layers one after the other. We will discuss the principles behind its design in the next
lecture in more details and just start with continuous programs for now.
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Continuous Programs. The first element of the syntax of hybrid programs are purely
continuous programs.

Note 7. Layer 1 of hybrid programs (HPs) are continuous programs. These are defined
by the following grammar (α is a HP, x is a variable, e is any term possibly containing x,
and Q a formula of first-order logic of real arithmetic):

α ::= x′ = e&Q

This means that a hybrid programα consists of a single statement of the form x′ = e&Q.
In later lectures, we will add more statements to hybrid programs, but focus on differ-
ential equations for now. The formula Q is called evolution domain constraint of the
continuous evolution x′ = e&Q. What form Q can take will be defined below. But it has
to enable an unambiguous definition of which points satisfy Q and which points do
not. Further x is a variable but is also allowed to be a vector of variables and, then, e
is a vector of terms of the same dimension. This corresponds to the case of differential
equation systems such as:

x′ = v, v′ = a&(v ≥ 0 ∧ v ≤ 10)

Differential equations are allowed without an evolution domain constraint Q as well,
for example:

x′ = y, y′ = x+ y2

which corresponds to choosing true for Q, since the formula true is true everywhere
and, thus, actually imposes no condition on the state whatsoever.

Terms. A rigorous definition of the syntax of hybrid programs also depends on defin-
ing what a term e is and what a formula Q of first-order logic of real arithmetic is.

Definition 9 (Terms). A term e is a polynomial term defined by the grammar
(where e, ẽ are terms, x a variable, and c a rational number constant):

e, ẽ ::= x | c | e+ ẽ | e · ẽ

This means that a term e (or a term ẽ)3 is either a variable x, or a rational number
constant c ∈ Q such as 0 or 1 or 5

7 , or a sum of terms e, ẽ, or a product of terms e, ẽ,
which are again built of this form recursively. Subtraction e − ẽ is another useful case,
but it turns out that it is already included, because the subtraction term e− ẽ is already

3 From a formal languages and grammar perspective, it would be fine to use the equivalent grammar

e ::= x | c | e+ e | e · e

We use the slightly more verbose form just to emphasize that a term can be a sum e+ ẽ of any arbitrary
and possibly different terms e, ẽ and does not have to consist of sums e+ e of one and the same term e.
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definable by the term e + (−1) · ẽ. That is why we will not worry about subtraction in
developing the theory, but use it in our examples regardless.

First-order Formulas. The formulas of first-order logic of real arithmetic are defined
as usual in first-order logic, except that it uses the specific language of real arithmetic,
for example e ≥ ẽ for greater-or-equal. First-order logic supports the logical connec-
tives not (¬), and (∧), or (∨), implies (→), biimplication or equivalence (↔), as well as
quantifiers for all (∀) and exists (∃).

Definition 10 (Formulas of first-order logic of real arithmetic). The formulas of
first-order logic of real arithmetic are defined by the following grammar (where P,Q
are formulas of first-order logic of real arithmetic, e, ẽ are terms, and x a variable):

P,Q ::= e = ẽ | e ≥ ẽ | ¬P | P ∧Q | P ∨Q | P → Q | P ↔ Q | ∀xP | ∃xP

The usual abbreviations are allowed, such as e ≤ ẽ for ẽ ≥ e and e < ẽ for ¬(e ≥ ẽ).

7. Continuous Programs: Semantics

Note 10 (Syntax vs. Semantics). Syntax just defines arbitrary notation. Its meaning is
defined by the semantics.

Terms. The meaning of a continuous evolution x′ = e&Q depends on understanding
the meaning of terms e. A term e is a syntactic expression. Its value depends on the
interpretation of the variables appearing in the term e. What values those variables
have changes depending on the state of the CPS. A state ω is a mapping from variables
to real numbers. The set of states is denoted S.

Definition 11 (Semantics of terms). The value of term e in state ω ∈ S is a real
number denoted [[e]]ω and is defined by induction on the structure of term e:

[[x]]ω = ω(x) if x is a variable

[[c]]ω = c if c ∈ Q is a rational constant

[[e+ ẽ]]ω = [[e]]ω + [[ẽ]]ω

[[e · ẽ]]ω = [[e]]ω · [[ẽ]]ω

That is, the value of a variable x in state ω is defined by the state ω, which is a mapping
from variables to real numbers. And the value of a term of the form e+ ẽ in a state ω is
the sum of the values of the subterms e and ẽ in ω, respectively. Likewise, the value of
a term of the form e · ẽ in a state ω is the product of the values of the subterms e and ẽ in
ω, respectively. Each term has a value in every state, because each case of the syntactic
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form of terms (Def. 9) has been given a semantics. That is, the semantics of a term is a
mapping from states to the real value that the term evaluates to in the respective state.

The value of a variable-free term like 4 + 5 · 2 does not depend on the state ω at all.
In this case, the value is 14. The value of a term with variables, like 4 + x · 2, depends
on what value the variable x has in state ω. Suppose ω(x) = 5, then [[4 + x · 2]]ω = 14.
If ν(x) = 2, then [[4 + x · 2]]ν = 8. While, technically, the state is a mapping from all
variables to real numbers, it turns out that the values it gives to most variables are
immaterial, only the values of its free variables have any influence [Pla15]. So while the
value of 4+ x · 2 very much depends on the value of x, it does not depend on the value
that variable y has since y does not even occur.

First-order Formulas. Unlike for terms, the value of a logical formula is not a real
number but instead true or false . Whether a logical formula evaluates to true or false

depends on the interpretation of its symbols. In first-order logic of real arithmetic, the
meaning of all symbols except the variables is fixed. The meaning of terms and of
formulas of first-order logic of real arithmetic is as usual in first-order logic, except that
+ really means addition, · means multiplication, ≥ means greater or equals, and that
the quantifiers ∀x and ∃x quantify over the reals. The meaning of the variables is again
determined by the state of the CPS.

For the definition of the semantics, we need state modifications, i.e. ways of changing
a given state ω around by changing the value of a variable x but leaving the values of
all other variables alone. Let ωd

x ∈ S denote the state that agrees with state ω ∈ S except
for the interpretation of variable x, which is changed to the value d ∈ R:

ωd
x(y) =

{

d if y is the variable x

ω(y) otherwise

We write ω ∈ [[F ]] to indicate that F evaluates to true in state ω and define it as follows.
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Definition 12 (First-order logic semantics). The satisfaction relation ω ∈ [[P ]] for a
first-order formula P of real arithmetic in state ω is defined inductively:

• ω ∈ [[(e = ẽ)]] iff [[e]]ω = [[ẽ]]ω
That is, an equation is true in a state ω iff the terms on both sides evaluate to
the same number.

• ω ∈ [[(e ≥ ẽ)]] iff [[e]]ω ≥ [[ẽ]]ω
That is, a greater-or-equals inequality is true in a state ω iff the term on the
left evaluate to a number that is greater or equal to the value of the right
term.

• ω ∈ [[¬P ]] iff ω 6∈ [[P ]], i.e. if it is not the case that ω ∈ [[P ]]
That is, a negated formula ¬P is true in state ω iff the formula P itself is not
true in ω.

• ω ∈ [[P ∧Q]] iff ω ∈ [[P ]] and ω ∈ [[Q]]
That is, a conjunction is true in a state iff both conjuncts are true in said state.

• ω ∈ [[P ∨Q]] iff ω ∈ [[P ]] or ω ∈ [[Q]]
That is, a disjunction is true in a state iff either of its disjuncts is true in said
state.

• ω ∈ [[P → Q]] iff ω 6∈ [[P ]] or ω ∈ [[Q]]
That is, an implication is true in a state iff either its left-hand side is false or
its right-hand side true in said state.

• ω ∈ [[P ↔ Q]] iff (ω ∈ [[P ]] and ω ∈ [[Q]]) or (ω 6∈ [[P ]] or ω 6∈ [[Q]])
That is, a biimplication is true in a state iff both sides are true or both sides
are false in said state.

• ω ∈ [[∀xP ]] iff ωd
x ∈ [[P ]] for all d ∈ R

That is, a universally quantified formula ∀xP is true in a state iff its ker-
nel P is true in all variations of the state, no matter what real number d the
quantified variable x evaluates to in the variation ωd

x.

• ω ∈ [[∃xP ]] iff ωd
x ∈ [[P ]] for some d ∈ R

That is, an existentially quantified formula ∃xP is true in a state iff its kernel
P is true in some variation of the state, for a suitable real number d that the
quantified variable x evaluates to in the variation ωd

x.

If ω ∈ [[P ]], then we say that P is true at ω or that ω is a model of P . A formula P
is valid, written � P , iff ω ∈ [[P ]] for all states ω. A formula P is a consequence of a
set of formulas Γ, written Γ � P , iff, for each ω: ω ∈ [[Q]] for all Q ∈ Γ implies that
ω ∈ [[P ]].
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The most exciting formulas are the ones that are valid, i.e., � P , because that means
they are true no matter what state a system is in. Valid formulas, and how to find out
whether a formula is valid, will keep us busy quite a while in this course. Consequences
of a formula set Γ are also amazing, because, even if they may not be valid per se,
they are true whenever Γ is. For today’s lecture, however, it is more important which
formulas are true in a given state.

With the semantics, we know how to evaluate whether an evolution domain Q of a
continuous evolution x′ = e&Q is true in a particular state ω or not. If ω ∈ [[Q]], then
the evolution domain Q holds in that state. Otherwise (i.e. if ω 6∈ [[Q]]), Q does not hold
in ω. Yet, in which states ω do we even need to check the evolution domain? We need to
find some way of saying that the evolution domain constraint Q is checked for whether
it is true (i.e. ω ∈ [[Q]]) in all states ω along the solution of the differential equation.

Continuous Programs. The semantics of continuous programs surely depends on
the semantics of its pieces, which include terms and formulas. The latter have now
been defined so that the next step is giving continuous programs themselves a proper
semantics.

There is more than one way to define the meaning of a program, including defining
a denotational semantics, an operational semantics, a structural operational semantics,
an axiomatic semantics. We will be in a better position to appreciate several nuances
of these aspects in later lectures. In order to keep things simple, all we care about for
now is the observation that running a continuous program x′ = e&Q takes the system
from an initial state ω to a new state ν. And, in fact, one crucial aspect to notice is that
there is not only one state ν that x′ = e&Q can reach from ω just like there is not only
one solution of the differential equation x′ = e. Even in cases where there is a unique
solution of maximal duration, there are still many different solutions differing only in
the duration of the solution. Thus, the continuous program x′ = e&Q can lead from
initial state ω to more than one possible state ν. Which states ν are reachable from an
initial state ω along the continuous program x′ = e&Q exactly? Well these should be
the states ν that can be connected from ω by a solution of the differential equation x′ = e
that remains entirely within the set of states where the evolution domain constraint Q
holds true. Giving this a precise meaning requires going back and forth between syntax
and semantics carefully.
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Definition 13 (Semantics of continuous programs). The state ν is reachable from
initial state ω by the continuous program x′1 = e1, . . . , x

′

n = en&Q iff there is a
solution (or flow) ϕ of some duration r ≥ 0 along x′1 = e1, . . . , x

′

n = en&Q from
state ω to state ν, i.e. a function ϕ : [0, r] → S such that:

• initial and final states match: ϕ(0) = ω, ϕ(r) = ν;

• ϕ respects the differential equations: For each variable xi, the valuation [[xi]]ϕ(ζ) =
ϕ(ζ)(xi) of xi at state ϕ(ζ) is continuous in ζ on [0, r] and has a derivative of
value [[ei]]ϕ(ζ) at each time ζ ∈ (0, r), i.e.,

dϕ(t)(xi)

dt
(ζ) = [[ei]]ϕ(ζ)

• the value of other variables z 6∈ {x1, . . . , xn} remains constant, that is, we
have [[z]]ϕ(ζ) = [[z]]ω for all ζ ∈ [0, r];

• and ϕ respects the evolution domain at all times: ϕ(ζ) |= Q for each ζ ∈ [0, r].

The next lecture will introduce a notation for this and just write

(ω, ν) ∈ [[x′1 = e1, . . . , x
′

n = en&Q]]

to indicate that state ν is reachable from initial state ω by the continuous program
x′1 = e1, . . . , x

′

n = en&Q.
Observe that this definition is explicit about the fact that variables without differ-

ential equations do not change during a continuous program. The semantics of HP is
explicit change: nothing changes unless (an assignment or) a differential equation speci-
fies how. Also observe the explicit passing from syntax to semantics4 by the use of the
valuation function [[·]] in Def. 13.

Finally note that for duration r = 0, the condition on respecting the differential equa-
tion is trivially satisfied, because Def. 13 only requires the time-derivative of the value
of xi to match with its right-hand side ei in the open interval (0, r), which, for r = 0,
is the empty interval. Observe that this is a good choice for the semantics, because for
r = 0, the meaning of a derivative at the only point in time 0 would not even be well-
defined, so it would not be meaningful to refer to it. Consequently, the only conditions
that Def. 13 imposes for duration 0 are that the initial state ω and final state ν are the
same and that the evolution domain constraint Q is respected at that state: ω ∈ [[Q]].

4This important aspect is often overlooked. Informally, one might say that x obeys x
′ = e, but this cer-

tainly cannot mean that the equation x
′ = e holds true, because it is not even clear what the meaning

of x′ would be, nor does e have a single value, because it is a syntactic term whose value depends on
the state by Def. 11. A syntactic variable x has a meaning in a state but x′ does not. The semantical
valuation of x along a function ϕ, instead, can have a well-defined derivative. This requires passing
back and forth between syntax and semantics.
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Note 14 (Operators and (informal) meaning in first-order logic of real arithmetic
(FOL)).

FOL Operator Meaning

e = ẽ equals true iff values of e and ẽ are equal
e ≥ ẽ equals true iff value of e greater-or-equal to ẽ
¬φ negation / not true if φ is false
φ ∧ ψ conjunction / and true if both φ and ψ are true
φ ∨ ψ disjunction / or true if φ is true or if ψ is true
φ→ ψ implication / implies true if φ is false or ψ is true
φ↔ ψ bi-implication / equivalent true if φ and ψ are both true or both false
∀xφ universal quantifier / for all true if φ is true for all values of variable x
∃xφ existential quantifier / exists true if φ is true for some values of variable x

8. Summary

This lecture gave a precise semantics to differential equations and presented first-order
logic of real arithmetic, which we use for the evolution domain constraints within
which differential equations are supposed to stay. The operators in first-order logic
of real arithmetic and their informal meaning is summarized in Note 14.

A. Existence Theorems

For your reference, this appendix contains a short primer on some important results
about differential equations [Pla10, Appendix B].

There are several classical theorems that guarantee existence and/or uniqueness of
solutions of differential equations (not necessarily closed-form solutions with elemen-
tary functions, though). The existence theorem is due to Peano [Pea90]. A proof can be
found in [Wal98, Theorem 10.IX].

Theorem 14 (Existence theorem of Peano). Let f : D → Rn be a continuous function on
an open, connected domain D ⊆ R× Rn. Then, the initial value problem (1) with (t0, y0) ∈ D
has a solution. Further, every solution of (1) can be continued arbitrarily close to the boundary
of D.

Peano’s theorem only proves that a solution exists, not for what duration it exists.
Still, it shows that every solution can be continued arbitrarily close to the boundary of
the domain D. That is, the closure of the graph of the solution, when restricted to
[0, 0]× Rn, is not a compact subset of D. In particular, there is a global solution on the
interval [0,∞) if D = Rn+1 then.

Peano’s theorem shows the existence of solutions of continuous differential equations
on open, connected domains, but there can still be multiple solutions.
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Example 15. The initial value problem with the following continuous differential equa-
tion

[

y′ = 3

√

|y|
y(0) = 0

]

has multiple solutions:

y(t) = 0

y(t) =

(

2

3
t

)
3

2

y(t) =

{

0 for t ≤ s
(

2
3(t− s)

)
3

2 for t > s

where s ≥ 0 is any nonnegative real number.

B. Existence and Uniqueness Theorems

As usual, Ck(D,Rn) denotes the space of k times continuously differentiable functions
from domain D to Rn.

If we know that the differential equation (its right-hand side) is continuously dif-
ferentiable on an open, connected domain, then the Picard-Lindelöf theorem gives a
stronger result than Peano’s theorem. It shows that there is a unique solution (except,
of course, that the restriction of any solution to a sub-interval is again a solution). For
this, recall that a function f : D → Rn with D ⊆ R × Rn is called Lipschitz continuous
with respect to y iff there is an L ∈ R such that for all (t, y), (t, ȳ) ∈ D,

‖f(t, y)− f(t, ȳ)‖ ≤ L‖y − ȳ‖.

If, for instance, ∂f(t,y)
∂y

exists and is bounded on D, then f is Lipschitz continuous

with L = max(t,y)∈D ‖∂f(t,y)
∂y

‖ by mean value theorem. Similarly, f is locally Lipschitz
continuous iff for each (t, y) ∈ D, there is a neighbourhood in which f is Lipschitz con-
tinuous. In particular, if f is continuously differentiable, i.e., f ∈ C1(D,Rn), then f is
locally Lipschitz continuous.

Most importantly, Picard-Lindelöf’s theorem [Lin94], which is also known as the
Cauchy-Lipschitz theorem, guarantees existence and uniqueness of solutions. As re-
strictions of solutions are always solutions, we understand uniqueness up to restric-
tions. A proof can be found in [Wal98, Theorem 10.VI]

Theorem 16 (Uniqueness theorem of Picard-Lindelöf). In addition to the assumptions of
Theorem 14, let f be locally Lipschitz continuous with respect to y (for instance, f ∈ C1(D,Rn)
is sufficient). Then, there is a unique solution of the initial value problem (1).

Picard-Lindelöf’s theorem does not show the duration of the solution, but shows
only that the solution is unique. Under the assumptions of Picard-Lindelöf’s theorem,
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every solution can be extended to a solution of maximal duration arbitrarily close to
the boundary of D by Peano’s theorem, however. The solution is unique, except that
all restrictions of the solution to a sub-interval are also solutions.

Example 17. The initial value problem

[

y′ = y2

y(0) = 1

]

has the unique maximal solution y(t) = 1
1−t

on the domain t < 1. This solution cannot
be extended to include the singularity at t = 1.

The following global uniqueness theorem shows a stronger property when the do-
main is [0, a]× Rn. It is a corollary to Theorems 14 and 16, but used prominently in
the proof of Theorem 16, and is of independent interest. A direct proof of the follow-
ing global version of the Picard-Lindelöf theorem can be found in [Wal98, Proposi-
tion 10.VII].

Corollary 18 (Global uniqueness theorem of Picard-Lindelöf). Let f : [0, a] × Rn → Rn

be a continuous function that is Lipschitz continuous with respect to y. Then, there is a unique
solution of the initial value problem (1) on [0, a].

Exercises

Exercise 1. Subtraction e− ẽ is already included as a term, because it is definable. What
about negation −e? What about division e/ẽ and powers eẽ?

Exercise 2. Review the basic theory of ordinary differential equations and examples.

Exercise 3. Review the syntax and semantics of first-order logic.

Exercise 4. A number of differential equations and some suggested solutions are listed
in Table 1. Are these all solutions? Are there other solutions? In what ways are the
solutions be considered more complicated than their differential equations?

Exercise 5 (**). What exactly would change and/or go wrong in which cases if Def. 13
were to demand that the derivative condition of the differential equation is respected
at all times ζ ∈ [0, r] rather than at all times ζ ∈ (0, r) in an open interval?
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Differential Equations & Domains L2.21
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√
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15-424: Foundations of Cyber-Physical Systems

Lecture Notes on

Choice & Control

André Platzer

Carnegie Mellon University
Lecture 3

1 Introduction

In the Lecture 2 on Differential Equations & Domains, we have seen the beginning of
cyber-physical systems, yet emphasized their continuous part in the form of differential
equations x′ = f(x). The sole interface between continuous physical capabilities and
cyber capabilities was by way of their evolution domain. The evolution domain Q in
a continuous program x′ = f(x)&Q imposes restrictions on how far or how long the
system can evolve along that differential equation. Suppose a continuous evolution
has succeeded and the system stops following its differential equation, e.g., because
the state would otherwise leave the evolution domain Q if it had kept going. Then
what happens now? How does the cyber take control? How do we describe what the
cyber elements compute and how they interact with physics?

This lecture extends the model of continuous programs for continuous dynamics to
the model of hybrid programs for hybrid dynamics, which is exactly the model we need
to describe the hybrid system dynamics of cyber-physical systems. Hybrid programs
combine discrete and continuous dynamics in a seamless way. This lecture is based on
material on cyber-physical systems and hybrid programs [Pla12b, Pla10, Pla08, Pla07].

Continuous programs x′ = f(x)&Q are very powerful for modeling continuous pro-
cesses. They cannot—on their own—model discrete changes of variables, however1,
which is useful to understand the impact of computer decisions on cyber-physical sys-
tems. During the evolution along a differential equation, all variables change contin-
uously in time, because the solution of a differential equation is (sufficiently) smooth.

1There is a much deeper sense [Pla12a] in which continuous dynamics and discrete dynamics have sur-
prising similarities regardless. But even so, these similarities rest on the foundations of hybrid systems,
which we need to understand first.
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L3.2 Choice & Control

Discontinuous change of variables, instead, needs a way for a discrete change of state.
What could be a model for describing discrete changes in a system?

There are many models for describing discrete change. Other computer science top-
ics provide ample opportunity for seeing models of discrete change in action. CPSs
combine cyber and physics, though. In CPS, we do not program computers, but pro-
gram CPSs instead. As part of that, we program the computers that control the physics.
And programming computers amounts to using a programming language. So a pro-
gramming language would give us a model of discrete computation. Of course, for
programming an actual CPS, our programming language will ultimately have to in-
volve physics. So, none of the conventional programming languages alone will work
for CPS. But we have already seen continuous programs in the previous lecture for that
very purpose. What’s missing in continuous programs is a way to program the discrete
and cyber aspects, which is exactly what the features of conventional programming
languages provide. Which means that set course on an expedition to combine conven-
tional discrete programming languages with the continuous program we discovered
last time.

Does it matter which discrete programming language we choose as a basis? It could
be argued that the discrete programming language does not matter as much as the
hybrid aspects do. After all, there are many programming languages that are Turing-
equivalent, i.e. that compute the same functions (also see Church-Turing thesis [Chu36,
Tur37]). Yet even among all those conventional programming languages there are nu-
merous differences for various purposes in the discrete case, which are studied in the
area of Programming Languages.

For the particular purposes of CPS, however, we will find further desiderata, i.e.
things that we expect from a programming language to be adequate for CPS. We will
develop what we need as we go, culminating in the programming language of hybrid
programs (HP).

More information about choice and control can be found in [Pla10, Chapter 2.2,2.3].
The most important learning goals of this lecture are:

Modeling and Control: This lecture plays a crucial role in understanding and design-
ing models of CPSs. We develop an understanding of the core principles be-
hind CPS by studying how discrete and continuous dynamics are combined and
interact to model cyber and physics, respectively. We see the first example of
how to develop models and controls for a (simplistic) CPS. Even if subsequent
lectures will blur the overly simplistic categorization of cyber=discrete versus
physics=continuous, it is useful to equate them for now, because cyber and com-
putation and decisions quickly lead to discrete dynamics while physics gives rise
to continuous dynamics, naturally. In later lectures, we will discover that some
physical phenomena are better modeled with discrete dynamics while some con-
troller aspects have a manifestation in continuous dynamics.

Computational Thinking: We introduce and study the important phenomenon of non-
determinism, which is crucial for developing faithful models of a CPS’s environ-
ment and helpful for developing efficient models of the CPS itself. We emphasize

15-424 LECTURE NOTES ANDRÉ PLATZER
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the importance of abstraction, which is an essential modular organization prin-
ciple in CPS as well as all other parts of computer science. We capture the core
aspects of CPS in a programming language, the language of hybrid programs.

CPS Skills: We develop an intuition for the operational effects of CPS. And we will
develop an understanding for the semantics of the programming language of hy-
brid programs, which is the CPS model that this course is based on.

CT

M&C CPS

nondeterminism
abstraction
programming languages for CPS
semantics
compositionality

models
core principles
discrete+
continuous

operational effect
operational precision

2 Discrete Programs and Sequential Composition

t

x

0

ω

ν

Discrete change happens in computer programs when
they assign a new value to a variable. The statement
x := e assigns the value of term e to variable x. It leads
to a discrete, discontinuous change, because the value of
x does not vary smoothly but radically when suddenly
assigning the value of e to x, which causes a discrete
jump in the value of x.

This gives us a discrete model of change, x := e, in addition to the continuous model
of change, x′ = f(x)&Q from the Lecture 2 on Differential Equations & Domains. Now,
we can model systems that are either discrete or continuous. Yet, how can we model
proper CPS that combine cyber and physics with one another and that, thus, simulta-
neously combine discrete and continuous dynamics? We need such hybrid behavior
every time a system has both continuous dynamics (such as the continuous motion of
a car down the street) and discrete dynamics (such as shifting gears).

One way how cyber and physics can interact is if a computer provides input to
physics. Physics may mention a variable like a for acceleration and a computer pro-
gram sets its value depending on whether the computer program wants to accelerate
or brake. That is, cyber could set the values of actuators that affect physics.
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L3.4 Choice & Control

In this case, cyber and physics interact in such a way that the cyber part first does
something and physics then follows. Such a behavior corresponds to a sequential com-
position (α;β) in which first the HP α on the left of the sequential composition operator
; runs and, when it’s done, the HP β on the right of ; runs. For example, the following
HP2

a := a+ 1; {x′ = v, v′ = a} (1)

will first let cyber perform a discrete change of setting a to a + 1 and then let physics
follow the differential equation x′′ = a,3 which describes accelerated motion of point
x along a straight line. The overall effect is that cyber increases the value of variable a

and physics then lets x evolve with acceleration a (and increases velocity v continuously
with derivative a). Thus, HP (1) models a situation where the desired acceleration is
commanded once to increase and the robot then moves with that fixed acceleration.
Note that the sequential composition operator (;) has basically the same effect that it
has in programming languages like Java or C0. It separates statements that are to be
executed sequentially one after the other. If you look closely, however, you will find a
subtle minor difference in that programming languages like Java and C0 expect more ;
than hybrid programs, for example at the end of the last statement. This difference is
inconsequential, and a common treat of mathematical programming languages.

The HP in (1) executes control (it sets the acceleration for physics), but it has very
little choice. Actually no choice on what happes at all. So only if the CPS is very lucky
will an increase in acceleration be the right action to remain safe forever. Quite likely,
the robot will have to change its mind ultimately, which is what we will investigate
next.
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Figure 1: Acceleration a (left), velocity v (middle), and position x (right) change over
time t, with acceleration changing discretely at instants of time while velocity
and position change continuously over time.

But first observe that the constructs we saw so far, assignments, sequential compo-
sitions, and differential equations already suffice to exhibit typical hybrid systems dy-

2Note that the parentheses around the differential equation are redundant and will often be left out in the
lecture notes or in scientific papers. HP (1), for example, would be written a := a+1; {x′ = v, v′ = a}.
The KeYmaera X theorem prover that will be using in this course insist on more brackets, however,
and, in fact, use braces for differential equations and programs: a:=a+1; {x’=v,v’=a}.

3We will frequently use x′′ = a as an abbreviation for x′ = v, v′ = a, even if x′′ is not officially permitted
in KeYmaera X.
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namics. The behavior shown in Fig. 1 could be exhibited by the hybrid program:

a :=−2; {x′ = v, v′ = a};

a := 0.25; {x′ = v, v′ = a};

a :=−2; {x′ = v, v′ = a};

a := 0.25; {x′ = v, v′ = a};

a :=−2; {x′ = v, v′ = a};

a := 0.25; {x′ = v, v′ = a}

Can you already spot a question that comes up about how exactly we run this pro-
gram? We will postpone the formulation and answer to this question to Sect. 6.

3 Decisions in Hybrid Programs

In general, a CPS will have to check conditions on the state to see which action to take.
Otherwise it could not possibly be safe and, quite likely, will also not be able to take the
right turns to get to its goal. One way of programming these conditions is the use of an
if-then-else, as in classical discrete programs.

if(v < 4) a := a+ 1 else a :=−b;

{x′ = v, v′ = a}
(2)

This HP will check the condition v < 4 to see if the current velocity is still less than 4.
If it is, then a will be increased by 1. Otherwise, a will be set to −b for some braking
deceleration constant b > 0. Afterwards, i.e. when the if-then-else statement has run to
completion, the HP will again evolve x with acceleration a along a differential equation.

The HP (2) takes only the current velocity into account to reach a decision on whether
to accelerate or brake. That is usually not enough information to guarantee safety, be-
cause a robot doing that would be so fixated on achieving its desired speed that it
would happily speed into any walls or other obstacles along the way. Consequently,
programs that control robots also take other state information into account, for exam-
ple the distance x − o to an obstacle o from the robot’s position x, not just its velocity
v:

if(x− o > 5) a := a+ 1 else a :=−b;

{x′ = v, v′ = a}
(3)

They could also take both distance and velocity into account for the decision:

if(x− o > 5 ∧ v < 4) a := a+ 1 else a :=−b;

{x′ = v, v′ = a}
(4)
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Note 1 (Iterative design). As part of the labs of this course, you will develop increasingly
more intelligent controllers for robots that face increasingly challenging environments.
Designing controllers for robots or other CPS is a serious challenge. You will want to
start with simple controllers for simple circumstances and only move on to more advanced
challenges when you have fully understood and mastered the previous controllers, what
behavior they guarantee and what functionality they are still missing.

4 Choices in Hybrid Programs

What we learn from the above discussion is a common feature of CPS models: they
often include only some but not all detail about the system. And for good reasons,
because full detail about everything can be overwhelming and is often a distraction
from the really important aspects of a system. A (somewhat) more complete model
of (4) might look as follows, with some further formula S as an extra condition for
checking whether to actually accelerate:

if(x− o > 5 ∧ v < 4 ∧ S) a := a+ 1 else a :=−b;

{x′ = v, v′ = a}
(5)

The extra condition S may be very complicated and often depends on many factors. It
could check to smooth the ride, optimize battery efficiency, or pursue secondary goals.
Consequently, (4) is not actually a faithful model for (5), because (4) insists that the
acceleration would always be increased just because x − o > 5 ∧ v < 4 holds, unlike
(5), which also checks the additional condition S. Likewise, (3) certainly is no faithful
model of (5). But it looks simpler.

How can we describe a model that is simpler than (5) by ignoring the details of S yet
that is still faithful to the original system? What we want this model to do is character-
ize that the controller may either increase acceleration by 1 or brake. And we want that
all acceleration certainly only happens when x−o > 5. But the model should make less
commitment than (3) about the precise circumstances under which braking is chosen.
After all, braking may sometimes just be the right thing to do. So we want a model that
allows braking under more circumstances than (3) without having to model precisely
under which circumstances that is. In order to simplify the system faithfully, we want
a model that allows more behavior than (3). The rationale is ultimately that if a system
with more behavior is safe, the actual implementation will be safe as well, because it
will only ever exercise some of the verified behavior. And the extra behavior in the
system might, in fact, even happen in reality whenever there are minor lags or discrep-
ancies. So it is good to have the extra assurance that some flexibility in the execution of
the system will not break its safety guarantees.
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Note 2 (Abstraction). Successful CPS models often include only the relevant aspects
of the system and simplify irrelevant detail. The benefit of doing so is that the model
and its analysis becomes simpler, enabling us to focus on the critical parts without being
bogged down in tangentials. This is the power of abstraction, probably the primary secret
weapon of computer science. It does take considerable skill, however, to find the best level of
abstraction for a system. A skill that you will continue to sharpen throughout your entire
career.

Let us take the development of this model step by step. The first feature that the
controller of the model has is a choice. The controller can choose to increase acceleration
or to brake, instead. Such a choice between two actions is denoted by the operator ∪ :

(a := a+ 1 ∪ a :=−b);

{x′ = v, v′ = a}
(6)

When running this hybrid program, the first thing that happens is that the first state-
ment (before the ;) runs, which is a choice ( ∪ ) between whether to run a := a+ 1 or
whether to run a :=−b. That is, the choice is whether to increase acceleration a by 1 or
whether to reset a to −b for braking. After this choice (i.e. after the ; sequential com-
position operator), the system follows the usual differential equation x′′ = a describing
accelerated motion along a line.

Now, wait. There was a choice. Who choses? How is the choice resolved?

Note 3 (Nondeterministic ∪ ). The choice (∪ ) is nondeterministic. That is, every time
a choice α ∪ β runs, exactly one of the two choices, α or β, is chosen to run and the choice
is nondeterministic, i.e. there is no prior way of telling which of the two choices is going
to be chosen. Both outcomes are perfectly possible.

The HP (6) is a faithful abstraction of (5), because every way how (5) can run can be
mimicked by (6) so that the outcome of (6) corresponds to that of (5). Whenever (5)
runs a := a+ 1, which happens exactly if x− o > 5 ∧ v < 4 ∧ S is true , (6) only needs to
choose to run the left choice a := a+ 1. Whenever (5) runs a :=−b, which happens ex-
actly if x− o > 5 ∧ v < 4 ∧ S is false , (6) needs to choose to run the right choice a :=−b.
So all runs of (5) are possible runs of (6). Furthermore, (6) is much simpler than (5),
because it contains less detail. It does not mention v < 4 nor the complicated extra
condition S. Yet, (6) is a little too permissive, because it suddenly allows the controller
to choose a := a+ 1 even at close distance to the obstacle, i.e. even if x − o > 5 is false .
That way, even if (5) was a safe controller, (6) is still an unsafe one, and, thus, not a very
suitable abstraction.

5 Tests in Hybrid Programs

In order to build a faithful yet not overly permissive model of (5), we need to restrict the
permitted choices in (6) so that there’s flexibility but only so much that the acceleration

15-424 LECTURE NOTES ANDRÉ PLATZER
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choice a := a+ 1 can only be chosen at sufficient distance x− o > 5. The way to do that
is to use tests on the current state of the system.

A test ?Q is a statement that checks the truth-value of a first-order formula Q of real
arithmetic in the current state. If Q holds in the current state, then the test passes,
nothing happens, yet the HP continues to run normally. If, instead, Q does not hold in
the current state, then the test fails, and the system execution is aborted and discarded.
That is, when ω is the current state, then ?Q runs successfully without changing the state
when ω ∈ [[Q]]. Otherwise, i.e. if ω 6∈ [[Q]], the run of ?Q is aborted and not considered
any further, because it did not play by the rules of the system.

The test statement can be used to change (6) around so that it allows acceleration only
at large distances while braking is still allowed always:

(

(?x− o > 5; a := a+ 1) ∪ a :=−b
)

;

{x′ = v, v′ = a}
(7)

The first statement of (7) is a choice (∪ ) between (?x−o > 5; a := a+1) and a :=−b. All
choices in hybrid programs are nondeterministic so any outcome is always possible. In
(7), this means that the left choice can always be chosen, just as well as the right one.
The first statement that happens in the left choice, however, is the test ?x− o > 5, which
the system run has to pass in order to be able to continue successfully. In particular, if
x− o > 5 is indeed true in the current state, then the system passes that test ?x− o > 5
and the execution proceeds to after the sequential composition (;) to run a := a+ 1. If
x− o > 5 is false in the current state, however, the system fails the test ?x− o > 5 and
that run is aborted and discarded. The right option to brake is always available, because
it does not involve any tests to pass.

Note 4 (Discarding failed runs). System runs that fail tests are discarded and not con-
sidered any further, because that run did not play by the rules of the system. It is as if those
failed system execution attempts had never happened. Yet, even if one execution attempt
fails, other execution paths may still be successful. Operationally, you can imagine find-
ing them by backtracking through all the choices in the system run and taking alternative
choices instead.

There are always two choices when running (7). Yet, which ones run successfully
depends on the current state. If the current state is at a far distance from the obstacle
(x − o > 5), then both options of accelerating and braking will indeed be possible
and can be run successfully. Otherwise, only the braking choice runs without being
discarded because of a failing test.

Comparing (7) with (5), we see that (7) is a faithful abstraction of the more compli-
cated (5), because all runs of (5) can be mimicked by (7). Yet, unlike the intermediate
guess (6), the improved HP (7) still retains the critical information that acceleration is
only allowed by (5) at sufficient distance x − o > 5. Unlike (5), (7) does not restrict the
cases where acceleration can be chosen to those that also satisfy v < 4∧ S. Hence, (7) is
more permissive than (5). But (7) is also simpler and only contains crucial information

15-424 LECTURE NOTES ANDRÉ PLATZER
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about the controller. Hence, (7) is a more abstract faithful model of (5) that retains the
relevant detail. Studying the abstract (7) instead of the more concrete (5) has the ad-
vantage that only relevant details need to be understood while irrelevant aspects can
be ignored. It also has the additional advantage that a safety analysis of the more ab-
stract (7), which allows lots of behavior, will imply safety of the special concrete case
(5) but also implies safety of other implementations of (7). For example, replacing S

by a different condition in (5) still gives a special case of (7). So if all behavior of (7) is
safe, all behavior of that different replacement will also already be safe. With a single
verification result about a more general, more abstract system, we can obtain verifica-
tion for a whole class of systems rather than just one particular system. This important
phenomenon will be investigated in more detail in later parts of the course.

Of course, which details are relevant and which ones can be simplified depends on
the analysis question at hand, a question that we will be better equipped to answer in
a later lecture. For now, suffice it to say that (7) has the relevant level of abstraction for
our purposes.

Note 5 (Broader significance of nondeterminism). Nondeterminism comes up in the
above cases for reasons of abstraction and for focusing the system model on the most critical
aspects of the system while suppressing irrelevant detail. This is an important reason for
introducing nondeterminism in system models, but there are other important reasons as
well. Whenever a system includes models of its environment, nondeterministic models
are often a crucial idea, because there is often just a partial understanding of what the
environment will do. A car controller for example, will not always know for sure what
other cars in its environment will do, exactly, so that nondeterministic models are the only
faithful representations.

Note the notational convention that sequential composition ; binds stronger than
nondeterministic choice ∪ so we can leave some parentheses out without changing (7):

(

?x− o > 5; a := a+ 1 ∪ a :=−b
)

;

{x′ = v, v′ = a}
(7)

6 Repetitions in Hybrid Programs

The hybrid programs above were interesting, but only allowed the controller to choose
what action to take at most once. All controllers so far inspected the state in a test or in
an if-then-else condition and then chose what to do once, just to let physics take control
subsequently by following a differential equation. That makes for rather short-lived
controllers. They have a job only once in their lives. And most decisions they reach
may end up being bad ones. Say, one of those controllers, e.g. (7), inspects the state
and finds it still okay to accelerate. If it chooses a := a+ 1 and then lets physics move in
the differential equation x′′ = a, there will probably come a time at which acceleration
is no longer such a great idea. But the controller of (7) has no way to change its mind,
because it has no more choices and so no control anymore.
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If the controller of (7) is supposed to be able to make a second control choice later
after physics has followed the differential equation for a while, then (7) can simply be
sequentially composed with itself:

(

(?x− o > 5; a := a+ 1) ∪ a :=−b
)

;

{x′ = v, v′ = a};
(

(?x− o > 5; a := a+ 1) ∪ a :=−b
)

;

{x′ = v, v′ = a}

(8)

In (8), the cyber controller can first choose to accelerate or brake (depending on whether
x− o > 5), then physics evolves along differential equation x′′ = a for some while, then
the controller can again choose whether to accelerate or brake (depending on whether
x− o > 5 holds in the state reached then), and finally physics again evolves along
x′′ = a.

For a controller that is supposed to be allowed to have a third control choice, copy&paste
replication would again help:

(

(?x− o > 5; a := a+ 1) ∪ a :=−b
)

;

{x′ = v, v′ = a};
(

(?x− o > 5; a := a+ 1) ∪ a :=−b
)

;

{x′ = v, v′ = a};
(

(?x− o > 5; a := a+ 1) ∪ a :=−b
)

;

{x′ = v, v′ = a}

(9)

But this is neither a particularly concise nor a particularly useful modeling style. What
if a controller could need 10 control decisions or 100? Or what if there is no way of
telling ahead of time how many control decisions the cyber part will have to take to
reach its goal? Think of how many control decisions you might need when driving in a
car from the East Coast to the West Coast. Do you know that ahead of time? Even if you
do, do you want to model a system by explicitly replicating its controller that often?

Note 6 (Repetition). As a more concise and more general way of describing repeated
control choices, hybrid programs allow for the repetition operator ∗, which works like the
star operator in regular expressions, except that it applies to a hybrid program α as in α∗.
It repeats α any number n ∈ N of times, including 0, by a nondeterministic choice.

Thus, the programmatic way of summarizing (7), (8), (9) and the infinitely many
more n-fold replications of (7) for any n ∈ N, is by using a repetition operator instead:

(

(

(?x− o > 5; a := a+ 1) ∪ a :=−b
)

;

{x′ = v, v′ = a}
)∗ (10)
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This HP can repeat (7) any number of times (0,1,2,3,. . . ). Of course, it would not be very
meaningful to repeat a loop half a time or minus 5 times, so the repetition count n ∈ N

has to be some natural number.
But how often does a nondeterministic repetition like (10) repeat then? That choice is

again nondeterministic.

Note 7 (Nondeterministic ∗). Repetition (∗) is nondeterministic. That is, α∗ can repeat
α any number (n ∈ N) of times and the choice how often to run α is nondeterministic,
i.e. there is no prior way of telling how often α will be repeated.

Yet, hold on, every time the loop in (10) is run, how long does the continuous evo-
lution along {x′ = v, v′ = a} in that loop iteration take? Or, actually, even in the loop-
free (8), how long does the first x′′ = a take before the controller has its second control
choice? How long did the continuous evolution take in (7) in the first place?

There is a choice even in following a differential equation! However deterministic the
solution of the differential equation itself may be. Even if the solution of the differential
equation is unique (which it is in sufficiently smooth cases that we consider cf. Lecture
2), it is still a matter of choice how long to follow that solution. The choice is, as always
in hybrid programs, nondeterministic.

Note 8 (Nondeterministic x′ = f(x)). The duration of evolution of a differential equa-
tion (x′ = f(x)&Q) is nondeterministic (except that the evolution can never be so long
that the state leaves Q). That is, x′ = f(x)&Q can follow the solution of x′ = f(x) any
amount of time (0 ≤ r ∈ R) of times and the choice how long to follow x′ = f(x) is non-
deterministic, i.e. there is no prior way of telling how often x′ = f(x) will be repeated
(except that it can never leave Q).

7 Syntax of Hybrid Programs

With the motivation above, we formally define the programming language of hybrid
programs [Pla12a, Pla10], in which all of the operators that we motivated above are
allowed.

Definition 1 (Hybrid program). HPs are defined by the following grammar (α, β
are HPs, x is a variable, e is a term possibly containing x, e.g., a polynomial, and
Q is a formula of first-order logic of real arithmetic):

α, β ::= x := e | ?Q | x′ = f(x)&Q | α ∪ β | α;β | α∗

The first three cases are called atomic HPs, the last three compound HPs because they are
built out of smaller HPs. The test action ?Q is used to define conditions. Its effect is that
of a no-op if the formula Q is true in the current state; otherwise, like abort, it allows no
transitions. That is, if the test succeeds because formula Q holds in the current state,
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L3.12 Choice & Control

then the state does not change (it was only a test), and the system execution continues
normally. If the test fails because formula Q does not hold in the current state, however,
then the system execution cannot continue, is cut off, and not considered any further
since it is a failed execution attempt that did not play by the rules of the HP.

Nondeterministic choice α ∪ β, sequential composition α;β, and nondeterministic
repetition α∗ of programs are as in regular expressions but generalized to a semantics
in hybrid systems. Nondeterministic choice α ∪ β expresses behavioral alternatives be-
tween the runs of α and β. That is, the HP α ∪ β can choose nondeterministically to
follow the runs of HP α, or, instead, to follow the runs of HP β. The sequential composi-
tion α;β models that the HP β starts running after HP α has finished (β never starts if α
does not terminate). In α;β, the runs of α take effect first, until α terminates (if it does),
and then β continues. Observe that, like repetitions, continuous evolutions within α

can take more or less time, which causes uncountable nondeterminism. This nondeter-
minism occurs in hybrid systems, because they can operate in so many different ways,
which is as such reflected in HPs. Nondeterministic repetition α∗ is used to express that
the HP α repeats any number of times, including zero times. When following α∗, the
runs of HP α can be repeated over and over again, any nondeterministic number of
times (≥0).

Unary operators (including ∗) bind stronger than binary operators and ; binds stronger
than ∪ , so α;β ∪ γ ≡ (α;β) ∪ γ and α ∪ β; γ ≡ α ∪ (β; γ). Further, α;β∗ ≡ α; (β∗).

8 Semantics of Hybrid Programs

After having developed a syntax for CPS and an operational intuition for its effects, we
seek operational precision in its effects. That is, we will pursue one important leg of
computational thinking and give an unambiguous meaning to all operators of HPs. We
will do this in pursuit of the realization that the only way to be precise about an anal-
ysis of CPS is to first be precise about the meaning of the models of CPS. Furthermore,
we will leverage another important leg of computational thinking rooted in logic by
exploiting that the right way of understanding something is to understand it compo-
sitionally as a function of its pieces. So we will give meaning to hybrid programs by
giving a meaning to each of its operators. Thereby, a meaning of a large HP is merely a
function of the meaning of its pieces. This is the style of denotational semantics due to
Scott and Stratchey [SS71].

There is more than one way to define the meaning of a program, including defining
a denotational semantics, an operational semantics, a structural operational semantics,
or an axiomatic semantics. For our purposes, what is most relevant is how a hybrid
program changes the state of the system. Consequently, the semantics of HPs is based
on which final states are reachable from which initial state. It considers which (final)
state ν is reachable by running a HP α from an (initial) state ω. Semantical models that
expose more detail, e.g., about the internal states during the run of an HP are possible
[Pla10, Chapter 4] but can be ignored for most models.

Recall that a state ω is a mapping from variables to R. The set of states is denoted S.
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The meaning of an HP α is given by a reachability relation [[α]] ⊆ S × S on states. That
is, (ω, ν) ∈ [[α]] means that final state ν is reachable from initial state ω by running HP α.
From any initial state ω, there might be many states ν that are reachable because the HP
α may involve nondeterministic choices, repetitions or differential equations, so there
may be many different ν for which (ω, ν) ∈ [[α]]. Form other initial states ω, there might
be no reachable states ν at all for which (ω, ν) ∈ [[α]]. So [[α]] is a proper relation, not a
function.

HPs have a compositional semantics [Pla12b, Pla10, Pla08]. Recall that the value
of term e in ω is denoted by [[e]]ω and that S denotes the set of all states. Further,
ω ∈ [[Q]] denotes that first-order formula Q is true in state ω (Lecture 2 on Differential
Equations & Domains). The semantics of an HP α is defined by its reachability relation
[[α]] ⊆ S × S.
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http://symbolaris.com/course/fcps16/02-diffeq.pdf
http://symbolaris.com/course/fcps16/02-diffeq.pdf


L3.14 Choice & Control

Definition 2 (Transition semantics of HPs). Each HP α is interpreted semantically
as a binary reachability relation [[α]] ⊆ S × S over states, defined inductively by

1. [[x := e]] = {(ω, ν) : ν = ω except that [[x]]ν = [[e]]ω}
That is, final state ν differs from initial state ω only in its interpretation of the
variable x, which ν changes to the value that the right-hand side e has in the
initial state ν.

2. [[?Q]] = {(ω, ω) : ω ∈ [[Q]]}
That is, the final state ω is the same as the initial state ω (no change) but there
only is such a self-loop transition if test formula Q holds in ω, otherwise no
transition is possible at all and the system is stuck because of a failed test.

3. [[x′ = f(x)&Q]] = {(ϕ(0), ϕ(r)) : ϕ(ζ) |= x′ = f(x) and ϕ(ζ) |= Q for all 0≤ζ≤r

for a solution ϕ : [0, r] → S of any duration r}
That is, the final state ϕ(r) is connected to the initial state ϕ(0) by a contin-
uous function of some duration r ≥ 0 that solves the differential equation

and satisfies Q at all times, when interpreting ϕ(ζ)(x′)
def
= dϕ(t)(x)

dt
(ζ) as the

derivative of the value of x over time at time ζ, see Lecture 2.

4. [[α ∪ β]] = [[α]] ∪ [[β]]
That is, α ∪ β can do any of the transitions that α can do as well as any of the
transitions that β is capable of.

5. [[α;β]] = [[α]] ◦ [[β]] = {(ω, ν) : (ω, µ) ∈ [[α]], (µ, ν) ∈ [[β]]}
That is, the meaning of α;β is the compositiona [[α]] ◦ [[β]] of relation [[β]] after
[[α]]. Thus, α;β can do any transitions that go through any intermediate state
µ to which α can make a transition from the initial state ω and from which β

can make a transition to the final state ν.

6. [[α∗]] =
⋃

n∈N

[[αn]] with αn+1 ≡ αn;α and α0 ≡ ?true .

That is, α∗ can repeat α any number of times, i.e., for any n ∈ N, α∗ can act
like the n-fold sequential composition αn would.

aThe notational convention for composition of relations is flipped compared to the composition of
functions. For functions f and g, the function f ◦ g is the composition f after g that maps x to
f(g(x)). For relations R and T , the relation R ◦ T is the composition of T after R, so first follow
relation R to an intermediate state and then follow relation T to the final state.

To keep things simple, the above definition uses simplifying abbreviations for differ-
ential equations. Lecture 2 provides full detail also of the definition for differential
equation systems rather than single differential equations.

For graphical illustrations of the transition semantics of hybrid programs and exam-
ple dynamics, see Fig. 2. The left of Fig. 2 illustrates the generic shape of the transition
structure [[α]] for transitions along various cases of hybrid programs α from state ω to
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ω ν
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Figure 2: Transition semantics (left) and example dynamics (right) of hybrid programs
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L3.16 Choice & Control

state ν. The right of Fig. 2 shows examples of how the value of a variable x may evolve
over time t when following the dynamics of the respective hybrid program α.

Now when α denotes the HP in (8), its semantics [[α]] is a relation on states connecting
the initial to the final state along the differential equation with two control decisions
according to the nondeterministic choice, one at the beginning and one after following
the first differential equation. How long that is, exactly? Well, that’s nondeterministic,
because the semantics of differential equations is such that any final state after any
permitted duration is reachable from a given initial state. So the duration for the first
differential equation in (8) could have been one second or two or 424 or half a second
or zero or any other nonnegative real number.

If we change the HP around and consider the following modification instead:

?x− o > 5; a := a+ 1;

{x′ = v, v′ = a};

?x− o > 5; a := a+ 1;

{x′ = v, v′ = a}

(11)

Then some behavior that was still possible in (8) is no longer possible for (11). Let β
denote the HP in (11), then the semantics [[β]] of β now only includes relations between
initial and final states which can be reached by acceleration choices (because there are
no more braking choices in β). In particular, however, note that the duration of the first
differential equation in (11) may suddenly be bounded, because if x keeps on acceler-
ating for too long during the first differential equation, the intermediate state reached
then will violate the test ?x− o > 5, which, according to the semantics of tests, will fail
and be discarded. Of course, if x accelerates for too long, it will surely ultimately violate
the condition that its position will be at least 5 in front of the obstacle o.
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Choice & Control L3.17

9 Summary

This lecture introduced hybrid programs as a model for cyber-physical systems, sum-
marized in Note 11. Hybrid programs combine differential equations with conven-
tional program constructs and discrete assignments. The programming language of
hybrid programs embraces nondeterminism as a first-class citizen and features differ-
ential equations that can be combined to form hybrid systems using the compositional
operators of hybrid programs.

Note 11 (Statements and effects of hybrid programs (HPs)).

HP Notation Operation Effect

x := e discrete assignment assigns term e to variable x
x′ = f(x)&Q continuous evolution differential equations for x with term f(x) with-

in first-order constraint Q (evolution domain)
?Q state test / check test first-order formula Q at current state
α; β seq. composition HP β starts after HP α finishes
α ∪ β nondet. choice choice between alternatives HP α or HP β

α∗ nondet. repetition repeats HP α n-times for any n ∈ N

Exercises

Exercise 1. The semantics of hybrid programs (Def. 2) requires evolution domain con-
straints Q to hold always throughout a continuous evolution. What exactly happens if
the system starts in a state where Q does not hold to begin with?

Exercise 2. Consider your favorite programming language and discuss in what ways
it introduces discrete change and discrete dynamics. Can it model all behavior that
hybrid programs can describe? Can your programming language model all behavior
that hybrid programs without differential equations can describe? How about the other
way around?

Exercise 3. Consider the grammar of hybrid programs. The ; in hybrid programs is
similar to the ; in Java and C0. If you look closely you will find a subtle difference.
Identify the difference and explain why there is such a difference.

Exercise 4. Sect. 3 considered if-then-else statements for hybrid programs. But they no
longer showed up in the grammar of hybrid programs. Is this a mistake?

Exercise 5. The semantics of hybrid programs (Def. 2) is defined as a transition relation
[[α]] ⊆ S × S on states. Define an equivalent semantics based on functions R(α) : S → 2S

from the initial state to the set of all final states, where 2S denotes the powerset of S,
i.e. the set of all subsets of S. Define this set-valued semantics R(α) without referring
to the transition relation semantics [[α]]. Likewise, define an equivalent semantics based
on functions ς(α) : 2S → 2S from the set of all initial states to the set of all final states.
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15-424: Foundations of Cyber-Physical Systems

Lecture Notes on

Safety & Contracts

André Platzer

Carnegie Mellon University
Lecture 4

1. Introduction

In the previous lectures, we have studied models of cyber-physical systems. Hybrid
programs provide a programming language for cyber-physical systems [Pla12c, Pla08,
Pla10] with the most prominent features being differential equations and nondetermin-
ism alongside the usual classical control structures and discrete assignments. This gives
powerful and flexible ways of modeling even very challenging systems and very com-
plex control principles. This lecture will start studying ways of making sure that the
resulting behavior, however flexible and powerful it may be, also meets the required
safety and correctness standards.

In the 15-122 Principles of Imperative Computation course, you have experienced
how contracts can be used to make properties of programs explicit. You have seen how
contracts can be checked dynamically at runtime, which, if they fail, will alert you right
away to flaws in the design of the programs. You have experienced first hand that it is
much easier to find and fix problems in programs starting from the first contract that
failed in the middle of the program, rather than from the mere observation about the
symptoms that ultimately surface when the final output is not as expected (which you
may not notice either unless the output is checked dynamically).

Another aspect of contracts that you have had the opportunity to observe in Prin-
ciples of Imperative Computation is that they can be used in proofs that show that
every program run will satisfy the contracts. Unlike in dynamic checking, the scope
of correctness arguments with proofs extends far beyond the test cases that have been
tried, however clever the tests may have been chosen. Both uses of contracts, dynamic
checking and rigorous proofs, are very helpful to check whether a system does what
we intend it to, as has been argued on numerous occasions in various contexts in the
literature, e.g., [Flo67, Hoa69, Pra76, Mey92, XJC09, PCL11, Log11].
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The principles of contracts help cyber-physical systems [Pla08, Pla10, Pla13, DLTT13]
as well. Yet, their use in proving may, arguably, be more important than their use in dy-
namic checking. The reason has to do with the physical impact of CPS and the (relative)
non-negotiability of the laws of physics. The reader is advised to imagine a situation
where a self-driving car is propelling him or her down the street. Suppose the car’s
control software is covered with contracts all over, but all of them are exclusively for
dynamic checking, none have been proved. If that self-driving car speeds up to 100mph
on a 55mph highway and drives up very close to a car in front of it, then dynamically
checking the contract “distance to car in front should be more than 1 meter” does not
help. If that contract fails, the car’s software would know that it made a mistake, but
it has become too late to do anything about it, because the brakes of the car will never
work out in time. So the car would be “trapped in its own physics”, in the sense that
it has run out of all safe control options. There are still effective ways of making use
of dynamic contract checking in CPS [MP16], but the design of those contracts then
requires proof to ensure that safety is always maintained.

For those reasons, this course will focus on the role of proofs as correctness argu-
ments much more than on dynamical checking of contracts. Because of the physical
consequences of malfunctions, correctness requirements on CPS are also more strin-
gent. And their proofs involve significantly more challenging arguments than in Prin-
ciples of Imperative Computation. For those reasons, we will approach CPS proofs
with much more rigor than what you have seen in Principles of Imperative Compu-
tation. But that is a story for a later lecture. The focus of today’s lecture will be to
understand CPS contracts and the first basics of reasoning about CPS. Subsequent lec-
tures will ultimately identify a much cleaner, more elegant, and more general style of
reasoning about CPS of which the reasoning approach developed in today’s lecture are
a special case. But today’s lecture is a useful stepping stone for reaching that generality.

This material is based on correctness specifications and proofs for CPS [Pla12c, Pla07,
Pla08, Pla10]. We will come back to more details in later lectures, where we will also
use the KeYmaera X prover for verifying CPS [PQ08]. More information about safety
and contracts can be found in [Pla10, Chapter 2.2,2.3].

The focus of today’s lecture is on developing and studying a model of a bouncing
ball and on identifying all requirements for it to be safe. Along the way, however, this
lecture develops an intuitive understanding for the role of requirements and contracts
in CPS as well as important ways of formalizing CPS properties and their analyzes. The
most important learning goals of this lecture are:

Modeling and Control: We deepen our understanding of the core principles behind
CPS by relating discrete and continuous aspects of CPS to analytic reasoning prin-
ciples.

Computational Thinking: We go through a simple but very instructive example to
learn how to identify specifications and critical properties of CPS. Even if the ex-
ample we look at, the bouncing ball, is a rather impoverished CPS, it still formidably
conveys the subtleties involved with hybrid systems models, which are crucial for
understanding CPS. This lecture is further devoted to contracts in the form of pre-
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and post-conditions for CPS models. We will begin to reason rigorously about
CPS models, which is critical to getting CPS right. CPS designs can be flawed for
very subtle reasons. Without sufficient rigor in their analysis it can be impossible
to spot the flaws, and even more challenging to say for sure whether and why
a design is no longer faulty. This lecture introduces differential dynamic logic dL
[Pla12c, Pla08, Pla10] as the specification and verification language for CPS that
we will be using throughout this course.

CPS Skills: We will begin to deepen our understanding of the semantics of CPS mod-
els by relating it to their reasoning principles. A full study of this alignment will
only be covered in the next lecture, though.

CT

M&C CPS

rigorous specification
contracts
preconditions
postconditions
differential dynamic logic

discrete+continuous
analytic reasoning

model semantics
reasoning principles

2. The Adventures of Quantum the Bouncing Ball

Lecture 3 considered hybrid programs that model a choice of increasing acceleration or
braking.

(

(

(?x− o > 5; a := a+ 1) ∪ a :=−b
)

;

x′ = v, v′ = a
)

∗
(1)

That model did perform interesting control choices and we could continue to study
it in this lecture.

In order to sharpen our intuition about CPS, we will, however, study a very simple
but also very intuitive system instead. Once upon a time, there was a little bouncing
ball called Quantum. Day in, day out, Quantum had nothing else to do but bounce up
and down the street until it was tired of doing that, which, in fact, rarely happened, be-
cause bouncing was such a joy (Fig. 1). The bouncing ball, Quantum, was not much of a
CPS, because Quantum does not actually have any interesting decisions to make. But it
nevertheless formed a perfectly reasonable hybrid system, because, after a closer look,
it turns out to involve discrete and continuous dynamics. The continuous dynamics is
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Figure 1: Sample trajectory of a bouncing ball (plotted as height over time)

caused by gravity, which is pulling the ball down and makes it fall from the sky in the
first place. The discrete dynamics comes from the singular discrete event of what hap-
pens when the ball hits the ground and bounces back up. There are a number of ways
of modeling the ball and its impact on the ground with physics. They include a whole
range of different more or less realistic physical effects including gravity, aerodynamic
resistance, the elastic deformation on the ground, and so on and so on. But the little
bouncing ball, Quantum, didn’t study enough physics to know anything about those
effects. And so Quantum had to go about understanding the world in easier terms.
Quantum was a clever bouncing ball, though, so it had experienced the phenomenon
of sudden change and was trying to use that to its advantage.

If we are looking for a very simple model of what the bouncing ball does, it is easier
to describe as a hybrid system. The ball at height x is falling subject to gravity:

x′′ = −g

When it hits the ground, which is assumed at height x = 0, the ball bounces back and
jumps back up in the air. Yet, as every child knows, the ball tends to come back up a
little less high than before. Given enough time to bounce around, it will ultimately lie
flat on the ground forever. Until it is picked up again and thrown high up in the air.

Let us model the impact on the ground as a discrete phenomenon and describe what
happens so that the ball jumps back up then. One attempt of understanding this could
be to make the ball jump back up rather suddenly by increasing its height by, say, 10
when it hit the ground x = 0:

x′′ = −g;

if(x = 0)x := x+ 10
(2)

Such a model may be useful for other systems, but would be rather at odds with our
physical experience with bouncing balls, because the ball is indeed slowly climbing
back up rather than suddenly being way up in the air again.

Quantum ponders about what happens when it hits the ground. Quantum does
not suddenly get teleported to a new position above ground like (2) would suggest.
Instead, the ball suddenly changes its direction. A moment ago, Quantum used to fall
down with a negative velocity (i.e. one that is pointing down into the ground) and
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suddenly climbs back up with a positive velocity (pointing up into the sky). In order to
be able to write such a model, the velocity v will be made explicit in the bouncing ball’s
differential equation:

x′ = v, v′ = −g;

if(x = 0) v :=−v
(3)

Of course, something happens after the bouncing ball reversed its direction because
it hit the ground. Physics continues until it hits the ground again.

x′ = v, v′ = −g;

if(x = 0) v :=−v

x′ = v, v′ = −g;

if(x = 0) v :=−v

(4)

Then, of course, physics moves on again, so the model actually involves a repetition:
(

x′ = v, v′ = −g;

if(x = 0) v :=−v
)

∗
(5)

Yet, Quantum is now rather surprised. For if it follows that HP (5), it seems as if it
should always be able to come back up to its initial height again. Excited about that
possibility, Quantum tries and tries again but never succeeds to bounce back up as high
as it was before. So there must be something wrong with the model in (5), Quantum
concludes and sets out to fix (5).

Having observed itself rather carefully when bouncing around, Quantum concludes
that it feels slower when bouncing back up than it used to be when falling on down.
Indeed, Quantum feels less energetic on its way up. So its velocity must not only flip di-
rection from down to up, at a bounce, but also seems to shrink in magnitude. Quantum
swiftly calls the corresponding damping factor c and quickly comes up with a better
model of itself:

(

x′ = v, v′ = −g;

if(x = 0) v :=−cv
)

∗
(6)

Yet, running that model in clever ways, Quantum observes that model (6) could make
it fall through the cracks in the ground. Terrified at that thought, Quantum quickly tries
to set the physics right, lest it falls through the cracks in space before it had a chance to
fix its physics. The issue with (6) is that its differential equation isn’t told when to stop.
Yet, Quantum luckily remembers that this is quite exactly what evolution domains were
meant for. Above ground is where it wants to remain, and so x ≥ 0 is what Quantum
asks dear physics to obey, since the floor underneath Quantum is of rather sturdy built:

(

x′ = v, v′ = −g&x ≥ 0;

if(x = 0) v :=−cv
)

∗
(7)

Now, indeed, physics will have to stop evolving before gravity has made our little
bouncing ball Quantum fall through the ground. Yet, physics could still choose to stop
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evolving while the ball is still high up in the sky. In that case, the ball will not yet be
on the ground and line 2 of (7) would have no effect because x 6= 0 still. This is not a
catastrophe, however, because the loop in (7) could simply repeat, which would allow
physics to continue to evolve the differential equation further.

Quite happy with model (7) for itself, the bouncing ball Quantum goes on to explore
whether the model does what the ball expects it to do. Of course, had Quantum taken
this course already, it would have marched right into a rigorous analysis of the model.
Since Quantum is still a rookie, it takes a detour along visualization road, and first
shoots a couple of pictures of what happens when simulating model (7). Thanks to a
really good simulator, these simulations all came out looking characteristically similar
to Fig. 1.

3. How Quantum Discovered a Crack in the Fabric of Time

After a little while of idly simulating its very own model, Quantum decides to take out
its temporal magnifying glasses and zoom in real close to see what happens when its
model (7) bounces on the ground (x = 0). At that point in time, its differential equation
is forced to stop due to the evolution domain x ≥ 0, so the continuous evolution stops
and a discrete action happens that inspects the height and, if x = 0, discretely changes
the velocity around to −cv instantly in no time.

At the continuous point in time of the first bounce—Quantum recorded the time t1—
the ball observes a succession of different states. First at continuous time t1, Quantum
has position x = 0 and velocity v = −5. But then, after the discrete assignment of (7)
ran, still at real time t1, it has position x = 0 and velocity v = 4. This chaos cannot pos-
sibly go on like that, thought Quantum, and decided to give an extra natural number
index j ∈ N to distinguish the two occurrences of continuous time t1. So, for the sake
of illustration, it called (t1, 0) the first point in time where it was in state x = 0, v = −5
and then called (t1, 1) the second point in time where it was in state x = 0, v = 4.

In fact, Quantum’s temporal magnifying glasses worked so well that it suddenly dis-
covered it had accidentally invented an extra dimension for time: the discrete time step
i ∈ N in addition to the continuous time coordinate t ∈ R. Quantum plots the con-
tinuous R-valued time coordinate in the t axis of Fig. 2 while separating the N-valued
discrete step count of its hybrid time into the j axis and leaving the x axis for position.
Quantum now observed the first simulation of model (7) with its temporal magnifiers
activated to fully appreciate its hybrid nature in its full blossom. And, indeed, if Quan-
tum looks at the hybrid time simulation from Fig. 2 and turns its temporal magnifiers
off again, the extra dimension of discrete steps j vanishes again, leaving behind only
the shadow of the execution in the x over t face, which agrees with the layman’s sim-
ulation shown in Fig. 1. And even the projection of the hybrid time simulation from
Fig. 2 to the j over t face leads to a curious illustration, shown in Fig. 3, of what the tem-
poral magnifying glasses revealed about how hybrid time has evolved in this particular
simulation.

Armed with the additional intuition about the operations of (7) that these sample
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Figure 2: Sample trajectory of a bouncing ball plotted as position x over its hybrid time
domain with discrete time step j and continuous time t
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Figure 3: Hybrid time domain for the sample trajectory of a bouncing ball with discrete
time step j and continuous time t
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executions in Fig. 1 and its hybrid version Fig. 2 provide, Quantum now feels prepared
to ask the deeper questions. Will its model (7) always do the right thing? Or was it just
lucky in the case shown in Fig. 1? What even is the right behavior for a proper bouncing
ball? What are its important properties? And for what purpose? How could they be
specified unambiguously? And, ultimately, how could Quantum convince itself about
these properties being true?

4. Postcondition Contracts for CPS

Hybrid programs are interesting models for CPS. They describe the behavior of a CPS,
ultimately captured by their semantics [[α]], which is a reachability relation on states
(Lecture 3 on Choice & Control). Yet, reliable development of CPS also needs a way of
ensuring that the behavior will be as expected. So, for example, we may want the be-
havior of a CPS to always satisfy certain crucial safety properties. A robot, for example,
should never do something unsafe like running over a human being.1

Quantum, the little bouncing ball, may consider itself less safety-critical, except that
it may be interested in its own safety. Quantum still wants to make sure that it couldn’t
ever fall through the cracks in the ground. And even though it would love to jump
all the way up to the moon, Quantum is also rather terrified of big heights and would
never want to jump any higher than it was in the very beginning. So, when H denotes
the initial height, Quantum would love to know whether its height will always stay
within 0 ≤ x ≤ H when following HP (7).

Scared of what otherwise might happen to it if 0 ≤ x ≤ H should ever be vio-
lated, Quantum decides to make its goals for the HP (7) explicit. Fortunately, Quantum
excelled in the course 15-122 Principles of Imperative Computation and recalls that
contracts such as @requires and @ensures have been used in that course to make be-
havioral expectations for C and C0 programs2 explicit. Even though Quantum clearly
no longer deals with plain C program, but rather a hybrid program, it still puts an
@ensures(F ) contract in front of HP (7) to express that all runs of that HP are expected
to lead only to states in which logical formula F is true. Quantum even uses @ensures

1Safety of robots has, of course, been aptly defined by Asimov [Asi42] with his Three Laws of Robotics:

1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.

2. A robot must obey the orders given to it by human beings, except where such orders would conflict
with the First Law.

3. A robot must protect its own existence as long as such protection does not conflict with the First or
Second Law.

Sadly, their exact rendition in logic or anything else that would be precise still remains a bit of a challenge
due to language ambiguities and similar minor nuisances that kept scientists busy for the good deal of
a century since. The Three Laws of Robotics are not the answer. They are the inspiration!

2C0 is a small safe subset of the C programming language, which is featured in the 15-122 Principles of
Imperative Computation course.
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twice, once for each of its expectations.

@ensures(0 ≤ x)

@ensures(x ≤ H)
(

x′ = v, v′ = −g&x ≥ 0;

if(x = 0) v :=−cv
)

∗

(8)

5. Precondition Contracts for CPS

Having learned a lot from the Principles of Imperative Computation experience, Quan-
tum immediately starts thinking about whether the @ensures contracts in (8) would,
in fact, always be true after running that HP. After all, Quantum would really love to
know that it can rely on that contract never failing. In fact, it would prefer to see that
logical contract met before it ever dares trying another thoughtless bounce again.

Wondering about whether the @ensures contract in (8) would always succeed, Quan-
tum notices that this would have to depend on what values the bouncing ball starts
with. It called H its initial height, but the HP (8) cannot know that. For one thing,
the contracts in (8) would be hard to fulfill if H = −5, because 0 ≤ x and x ≤ H can
impossibly both be true then.

So, Quantum figures it should demand a @requires contract with the precondition
x = H to say that the height, x, of the bouncing ball is initiallyH . Because that still does
not (obviously) ensure that 0 ≤ x has a chance of holding, Quantum requires 0 ≤ H to
hold initially:

@requires(x = H)

@requires(0 ≤ H)

@ensures(0 ≤ x)

@ensures(x ≤ H)
(

x′ = v, v′ = −g&x ≥ 0;

if(x = 0) v :=−cv
)

∗

(9)

6. Invariant Contracts for CPS

Quantum remembers the prominent role that invariants have played in the course Prin-
ciples of Imperative Computation. So, Quantum ventures including an invariant with
its HP. In C0 programs, invariants were associated with loops, e.g.

i = 0;

while (i < 10)

//@loop_invariant 0 <= i && i <= 10;

{

i++;
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}

Quantum, thus, figures that invariants for loops in HPs should also be associated with
a loop, which is written α∗ for nondeterministic repetition. After a moment’s thought,
Quantum decides that falling through the cracks in the ground is still it’s biggest worry,
so the invariant it’d like to maintain is x ≥ 0:

@requires(x = H)

@requires(0 ≤ H)

@ensures(0 ≤ x)

@ensures(x ≤ H)
(

x′ = v, v′ = −g&x ≥ 0;

if(x = 0) v :=−cv
)

∗

@invariant(x ≥ 0)

(10)

On second thought, Quantum is less sure what exactly the @invariant(F ) contract
would mean for a CPS. So it decides to first give more thought to the proper way of
phrasing CPS contracts and what they mean to begin with.

We will get back to the @invariant(F ) construct in a later lecture, when we fully
understand the role and meaning of the other contracts.

7. Logical Formulas for Hybrid Programs

CPS contracts play a very useful role in the development of CPS models and CPS pro-
grams. Using them as part of their design right from the very beginning is a good idea,
probably even more crucial than it was in 15-122 Principles of Imperative Computation
for the development of C0 programs, because CPS have more stringent requirements
on safety.

Yet, we do not only want to program CPS, we also want to and have to understand
thoroughly what they mean, what their contracts mean, and how we convince our-
selves that the CPS contracts are respected by the CPS program. It turns out that this is
where mere contracts are at a disadvantage compared to full logic.

Note 1 (Logic is for specification and reasoning). Logic allows not only the speci-
fication of a whole CPS program, but also an analytic inspection of its parts as well as
argumentative relations between contracts and program parts.

Differential dynamic logic (dL) [Pla12c, Pla08, Pla12a, Pla07, Pla10] is the logic of hy-
brid systems that this courses uses for specification and verification of cyber-physical
systems. There are more aspects of logic for cyber-physical systems [Pla12c, Pla12b],
which will be studied (to some extent) in later parts of this course.

The most unique feature of differential dynamic logic for our purposes is that it al-
lows us to refer to hybrid systems. Lecture 2 on Differential Equations & Domains
introduced first-order logic of real arithmetic.
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Note 2 (Limits of first-order logic for CPS). First-order logic of real arithmetic is a
crucial basis for describing what is true and false about CPS, because it allows us to refer
to real-valued quantities like positions and velocities and their arithmetic relations. Yet,
that is not enough, because first-order logic describes what is true in a single state of a
system. It has no way of referring to what will be true in future states of a CPS, nor of
describing the relationship of the initial state of the CPS to the final state of the CPS.

Recall that this relationship, [[α]], is what ultimately constitutes the semantics of HP α.

Note 3 (Differential dynamic logic principle). Differential dynamic logic (dL) extends
first-order logic of real arithmetic with operators that refer to the future states of a CPS in
the sense of referring to the states that are reachable by running a given HP. The logic dL
provides a modal operator [α], parametrized by α, that refers to all states reachable by HP
α according to the reachability relation [[α]] of its semantics. This modal operator can be
placed in front of any dL formula φ. The dL formula

[α]φ

expresses that all states reachable by HP α satisfy formula φ.
The logic dL also provides a modal operator 〈α〉, parametrized by α, that can be placed

in front of any dL formula φ. The dL formula

〈α〉φ

expresses that there is at least one state reachable by HP α for which φ holds. The modal-
ities [α] and 〈α〉can be used to express necessary or possible properties of the transition
behavior of α, because they refer to all or some runs of α

An @ensures(E) postcondition for a HP α can be expressed directly as a logical for-
mula in dL:

[α]E

So, the first CPS postcondition @ensures(0 ≤ x) for the bouncing ball HP in (8) can be
stated as a dL formula:

[
(

x′ = v, v′ = −g&x ≥ 0; if(x = 0) v :=−cv
)

∗

] 0 ≤ x (11)

The second CPS postcondition @ensures(x ≤ H) for the bouncing ball HP in (8) can be
stated as a dL formula as well:

[
(

x′ = v, v′ = −g&x ≥ 0; if(x = 0) v :=−cv
)

∗

]x ≤ H (12)

The logic dL allows all other logical operators from first-order logic, including conjunc-
tion (∧). So, the two dL formulas (11) and (12) can be stated together as a single dL
formula:

[
(

x′ = v, v′ = −g&x ≥ 0; if(x = 0) v :=−cv
)

∗

] 0 ≤ x

∧ [
(

x′ = v, v′ = −g&x ≥ 0; if(x = 0) v :=−cv
)

∗

]x ≤ H
(13)
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Stepping back, we could also have combined the two postconditions @ensures(0 ≤
x) and @ensures(x ≤ H) into a single postcondition @ensures(0 ≤ x ∧ x ≤ H). The
translation of that into dL would have gotten us an alternative way of combining both
statements about the lower and upper bound on the height of the bouncing ball into a
single dL formula:

[
(

x′ = v, v′ = −g&x ≥ 0; if(x = 0) v :=−cv
)

∗

] (0 ≤ x ∧ x ≤ H) (14)

Which way of representing what we expect bouncing balls to do is better? Like (13) or
like (14)? Are they equivalent? Or do they express different things?
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It turns out that there is a very simple argument within the logic dL that shows that
(13) and (14) are equivalent. And not just that those two particular logical formulas are
equivalent but that the same equivalence holds for any dL formulas of this form. This
will be investigated formally in a later lecture, but it is useful to observe now already
to sharpen our intuition.

Having said that, do we believe dL formula (13) should be valid? Should (14) be
valid? Before we study this question in any further detail, the first question should be
what it means for a modal formula [α]φ to be true. What is its semantics? Better yet,
what exactly is its syntax in the first place?

8. Syntax of Differential Dynamic Logic

The formulas of differential dynamic logic are defined like the formulas of first-order
logic of real arithmetic with the additional capability of using modal operators for any
hybrid program α.

Definition 1 (dL formula). The formulas of differential dynamic logic (dL) are defined
by the grammar (where φ, ψ are dL formulas, θ1, θ2 (polynomial) terms, x a vari-
able, α a HP):

φ, ψ ::= θ1 = θ2 | θ1 ≥ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ

Operators >,≤, <,↔ can be defined as usual, e.g., φ↔ ψ ≡ (φ→ ψ) ∧ (ψ → φ).

We use the notational convention that unary operators (including ¬ and quantifiers
∀x, ∃x and modalities [α], 〈α〉)3 bind stronger than binary operators. In particular, quan-
tifiers and modal operators bind strong, i.e. their scope only extends to the formula
immediately after. Thus, [α]φ ∧ ψ ≡ ([α]φ) ∧ ψ and ∀xφ ∧ ψ ≡ (∀xφ) ∧ ψ. In our
notation, we also let ∧ bind stronger than ∨, which binds stronger than →,↔. We also
associate → to the right so that φ → ψ → ϕ ≡ φ → (ψ → ϕ). To avoid confusion, we
do not adopt precedence conventions between →,↔ but expect explicit parentheses.
So φ → ψ ↔ ϕ would be considered illegal and explicit parentheses are required to
distinguish φ → (ψ ↔ ϕ) from (φ → ψ) ↔ ϕ. Likewise φ ↔ ψ → ϕ would be con-
sidered illegal and explicit parentheses are required to distinguish φ ↔ (ψ → ϕ) from
(φ↔ ψ) → ϕ.

3 Quantifiers are only quite arguably understood as unary operators. Yet, ∀x is a unary operator on
formulas while ∀ would be an operator with arguments of mixed syntactic categories. In a higher-order
context, it can also be understood more formally by understanding ∀xφ as an operator on functions:
∀(λx.φ). Similar cautionary remarks apply to the understanding of modalities as unary operators. The
primary reason for adopting this understanding is that it simplifies the precedence rules.
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9. Semantics of Differential Dynamic Logic

For dL formulas that are also formulas of first-order real arithmetic (i.e. formulas with-
out modalities), the semantics of dL formulas is the same as that of first-order real arith-
metic. The semantics of modalities [α] and 〈α〉 quantifies over all ([α]) or some (〈α〉) of
the (final) states reachable by following HP α, respectively.
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Definition 2 (dL semantics). The satisfaction relation ω ∈ [[φ]] for a dL formula φ in
state ω is defined inductively:

• ω ∈ [[(θ1 = θ2)]] iff [[θ1]]ω = [[θ2]]ω.
That is, an equation is true in a state ω iff the terms on both sides evaluate to
the same number.

• ω ∈ [[(θ1 ≥ θ2)]] iff [[θ1]]ω ≥ [[θ2]]ω.
That is, a greater-or-equals inequality is true in a state ω iff the term on the
left evaluate to a number that is greater or equal to the value of the right
term.

• ω ∈ [[¬φ]] iff ω 6∈ [[φ]], i.e. if it is not the case that ω ∈ [[φ]].
That is, a negated formula ¬φ is true in state ω iff the formula φ itself is not
true in ω.

• ω ∈ [[φ ∧ ψ]] iff ω ∈ [[φ]] and ω ∈ [[ψ]].
That is, a conjunction is true in a state iff both conjuncts are true in said state.

• ω ∈ [[φ ∨ ψ]] iff ω ∈ [[φ]] or ω ∈ [[ψ]].
That is, a disjunction is true in a state iff either of its disjuncts is true in said
state.

• ω ∈ [[φ→ ψ]] iff ω 6∈ [[φ]] or ω ∈ [[ψ]].
That is, an implication is true in a state iff either its left-hand side is false or
its right-hand side true in said state.

• ω ∈ [[φ↔ ψ]] iff (ω ∈ [[φ]] and ω ∈ [[ψ]]) or (ω 6∈ [[φ]] and ω 6∈ [[ψ]]).
That is, a biimplication is true in a state iff both sides are true or both sides
are false in said state.

• ω ∈ [[∀xφ]] iff ωd
x ∈ [[φ]] for all d ∈ R.

That is, a universally quantified formula ∀xφ is true in a state iff its kernel φ is
true in all variations of the state, no matter what real number d the quantified
variable x evaluates to in the variation ωd

x.
• ω ∈ [[∃xφ]] iff ωd

x ∈ [[φ]] for some d ∈ R.
That is, an existentially quantified formula ∃xφ is true in a state iff its kernel
φ is true in some variation of the state, for a suitable real number d that the
quantified variable x evaluates to in the variation ωd

x.
• ω ∈ [[[α]φ]] iff ν ∈ [[φ]] for all ν with (ω, ν) ∈ [[α]].

That is, a box modal formula [α]φ is true in state ω iff postcondition φ is true
in all states ν that are reachable by running α from ω.

• ω ∈ [[〈α〉φ]] iff ν ∈ [[φ]] for some ν with (ω, ν) ∈ [[α]].
That is, a diamond modal formula 〈α〉φ is true in state ω iff postcondition φ
is true in at least one state ν that is reachable by running α from ω.

If ω ∈ [[φ]], then we say that φ is true at ω or that ω is a model of φ. A formula φ
is valid, written � φ, iff ω ∈ [[φ]] for all states ω. A formula φ is a consequence of a
set of formulas Γ, written Γ � φ, iff, for each ω: (ω ∈ [[ψ]] for all ψ ∈ Γ) implies that
ω ∈ [[φ]].
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A formula φ is called satisfiable iff there is a ω such that ω ∈ [[φ]]. The formula φ is
called unsatisfiable iff there is no such ω.

The formula x > 0 ∧ x < 1 is satisfiable, because all it takes for it to be true is a state
ω in which, indeed, the value of x is a real number between zero and one. The formula
x > 0∧x < 0 is unsatisfiable, because it is kind of hard (read: impossible) to find a state
which satisfies both conjuncts. The formula x > 0 ∨ x < 1 is valid, because there is no
state in which it would not be true, because, surely, x will either be positive or smaller
than one.

10. CPS Contracts in Logic

Now that we know what truth and validity are, let’s go back to the previous question.
Is dL formula (13) valid? Is (14) valid? Actually, let’s first ask if they are equivalent, i.e.
the dL formula

(13) ↔ (14)

is valid. Expanding the abbreviations this is the question whether the following dL
formula is valid:

(

[
(

x′ = v, v′ = −g&x ≥ 0; if(x = 0) v :=−cv
)

∗

] 0 ≤ x

∧ [
(

x′ = v, v′ = −g&x ≥ 0; if(x = 0) v :=−cv
)

∗

]x ≤ H
)

↔ [
(

x′ = v, v′ = −g&x ≥ 0; if(x = 0) v :=−cv
)

∗

] (0 ≤ x ∧ x ≤ H)

(15)

Exercise 1 gives you an opportunity to convince yourself that the equivalence (13) ↔
(14) is indeed valid.4 So if (13) is valid, then so should (14) be (Exercise 2). But is (13)
even valid?

4This equivalence also foreshadows the fact that CPS provide ample opportunity for questions how mul-
tiple system models relate. The dL formula (15) relates three different properties of three occurrences
of one and the same hybrid program, for example. Over the course of the semester, the need to relate
different properties of different CPS will arise more and more even if it may lie dormant for the mo-
ment. You are advised to already take notice that this is possible, because dL can form any arbitrary
combination and nesting of all its logical operators.
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Certainly, (13) is not true in a state ω where ω(x) < 0, because from that initial state,
no repetitions of the loop (which is allowed by nondeterministic repetition, Exercise 4),

will lead to a state ν
def
= ω in which ν 6∈ [[0 ≤ x]]. Thus, (13) only has a chance of being

valid in initial states that satisfy further assumptions, including 0 ≤ x and x ≤ H . In
fact, that is what the preconditions were meant for in Sect. 5. How can we express a
precondition contract in a dL formula?

Preconditions serve a very different role than postconditions do. Postconditions of
HP α are what we want to hold true after every run of α. The meaning of a postcon-
dition is what is rather difficult to express in first-order logic (to say the least). That
is what dL has modalities for. Do we also need any extra logical operator to express
preconditions?

The meaning of a precondition @requires(A) of a HP α is that it is assumed to hold
before the HP starts. If A holds when the HP starts, then its postcondition @ensures(B)
holds after all runs of HP α. What if A does not hold when the HP starts?

If precondition A does not hold initially, then all bets are off, because the person who
started the HP did not obey its requirements, which says that it should only be run
if its preconditions are met. The CPS contract @requires(A) @ensures(B) for a HP α

promises that B will always hold after running α if A was true initially when α started.
Thus, the meaning of a precondition can be expressed easily using an implication

A→ [α]B (16)

because an implication is valid if, in every state in which the left-hand side is true, the
right-hand side is also true. The implication (16) is valid (� A→ [α]B), if, indeed, for
every state ω in which precondition A holds (ω ∈ [[A]]), it is the case that all runs of HP
α lead to states ν (with (ω, ν) ∈ [[α]]) in which postcondition B holds (ν ∈ [[B]]). The dL
formula (16) does not say what happens in states ω in which the precondition A does
not hold (ω 6∈ [[A]]).

How does formula (16) talk about the runs of a HP and postconditionB again? Recall
that the dL formula [α]B is true in exactly those states in which all runs of HP α lead
only to states in which postcondition B is true. The implication in (16), thus, ensures
that this holds in all (initial) states that satisfy precondition A.

Note 6 (Contracts to dL Formulas). Consider a HP αwith a CPS contract using a single
@requires(A) precondition and a single @ensures(B) postcondition:

@requires(A)

@ensures(B)

α

This CPS contract can be expressed directly as a logical formula in dL:

A→ [α]B
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CPS contracts with multiple preconditions and multiple postconditions can directly
be expressed as a dL formula as well (Exercise 7).

Recall HP (10), which is shown here in a slightly simplified form:

@requires(0 ≤ x ∧ x = H)

@ensures(0 ≤ x ∧ x ≤ H)
(

x′ = v, v′ = −g&x ≥ 0;

if(x = 0) v :=−cv
)

∗

(17)

The dL formula expressing that the CPS contract for HP (17) holds is:

0 ≤ x∧x = H →
[(

x′ = v, v′ = −g&x ≥ 0; if(x = 0) v :=−cv
)

∗
]

(0 ≤ x∧x ≤ H) (18)

So to find out whether (17) satisfies its CPS contract, we ask whether the dL formula
(18) is valid.

In order to find out whether such a formula is valid, i.e. true in all states, we need
some operational way that allows us to tell whether it is valid, because mere inspec-
tion of the semantics alone is not a particularly scalable way of approaching validity
question.

11. Identifying Requirements of a CPS

Before trying to prove any formulas to be valid, it is a pretty good idea to check whether
all required assumptions have been found that are necessary for the formula to hold.
Otherwise, the proof will fail and we need to start over after having identified the miss-
ing requirements from the failed proof attempt. So let us scrutinize dL formula (18) and
ponder whether there are any circumstances under which it is not true. Even though the
bouncing ball is a rather impoverished CPS (it suffers from a disparate lack of control),
its immediate physical intuition still makes the ball a particularly insightful example
for illustrating how critical it is to identify the right requirements. Besides, unlike for
heavy duty CPS, we trust you have had ample opportunities to make yourself familiar
with the behavior of bouncing balls.

Maybe the first thing to notice is that the HP mentions g, which is meant to represent
the standard gravity constant, but the formula (18) never says that. Certainly, if grav-
ity were negative (g < 0), bouncing balls would function rather differently in a quite
astonishing way. They would suddenly be floating balls disappearing into the sky and
would lose all the joy of bouncing around; see Fig. 4.

So let’s modify (18) to assume g = 9.81:

0 ≤ x∧x = H∧g = 9.81 →
[(

x′ = v, v′ = −g&x ≥ 0; if(x = 0) v :=−cv
)

∗
]

(0 ≤ x∧x ≤ H)
(19)

Let’s undo unnecessarily strict requirements right away, though. What would the
bouncing ball do if it were set loose on the moon instead of on Earth? Would it still
fall? Things are much lighter on the moon. Yet they still fall down ultimately, which
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Figure 4: Sample trajectory of a bouncing ball in an anti-gravity field with g < 0

is again the phenomenon known as gravity, just with a different constant (1.6 on the
moon and 25.9 on Jupiter). Besides, none of those constants was particularly precise.
Earth’s gravity is more like 9.8067. The behavior of the bouncing ball depends on the
value of that parameter g. But its qualitative behavior and whether it obeys (18) does
not.

Note 7 (Parameters). A common feature of CPS is that their behavior is subject to pa-
rameters, which can have quite a non-negligible impact. Yet, it is very hard to determine
precise values for all parameters by measurements. When a particular concrete value for
a parameter has been assumed to prove a property of a CPS, it is not clear whether that
property holds for the true system, which may in reality have a slightly different parameter
value.

Instead of a numerical value for a parameter, our analysis can proceed just fine by treat-
ing the parameter as a symbolic parameter, i.e. a variable such as g, which is not assumed
to hold a specific numerical value like 9.81. Instead, we would only assume certain con-
straints about the parameter, say g > 1 without choosing a specific value. If we then
analyze the CPS with this symbolic parameter g, all analysis results will continue to hold
for any concrete choice of g respecting its constraints (here g > 1). That results in a
stronger statement about the system, which is less fragile as it does not break down just
because the true g is ≈ 9.8067 rather than the previously assumed g = 9.81. Often times,
those more general statements with symbolic parameters can even be easier to prove than
statements about systems with specific magic numbers chosen for their parameters.

In light of these thoughts, we could assume 9 < g < 10 to be the gravity constant for
Earth. Yet, we can also just consider all bouncing balls on all planets in the solar system
or elsewhere at once by assuming only g > 0 instead of g = 9.81 as in (19), since this is
the only aspect of gravity that the usual behavior of a bouncing ball depends on:

0 ≤ x∧x = H∧g > 0 →
[(

x′ = v, v′ = −g&x ≥ 0; if(x = 0) v :=−cv
)

∗
]

(0 ≤ x∧x ≤ H)
(20)
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Do we expect dL formula (20) to be valid, i.e. true in all states? What could go wrong?
The insight from modifying (18) to (19) and finally to (20) started with the observation
that (18) did not include any assumptions about g. It is worth noting that (20) also
does not assume anything about c. Bouncing balls clearly would not work as expected
if c > 1, because such anti-damping would cause the bouncing ball to jump back up
higher and higher and higher and ultimately as high up as the moon, clearly falsifying
(20); see Fig. 5.

Figure 5: Sample trajectory of a bouncing ball with anti-damping c > 1

Consequently, (20) only has a chance of being true when assuming that c is not too
big:

0 ≤ x ∧ x = H ∧ g > 0 ∧ 1 > c ≥ 0 →
[(

x′ = v, v′ = −g&x ≥ 0; if(x = 0) v :=−cv
)

∗
]

(0 ≤ x ∧ x ≤ H) (21)

Is (21) valid now? Or does its truth depend on more assumptions that have not been
identified yet? Now, all parameters (H, g, c) have some assumptions in (21). Is there
some requirement we forgot about? Or did we find them all?

Before you read on, see if you can find the answer for yourself.
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What about variable v? Why is there no assumption about it yet? Should there be
one? Velocity v changes over time. What is its initial value allowed to be? What could
go wrong?

Figure 6: Sample trajectory of a bouncing ball climbing with upwards initial velocity
v > 0

Indeed, the initial velocity v of the bouncing ball could be positive (v > 0), which
would make the bouncing ball climb initially, clearly exceeding its initial height H ; see
Fig. 6. This would correspond to the bouncing ball being thrown high up in the air in
the beginning, so that its initial velocity v is upwards from its initial height x = H .
Consequently, (21) has to be modified to assume v ≤ 0 holds initially:

0 ≤ x ∧ x = H ∧ v ≤ 0 ∧ g > 0 ∧ 1 > c ≥ 0 →
[(

x′ = v, v′ = −g&x ≥ 0; if(x = 0) v :=−cv
)

∗
]

(0 ≤ x ∧ x ≤ H) (22)

Now there’s finally assumptions about all parameters and variables of (22). That
does not mean that we found the right assumptions, yet, but is still a good sanity check.
Before wasting cycles on trying to prove or otherwise justify (22), let’s try once more
whether we can find an initial state ω that satisfies all assumptions v ≤ 0 ∧ 0 ≤ x ∧ x =
H ∧ g > 0 ∧ 1 > c ≥ 0 in the antecedent (i.e. left-hand side of the implication) of (22) so
that ω does not satisfy the succedent (i.e. right-hand side of implication) of (22). Such
an initial state ω falsifies (22) and would, thus, represent a counterexample.

Is there still a counterexample to (22)? Or have we successfully identified all assump-
tions so that it is now valid?

Before you read on, see if you can find the answer for yourself.
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Formula (22) still has a problem. Even if the initial state satisfies all requirements in
the antecedent of (22), the bouncing ball might still jump higher than it ought to, i.e.
higher than its initial height H . That happens if the bouncing ball has a very big down-
wards velocity, so if v is a lot smaller than 0 (sometimes written v ≪ 0). If v is a little
smaller than 0, then the damping c will eat up enough the ball’s kinetic energy so that
it cannot jump back up higher than it was initially (H). But if v is a lot smaller than 0,
then it starts falling down with so much kinetic energy that the damping on the ground
does not slow it down enough, so the ball will come bouncing back higher than it was
originally like when dribbling a basket ball; see Fig. 7. Under which circumstance this
happens depends on the relationship of the initial velocity and height to the damping
coefficient.

Figure 7: Sample trajectory of a bouncing ball dribbling with fast initial velocity v < 0

We could explore this relationship in more detail. But it is actually easier to infer this
relationship by conducting a proof. So we modify (22) to simply assume v = 0 initially:

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 > c ≥ 0 →
[(

x′ = v, v′ = −g&x ≥ 0; if(x = 0) v :=−cv
)

∗
]

(0 ≤ x ∧ x ≤ H) (23)

Is dL formula (23) valid now? Or does it still have a counterexample?
Before you read on, see if you can find the answer for yourself.
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It seems like all required assumptions have been identified to make the dL formula
(23) valid so that the bouncing ball described in (23) satisfies the postcondition 0 ≤ x ≤
H . But after so many failed starts and missing assumptions and requirements for the
bouncing ball, it is a good idea to prove (23) once and for all beyond any doubt.

In order to be able to prove dL formula (23), however, we need to investigate how
proving works. How can dL formulas be proved? And, since first-order formulas are
dL formulas as well, one part of the question will be: how can first-order formulas be
proved? How can real arithmetic be proved? How can requirements for the safety of
CPS be identified systematically? All these questions will be answered in this course,
but not all of them in this lecture.

In order to make sure we only need to worry about a minimal set of operators of dL
for proving purposes, let’s simplify (23) by getting rid of if-then-else (Exercise 13):

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 > c ≥ 0 →
[(

x′ = v, v′ = −g&x ≥ 0; (?x = 0; v :=−cv ∪ ?x 6= 0)
)

∗
]

(0 ≤ x ∧ x ≤ H) (24)

Observing the non-negligible difference between the original conjecture (19) and the
revised and improved conjecture (24), leads us to often adopt the following princi-
ple.

Note 8 (Principle of Cartesian Doubt). In 1641, René Descartes suggested an attitude
of systematic doubt where he would be skeptical about the truth of all beliefs until he found
reason that they were justified. This principle is now known as Cartesian Doubt or skep-
ticism.

We will have perfect justifications: proofs. But until we have found proof, it is often
helpful to adopt the principle of Cartesian Doubt in a very weak and pragmatic form.
Before setting out on the journey to prove a conjecture, we first scrutinize it to see if we
can find a counterexample that would make it false. For such a counterexample will not
only save us a lot of misguided effort in trying to prove a false conjecture, but also helps us
identify missing assumptions in conjectures and justifies the assumptions to be necessary.
Surely, if, without assumption A, a counterexample to a conjecture exists, then A must be
rather necessary.

12. Summary

This lecture introduced differential dynamic logic (dL), whose operators and their in-
formal meaning is summarized in Note 9.

The appendix of this lecture also features first reasoning aspects for CPS. But reason-
ing for CPS will be investigated systematically in subsequent lectures, one operator at
a time, which establishes separate reasoning principles for each operator, rather than
proceeding in the more ad-hoc style of this lecture along an example. For future lec-
tures, we should keep the bouncing ball example and its surprising subtleties in mind,
though.
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Note 9 (Operators and (informal) meaning in differential dynamic logic (dL)).

dL Operator Meaning

θ = η equals true iff values of θ and η are equal
θ ≥ η equals true iff value of θ greater-or-equal to η
¬φ negation / not true if φ is false
φ ∧ ψ conjunction / and true if both φ and ψ are true
φ ∨ ψ disjunction / or true if φ is true or if ψ is true
φ→ ψ implication / implies true if φ is false or ψ is true
φ↔ ψ bi-implication / equivalent true if φ and ψ are both true or both false
∀xφ universal quantifier / for all true if φ is true for all values of variable x
∃xφ existential quantifier / exists true if φ is true for some values of variable x
[α]φ [·] modality / box true if φ is true after all runs of HP α
〈α〉φ 〈·〉 modality / diamond true if φ is true after at least one run of HP α

A. Intermediate Conditions for CPS

These appendices begin a semiformal study of the bouncing ball, which is a useful
preparation for the next lecture.

Before proceeding any further with ways of proving dL formulas, let’s simplify (24)
grotesquely by removing the loop:

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 > c ≥ 0 →
[

x′ = v, v′ = −g&x ≥ 0; (?x = 0; v :=−cv ∪ ?x 6= 0)
]

(0 ≤ x ∧ x ≤ H) (25)

Removing the loop clearly changes the behavior of the bouncing ball. It no longer
bounces particularly well. All it can do now is fall and, if it reaches the floor, have its
velocity reverted without actually climbing back up. So if we manage to prove (25),
we certainly have not shown the actual dL formula (24). But it’s a start, because the
behavior modeled in (25) is a part of the behavior of (24). So it is useful (and easier) to
understand (25) first.

The dL formula (25) has a number of assumptions 0 ≤ x∧x = H ∧v = 0∧g > 0∧1 >
c ≥ 0 that can be used during the proof. It claims that the postcondition 0 ≤ x ∧ x ≤ H

holds after all runs of the HP in the [·] modality. The top-level operator in the modality
of (25) is a sequential composition (;), for which we need to find a proof argument.5

The HP in (25) follows a differential equation first and then, after the sequential com-
position (;), proceeds to run a discrete program (?x = 0; v :=−cv ∪ ?x 6= 0). Depending
on how long the HP follows its differential equation, the intermediate state after the
differential equation and before the discrete program will be rather different.

5 The way we proceed here to prove (25) is actually not the recommended way. Later on, we will see a
much easier way. But it is instructive to understand the more verbose approach we take first. This also
prepares us for the challenges that lie ahead when proving properties of loops.
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Note 10 (Intermediate states of sequential compositions). This phenomenon happens
in general for sequential compositions α;β. The first HP α may reach a whole range of
states, which represent intermediate states for the sequential composition α;β, i.e. states
that are final states for α and initial states for β. The intermediate states of α;β are the
states µ in the semantics [[α;β]] from Lecture 3:

[[α;β]] = [[β]] ◦ [[α]] = {(ω, ν) : (ω, µ) ∈ [[α]], (µ, ν) ∈ [[β]]}

Can we find a way of summarizing what all intermediate states between the differ-
ential equation and the discrete program of (25) have in common? They differ by how
long the CPS has followed the differential equation.

If the system has followed the differential equation of (25) for time t, then the result-
ing velocity v(t) at time t and height x(t) at time t will be

v(t) = −gt, x(t) = H −
g

2
t2 (26)

This answer can be found by integrating or solving the differential equations. This
knowledge (26) is useful but it is not (directly) clear how to use it to describe what
all intermediate states have in common, because the time t in (26) is not available as
a variable in the HP (25).6 Can the intermediate states be described by a relation of
the variables that (unlike t) are actually in the system? That is, an (arithmetic) formula
relating x, v, g,H?

Before you read on, see if you can find the answer for yourself.

6 Following these thoughts a bit further reveals how (26) can actually be used perfectly well to describe
intermediate states when changing the HP (25) a little bit. But working with solutions is still not the
way that gets us to the goal the quickest, usually.
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One way of producing a relation from (26) is to get the units aligned and get rid of
time t. Time drops out of the “equation” when squaring the identity for velocity:

v(t)2 = g2t2, x(t) = H −
g

2
t2

and multiplying the identity for position by 2g:

v(t)2 = g2t2, 2gx(t) = 2gH − 2
g2

2
t2

Then substituting the first equation into the second yields

2gx(t) = 2gH − v(t)2

This equation does not depend on time t, so we expect it to hold after all runs of the
differential equation irrespective of t:

2gx = 2gH − v2 (27)

We conjecture the intermediate condition (27) to hold in the intermediate state of the
sequential composition in (25). In order to prove (25) we can decompose our reasoning
into two parts. The first part will prove that the intermediate condition (27) holds after
all runs of the first differential equation. The second part will assume (27) to hold and
prove that all runs of the discrete program in (25) from any state satisfying (27) satisfy
the postcondition 0 ≤ x ∧ x ≤ H .

Note 11 (Intermediate conditions as contracts for sequential composition). For a
HP that is a sequential composition α;β an intermediate condition is a formula that
characterizes the intermediate states in between HP α and β. That is, for a dL formula

A→ [α;β]B

an intermediate condition is a formula E such that the following dL formulas are valid:

A→ [α]E and E → [β]B

The first dL formula expresses that intermediate conditionE characterizes the intermediate
states accurately, i.e. E actually holds after all runs of HP α from states satisfying A. The
second dL formula says that the intermediate conditionE characterizes intermediate states
well enough, i.e.E is all we need to know about a state to conclude that all runs of β end up
in B. That is, from all states satisfying E (in particular from those that result by running
α from a state satisfying A), B holds after all runs of β.

For proving (25), we conjecture that (27) is an intermediate condition, which requires
us to prove the following two dL formulas:

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 > c ≥ 0 → [x′ = v, v′ = −g&x ≥ 0]2gx = 2gH − v2

2gx = 2gH − v2 → [?x = 0; v :=−cv ∪ ?x 6= 0] (0 ≤ x ∧ x ≤ H)
(28)
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Let’s focus on the latter formula. Do we expect to be able to prove it? Do we expect it
to be valid?

Before you read on, see if you can find the answer for yourself.
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The second formula of (28) claims that 0 ≤ x holds after all runs of ?x = 0; v :=−cv ∪
?x 6= 0 from all states that satisfy 2gx = 2gH − v2. That is a bit much to hope for,
however, because 0 ≤ hx is not even ensured in the precondition of this second formula.
So the second formula of (28) is not valid. How can this problem be resolved? By
adding 0 ≤ x into the intermediate condition, thus, requiring us to prove:

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 > c ≥ 0 → [x′ = v, v′ = −g&x ≥ 0](2gx = 2gH − v2 ∧ x ≥ 0)

2gx = 2gH − v2 ∧ x ≥ 0 → [?x = 0; v :=−cv ∪ ?x 6= 0] (0 ≤ x ∧ x ≤ H)
(29)

Proving the first formula in (29) requires us to handle differential equations, which
we will get to later. The second formula in (29) is the one whose proof is discussed first.

B. A Proof of Choice

The second formula in (29) has a nondeterministic choice ( ∪ ) as the top-level operator
in its [·] modality. How can we prove a formula of the form

A→ [α ∪ β]B (30)

Recalling its semantics from Lecture 3,

[[α ∪ β]] = [[α]] ∪ [[β]]

HP α ∪ β has two possible behaviors. It could run as HP α does or as β does. And it is
chosen nondeterministically which of the two behaviors happens. Since the behavior
of α ∪ β could be either α or β, proving (30) requires provingB to hold after α and after
β. More precisely, (30) assumes A to hold initially, otherwise (30) is vacuously true.
Thus, proving (30) allows us to assume A and requires us to prove that B holds after all
runs of α (which is permitted behavior for α ∪ β) and to prove that, assuming A holds
initially, that B holds after all runs of β (which is also permitted behavior of α ∪ β).

Note 12 (Proving choices). For a HP that is a nondeterministic choice α ∪ β, we can
prove

A→ [α ∪ β]B

by proving the following dL formulas:

A→ [α]B and A→ [β]B

Using these thoughts on the second formula of (29), we could prove that formula if
we would manage to prove both of the following dL formulas:

2gx = 2gH − v2 ∧ x ≥ 0 → [?x = 0; v :=−cv] (0 ≤ x ∧ x ≤ H)

2gx = 2gH − v2 ∧ x ≥ 0 → [?x 6= 0] (0 ≤ x ∧ x ≤ H)
(31)
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http://symbolaris.com/course/fcps16/03-choicecontrol.pdf


Safety & Contracts L4.29

C. Proofs of Tests

Consider the second formula of (31). Proving it requires us to understand how to han-
dle a test ?Q in a modality [?Q]. The semantics of a test ?Q from Lecture 3 on Choice &
Control

[[?Q]] = {(ω, ω) : ω ∈ [[Q]]} (32)

says that a test ?Q completes successfully without changing the state in any state ω in
whichQ holds (i.e. ω ∈ [[Q]]) and fails to run in all other states (i.e. where ω 6∈ [[Q]]). How
can we prove a formula with a test:

A→ [?Q]B (33)

This formula expresses that from all initial states satisfying A all runs of ?Q reach states
satisfying B. When is there a run of ?Q at all? There is a run from state ω if and only
if Q holds in ω. So the only cases to worry about those initial states that satisfy Q

as, otherwise, the HP in (33) cannot execute at all by fails miserably so that the run is
discarded. Hence, we get to assume Q holds, as the HP ?Q does not otherwise execute.
In all states that the HP ?Q reaches from states satisfying A, (33) conjectures that B
holds. Now, by (32), the final states that ?Q reaches are the same as the initial state (as
long as they satisfy Q so that HP ?Q can be executed at all). That is, postcondition B

needs to hold in all states from which ?Q runs (i.e. that satisfy Q) and that satisfy the
precondition A. So (33) can be proved by proving

A ∧Q→ B

Note 13 (Proving tests). For a HP that is a test ?Q, we can prove

A→ [?Q]B

by proving the following dL formula:

A ∧Q→ B

Using this for the second formula of (31), Note 13 reduces proving the second formula
of (31)

2gx = 2gH − v2 ∧ x ≥ 0 → [?x 6= 0] (0 ≤ x ∧ x ≤ H)

to proving
2gx = 2gH − v2 ∧ x ≥ 0 ∧ x 6= 0 → 0 ≤ x ∧ x ≤ H (34)

Now we are left with arithmetic that we need to prove. Proofs for arithmetic and
propositional logical operators such as ∧ and → will be considered in a later lecture.
For now, we notice that the formula 0 ≤ x in the right-hand side of → is justified by
assumption x ≥ 0 if we flip the inequality around. And that x ≤ H does not exactly
have a justification in (34), because we lost the assumptions about H somewhere.
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How could that happen? We used to know x ≤ H in (25). We also still knew about
it in the first formula of (29). But we let it disappear from the second formula of (29),
because we chose an intermediate condition that was too weak when constructing (29).

This is a common problem in trying to prove properties of CPS or of any other math-
ematical statements. One of our intermediate steps might have been too weak, so that
our attempt of proving it fails and we need to revisit how we got there. For sequential
compositions, this is actually a nonissue as soon as we move on (in the next lecture) to a
proof technique that is more useful than the intermediate conditions from Note 11. But
similar difficulties can arise in other parts of proof attempts.

In this case, the fact that we lost x ≤ H can be fixed by including it in the intermediate
conditions, because it can be shown to hold after the differential equation. Other crucial
assumptions have also suddenly disappeared in our reasoning. An extra assumption
1 > c ≥ 0, for example, is crucially needed to justify the first formula of (31). It is
easier to see why that particular assumption can be added to the intermediate contract
without changing the argument much. The reason is that c never ever changes during
the system run.

Note 14. It is very difficult to come up with bug-free code. Just thinking about your
assumptions really hard does not ensure correctness, but we can gain confidence that our
system does what we want it to by proving that certain properties are satisfied.

Changing the assumptions and arguments in a hybrid program around during the search
for a proof of safety is something that happens frequently. It is easy to make subtle mistakes
in informal arguments such as “I need to knowC here and I would knowC if I had included
it here or there, so now I hope the argument holds”. This is one of many reasons why we
are better off if our CPS proofs are rigorous, because we would rather not end up in trouble
because of a subtle flaw in a correctness argument. A rigorous, formal proof calculus for
differential dynamic logic (dL) will help us avoid the pitfalls of informal arguments. The
theorem prover KeYmaera X that you will use in this course implements a proof calculus
for dL.

A related observation from our informal arguments in this lecture is that we desperately
need a way to keep an argument consistent as a single argument justifying one conjecture.
Quite the contrary to the informal loose threads of argumentation we have pursued in this
lecture for the sake of developing an intuition. Consequently, we will investigate what
holds all arguments together and what constitutes an actual proof in subsequent lectures.
A proof in which the relationship of premises to conclusions via proof steps is rigorous.

Moreover, there’s two loose ends in our arguments. For one, the differential equation
in (29) is still waiting for an argument that could help us prove it. Also, the assignment
in (31) still needs to be handled and its sequential composition needs an intermediate
contract (Exercise 15). Both will be pursued in the next lecture, where we move to a
systematic and rigorous reasoning style for CPS.
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Exercises

Exercise 1. Show that (15) is valid. It is okay to focus only on this case, even though
the argument is more general, because the following dL formula is valid for any hybrid
program α:

[α]F ∧ [α]G↔ [α](F ∧G)

Exercise 2. Let A,B be dL formulas. Suppose A↔ B is valid and A is valid. Is B valid?
Prove or disprove.

Exercise 3. Let A,B be dL formulas. Suppose A ↔ B is true in state ω and A is true in
state ω. That is, ω ∈ [[A↔ B]] and ω ∈ [[A]]. Is B true in state ω? Prove or disprove. Is B
valid? Prove or disprove.

Exercise 4. Let α be an HP. Let ω be a state with ω 6∈ [[φ]]. Does ω 6∈ [[[α∗]φ]] hold? Prove
or disprove.

Exercise 5. Let α be an HP. Let ω be a state with ω ∈ [[φ]]. Does ω ∈ [[[α∗]φ]] hold? Prove
or disprove.

Exercise 6. Let α be an HP. Let ω be a state with ω ∈ [[φ]]. Does ω ∈ [[〈α∗〉φ]] hold? Prove
or disprove.

Exercise 7. Suppose you have a HP α with a CPS contract using multiple preconditions
A1, . . . , An and multiple postconditions B1, . . . , Bm:

@requires(A1)

@requires(A2)

...

@requires(An)

@ensures(B1)

@ensures(B2)

...

@ensures(Bm)

α

How can this CPS contract be expressed in a dL formula? If there are multiple alterna-
tives on how to express it, discuss the advantages and disadvantages of each option.

Exercise 8. For each of the following dL formulas, determine if they are valid, satisfiable,
and/or unsatisfiable:

1. [?x ≥ 0]x ≥ 0.

2. [?x ≥ 0]x ≤ 0.

3. [?x ≥ 0]x < 0.
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4. [?true]true .

5. [?true]false .

6. [?false]true .

7. [?false]false .

8. [x′ = 1& true]true .

9. [x′ = 1& true]false .

10. [x′ = 1& false]true .

11. [x′ = 1& false]false .

12. [(x′ = 1& true)∗]true .

13. [(x′ = 1& true)∗]false .

14. [(x′ = 1& false)∗]true .

15. [(x′ = 1& false)∗]false .

Exercise 9. For each of the following dL formulas, determine if they are valid, satisfiable,
and/or unsatisfiable:

1. x > 0 → [x′ = 1]x > 0

2. x > 0 ∧ 〈x′ = 1〉x < 0

3. x > 0 → [x′ = −1]x < 0

4. x > 0 → [x′ = −1]x ≥ 0

5. x > 0 → [(x := x+ 1)∗]x > 0

6. x > 0 → [(x := x+ 1)∗]x > 1

7. [x := x2 + 1;x′ = 1]x > 0.

8. [(x := x2 + 1;x′ = 1)
∗

]x > 0.

9. [(x := x+ 1;x′ = −1)∗; ?x > 0;x′ = 2]x > 0

Exercise 10. For each j, k ∈ {satisfiable,unsatisfiable,valid} answer whether there is a
formula that is j but not k. Also answer for each such j, k whether there is a formula
that is j but its negation is not k. Briefly justify each answer.
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Exercise 11. There are at least two styles if giving a meaning to a logical formula. One
way is, as in Def. 2, to inductively define a satisfaction relation |= that holds between a
state ω and a dL formula φ, written ω |= φ, whenever the formula φ is true in the state
ω. Its definition will include, among other cases, the following:

ω |= P ∧Q iff ω |= P and ω |= Q

ω |= 〈α〉P iff ν |= P for some state ν such that (ω, ν) ∈ [[α]]
ω |= [α]P iff ν |= P for all states ν such that (ω, ν) ∈ [[α]]

The other way is to inductively define, for each dL formula φ, the set of states, written
[[φ]], in which φ is true. Its definition will include, among other cases, the following:

[[e ≥ ẽ]] = {ω : [[e]]ω ≥ [[ẽ]]ω}
[[P ∧Q]] = [[P ]] ∩ [[Q]]

[[¬P ]] = [[P ]]∁ = S \ [[P ]]
[[〈α〉P ]] = [[α]] ◦ [[P ]] = {ω : ν ∈ [[P ]] for some state ν such that (ω, ν) ∈ [[α]]}
[[[α]P ]] = [[¬[α]¬P ]] = {ω : ν ∈ [[P ]] for all states ν such that (ω, ν) ∈ [[α]]}
[[∃xP ]] = {ω : ν ∈ [[P ]] for some state ν that agrees with ω except on x}
[[∀xP ]] = {ω : ν ∈ [[P ]] for all states ν that agree with ω except on x}

Prove that both styles of defining the semantics are equivalent. That is ω |= φ iff ω ∈ [[φ]]
for all states ω and all dL formulas φ.

Exercise 12. What would happen with the bouncing ball if c < 0? Consider a variation
of the arguments in Sect. 11 where instead of the assumption in (21), you assume c < 0.
Is the formula valid? What would happen with a bouncing ball of damping c = 1?

Exercise 13. We went from (23) to (24) by removing an if-then-else. Explain how this
works and justify why it is okay to do this transformation. It is okay to focus only on
this case, even though the argument is more general.

Exercise 14 (**). Sect. A used a mix of a systematic and ad-hoc approach for producing an
intermediate condition that was based on solving and combining differential equations.
Can you think of a more systematic rephrasing?

Exercise 15 (*). Find an intermediate condition for proving the first formula in (31). The
proof of the resulting formulas is complicated significantly by the fact that assignments
have not yet been discussed in this lecture. Can you find a way of proving the resulting
formulas before the next lecture develops how to handle assignments?

Exercise 16 (***). Before looking at subsequent lectures: How could you prove the for-
mula (29), which involves a differential equation?
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[Pla08] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.,
41(2):143–189, 2008. doi:10.1007/s10817-008-9103-8.
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[Pla12b] André Platzer. Dynamic logics of dynamical systems. CoRR, abs/1205.4788,
2012. arXiv:1205.4788.
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15-424: Foundations of Cyber-Physical Systems

Lecture Notes on

Dynamical Systems & Dynamic Axioms

André Platzer

Carnegie Mellon University
Lecture 5

1 Introduction

Lecture 4 on Safety & Contracts demonstrated how useful and crucial CPS contracts are
for CPS. Their role and understanding goes beyond dynamic testing. In CPS, proven
CPS contracts are infinitely more valuable than dynamically tested contracts, because
dynamical tests of contracts at runtime of a CPS generally leave open very little flexibil-
ity for reacting to them in any safe way. After all, the failure of a contract indicates that
some safety condition that was expected to hold is not longer true. Unless provably
sufficient safety margins and fallback plans remain, the system is already in trouble
then.1

Consequently, CPS contracts really shine in relation to how they are proved for CPS.
Understanding how to prove CPS contracts requires us to understand the dynamical
effects of hybrid programs in more detail. This deeper understanding of the effects of
hybrid program statements is not only useful for conducting proofs but also for devel-
oping and sharpening our intuition about hybrid programs for CPS. This phenomenon
illustrates a more general point that proof and effect (and/or meaning) are intimately
linked and that truly understanding effect is ultimately the same as, as well as a prereq-
uisite to, understanding how to prove properties of that effect [Pla12d, Pla12b, Pla10].
You may have seen this point demonstrated already in other courses from the Principles
of Programming Languages group at CMU, but it will shine in today’s lecture.

The route that we choose to get to this level of understanding is one that involves a
closer look at dynamical systems and Kripke models, or rather, the effect that hybrid

1Although, in combination with formal verification, the Simplex architecture can be understood as ex-
ploiting the relationship of dynamic contracts for safety purposes [SKSC98]. ModelPlex, which is based
on differential dynamic logic, lifts this observation to a fully verified link from verified models to CPS
executions [MP16].
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L5.2 Dynamical Systems & Dynamic Axioms

programs have on them. This will enable us to devise authoritative proof principles for
differential dynamic logic and hybrid programs [Pla12d, Pla12b, Pla10, Pla08]. While
there are many more interesting things to say about dynamical systems and Kripke
structures, this lecture will limit information to the truly essential parts that are crucial
right now and leave more elaboration for later lectures. Today’s lecture will give us the
essential reasoning tools for cyber-physical systems and is, thus, of central importance.

More information can be found in [Pla12c, Pla12d] as well as [Pla10, Chapter 2.3].
The focus of today’s lecture is on a systematic development of the basic reasoning

principles for cyber-physical systems. The goal is to cover all cyber-physical systems
by identifying one fundamental reasoning principle for each of the operators of dif-
ferential dynamic logic and, specifically, its hybrid programs. Once we have a (suit-
ably complete) reasoning principle for each of the operators, the basic idea is that any
arbitrary cyber-physical system can be analyzed by just combining the various rea-
soning principles with one another, compositionally, by inspecting one operator at a
time.

Note 1 (Logical guiding principle: Compositionality). Since every CPS is modeled by
a hybrid programa and all hybrid programs are combinations of simpler hybrid programs
by one of a handful of program operators (such as ∪ and ; and ∗), all CPS can be analyzed
if only we identify one suitable analysis technique for each of the operators.

aTo faithfully represent complex CPS, some models need an extension of hybrid programs, e.g., to
hybrid games [Pla15a] or distributed hybrid programs [Pla12a], in which case suitable general-
izations of the logical approach presented here works.

With enough understanding, this guiding principle will, indeed, ultimately succeed
[Pla12b, Pla14]. It will, however, take significantly more than one lecture to get there.
So, today’s lecture will settle for a systematic development of the reasoning principles
for the more elementary operators in hybrid programs, leaving a detailed development
of the others to later lectures.

This lecture is of central significance for the Foundations of Cyber-Physical Systems.
The most important learning goals of this lecture are:

Modeling and Control: We will understand the core principles behind CPS by under-
standing analytically and semantically how cyber and physical aspects are inte-
grated and interact in CPS. This lecture will also begin to explicitly relate discrete
and continuous systems, which will ultimately lead to a fascinating view on un-
derstanding hybridness [Pla12b].

Computational Thinking: This lecture is devoted to the core aspects of reasoning rig-
orously about CPS models, which is critical to getting CPS right. CPS designs
can be flawed for very subtle reasons. Without sufficient rigor in their analysis
it can be impossible to spot the flaws, and even more challenging to say for sure
whether and why a design is no longer faulty. This lecture systematically devel-
ops one reasoning principle for each of the operators of hybrid programs. This
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lecture begins an axiomatization of differential dynamic logic dL [Pla12d, Pla12b]
to lift dL from a specification language to a verification language for CPS.

CPS Skills: We will develop a deep understanding of the semantics of CPS models by
carefully relating their semantics to their reasoning principles and aligning them
in perfect unison. This understanding will also enable us to develop a better
intuition for the operational effects involved in CPS.

CT

M&C CPS

rigorous reasoning about CPS
dL as verification language

cyber+physics interaction
relate discrete+continuous

align semantics+reasoning
operational CPS effects

Note 2 (Logical trinity). The concepts developed in this lecture illustrate the more general
relation of syntax (which is notation), semantics (what carries meaning), and axiomat-
ics (which internalizes semantic relations into universal syntactic transformations). These
concepts and their relations jointly form the significant logical trinity of syntax, seman-
tics, and axiomatics.

Axiomatics

Syntax Semantics

2 Intermediate Conditions for CPS

Recall the bouncing ball from Lecture 4 on Safety & Contracts

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 > c ≥ 0 →
[(

x′ = v, v′ = −g&x ≥ 0; (?x = 0; v :=−cv ∪ ?x 6= 0)
)

∗
]

(0 ≤ x ∧ x ≤ H) (1)

To simplify the subsequent discussion, let’s drop the repetition (∗) for now:

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 →
[

x′ = v, v′ = −g&x ≥ 0; (?x = 0; v :=−cv ∪ ?x 6= 0)
]

(0 ≤ x ∧ x ≤ H) (2)
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Of course, dropping the repetition grotesquely changes the behavior of the bouncing
ball. It cannot even really bounce any longer now. It can merely fall and revert its
velocity vector when on the ground but is then stuck. The single hop bouncing ball can
only follow the first blue hop but not the gray remainder hops in Fig. 1. This degenerate
model fragment is, nevertheless, an insightful stepping stone toward a proof of the full
model. If we manage to prove (2), we certainly have not shown the full bouncing ball

Figure 1: Sample trajectory of a single-hop bouncing ball (plotted as height over time)
which can follow the first blue hop but is incapable of following the remainder
shown in gray.

formula (1). But it’s a start, because the behavior modeled in (2) is a part of the behavior
of (1). So it is useful (and easier) to understand (2) first.

The dL formula (2) has a number of assumptions 0 ≤ x∧ x = H ∧ v = 0∧ g > 0∧ 1 ≥
c ≥ 0 that can be used during the proof. It claims that the postcondition 0 ≤ x ∧ x ≤ H
holds after all runs of the HP in the [·] modality. The top-level operator in the modality
of (2) is a sequential composition (;), for which we need to find a proof argument.2

The HP in (2) follows a differential equation first and then, after the sequential com-
position (;), proceeds to run a discrete program (?x = 0; v :=−cv ∪ ?x 6= 0). Depending
on how long the HP follows its differential equation, the intermediate state after the
differential equation and before the discrete program will be rather different.

Note 3 (Intermediate states of sequential compositions). This phenomenon happens
in general for sequential compositions α;β. The first HP α may reach a whole range of
states, which represent intermediate states for the sequential composition α;β, i.e. states
that are final states for α and initial states for β. The intermediate states of α;β are the
states µ in the semantics [[α;β]] from Lecture 3:

[[α;β]] = [[α]] ◦ [[β]] = {(ω, ν) : (ω, µ) ∈ [[α]], (µ, ν) ∈ [[β]]}

It turns out we can summarize what all intermediate states between the differential
equation and the discrete program of (2) have in common. They differ by how long

2 The way we proceed here to prove (2) is actually not the recommended way. Later on, we will see
a much easier way. But it is instructive to understand the more verbose approach we take first. The
approach we follow first also prepares us for the challenges that lie ahead when proving properties of
loops.
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the CPS has followed the differential equation. But the intermediate states still have in
common that they satisfy a logical formula E. Which logical formula that is, is, in fact,
instructive to find out, but of no immediate concern for the rest of this lecture. So we
invite you to find out how to choose E for (2) before you compare your answer to the
one we develop in the appendix of Lecture 4 on Safety & Contracts.

For a HP that is a sequential composition α;β an intermediate condition is a formula
that characterizes the intermediate states in between HP α and β. That is, for a dL
formula

A → [α;β]B

an intermediate condition is a formula E such that the following dL formulas are valid:

A → [α]E and E → [β]B

The first dL formula expresses that intermediate condition E characterizes the interme-
diate states accurately, i.e. E actually holds after all runs of HP α from states satisfying
A. The second dL formula says that the intermediate condition E characterizes inter-
mediate states well enough, i.e. E is all we need to know about a state to conclude that
all runs of β end up in B. That is, from all states satisfying E (in particular from those
that result by running α from a state satisfying A), B holds after all runs of β.

Intermediate condition contracts for sequential compositions are captured more con-
cisely in the following proof rule:

G[;]
A → [α]E E → [β]B

A → [α;β]B

The two dL formulas above the bar of the rule are called premises. The dL formula below
the bar is called conclusion. The argument above (still informally) justifies the proof rule
because if both premises are valid then the conclusion is valid, too. So if we have a
proof for each of the two premises, rule G[;] gave us a proof of the conclusion.

Since we will soon identify a better way of proving properties of sequential compo-
sitions, we do not pursue rule G[;] further now. Note, however, that there are some
circumstances under which a proof using G[;] actually simplifies your reasoning.

For now, we remark that, given an intermediate condition E, the rule G[;] splits a
proof of (2) into a proof of the following two premises:

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 →
[

x′ = v, v′ = −g&x ≥ 0
]

E (3)

E →
[

?x = 0; v :=−cv ∪ ?x 6= 0)
]

(0 ≤ x ∧ x ≤ H)
(4)

3 Dynamic Axioms for Nondeterministic Choices

By the logical guiding principle of compositionality (Note 1), the next operator that we
need to understand in order to prove (2) is the nondeterministic choice ?x = 0; v :=−cv∪
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?x 6= 0 in (4). By guiding principle Note 1, we zero in on the nondeterministic choice
operator ∪ and pretend we already knew how to handle all other operators.

Recall the semantics of nondeterministic choices from Lecture 3 on Choice & Control:

[[α ∪ β]] = [[α]] ∪ [[β]] (5)

Remember that [[α]] is a reachability relation on states, where (ω, ν) ∈ [[α]] iff HP α can
run from state ω to state ν. Let us illustrate graphically what (5) means:

ω

ν1

ν2

[[α]] P

[[β]] P

[[α ∪ β]]

[α ∪ β]P

Figure 2: Illustration of the transition semantics of α ∪ β, which allows α ∪ β to make
any transitions that either α or that β could do on their own.

According to [[α]], a number of states νi are reachable by running HP α from some
initial state ω.3 According to [[β]], a number of (possibly other) states νi are reachable
by running HP β from the same initial state ω. By the semantic equation (5), running
α ∪ β from ω can give us any of those possible outcomes. And there was nothing special
about the initial state ω. The same principle holds for all other states as well.

Note 4 ( ∪ ). The nondeterministic choice α ∪ β can lead to exactly the states to which
either α could take us or to which β could take us or to which both could lead. The dynamic
effect of a nondeterministic choice α ∪ β is that running it at any time either results in a
behavior of α or of β, nondeterministically. So both the behaviors of α and β are possible
when running α ∪ β.

If we want to understand whether and where dL formula [α ∪ β]P is true, we need
to understand which states the modality [α ∪ β] refers to. In which states does P have
to be true so that [α ∪ β]P is true in state ω?

By definition of the semantics, P needs to be true in all states that α ∪ β can reach
according to [[α ∪ β]] from ω for [α ∪ β]P to be true in ω. Referring to semantics (5) or
looking at Fig. 2, shows us that this includes exactly all states that α can reach from ω
according to [[α]], hence [α]P has to be true in ω. And that it also includes all states that
β can reach from ω, hence [β]P has to be true in ω.

Consequently,
ω ∈ [[[α]P ]] and ω ∈ [[[β]P ]] (6)

are necessary conditions for
ω ∈ [[[α ∪ β]P ]] (7)

3Fig. 2 only illustrates one such state ν1 for visual conciseness. But ν1 should be thought of as a generic
representative for any such state that α can reach from the initial state ω in these figures.

15-424 LECTURE NOTES ANDRÉ PLATZER
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That is, unless (6) holds, (7) cannot possibly hold. So (6) is necessary for (7). Are there
any states missing? Are there any states that (7) would require to satisfy P , which (6)
does not already ensure to satisfy P ? No, because, by (5), α ∪ β does not admit any
behavior that neither α nor β can exhibit. Hence (6) is also sufficient for (7), i.e. (6)
implies (7). So (6) and (7) are equivalent.

Thus, when adopting a more logical language again, this justifies:

ω ∈ [[[α ∪ β]P ↔ [α]P ∧ [β]P ]]

This reasoning did not depend on the particular state ω but holds for all ω. Therefore,
the formula [α ∪ β]P ↔ [α]P ∧ [β]P is valid, written:

� [α ∪ β]P ↔ [α]P ∧ [β]P

Exciting! We have just proved our first axiom to be sound:

Lemma 1 ([∪] soundness). The “axiom of choice” is sound, i.e. all its instances are valid:

[∪] [α ∪ β]P ↔ [α]P ∧ [β]P

Nondeterministic choices split into their alternatives in axiom [∪]. From right to left:
If all α runs lead to states satisfying P (i.e., [α]P holds) and all β runs lead to states
satisfying P (i.e., [β]P holds), then all runs of HP α ∪ β, which may choose between
following α and following β, also lead to states satisfying P (i.e., [α ∪ β]P holds). The
converse implication from left to right holds, because α ∪ β can run all runs of α and all
runs of β, so all runs of α (and of β) lead to states satisfying P if that holds for all runs
of [β]P .

Armed with this axiom [∪] at our disposal, we can now easily make the following
inference just by invoking the equivalence that [∪] justifies.

[∪]
A→[α]B ∧ [β]B

A→[α ∪ β]B

Let’s elaborate. If we want to prove the conclusion

A → [α ∪ β]B (8)

then we can instead prove the premise

A → [α]B ∧ [β]B (9)

because by [∪], or rather an instance of [∪] formed by using B for P , we know:

[α ∪ β]B ↔ [α]B ∧ [β]B (10)

Since (10) is a valid equivalence, its left-hand side and its right-hand side are equivalent.
Wherever the left-hand side occurs, we can equivalently replace it by the right-hand
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side, since both are equivalent.4 Thus, replacing the place where the left-hand side of
(10) occurs in (8) by the right-hand side of (10) gives us the formula (9) that is equivalent
to (8). After all, according to the valid equivalence (10) justified by axiom [∪], (9) can be
obtained from (8) just by replacing a formula with one that is equivalent.

Actually, stepping back, the same argument can be made to go from (9) to (8) instead
of from (8) to (9), because (10) is an equivalence. Both ways of using [∪] are perfectly
fine. Although the direction that gets rid of the ∪ operator tends to be much more
useful, because it made progress (getting rid of an HP operator).

Yet axiom [∪] can also be useful in many more situations. For example, axiom [∪] also
justifies the inference

[∪]
[α]A ∧ [β]A → B

[α ∪ β]A → B

which follows from the left-to-right implication of axiom [∪].
A general principle behind the dL axioms is most noticeable in axiom [∪]. All equiv-

alence axioms of dL are primarily intended to be used by reducing the formula on the
left to the (structurally simpler) formula on the right. Such a reduction symbolically
decomposes a property of a more complicated system into separate properties of easier
fragments α and β. While we might end up with more subproperties (like we do in
the case of axiom [∪]), each of them is structurally simpler, because it involves less pro-
gram operators. This decomposition of systems into their fragments makes the problem
tractable and is good for scalability purposes, because it reduces the study of complex
systems successively to a study of many but smaller subsystems of which there are
only finitely many. For these symbolic structural decompositions, it is very helpful
that dL is a full logic that is closed under all logical operators [Pla15a], including dis-
junction and conjunction, for then both sides in [∪] are dL formulas again (unlike in
Hoare logic [Hoa69]). This also turns out to be an advantage for computing invariants
[PC08, PC09, Pla10, GP14], which will be discussed much later in this course.

4 Soundness

The definition of soundness in Lemma 1 was not specific to axiom [∪], but applies to all
dL axioms.

Definition 2 (Soundness). An axiom is sound iff all its instances are valid.

From now on, every time we see a formula of the form [α ∪ β]P , we can remember
that axiom [∪] knows a formula, namely [α]P ∧ [β]P that is equivalent to it. Whenever
we find a formula of the form [γ ∪ δ]Q, we also remember that axiom [∪] knows a for-
mula, namely [γ]Q ∧ [δ]Q that is equivalent to it, just by instantiation [Pla15b] of axiom
[∪]. And the fact that axiom [∪] is sound ensures that we do not need to worry about
whether such reasoning is correct every time we need it. Every instance of [∪] is sound.

4This will be made rigorous in a later lecture following contextual equivalence reasoning [Pla15b].
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Once we know that [∪] is sound, we can treat it syntactically and mechanically and
apply it as needed, like a machine would.

But because soundness is such a big deal (a conditio sine qua non in logic, i.e., some-
thing without which logic could not be), we will prove soundness of [∪] carefully, even
if we almost already did in our informal argument above.

Proof of Lemma 1. The fact that axiom [∪] is sound can be proved as follows. Since
[[α ∪ β]] = [[α]] ∪ [[β]], we have that (ω, ν) ∈ [[α ∪ β]] iff (ω, ν) ∈ [[α]] or (ω, ν) ∈ [[β]]. Thus,
ω ∈ [[[α ∪ β]P ]] iff ω ∈ [[[α]P ]] and ω ∈ [[[β]P ]].

Why is soundness so critical? Well, because, without it, we could accidentally de-
clare a system safe that is not in fact safe, which would defeat the whole purpose of
verification and possibly put human lives in jeopardy when they are trusting their lives
on an unsafe CPS. Unfortunately, soundness is actually not granted in all verification
techniques for hybrid systems. But we will make it a point in this course to only ever
use sound reasoning and scrutinizing all verification for soundness right away. Sound-
ness is something that is comparably easy to establish in logic and proof approaches,
because it localizes into the separate study of soundness of each of its axioms.

5 Dynamic Axioms for Assignments

Axiom [∪] allows us to understand and handle [α ∪ β] properties. If we find similar
axioms for all the other operators of hybrid programs, then we have a way of handling
all other hybrid programs, too [Pla12b].

Consider discrete assignments. Recall from Lecture 4 on Safety & Contracts that:

[[x := e]] = {(ω, ν) : ν = ω except that [[x]]ν = [[e]]ω}

ω ν

p(e)
x := e

p(x)

Lemma 3 ([:=] soundness). The assignment axiom is sound:

[:=] [x := e]p(x) ↔ p(e)

The assignment axiom [:=] expresses that p(x) is true after the discrete assignment
assigning e to x iff p(e) has already been true before that change, since the assignment
x := e will change around the value of variable x to the value of e [Pla15b].
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6 Dynamic Axioms for Differential Equations

Recall from Lecture 3 on Choice & Control that

[[x′ = f(x)&Q]] = {(ϕ(0), ϕ(r)) : ϕ(t) |= x′ = f(x) and ϕ(t) |= Q for all 0 ≤ t ≤ r

for a solution ϕ : [0, r] → S of any duration r}

ω ν
x′ = f(x)

P
x := yx(t)

One possible approach of proving properties of differential equations is to work with
a solution if one is available (and expressible in the logic). After all, the first thing you
learned about what to di with differential equations is probably to solve them.

Lemma 4 ([′] soundness). The solution axiom schema is sound:

[′] [x′ = f(x)]P ↔ ∀t≥0 [x := y(t)]P (y′(t) = f(y))

where y(·) is the solution of the symbolic initial-value problem y′(t) = f(y), y(0) = x.

Solution y(·) is unique since f(x) is smooth (Lecture 2). Given such a solution y(·),
continuous evolution along differential equation x′ = f(x) can be replaced by a dis-
crete assignment x := y(t) with an additional quantifier for the evolution time t. It goes
without saying that variables like t are fresh in [′] and other axioms and proof rules.
Notice that conventional initial-value problems are numerical with concrete numbers
x ∈ R

n as initial values, not symbols x [Wal98]. This would not be enough for our
purpose, because we need to consider all states in which the system could start, which
may be uncountably many. That is why axiom [′] solves one symbolic initial-value prob-
lem, instead, because we could hardly solve uncountable many numerical initial-value
problems.

Note 9 (Discrete vs. continuous dynamics). Notice something rather intriguing and
peculiar about axiom [′]. It relates a property of a continuous system to a property of a
discrete system. The HP on the left-hand side describes a smoothly changing continuous
process, while the right-hand side describes an abruptly, instantaneously changing discrete
process. Still, their respective properties coincide, thanks to the time quantifier. This is the
beginning of an astonishingly intimate relationship of discrete and continuous dynamics
[Pla12b].

What we have so far about the dynamics of differential equations does not yet help
us prove properties of differential equations with evolution domain constraints (a.k.a.
continuous programs) x′ = f(x)&Q. It also does not yet tell us what to do if we can-
not solve the differential equation or if the solution is too complicated. We will get to
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those matters in more detail in later lectures. Just briefly note that evolution domain
constraints can be handled as well by adding a condition checking that the evolution
domain was always true until the point in time of interest:

[′] [x′ = f(x)&Q]P ↔ ∀t≥0
(

(∀0≤s≤t [x := y(s)]Q) → [x := y(t)]P
)

The effect of the additional constraint on Q is to restrict the continuous evolution such
that its solution y(s) remains in the evolution domain Q at all intermediate times s ≤ t.
This constraint simplifies to true if the evolution domain Q is true , which makes sense,
because there are no special constraints on the evolution (other than the differential
equations) if the evolution domain is described by true , hence the full state space.

7 Dynamic Axioms for Tests

Recall from Lecture 3 on Choice & Control that

[[?Q]] = {(ω, ω) : ω ∈ [[Q]]}

ω

?Q

if ω ∈ [[Q]]
ω

?Q
/

if ω 6∈ [[Q]]

Lemma 5 ([?] soundness). The test axiom is sound:

[?] [?Q]P ↔ (Q → P )

Tests in [?Q]P are proven by assuming that the test succeeds with an implication in
axiom [?], because test ?Q can only make a transition when condition Q actually holds
true. In states where test Q fails, no transition is possible and the failed attempt to run
the system is discarded. If no transition exists for an HP α, there is nothing to show
for [α]P formulas, because their semantics requires P to hold in all states reachable
by running α, which is vacuously true if no states are reachable. From left to right,
axiom [?] for dL formula [?Q]P assumes that formula Q holds true (otherwise there is
no transition and thus nothing to show) and shows that P holds after the resulting no-
op. The converse implication from right to left is by case distinction. Either Q is false,
then ?Q cannot make a transition and there is nothing to show. Or Q is true, but then
also P is true according to the implication.

8 Dynamic Axioms for Sequential Compositions

For sequential compositions α;β, Sect. 2 proposed the use of an intermediate condition
E characterizing all intermediate states between α and β by way of the following proof
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rule:

G[;]
A → [α]E E → [β]B

A → [α;β]B

This proof rule can sometimes be useful, but it has one blatant annoyance compared
to the simplicity and elegance of axiom [∪]. When using rule G[;] from the desired
conclusion to the premises, it does not say how to choose the intermediate condition
E. Using G[;] successfully requires us to find the right intermediate condition E, for if
we don’t, the proof won’t succeed as we have seen in the Appendix of Lecture 4. That
is a bit much if we have to invent a useful intermediate condition E for every single
sequential composition in a CPS.

Fortunately, differential dynamic logic provides a much better way that we also iden-
tify by investigating the dynamical system resulting from α;β and its induced Kripke
structure. Recall from Lecture 3 on Choice & Control that

[[α;β]] = [[α]] ◦ [[β]]
def
= {(ω, ν) : (ω, µ) ∈ [[α]], (µ, ν) ∈ [[β]]} (11)

By its semantics, the dL formula [α;β]P is true in a state ω iff P is true in all states that
α;β can reach according to [[α;β]] from ω, i.e. all those states for which (ω, ν) ∈ [[α;β]].
Which states are those? And how do they relate to the states reachable by α or by β
alone? They do not relate to those in a way that is as direct as for axiom [∪]. But they
still relate, and they do so by way of (11).

Postcondition P has to be true in all states reachable by α;β from ω for [α;β]P to be
true at ω. By (11), those are exactly the states ν to which we can get by running β from
an intermediate state µ to which we have gotten from ω by running α. Thus, for [α;β]P
to be true at ω it is necessary that P holds in all states ν to which we can get by running
β from an intermediate state µ to which we can get by running β from ω. Consequently,
[α;β]P is only true at ω if [β]P holds in all those intermediate states µ to which we can
get from ω by running α. How do we characterize those states? And how can we then
express these thoughts in a single logical formula of dL?

Before you read on, see if you can find the answer for yourself.
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If we want to express that [β]P holds in all states µ to which we can get to from ω by
running α, then that is exactly what truth of dL formula [α][β]P at ω means, because
this is the semantics of the modality [β].

ω µ ν

α;β
[α;β]P

[α][β]P
α

[β]P
β

P

Consequently,
ω ∈ [[[α][β]P → [α;β]P ]]

Reexamining our argument backwards, we see that the converse implication also holds

ω ∈ [[[α;β]P → [α][β]P ]]

The same argument works for all ω, so both implications are even valid.

Lemma 6 ([;] soundness). The composition axiom is sound:

[;] [α;β]P ↔ [α][β]P

Proof. Since [[α;β]] = [[α]]◦[[β]], we have that (ω, ν) ∈ [[α;β]] iff (ω, µ) ∈ [[α]] and (µ, ν) ∈ [[β]]
for some intermediate state µ. Hence, ω ∈ [[[α;β]P ]] iff µ ∈ [[[β]P ]] for all µ with (ω, µ) ∈ [[α]].
That is ω ∈ [[[α;β]P ]] iff ω ∈ [[[α][β]P ]].

Sequential compositions are proven using nested modalities in axiom [;]. From right
to left: If, after all α-runs, it is the case that all β-runs lead to states satisfying P (i.e.,
[α][β]P holds), then all runs of the sequential composition α;β lead to states satisfying
P (i.e., [α;β]P holds), because α;β cannot go anywhere but following α through some
intermediate state to running β. The converse implication uses the fact that if after all
α-runs all β-runs lead to P (i.e., [α][β]P ), then all runs of α;β lead to P (that is, [α;β]P ),
because the runs of α;β are exactly those that first do any α-run, followed by any β-run.
Again, it is crucial that dL is a full logic that considers reachability statements as modal
operators, which can be nested, for then both sides in axiom [;] are dL formulas.

Axiom [;] directly explains sequential composition α;β in terms of a structurally sim-
pler formula, one with nested modal operators but simpler hybrid programs. Again,
using axiom [;] by reducing occurrences of its left-hand side to its right-hand side de-
composes the formula into structurally simpler pieces, thereby making progress. One
of the many ways of using axiom [;] is, therefore, captured in the following proof rule:

R8
A → [α][β]B

A → [α;β]B

Comparing rule R8 to rule G[;], the new rule R8 is much easier to apply, because it does
not require us to first identify and provide an intermediate condition E like rule G[;]
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would. It also does not branch into two premises, which helps keeping the proof lean.
Is there a way of reuniting R8 with G[;] by using the expressive power of dL?

Before you read on, see if you can find the answer for yourself.
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Yes, indeed, there is a very smart choice for the intermediate condition E that makes

G[;] behave almost as the more efficient R8 would. The clever choice E
def
≡ [β]B:

A → [α][β]B [β]B → [β]B

A → [α;β]B

which trivializes the right premise, because all formulas imply themselves, and makes
the left premise identical to that of R8. Consequently, differential dynamic logic inter-
nalizes ways of expressing necessary and possible properties of hybrid programs and
makes both first-class citizens in the logic. That cuts down on the amount of input that
is needed when conducting proofs.

9 Unwinding Axioms for Loops

Recall from Lecture 3 on Choice & Control that

[[α∗]] =
⋃

n∈N

[[αn]] with αn+1 ≡ αn;α and α0 ≡ ?true

How could we prove properties of loops such as [α∗]P ? Is there a way of reducing
properties of loops to properties of simpler systems in similar ways as the other axioms
of differential dynamic logic?

Before you read on, see if you can find the answer for yourself.
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ω ν

α∗

P ∧ [α][α∗]P
α

[α∗]P

α α
P

α∗

Lemma 7 ([∗] soundness). The iteration axiom is sound:

[∗] [α∗]P ↔ P ∧ [α][α∗]P

Axiom [∗] is the iteration axiom, which partially unwinds loops. It uses the fact that
P always holds after repeating α (i.e., [α∗]P ), if P holds at the beginning (for P holds
after zero repetitions then), and if, after one run of α, P holds after every number of
repetitions of α, including zero repetitions (i.e., [α][α∗]P ). So axiom [∗] expresses that
[α∗]P holds iff P holds immediately and after one or more repetitions of α.

The same axiom [∗] can be used to unwind loops N ∈ N times, which corresponds
to Bounded Model Checking [CBRZ01]. If the formula is not valid, a bug has been
found, otherwise N increases. An obvious issue with this simple approach is that we
can never stop increasing N if the formula is actually valid, because we can never find
a bug then. A later lecture will discuss proof techniques for repetitions based on loop
invariants that are not subject to this issue. In particular, axiom [∗] is characteristically
different from the other axioms discussed in this lecture. Unlike the other axioms, [∗]
does not exactly get rid of the formula on the left-hand side. It just puts it in a different
syntactic place, which does not sound like much progress.5

10 A Proof of a Short Bouncing Ball

Now that we have understood so many axioms and proof rules, let us use them to prove
the (single-hop) bouncing ball (2):

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 →
[

x′ = v, v′ = −g&h ≥ 0; (?x = 0; v :=−cv ∪ ?x 6= 0)
]

(0 ≤ x ∧ x ≤ H) (2)

Before proceeding, let’s modify the hybrid program ever so subtly in two ways so that
there’s no more evolution domains, just so that we do not yet have to deal with the
evolution domains yet. We boldly drop the evolution domain constraint and make up
for it by modifying the condition in the second test:

5 With a much more subtle and tricky analysis, it is possible to prove that [∗] still makes sufficient progress
[Pla14]. But this is out of scope for our course.
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0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 →
[

x′ = v, v′ = −g; (?x = 0; v :=−cv ∪ ?x ≥ 0)
]

(0 ≤ x ∧ x ≤ H) (12)

Hold on, why is that okay? Doesn’t our previous investigation say that Quantum could
suddenly fall through the cracks in the floor if physics insists on evolving for hours be-
fore giving the poor bouncing ball controller a chance to react? To make sure Quantum
does not panic in light of this threat, solve Exercise 8 to investigate.

To fit things on the page easily, abbreviate

A
def
≡ 0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0

B(x, v)
def
≡ 0 ≤ x ∧ x ≤ H

(x′′ = −g)
def
≡ (x′ = v, v′ = −g)

With these abbreviations, (12) turns into

A→[x′′ = −g; (?x = 0; v :=−cv ∪ ?x ≥ 0)]B(x, v)

Let there be proof for bouncing balls:

A→∀t≥0
(

(H − g

2 t
2 = 0 → B(H − g

2 t
2,−c(−gt))) ∧ (H − g

2 t
2 ≥ 0 → B(H − g

2 t
2,−gt))

)

[:=] A→∀t≥0 [x :=H − g

2 t
2]
(

(x = 0 → B(x,−c(−gt))) ∧ (x ≥ 0 → B(x,−gt))
)

[:=] A→∀t≥0 [x :=H − g

2 t
2][v :=−gt]

(

(x = 0 → B(x,−cv)) ∧ (x ≥ 0 → B(x, v))
)

[;] A→∀t≥0 [x :=H − g

2 t
2; v :=−gt]

(

(x = 0 → B(x,−cv)) ∧ (x ≥ 0 → B(x, v))
)

[′] A→[x′′ = −g]
(

(x = 0 → B(x,−cv)) ∧ (x ≥ 0 → B(x, v))
)

[:=] A→[x′′ = −g]
(

(x = 0 → [v :=−cv]B(x, v)) ∧ (x ≥ 0 → B(x, v))
)

[?],[?]A→[x′′ = −g]
(

[?x = 0][v :=−cv]B(x, v) ∧ [?x ≥ 0]B(x, v)
)

[;] A→[x′′ = −g]
(

[?x = 0; v :=−cv]B(x, v) ∧ [?x ≥ 0]B(x, v)
)

[∪] A→[x′′ = −g][?x = 0; v :=−cv ∪ ?x ≥ 0]B(x, v)
[;] A→[x′′ = −g; (?x = 0; v :=−cv ∪ ?x ≥ 0)]B(x, v)

The dL axioms indicated on the left justify that the dL formulas in the two adjacent
rows are equivalent. Since each step in this proof is justified by using a dL axiom, the
conclusion at the very bottom of this derivation is proved if the premise at the very top
can be proved, because truth then inherits from the top to the bottom. That premise

A→∀t≥0
(

(H −
g

2
t2 = 0 → B(H −

g

2
t2,−c(−gt))) ∧ (H −

g

2
t2 ≥ 0 → B(H −

g

2
t2,−gt))

)

expands out to a formula of first-order real arithmetic by expanding the abbreviations:

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 →

∀t≥0
(

(H −
g

2
t2 = 0 → 0 ≤ H −

g

2
t2 ∧H −

g

2
t2 ≤ H)

∧ (H −
g

2
t2 ≥ 0 → 0 ≤ H −

g

2
t2 ∧H −

g

2
t2 ≤ H)

)
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In this case, this remaining premise can be easily seen to be valid. The assumption
H − g

2 t
2 = 0 → . . . in the middle line directly implies the first conjunct that appears in

its respective right-hand side

0 ≤ H −
g

2
t2 ∧H −

g

2
t2 ≤ H

and reduces the remaining second conjunct to 0 ≤ H , which the assumption in the first
line assumed (0 ≤ x = H). Similarly, the assumption H− g

2 t
2 ≥ 0 of the last line implies

the first conjunct of its right-hand side

0 ≤ H −
g

2
t2 ∧H −

g

2
t2 ≤ H

and its second conjunct holds by assumption g > 0 from the first line and the real
arithmetic fact that t2 ≥ 0.

How exactly first-order logic and first-order real arithmetic formulas such as this one
can be proved in general, however, is an interesting topic for a later lecture. For now,
we are happy to report that we have just formally verified our very first CPS. We have
found a proof of (12). Exciting!

Okay, admittedly, the CPS we just verified was only a bouncing ball. And all we
know about it now is that it won’t fall through the cracks in the ground nor jump high
up to the moon. But most big steps for mankind start with a small step by someone.

Yet, before we get too carried away in the excitement, we still need to remember that
(12) is just a single-hop bouncing ball. So there’s still an argument to be made about
what happens if the bouncing ball repeats. And a rather crucial argument too, because
bouncing balls let loose in the air tend not to jump any higher anyhow without hitting
the ground first, which is where the model (12) stops prematurely, because it is missing
a repetition. So let’s put worrying about loops on the agenda for an upcoming lecture.

Yet, there’s one more issue with the proof for the bouncing ball that we derived. It
works in a somewhat undisciplined chaotic way, by using dL axioms all over the place.
This liberal proof style can be useful for manual proofs and creative shortcuts. Albeit,
since the dL axioms are sound, even such a liberal proof is a still proof. And liberal
proofs could even be very creative. But liberal proofs are also somewhat unfocused and
non-systematic, which makes them unreasonable for automation purposes and also
tends to get people lost if the problems at hand are more complex than the single-
hop bouncing ball. That is the reason why we will investigate more focused, more
systematic, and more algorithmic proofs in the next lecture.

The other thing to observe is that the above proof, however liberal it might have
been, already had more structure to it than we made explicit. This structure will be
uncovered in the next lecture.

11 Summary

The differential dynamic logic axioms that we have seen in this lecture are summarized
in Note 13. There are further axioms and proof rules of differential dynamic logic that
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later lectures will examine [Pla12d, Pla12b, Pla15b], but the reasoning principles and
axioms identified here are fundamental and we will carry them with us throughout the
whole course.

Note 13 (Summary of differential dynamic logic axioms from this lecture). The
following axioms of dL are sound, i.e., valid and so are all their instances:
[:=] [x := e]p(x) ↔ p(e)

[?] [?Q]P ↔ (Q → P )

[′] [x′ = f(x)]P ↔ ∀t≥0 [x := y(t)]P (y′(t) = f(y))

[∪] [α ∪ β]P ↔ [α]P ∧ [β]P

[;] [α;β]P ↔ [α][β]P

[∗] [α∗]P ↔ P ∧ [α][α∗]P

Exercises

Exercise 1. Explain why the subtle transformation from (2) to (12) was okay in this case.

Exercise 2. Identify which of the assumptions of (12) are actually required for the proof
of (12). Which formulas could we have dropped from 0 ≤ x ∧ x = H ∧ v = 0 ∧ g >
0 ∧ 1 ≥ c ≥ 0 and still be able to prove

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 →

[x′′ = −g; (?x = 0; v :=−cv ∪ ?x ≥ 0)](0 ≤ x ∧ x ≤ H)

Exercise 3. Develop possible axioms for differential equations with evolution domains
similar to [′]. That is, develop an axiom for [x′ = f(x)&Q]P . As in [′], you can assume
to have a unique solution for the corresponding symbolic initial-value problem.

Exercise 4. Would the following be a sound axiom? Proof or disprove.

[x′ = θ&Q]P ↔ ∀t≥0 ∀0≤s≤t
(

[x := y(s)]Q → [x := y(t)]P
)

Exercise 5. All axioms need to be proved to be sound. These lecture notes only did
a proper proof for [∪] and [;]. Turn the informal arguments for the other axioms into
proper soundness proofs using the semantics of dL formulas.

Exercise 6. Would the following be a useful replacement for the [∗] axiom?

[α∗]P ↔ P ∧ [α∗]P
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Exercise 7. This lecture identified axioms for all formulas of the form [α]P but none for
formulas of the form 〈α〉P . Identify and justify these missing axioms. Explain how they
relate to the ones given in Note 13.

Exercise 8 (Give bouncing ball back its evolution domain). Explain why the transforma-
tion from (1) to (12) was okay in this case.
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15-424: Foundations of Cyber-Physical Systems

Lecture Notes on

Truth & Proof

André Platzer

Carnegie Mellon University
Lecture 6

1 Introduction1

Lecture 5 on Dynamical Systems & Dynamic Axioms investigated dynamic axioms for
dynamical systems, i.e. axioms in differential dynamic logic (dL) that characterize op-
erators of the dynamical systems that dL describes by hybrid programs in terms of
structurally simpler dL formulas. All it takes to understand the bigger system, thus, is
to apply the axiom and investigate the smaller remainders. That lecture did not quite
show all important axioms yet, but it still revealed enough to prove a property of a
bouncing ball. While that lecture showed exactly how all the respective local proper-
ties about the system dynamics could be proved by invoking the respective axioms, it
has not become clear yet how these individual inferences are best tied together to obtain
a well-structured proof. That’s what today’s lecture will identify.

After all, there’s more to proofs than just axioms. Proofs also have proof rules for
combining fragments of arguments into a bigger proof by proof steps. Proofs, thus,
are defined by the glue that holds axioms together into a single cohesive argument
justifying its conclusion.

Recall that our proof about the (single-hop) bouncing ball from the previous lecture
still suffered from at least two issues. While it was a sound proof and an interesting
proof, the way we had come up with it was somewhat undisciplined. We just applied
axioms seemingly at random at all kinds of places all over the logical formulas. After
we see such a proof, that is not a concern, because we can just follow its justifications
and appreciate the simplicity and elegance of the steps it took to justify the conclu-

1By both sheer coincidence and by higher reason, the title of this lecture turns out to be closely related to
the subtitle of a well-known book on mathematical logic [And02], which summarizes the philosophy
we pursue here in a way that is impossible to improve upon any further: To truth through proof.
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L6.2 Truth & Proof

sion.2 But better structuring would certainly help us find proofs more constructively
in the first place. The second issue was that the axioms for the dynamics that Lecture
5 showed us did not actually help in proving the propositional logic and arithmetic
parts. So were were left with informal justifications of the resulting arithmetic at the
end, which leaves plenty of room for subtle mistakes in correctness arguments.

The lecture today addresses both issues by imposing more structure on proofs and,
as part of that, handle the operators of first-order logic that differential dynamic logic
inherits (propositional connectives such as ∧,∨,→) and quantifiers (∀, ∃). As part of the
structuring, we will make ample and crucial use of the dynamic axioms from Lecture
5. Yet, they will be used in a more structured way than so far. In a way that focuses
their use on the top level of the formula and in the direction that actually simplifies the
formulas.

These notes are based on [Pla08, Pla10, Chapter 2.5.2], where more information can
be found in addition to more information in [Pla10, Appendix A]. Sequent calculus is
discussed in more detail also in the handbook of proof theory [Bus98]. More resources
and background material on first-order logic is also listed on the course web page.

While the previous Lecture 5 on Dynamical Systems & Dynamic Axioms laid down
the most fundamental cornerstones of the Foundations of Cyber-Physical Systems and
their rigorous reasoning principles, today’s lecture revisits these fundamental princi-
ples and shapes them into a systematic proof approach. The most important learning
goals of this lecture are:

Modeling and Control: This lecture deepens our understanding from the previous
lecture on how discrete and continuous systems relate to one another in the pres-
ence of evolution domain constraints, a topic that the previous lecture only touched
upon briefly.

Computational Thinking: Based on the core rigorous reasoning principles for CPS de-
veloped in the previous lecture, today’s lecture is devoted to reasoning rigorously
and systematically about CPS models. Systematic ways of reasoning rigorously
about CPS are, of course, critical to getting more complex CPS right. The differ-
ence between the axiomatic way of reasoning rigorously about CPS [Pla12b] as
put forth in the previous lecture and the systematic way [Pla08, Pla10] developed
in today’s lecture is not a big difference conceptually, but more a difference in
pragmatics. That does not make it less important, though, and the occasion to
revisit gives us a way of deepening our understanding of systematic CPS analy-
sis principles. Today’s lecture explains ways of developing CPS proofs and logic
proofs systematically and is an important ingredient for verifying CPS models
of appropriate scale. This lecture also adds a fourth leg to the logical trinity of
syntax, semantics, and axiomatics considered in Lecture 5. Today’s lecture adds
pragmatics, by which we mean the question of how to use axiomatics to justify

2Indeed, the proof in Lecture 5 on Dynamical Systems & Dynamic Axioms was creative in that it used
axioms quite carefully in an order that minimizes the notational complexity. But it is not easy to come
up with such (nonsystematic) shortcut proofs even if the KeYmaera X prover makes this rather easy
with its proof-by-pointing feature.
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Truth & Proof L6.3

the syntactic renditions of the semantical concepts of interest. That is, how to best
go about conducting a proof to justify truth of a CPS conjecture. An understand-
ing of that follows from a more precise understanding of what a proof is and what
arithmetic does.

CPS Skills: This lecture is mostly devoted to sharpening our analytic skills for CPS.
We will also develop a slightly better intuition for the operational effects involved
in CPS in that we understand in which order we should worry about operational
effects and whether that has an impact on the overall understanding.

CT

M&C CPS

systematic reasoning for CPS
verifying CPS models at scale
pragmatics: how to use axiomatics to justify truth
structure of proofs and their arithmetic

discrete+continuous relation
with evolution domains

analytic skills for CPS

2 Truth and Proof

Truth is defined by the semantics of logical formulas. The semantics gives a mathemat-
ical meaning to formulas that, in theory, could be used to establish truth of a logical
formula. In practice, this is usually less feasible, for one thing, because quantifiers
of differential dynamic logic quantify over real numbers (after all their variables may
represent real quantities like velocities and positions). Yet, there are (uncountably) in-
finitely many of those, so determining the truth value of a universally quantified log-
ical formula directly by working with its semantics is challenging since that’d require
instantiating it with infinitely many real numbers, which would keep us busy for a
while. The same matter is even more difficult for the hybrid system dynamics involved
in modalities of differential dynamic logic formulas, because hybrid systems have so
many possible behaviors and are highly nondeterministic. Literally following all pos-
sible behaviors to check all reachable states hardly sounds like a way that would ever
enable us to stop and conclude the system would be safe. Except, of course, if we hap-
pen to be lucky and found a bug during just one execution, because that would be
enough to falsify the formula.

Yet, we are still interested in establishing whether a logical formula is true. Or, actu-
ally, whether the formula is valid, since truth of a logical formula depends on the state
(cf. definition of semantics ω ∈ [[P ]] in Lecture 4 on Safety & Contracts) whereas validity
of a logical formula is independent of the state (cf. definition of validity � P ), because
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validity means truth in all states. And validity of formulas is what we ultimately care
about, because we want our safety analysis to hold in all permitted initial states of the
CPS, not just one particular initial state ω. In that sense, valid logical formulas are the
most valuable ones. We should devote all of our efforts to finding out what is valid,
because that will allow us to draw conclusions about all states, including the real world
state as well.

While exhaustive enumeration and simulation is hardly an option for systems as
challenging as CPS, the validity of logical formulas can be established by other means,
namely by producing a proof of that formula. Like the formula itself, but unlike its
semantics, a proof is a syntactical object that is amenable, e.g., to representation and
manipulation in a computer. The finite syntactical argument represented in a proof
witnesses the validity of the logical formula that it concludes. Proofs can be produced in
a machine. They can be stored to be recalled as witnesses and evidence for the validity
of their conclusion. And they can be checked by humans or machines for correctness.
They can also be inspected for analytic insights about the reasons for the validity of
a formula, which goes beyond the factual statement of validity. A proof justifies the
judgment that a logical formula is valid, which, without such a proof as evidence, is no
more than an empty claim. And empty claims would hardly be useful foundations for
building any cyber-physical systems on.

Truth and proof should be related intimately, however, because we would only want
to accept proofs that actually imply truth, i.e. proofs that imply their consequences to be
valid if their premises are. That is, proof systems should be sound in order to allow us
to draw reliable conclusions from the existence of a proof. And, in fact, this course will
exercise great care to identify sound reasoning principles. The converse and equally
intriguing question is that of completeness, i.e. whether all true formulas (again in the
sense of valid) can be proved, which turns out to be much more subtle [Pla12a] and
won’t concern us until much later in this course.

3 Sequents

The proof built from axioms in Lecture 5 on Dynamical Systems & Dynamic Axioms to
justify a safety property of a bouncing ball was creative and insightful, but also some-
what spontaneous and disorganized. In fact, it has not even quite become particularly
obvious what exactly a proof was, except that it is somehow supposed to glue axioms
together into a single cohesive argument.3 But that is not a definition of a proof.

In order to have a chance to conduct more complex proofs, we need a way of struc-
turing the proofs and keeping track of all questions that come up while working on
a proof. But despite all the lamenting about the proof from Lecture 5, it has, secretly,
been much more systematic than we were aware of. Even if it went in a non-systematic
order as far as the application order of the proof rules is concerned, we still structured
the proof quite well (unlike the ad-hoc arguments in Lecture 4 on Safety & Contracts).

3It would have been very easy to define, though, by inductively defining formulas to be provable if they
are either instances of axioms or follow from provable formulas using modus ponens [Pla12b].
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So part of what this lecture needs to establish is to turn this coincidence into an inten-
tional principle. Rather than just coincidentally structuring the proof well, we want to
structure all proofs well and make them all systematic by design.

Throughout this course, we will use sequents, which give us a structuring mecha-
nism for conjectures and proofs. Sequent calculus was originally developed by Gerhard
Gentzen [Gen35a, Gen35b] for studying properties of natural deduction calculi, but se-
quent calculi have been used very successfully for numerous other purposes since.

In a nutshell, sequents are essentially a standard form for logical formulas that is
convenient for proving purposes, because, intuitively, it neatly aligns all available as-
sumptions on the left and gathers what needs to be shown on the right.

Definition 1 (Sequent). A sequent is of the form

Γ ⊢ ∆

where the antecedent Γ and succedent ∆ are finite sets of dL formulas. The semantics
of Γ ⊢ ∆ is that of the dL formula

∧

P∈Γ P →
∨

Q∈∆Q.

The antecedent Γ can be thought of as the formulas we assume to be true, whereas
the succedent ∆ can be understood as formulas for which we want to show that at least
one of them is true assuming all formulas of Γ are true. So for proving a sequent Γ ⊢ ∆,
we assume all Γ and want to show that one of the ∆ is true. For some simple sequents
like Γ, P ⊢ P,∆, we directly know that they are valid, because we can certainly show P

if we assume P (in fact, we will use this we will use this as a way of finishing a proof).
For other sequents, it is more difficult to see whether they are valid (true under all
circumstances) and it is the purpose of a proof calculus to provide a means to find out.

The basic idea in sequent calculus is to successively transform all formulas such that
Γ forms a list of all assumptions and ∆ the set of formulas that we would like to con-
clude from Γ (or, to be precise, the set ∆ whose disjunction we would like to conclude
from the conjunction of all formulas in Γ). So one way of understanding sequent cal-
culus is to interpret Γ ⊢ ∆ as the task of proving one of the formulas in the succedent
∆ from all of the formulas in the antecedent Γ. But since dL is a classical logic, not an
intuitionistic logic, we need to keep in mind that it is actually enough for proving a se-
quent Γ ⊢ ∆ to just prove the disjunction of all formulas in ∆ from the conjunction of all
formulas in Γ. For the proof rules of real arithmetic, we will later make use of this fact
by considering sequent Γ ⊢ ∆ as an abbreviation for the formula

∧

P∈Γ P →
∨

Q∈∆Q,
because both have the same semantics in dL.

Empty conjunctions
∧

P∈∅ P are equivalent to true. Empty disjunctions
∨

P∈∅ P are
equivalent to false .4 Hence, the sequent A means the same as the formula A. The empty

4Note that true is the neutral element for the operation ∧ and false the neutral element for the operation
∨. That is A∧ true is equivalent to A for any A and A∨ false is equivalent to A. So true plays the same
role that 1 plays for multiplication. And false plays the role that 0 plays for addition. Another aspect
of sequents Γ ⊢ ∆ that is worth mentioning is that other notations such as Γ =⇒ ∆ or Γ −→ ∆ are
also sometimes used in other contexts.
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sequent means the same as the formula false .

Note 2 (Nonempty trouble with empty sequents). If you ever reduce a conjecture
about your CPS to proving the empty sequent , then you are in trouble, because the empty
sequence means the same as the formula false and it is rather hard to prove false , since
false isn’t ever true. In that case, either you have taken a wrong turn in your proof, e.g., by
discarding an assumption that was actually required for the conjecture to be true, or your
CPS might take the wrong turn, because its controller can make a move that is actually
unsafe.

In order to develop sequent calculus proof rules, we will again follow the logical
guiding principle of compositionality from Lecture 5 on Dynamical Systems & Dy-
namic Axioms by devising one suitable proof rule for each of the relevant operators.
Only this time, we have two cases to worry about for each operator. One proof rule
for the case where the operator, say ∧, occurs in the antecedent (which we will call ∧L
rule) so that it is available as an assumption, and one proof rule for the case where ∧
occurs in the succedent (which we will call ∧R rule) so that it is available as an option
to prove. Fortunately, we will ultimately find a way of simultaneously handling all of
the modality operators at once with the axioms from Lecture 5 on Dynamical Systems
& Dynamic Axioms.

4 Proofs

Before developing any proof rules, let us first understand what exactly a proof is,
what it means to prove a logical formula, and how we know whether a proof rule is
sound.

Definition 2 (Global Soundness). A sequent calculus proof rule of the form

Γ1 ⊢ ∆1 . . . Γn ⊢ ∆n

Γ ⊢ ∆

is sound iff the validity of all premises (i.e. the sequents Γi ⊢ ∆i above the rule bar)
implies the validity of the conclusion (i.e. the sequent Γ ⊢ ∆ below the rule bar):

If � (Γ1 ⊢ ∆1) and . . . and � (Γn ⊢ ∆n) then � (Γ ⊢ ∆)

Recall from Def. 1 that the meaning of a sequent Γ ⊢ ∆ is
∧

P∈Γ P →
∨

Q∈∆Q, so that

� (Γ ⊢ ∆) stands for �
(

∧

P∈Γ P →
∨

Q∈∆Q
)

.

A formula P is provable or derivable (in the dL calculus) if we can find a dL proof
for it that concludes the sequent P at the bottom from no premises (rule id will do
that) and that has only used dL sequent proof rules in between to go from the premises
to their conclusion. The shape of a dL proof, thus, is a tree with axioms at the top
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leaves and the formula that the proof proves at the bottom root. While constructing
proofs, however, we would start with the desired goal P a the bottom that we want as
the eventual conclusion of the proof and we work our way backwards to the subgoals
until they can be proven to be valid. Once all subgoals have been proven to be valid,
they entail their respective conclusion, which, recursively, entail the original goal P .
This property of preserving truth or preserving entailment is called soundness (Def. 2).
Thus, while constructing proofs, we work bottom-up from the goal and apply all proof
rules from the desired conclusion to the required premises. Once we have found a
proof, we justify formulas conversely from the axioms top-down to the original goal,
because validity transfers from the premises to the conclusion with sound proof rules.

construct proofs upwards

x











Γ1 ⊢ ∆1 . . . Γn ⊢ ∆n

Γ ⊢ ∆











y

validity transfers downwards

We write ⊢dL P iff dL formula P can be proved with dL rules from dL axioms. That
is, a dL formula is inductively defined to be provable in the dL sequent calculus if it is
the conclusion (below the rule bar) of an instance of one of the dL sequent proof rules,
whose premises (above the rule bar) are all provable. A formula Q is provable from a
set Φ of formulas, denoted by Φ ⊢dL Q, iff there is a finite subset Φ0 ⊆ Φ of formulas for
which the sequent Φ0 ⊢ Q is provable.

5 Propositional Proof Rules

The first logical operators encountered during proofs are usually propositional logical
connectives, because many dL formulas use forms such as A → [α]B to express that
all behavior of HP α leads to safe states satisfying B when starting the system in ini-
tial states satisfying A. For propositional logic, dL uses the standard propositional rules
with the cut rule, which are listed in Fig. 1. Each of these propositional rules decompose
the propositional structure of formulas and neatly divides everything up into assump-
tions (which will ultimately be moved to the antecedent) and what needs to be shown
(which will be moved to the succedent). The rules will be developed one at a time in
the order that is most conducive to their intuitive understanding.

Proof rule ∧L is for handling conjunctions (P ∧Q) as one of the assumptions in the
antecedent on the left of the sequent turnstile (). Assuming the conjunction P ∧Q is the
same as assuming each conjunct separately.

∧L
Γ, P,Q ⊢ ∆

Γ, P ∧Q ⊢ ∆

Rule ∧L expresses that if a conjunction P ∧Q is among the list of available assump-
tions in the antecedent, then we might just as well assume both conjuncts (P and Q,
respectively) separately. If we set out to prove a sequent of the form in the conclusion
(Γ, P ∧Q ⊢ ∆), then we can justify this sequent by instead proving the sequent in the
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Note 4. ¬R
Γ, P ⊢ ∆

Γ ⊢ ¬P,∆

¬L
Γ ⊢ P,∆

Γ,¬P ⊢ ∆

∧R
Γ ⊢ P,∆ Γ ⊢ Q,∆

Γ ⊢ P ∧Q,∆

∧L
Γ, P,Q ⊢ ∆

Γ, P ∧Q ⊢ ∆

∨R
Γ ⊢ P,Q,∆

Γ ⊢ P ∨Q,∆

∨L
Γ, P ⊢ ∆ Γ, Q ⊢ ∆

Γ, P ∨Q ⊢ ∆

→R
Γ, P ⊢ Q,∆

Γ ⊢ P → Q,∆

→L
Γ ⊢ P,∆ Γ, Q ⊢ ∆

Γ, P → Q ⊢ ∆

id
Γ, P ⊢ P,∆

cut
Γ ⊢ P,∆ Γ, P ⊢ ∆

Γ ⊢ ∆

⊤R
Γ ⊢ true,∆

⊥L
Γ, false ⊢ ∆

Figure 1: Propositional proof rules of sequent calculus

premise (Γ, P,Q ⊢ ∆), where the only difference is that the two assumptions P and Q

are now assumed separately in the premise rather than jointly as a single conjunction
as in the conclusion. If we just keep on using proof rule ∧L often enough, then all con-
junctions in the antecedent will ultimately have been split into their pieces. Recall that
the order of formulas in a sequent Γ ⊢ ∆ is irrelevant because Γ and ∆ are sets, so we
can always pretend that the formula that we want to apply the ∧L rule to is last in the
antecedent. So ∧L takes care of all conjunctions that appear as top-level operators in
antecedents. But there are other logical operators to worry about as well.

Proof rule proves a conjunction P ∧Q by proving P and, in a separate premise, also
proving Q:

∧R
Γ ⊢ P,∆ Γ ⊢ Q,∆

Γ ⊢ P ∧Q,∆

Proof rule ∧R has to prove two premises, because if we are trying to prove a sequent
Γ ⊢ P ∧Q,∆ with a conjunction P ∧ Q in its succedent, it would not be enough at all
to just prove Γ ⊢ P,Q,∆, because, as in rule ∨R, this would only enable us to conclude
Γ ⊢ P ∨Q,∆. Instead, proving a conjunction in the succedent as in the conclusion of
∧R requires proving both conjuncts, so a proof of Γ ⊢ P,∆ and a proof of Γ ⊢ Q,∆.
This is why rule ∧R splits the proof into two branches, one for proving Γ ⊢ P,∆ and
one for proving Γ ⊢ Q,∆. Indeed, if both premises of rule ∧R are valid then so is its
conclusion. To see this, it is easier to first consider the case where ∆ is empty and then
argue by cases, once for the case where the disjunction corresponding to ∆ is true and
once where it is false.

Proof rule ∨R is similar to rule ∧L but for handling disjunctions in the succedent. If
we set out to prove the sequent Γ ⊢ P ∨Q,∆ in the conclusion with a disjunction P ∨Q

in the succedent, then we might as well split the disjunction into its two disjuncts and
prove the premise Γ ⊢ P,Q,∆ instead, since the succedent has a disjunctive meaning
anyhow.

Similarly, proof rule ∨L handles a disjunction in the antecedent. When the assump-
tions listed in the antecedent of a sequent contain a disjunction P ∨ Q, then there is
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no way of knowing which of the two can be assumed only that at least one of them
can be assumed to be true. Rule ∨L, thus, splits the proof into cases. The left premise
considers the case where the assumption P ∨ Q held because P was true. The right
premise considers the case where assumption P ∨ Q held because Q was true. If both
premises are valid (because we can find a proof for them), then, either way, the conclu-
sion Γ, P ∨Q ⊢ ∆ will be valid no matter which of the two cases applies.

Proof rule →R handles implications in the succedent by using the implicational mean-
ing of sequents. The way to understand it is to recall how we would go about proving
an implication. In order to prove an implication P → Q, we would assume the left-
hand side P (which →R pushes into the assumptions listed in the antecedent) and try
to prove its right-hand side Q (which →R thus leaves in the succedent).

Proof rule →L is more involved. And one way to understand it is to recall that classi-
cal logic obeys the equivalence (P → Q) ≡ (¬P ∨Q). A direct argument explaining →L
uses that when assuming an implication P → Q, we can only assume its right-hand
side Q after we have shown its respective assumption P on its left-hand side.

Proof rule ¬R proves a negation ¬P by, instead, assuming P . Again, the easiest way
of understanding this is for an empty ∆ in which case rule ¬R expresses that the way of
proving a negation ¬P in the succedent of the conclusion is to instead assume P in the
antecedent in the premise and then proving a contradiction in the form of the empty
succedent, which is false . Alternatively, rule ¬R can be understood using the semantics
of sequents, since a conjunct P on the left-hand side of an implication is semantically
equivalent to a disjunct ¬P on the right-hand side.

Proof rule ¬L handles a negation ¬P among the assumptions in the antecedent of the
conclusion by, instead, pushing P into the succedent of the premise. Indeed, for the case
of empty ∆, if P were shown to hold assuming Γ, then Γ and ¬P imply a contradiction
in the form of the empty sequent, which is false . Again, a semantic argument using the
semantics of sequents also justifies ¬L directly.

All these propositional rules make progress by splitting operators. And that will
ultimately lead to atomic formulas, i.e. those formulas without any logical operators.
But there is no way to ever properly stop the proof yet. That is what the identity rule
id is meant for. The identity rule id closes a goal (there are no further subgoals, which
we sometimes mark by a ∗ explicitly in the proof to indicate that we didn’t just forget
to finish it), because assumption P in the antecedent trivially entails P in the succedent
(the sequent Γ, P ⊢ P,∆ is a simple syntactic tautology). If, in our proving activities,
we ever find a sequent of the form Γ, P ⊢ P,∆, for any formula P , we can immediately
use the identity rule id to close this part of the proof.

Rule cut is Gentzen’s cut rule [Gen35a, Gen35b] that can be used for case distinc-
tions or to prove a lemma and then use it. The right subgoal assumes any additional
formula P in the antecedent that the left subgoal shows in the succedent. Semanti-
cally: regardless of whether P is actually true or false, both cases are covered by proof
branches. Alternatively, and more intuitively, the cut rule is fundamentally a lemma
rule. The left premise proves an auxiliary lemma P in its succedent, which the right
premise then assumes in its antecedent (again consider the case of empty ∆ first). We
only use cuts in an orderly fashion to derive simple rule dualities and to simplify meta-
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proofs. In practical applications, cuts are not needed in theory. But in practice, complex
practical applications make use of cuts for efficiency reasons. Cuts an be used, for ex-
ample, to simplify arithmetic, or to first prove lemmas and then make ample use of
them, in a number of places in the remaining proof.

Even though we write sequent rules as if the principal formula (like P ∧ Q in rules
∧R and ∧L) were at the end of the antecedent or at the beginning of the succedent,
respectively, the sequent proof rules can be applied to other formulas in the antecedent
or succedent, respectively, because we consider their order to be irrelevant (a set).

Example 3. A very simple propositional proof of the formula

v2 ≤ 10 ∧ b > 0 → b > 0 ∧ (¬(v ≥ 0) ∨ v2 ≤ 10) (1)

is shown in Fig. 2. The proof starts with the desired proof goal as a sequent at the
bottom:

v2 ≤ 10 ∧ b > 0 → b > 0 ∧ (¬(v ≥ 0) ∨ v2 ≤ 10).

and proceeds by applying suitable sequent proof rules upwards until we run out of
subgoals and have finished the proof.

∗
id

v2 ≤ 10, b > 0 ⊢ b > 0
∧L
v2 ≤ 10 ∧ b > 0 ⊢ b > 0

∗
id

v2 ≤ 10, b > 0 ⊢ ¬(v ≥ 0), v2 ≤ 10
∧L
v2 ≤ 10 ∧ b > 0 ⊢ ¬(v ≥ 0), v2 ≤ 10

∨R
v2 ≤ 10 ∧ b > 0 ⊢ ¬(v ≥ 0) ∨ v2 ≤ 10

∧R
v2 ≤ 10 ∧ b > 0 ⊢ b > 0 ∧ (¬(v ≥ 0) ∨ v2 ≤ 10)

→R ⊢ v2 ≤ 10 ∧ b > 0 → b > 0 ∧ (¬(v ≥ 0) ∨ v2 ≤ 10)

Figure 2: A simple propositional example proof in sequent calculus

The first (i.e., bottom most) proof step applies proof rule →R to turn the implica-
tion (→) to the sequent level by moving its left-hand side into the assumptions tracked
in the antecedent. The next proof step applies rule ∧R to split the proof into the left
branch for showing that conjunct b > 0 follows from the assumptions in the antecedent
and into the right branch for showing that conjunct ¬(v ≥ 0) ∨ v2 ≤ 10 follows from
the antecedent also. On the left branch, the proof closes with an axiom id after splitting
the conjunction ∧ in the antecedent into its conjuncts with rule ∧L. We mark closed
proof goals with ∗, to indicate that we did not just stopped writing but that a subgoal
is actually proved successfully. It makes sense that the left branch closes by the axiom
rule id, because its assumption b > 0 in the antecedent trivially implies the formula
b > 0 in the succedent, because both formulas are identical. The right branch closes
with an axiom id after splitting the disjunction (∨) in the succedent with rule ∨R and
then splitting the conjunction (∧) in the antecedent with rule ∧L. On the right branch,
the first assumption formula v2 ≤ 10 in the antecedent trivially implies the last formula
in the succedent v2 ≤ 10, because both are identical, so the axiom rule id applies. Now
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that all branches of the proof have closed (with id and marked by ∗), we know that all
leaves at the top are valid, and, hence, since the premises are valid, each application
of a proof rule ensures that their respective conclusions are valid also, by soundness.
By recursively following this proof from the leaves at the top to the original root at the
bottom, we conclude that the original goal at the bottom is valid and formula (1) is,
indeed, true under all circumstances (valid). And that is what we set out to prove, that
formula (1) is valid, which the proof in Fig. 2 justifies.

While this proof does not prove any particularly exciting formula, it still shows how
a proof can be built systematically in the dL calculus and gives an intuition as to how
validity is inherited from the premises to the conclusions. Note that the proof has been
entirely systematic. All we did to come up with it was successively inspect the top-
level operator in one of the logical formulas in the sequent and apply its corresponding
propositional proof rule to find the resulting subgoals. All the while we were doing
this, we carefully watched to see if the same formula shows up in the antecedent and
succedent, for then the axiom rule id closes that subgoal. There would be no point in
proceeding with any other proof rule if the id rule closes a subgoal.

Most interesting formulas will not be provable with the sequent proof rules we have
seen so far, because those were only for propositional connectives. Next, we, thus, set
out to find sequent proof rules for the other operators of differential dynamic logic.

6 Soundness

First, though, notice that the sequent proof rules are sound [Pla10]. We consider only
one of the proof rules here to show how soundness works. Soundness is crucial, how-
ever, so you are invited to prove soundness for the other rules (Exercise 3).

Proof. The proof rule ∧R is sound. For this, consider any instance for which both
premises Γ ⊢ P,∆ and Γ ⊢ Q,∆ are valid and show that the conclusion Γ ⊢ P ∧Q,∆
is valid. To show the latter, consider any state ω. If there is a formula F ∈ Γ in
the antecedent that is not true in ω (i.e. ω 6∈ [[F ]]) there is nothing to show, because
ω ∈ [[(Γ ⊢ P ∧Q,∆)]] then holds trivially, because not all assumptions in Γ are satis-
fied in ω. Likewise, if there is a formula G ∈ ∆ in the succedent that is true in ω (i.e.
ω ∈ [[G]]) there is nothing to show, because ω ∈ [[(Γ ⊢ P ∧Q,∆)]] then holds trivially, be-
cause one of the formulas in the succedent is already satisfied in ω. Hence, the only
interesting case to consider is the case where all formulas in F ∈ Γ are true in ω and all
formulas G ∈ ∆ are false. In that case, since both premises were assumed to be valid,
and Γ is true in ω but ∆ false in ω, the left premise implies that ω ∈ [[P ]] and the right
premise implies that ω ∈ [[Q]]. Consequently, ω ∈ [[P ∧Q]] by the semantics of ∧. Thus,
ω ∈ [[(Γ ⊢ P ∧Q,∆)]]. As the state ω was arbitrary, this implies � (Γ ⊢ P ∧Q,∆), i.e.
the conclusion of the considered instance of ∧R is valid.
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7 Proofs with Dynamics

Now that we identified a left and a right proof rule for all propositional connectives
we could literally continue the logical guiding principle of connectivity and proceed to
also identify a left and a right proof rule for all operators in the modalities. For example
a pair of rules for nondeterministic choices in box modalities:

[∪]R
Γ ⊢ [α]P ∧ [β]P,∆

Γ ⊢ [α ∪ β]P,∆

[∪]L
Γ, [α]P ∧ [β]P ⊢ ∆

Γ, [α ∪ β]P ⊢ ∆

These rules directly follow from the axioms from Lecture 5 on Dynamical Systems
& Dynamic Axioms, though, and would, thus, lead to quite some unnecessary dupli-
cation of concepts.5 Furthermore, such a list of sequent rules is less flexible than the
axioms from Lecture 5 on Dynamical Systems & Dynamic Axioms are. The sequent
rules [∪]R,[∪]L can only be applied when a nondeterministic choice is at the top-level
position of a sequent, not when it occurs somewhere in a subformula such as in the fol-
lowing sequent near the bottom of the proof of single-hop bouncing balls from Lecture
5:

A ⊢ [x′′ = −g][?x = 0; v :=−cv ∪ ?x ≥ 0]B(x, v) (2)

Thus, instead of writing down a pair of (rather redundant and quite inflexible) se-
quent rules for each dynamic axiom, we instead cover them all at once. The key obser-
vation was already phrased in Lecture 5:

Note 5 (Substituting equals for equals). If an equivalence P ↔ Q is a valid formula
then any occurrence of its left-hand side P can be replaced by its right-hand side Q (or vice
versa), equivalently.

For example, using at the underlined position in the middle of dL formula (2) the
equivalence

[?x = 0; v :=−cv ∪ ?x ≥ 0]B(x, v) ↔ [?x = 0; v :=−cv]B(x, v) ∧ [?x ≥ 0]B(x, v) (3)

that is an instance of axiom [∪] [α ∪ β]P ↔ [α]P ∧ [β]Q, the formula (2) is equivalent to

A ⊢ [x′′ = −g]
(

[?x = 0; v :=−cv]B(x, v) ∧ [?x ≥ 0]B(x, v)
)

(4)

because (4) is constructed from (2) by replacing the left-hand side of equivalence (3) by
its right-hand side.

This intuition serves us well and is perfectly sufficient for all practical purposes.
Logic is ultimately about precision, though, which is why we elaborate Note 5 as fol-
lows:

5Note the minor nuance that applying rule ∧R to the premise of [∪]R will split the proof into two premises
while applying ∧L to the premise of [∪]L will not.
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Lemma 4 (Contextual equivalence). Contextual equivalence rewriting rules are sound:

CER
Γ ⊢ C(Q),∆ P ↔ Q

Γ ⊢ C(P ),∆

CEL
Γ, C(Q) ⊢ ∆ P ↔ Q

Γ, C(P ) ⊢ ∆

Here we read C( ) as the context in which the formula P occurs in the formula C(P ) and
read C(Q) as the result of replacing P in that context C( ) by Q. While a concise tech-
nical treatment and precise definitions of contexts and soundness proof for CER,CEL is
surprisingly simple [Pla15], this intuitive understanding is enough for our purposes. If
P and Q are equivalent (second premise of CER and of CEL), then we can replace P by
Q no matter in what context C( ) they occur in the sequents in the succedent (CER) or
antecedent (CEL), respectively. These contextual equivalence rules provide the perfect
lifting device to use all equivalence axioms in context in any proof.

Having said that, we should still take care to use the axioms in the direction that
actually simplifies the problem at hand. The dL axioms such as axiom [∪] are primarily
meant to be used for replacing the left-hand side [α ∪ β]P by the structurally simpler
right-hand side [α]P ∧ [β]P , because that direction of use assigns meaning to [α ∪ β]P
in logically simpler terms, i.e. as a structurally simpler logical formula. Furthermore,
that direction reduces a dL formula to a formula with more formulas but smaller hybrid
programs, which will terminate after finitely many such reductions.

Finally note that we will usually not explicitly mention the use of CEL and CER in
proofs but leave it at a mention of the axiom that they invoked. For example, the se-
quent proof step reducing conclusion (2) to premise (4) using axiom [∪] (and, of course,
the implicit rule CER) would simply be written:

[∪]
A ⊢ [x′′ = −g]

(

[?x = 0; v :=−cv]B(x, v) ∧ [?x ≥ 0]B(x, v)
)

A ⊢ [x′′ = −g][?x = 0; v :=−cv ∪ ?x ≥ 0]B(x, v)

In fact the full proof in Lecture 5 can suddenly be made sense of as a sequent proof in
this way.

As a very simple example of a proof, see Fig. 3. This proof is not very interesting.

⊢ v2 ≤ 10 ∧ −(−b) > 0 → b > 0 ∧ (¬(v ≥ 0) ∨ v2 ≤ 10)
[:=] ⊢ [c := 10]

(

v2 ≤ 10 ∧ −(−b) > 0 → b > 0 ∧ (¬(v ≥ 0) ∨ v2 ≤ c)
)

[:=] ⊢ [a :=−b][c := 10]
(

v2 ≤ 10 ∧ −a > 0 → b > 0 ∧ (¬(v ≥ 0) ∨ v2 ≤ c)
)

[;] ⊢ [a :=−b; c := 10]
(

v2 ≤ 10 ∧ −a > 0 → b > 0 ∧ (¬(v ≥ 0) ∨ v2 ≤ c)
)

Figure 3: A simple dynamics example proof in sequent calculus

Incidentally, though, the proof in Fig. 3 ends with a premise at the top that is identical
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to the (provable) conclusion at the bottom of Fig. 2. So gluing both proofs together leads
to a proof of the conclusion at the bottom of Fig. 3:

[a :=−b; c := 10]
(

v2 ≤ 10 ∧ −a > 0 → b > 0 ∧ (¬(v ≥ 0) ∨ v2 ≤ c)
)

The proof in Fig. 3 ends in a formula mentioning −(−b) > 0 while the proof in Fig. 2
starts with a formula mentioning b > 0 in the same place. Both formulas are, of course,
equivalent, but, in order to really glue both proofs, we still need to add a proof rule for
this arithmetic transformation. We could add the following special-purpose proof rule
for that (Exercise 1), but will ultimately decide on adding a more powerful proof rule
instead.

Γ, θ > 0 ⊢ ∆

Γ,−(−θ) > 0 ⊢ ∆

8 Quantifier Proof Rules

When trying to make the proof for the bouncing ball from Lecture 5 on Dynamical
Systems & Dynamic Axioms systematic by turning it into a sequent calculus proof,
the first propositional step succeeds, then a couple of steps succeed for splitting the
hybrid program, but, ultimately, the differential equation solution axiom [′] produces a
quantifier for time that needs to be handled. And, of course, a mere inspection of the
syntax of dL shows that there are logical operators that have no proof rules yet, namely
the quantifiers.

Note 7 (Quantifier sequent calculus proof rules).

∀R
Γ ⊢ p(y),∆

Γ ⊢ ∀x p(x),∆
(y 6∈ Γ,∆)

∀L
Γ, p(e) ⊢ ∆

Γ, ∀x p(x) ⊢ ∆

∃R
Γ ⊢ p(e),∆

Γ ⊢ ∃x p(x),∆

∃L
Γ, p(y) ⊢ ∆

Γ, ∃x p(x) ⊢ ∆
(y 6∈ Γ,∆)

The quantifier proof rules are listed in Fig. 8 and work much as in mathematics. Con-
sider the proof rule ∀R, where we want to show a universally quantified property.
When a mathematician wants to show a universally quantified property ∀x p(x) to hold,
he could choose a fresh symbol6 y and set out to prove that p(y) holds. Once he found
a proof for p(y), the mathematician would remember that y was arbitrary and his proof
did not assume anything special about the value of y. So he would conclude that p(y)
must indeed hold for all y, and that, hence, ∀x p(x) holds true. For example, to show
that the square of all numbers is nonnegative, a mathematician could start out by say-
ing “let y be an arbitrary number”, prove y2 ≥ 0 for y, and then conclude ∀x (x2 ≥ 0),
since y was arbitrary. Proof rule ∀R makes this reasoning formally rigorous. It chooses

6In logic, these fresh symbols are known as Skolem function symbol or Herbrand function symbol, except
that here we can just use fresh variables for the same purpose.
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a new variable symbol y and replaces the universally quantified formula in the succe-
dent by a formula for y. Notice, of course, that it is important to choose a new symbol y
that has not been used free anywhere else in the sequent before. Otherwise, we would
assume special properties about y in Γ,∆ that would not be justified to assume.

Consider proof rule ∃R, where we want to show an existentially quantified prop-
erty. When a mathematician proves ∃x p(x), he could directly produce any term e as
a witness for this existential property and prove that, indeed, p(e), for then he would
have shown ∃x p(x) with this witness. For example, to show that there is a number
whose cube is less than its square, a mathematician could start by saying “let me choose,
say, 2−1

2 and show the property for 2−1
2 ”. Then he could prove (2−1

2 )3 < 0.52, because
0.125 < 0.25, and conclude that there, thus, is such a number, i.e., ∃x (x3 < x2), because
2−1
2 was a perfectly good witness for that. Proof rule ∃R does that. It allows the choice

of any term e for x and accepts a proof of p(e) as a proof of ∃x p(x).
However note that the claim “e is a witness” may turn out to be wrong, for ex-

ample, the choice 2 for x would have been a pretty bad start for attempting to show
∃x (x3 < x2). Consequently, proof rule ∃R is sometimes discarded in favor of a rule that
keeps both options p(e) and ∃x p(x) in the succedent. KeYmaera X instead allows undo-
ing proof steps. If the proof with e is successful, the sequent is valid and the part of the
proof can be closed successfully. If the proof with e later turns out to be unsuccessful,
another proof attempt can be started.

This approach already hints at a practical problem. If we are very smart about our
choice of the witness e, rule ∃R leads to very short and elegant proofs. If not, we may
end up going in circles without much progress in the proof. That is why KeYmaera X
allows you to specify a witness if you can find one (and you should if you can, be-
cause that gives significantly faster proofs) but also allows you to keep going without a
witness, e.g., by applying axioms to the formula p(e) without touching the quantifier.

Rules ∀L,∃L are dual to ∃R,∀L. Consider proof rule ∀L, where we have a universally
quantified formula in the assumptions (antecedent) that we can use, and not in the
succedent, which we want to show. In mathematics, when we know a universal fact,
we can use this knowledge for any particular instance. If we know that all positive
numbers have a square root, then we can also use the fact that 5 has a square root,
because 5 is a positive number. Hence from assumption ∀x (x > 0 → hasSqrt(x)) in the
antecedent, we can also assume the particular instance 5 > 0 → hasSqrt(5)) that uses 5
for x. Rule ∀L can produce an instance p(e) of the assumption ∀x p(x) for an arbitrary
term e.

Consider proof rule ∃L in which we can use an existentially quantified formula from
the antecedent. In mathematics, if we know an existential fact, then we can give a name
to the object that we then know does exist. If we know that there is a smallest integer
less than 10 that is a square, we can call it y, but we cannot denote it by a different term
like 5, because 5 may be (and in fact is) the wrong answer. Rule ∃L gives a fresh name
y to the object that exists. Since it does not make sense to give a different name for the
same existing object later, ∃x p(x) is removed from the antecedent when adding p(y) by
∃L.
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9 A Sequent Proof for a Non-Bouncing Ball

Recall the bouncing ball abbreviations from Lecture 5:

A
def
≡ 0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0

B(x, v)
def
≡ 0 ≤ x ∧ x ≤ H

(x′′ = −g)
def
≡ (x′ = v, v′ = −g)

And the single-hop bouncing ball formula from Lecture 5:

A → [x′′ = −g; (?x = 0; v :=−cv ∪ ?x ≥ 0)]B(x, v)

This time, we include the evolution domain but leave out the discrete part:

A → [x′′ = −g&x ≥ 0]B(x, v) (5)

Let there be proof, this time a proper sequent proof:

∗
R
A, r≥0 ⊢ 0≤r≤r

A, r≥0, H − g
2s

2≥0 ⊢ B(H − g
2r

2,−gt)
[:=]

A, r≥0, [x :=H − g
2s

2]x≥0 ⊢ [x :=H − g
2r

2]B(x, v)
→L

A, r≥0, 0≤r≤r → [x :=H − g
2s

2]x≥0 ⊢ [x :=H − g
2r

2]B(x, v)
∀L

A, r≥0, ∀0≤s≤r [x :=H − g
2s

2]x≥0 ⊢ [x :=H − g
2r

2]B(x, v)
→R

A, r≥0 ⊢ ∀0≤s≤r [x :=H − g
2s

2]x≥0 → [x :=H − g
2r

2]B(x, v)
→R

A ⊢ r≥0 → (∀0≤s≤r [x :=H − g
2s

2]x≥0 → [x :=H − g
2r

2]B(x, v))
∀R

A ⊢ ∀t≥0 (∀0≤s≤t [x :=H − g
2s

2]x≥0 → [x :=H − g
2 t

2]B(x, v))
[′]

A ⊢ [x′′ = −g&x≥0]B(x, v)
→R ⊢ A → [x′′ = −g&x≥0]B(x, v)

This proof boldly stated that the left premise closes, except that

A, r≥0 ⊢ 0≤r≤r

is not exactly an instance of the id rule. So even here we need simple arithmetic to
conclude that 0 ≤ r ≤ r is equivalent to r ≥ 0 by reflexivity and flipping sides, at which
point the left premise turns into a formula that can be closed by the id rule:

id
∗

A, r≥0 ⊢ r≥0

A full formal proof and a KeYmaera X proof, thus, need an extra proof step of arithmetic
in the left premise. In paper proofs, we will frequently accept such minor steps as
abbreviations but always take care to write down the reason. In the above example, we
might, for example remark the arithmetic reason “by reflexivity of ≤ and by flipping
0 ≤ r to r ≥ 0”.
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The right premise is

A, r≥0, H −
g

2
s2 ≥ 0 ⊢ B(H −

g

2
r2,−gt)

which, when resolving abbreviations turns into

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0, r≥0, H −
g

2
s2 ≥ 0 ⊢ 0 ≤ H −

g

2
r2 ∧H −

g

2
r2 ≤ H

This sequent proves using ∧R plus simple arithmetic for the left branch

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0, r≥0, H −
g

2
s2 ≥ 0 ⊢ 0 ≤ H −

g

2
r2

resulting from ∧R. We should again remark the arithmetic reason as “by flipping 0 ≤
H − g

2r
2 to H − g

2r
2 ≥ 0”. Some more arithmetic is needed on the right branch resulting

from ∧R:

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0, r≥0, H −
g

2
s2 ≥ 0 ⊢ H −

g

2
r2 ≤ H

where we should remark the arithmetic reason “g > 0 and r2 ≥ 0”. Finishing the above
sequent proof up as discussed for the right premise, thus, shows that dL formula (5) at
the conclusion of the proof is provable.

Throughout this course, you are strongly advised to write down such arithmetic rea-
sons in your paper proofs to justify that the arithmetic is valid. KeYmaera X provides a
number of ways for proving arithmetic that will be discussed next.

10 Real Arithmetic

What, in general, can be done to prove real arithmetic? We managed to convince our-
selves with ad-hoc arithmetic reasons that the simple arithmetic in the above proofs
was fine. But that is neither a proper proof rule nor should we expect to get away with
such simple arithmetic arguments for the full complexity of CPS.

Later lectures will discuss the handling of real arithmetic in much more detail. For
now, the focus is on the most crucial elements for proving CPS. Differential dynamic
logic and KeYmaera X make use of a fascinating miracle: the fact that first-order logic
of real arithmetic, however challenging it might sound, is perfectly decidable [Tar51].
First-order logic of real arithmetic (FOLR) is the fragment of dL consisting of quantifiers
over reals and propositional connectives of polynomial (or rational) term arithmetic.
The most immediate way of incorporating uses of real-arithmetic reasoning into our
proofs is, thus, by the rule R that allows proofs of all sequents with formulas in FOLR

that are valid, which is decidable:

R

Γ ⊢ ∆
(
∧

P∈Γ

P →
∨

Q∈∆

Q is valid in FOLR)

In a nutshell, the notation QE(P ) denotes the use of real arithmetic reasoning on
formula P . For a formula P of first-order real arithmetic, QE(P ) is a logical formula
that is equivalent to P but simpler, because QE(P ) is quantifier-free.
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Expedition 1 (Quantifier elimination). Tarski’s seminal result proves quantifier
elimination for real arithmetic.

Definition 5 (Quantifier elimination). A first-order logic theory (such as FOLR)
admits quantifier elimination if, with each formula P , a quantifier-free formula
QE(P ) can be associated effectively that is equivalent, i.e. P ↔ QE(P ) is valid
(in that theory).

Theorem 6 (Tarski [Tar51]). The first-order logic of real arithmetic admits quantifier
elimination and is, thus, decidable.

That is, there is an algorithm that accepts any formula P in FOLR as input and
computes a formula QE(P ) in FOLR that is equivalent to P but quantifier-free and
does not mention new symbols either.

The operation QE can further be assumed to evaluate ground formulas (i.e.,
without variables) such as 1+9

4 < 2 + 1, yielding a decision procedure for closed
formulas of this theory (i.e., formulas without free variables). For a closed for-
mula P , all it takes is to compute its quantifier-free equivalent QE(P ) by quantifier
elimination. The closed formula P is closed, so has no free variables or other free
symbols, and neither will QE(P ). Hence, P as well as its equivalent QE(P ) are
either equivalent to true or to false . Yet, QE(P ) is quantifier-free, so which one it
is can be found out simply by evaluating the (variable-free) concrete arithmetic in
QE(P ).

Example 7. Quantifier elimination yields, e.g., the following equivalence by real arith-
metic:

QE(∃x (ax+ b = 0)) ≡ (a 6= 0 ∨ b = 0)

Both sides are easily seen to be equivalent, i.e.

� ∃x (ax+ b = 0) ↔ (a 6= 0 ∨ b = 0)

because a linear equation with nonzero inhomogeneous part has a solution iff its linear
part is nonzero as well. The left-hand side of the equivalence may be hard to evaluate,
because it conjectures the existence of an x and it is not clear how we might get such an
x. The right-hand side, instead, is trivial to evaluate, because it is quantifier-free and
directly says to compare the values of a and b to zero and that an x such that ax+ b = 0
will exist if and only if a 6= 0 or b = 0. This is easy to check at least if a, b are either
concrete numbers or fixed parameters for your CPS. Then all you need to do is make
sure they satisfy these constraints.

Correspondingly, quantifier elimination also yields

QE(∀x (ax+ b 6= 0)) ≡ (a = 0 ∧ b 6= 0)

Where, again, both sides are easily seen to be equivalent. Which proves, the following
validity:

� a = 0 ∧ b 6= 0 → ∀x (ax+ b 6= 0)
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Now, if we have quantifiers, QE can remove them for us. But we first need quanti-
fiers. Rules ∀R,∃R,∀L,∃R went through a lot of trouble to get rid of the quantifiers in the
first place. Oh my! That makes it kind of hard to eliminate them equivalently later on.
Certainly the proof rules in Fig. 8 have not been particularly careful about eliminating
quantifiers equivalently. Just think of what might happen if we did try to use ∃R with
the wrong witness and then weaken the ∃x p(x) away. That is cheaper than quantifier
elimination, but hardly as precise and useful.

But if we misplaced a quantifier using the rules from Fig. 8, then all we need to do is
to dream it up again and we are in business for eliminating quantifiers by QE. The key
to understanding how that works is to recall that the fresh (Skolem) variable symbols
introduced by ∀R were originally universal. And, in fact, whether they were or not, we
can always prove a property by proving it with an extra universal quantifier ∀x around.

∀i
Γ ⊢ ∀xP,∆

Γ ⊢ P,∆

With the rule ∀i, we can reintroduce a universal quantifier, which can then promptly
be eliminated again by QE. Wait, why did it make sense to first swallow a quantifier
with the lightweight rule ∀R and then later reintroduce it with ∀i and then eliminate it
again with the big steamroller in the form of QE?

Before you read on, see if you can find the answer for yourself.
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It can be pretty useful to get quantifiers out of the way first using the rules ∀R,∃R,∀L,∃L,
because other sequent rules such as propositional rules only work in the top-level, so
quantifiers need to get out of the way before any other proof rules could be applied.7 If
the formula underneath the quantifier contains modalities with hybrid programs, then
that is a bit much to ask from quantifier elimination to solve them for us as well. So the
key is to first get rid of quantifiers by using extra symbols, work out the proof argu-
ments for the remaining hybrid program modalities and then reintroduce quantifiers
by ∀i to ask quantifier elimination for the answer to the remaining real arithmetic.

11 Instantiating Real Arithmetic

Real arithmetic can be very challenging. That does not come as a surprise, because
cyber-physical systems and the behavior of dynamical systems themselves is challeng-
ing. It is amazing that differential dynamic logic reduces challenging questions about
CPS to just plain real arithmetic. Of course, that means that you may be left with
challenging arithmetic, of quite noticeable computational complexity. This is one part
where you can use your creativity to master challenging verification questions by help-
ing KeYmaera X figure them out. While there will soon be more tricks in your toolbox
to overcome the challenges of arithmetic, we discuss some of them in this lecture.

Providing instantiations for quantifier rules ∃R,∀L can significantly speed up real
arithmetic decision procedures. The proof in Sect. 9 instantiated the universal quantifier
∀s for an evolution domain constraint by the end point r of the time interval using
quantifier proof rule ∀L. This is a very common simplification that usually speeds up
arithmetic significantly (Note 10). It does not always work, because the instance one
guesses may not always be the right one. Even worse, there may not always be a single
instance that is sufficient for the proof, but that is a phenomenon that later lectures will
examine.

7The exception are contextual equivalence rules CER,CEL, which, fortunately, can even proceed within
the context of a quantifier. This can be particularly helpful for existential quantifiers.
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Truth & Proof L6.21

Note 10 (Extreme instantiation). The proof rule ∀L for universal quantifiers in the an-
tecedent as well as the rule ∃R for existential quantifiers in the succedent allow instantia-
tion of the quantified variable x with any term e. This instantiation is very helpful if only
a single instance e is important for the argument.

This happens often for quantifiers coming from the handling of evolution domains in
proof rule [′] where an extremal value for time is all it takes. The proof steps that often help
then is instantiation of intermediate time s by the end time t:

∗
Γ, t≥0 ⊢ 0≤t≤t, [x := y(t)]P

. . .

Γ, t≥0, [x := y(t)]Q ⊢ [x := y(t)]P
→LΓ, t≥0, 0≤t≤t → [x := y(t)]Q ⊢ [x := y(t)]P
∀L Γ, t≥0, ∀0≤s≤t [x := y(s)]Q ⊢ [x := y(t)]P
→R Γ, t≥0 ⊢ (∀0≤s≤t [x := y(s)]Q) → [x := y(t)]P
→R Γ ⊢ t≥0 →

(

(∀0≤s≤t [x := y(s)]Q) → [x := y(t)]P
)

∀R Γ ⊢ ∀t≥0
(

(∀0≤s≤t [x := y(s)]Q) → [x := y(t)]P
)

[′] Γ ⊢ [x′ = f(x)&Q]P

This happens so frequently that KeYmaera X defaults to just using this instantiation. Sim-
ilar instantiations can simplify arithmetic in other cases as well.

12 Weakening Real Arithmetic

Often times it is very useful to just drop arithmetic assumptions that are irrelevant for
the proof to make sure they are no distraction for real arithmetic decision procedures.

In the proof in Sect. 9, the left premise was

A, r≥0 ⊢ 0≤r≤r

The proof of this sequent did not make use of A at all. Here, the proof worked easily.
But if A were a very complicated formula, then proving the same sequent might have
been very difficult, because our proving attempts could have been distracted by the
presence of A and all the lovely assumptions it provides. We might have applied lots of
proof rules to A before finally realizing that the sequent proves because of r≥0 ⊢ 0≤r≤r

alone.
The same kind of distraction can happen in decision procedures for real arithmetic,

sometimes shockingly so [Pla10, Chapter 5]. Consequently, it often saves a lot of proof
effort to simplify irrelevant assumptions away as soon as they have become unneces-
sary. Fortunately, sequent calculus comes with a general-purpose proof rule for the job
called weakening (WL,WR elaborated in Sect. 13), which we can use on our example
from the left premise in the proof of Sect. 9:

r≥0 ⊢ 0≤r≤r
WL

A, r≥0 ⊢ 0≤r≤r

15-424 LECTURE NOTES ANDRÉ PLATZER
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You are generally advised to get rid of assumptions that you no longer need. This
will help you manage the relevant facts about your CPS, will make sure you stay on
top of your CPS agenda, and will also help the arithmetic in KeYmaera X to succeed
much quicker. Just be careful not to hide an assumption that you still need. But if you
accidentally do, that can also be a valuable insight, because you found out what the
safety of your system critically depends on.

13 Structural Proof Rules

The antecedent and succedent of a sequent are considered as sets. So the order of for-
mulas is irrelevant, and we implicitly adopt what is called the exchange rule and do not
distinguish between the following two sequents

Γ, A,B ⊢ ∆ and Γ, B,A ⊢ ∆

ultimately since A∧B and B∧A are equivalent anyhow, nor do we distinguish between

Γ ⊢ C,D,∆ and Γ ⊢ D,C,∆

ultimately since C ∨ D and D ∨ C are equivalent. Antecedent and succedent are con-
sidered as sets, not multisets, so we implicitly adopt what is called the contraction rule
and do not distinguish between the following two sequents

Γ, A,A ⊢ ∆ and Γ, A ⊢ ∆

because A ∧A and A are equivalent, nor do we distinguish between

Γ ⊢ C,C,∆ and Γ ⊢ C,∆

because C ∨C and C are equivalent. We could adopt these exchange rules and contrac-
tion rules explicitly, but usually leave them implicit:

PR
Γ ⊢ Q,P,∆

Γ ⊢ P,Q,∆

PL
Γ, Q, P ⊢ ∆

Γ, P,Q ⊢ ∆

cR
Γ ⊢ P, P,∆

Γ ⊢ P,∆

cL
Γ, P, P ⊢ ∆

Γ, P ⊢ ∆

The only structural rule of sequent calculus that we will find reason to use explicitly
in practice is the weakening proof rule (alias hide rule) that can be used to remove or hide
formulas from the antecedent (WL) or succedent (WR), respectively:

WR
Γ ⊢ ∆

Γ ⊢ P,∆

WL
Γ ⊢ ∆

Γ, P ⊢ ∆

Weakening rules are sound, since it is fine (in all structural logics) to prove a sequent
with more formulas in the antecedent or succedent by a proof that uses only some of
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those formulas. This is different in substructural logics such as linear logic. Proof rule
WL proves the conclusion Γ, P ⊢ ∆ from the premise Γ ⊢ ∆, which dropped the as-
sumption P . Surely, if premise Γ ⊢ ∆ is valid, then conclusion Γ, P ⊢ ∆ is valid as well,
because it even has one more (unused) assumption available, namely P . Proof rule WR
proves the conclusion Γ ⊢ P,∆ from the premise Γ ⊢ ∆, which is fine because Γ ⊢ ∆
just has one less (disjunctive) option in its succedent. For this, recall that succedents
have a disjunctive meaning.

At first sight, weakening may sound like a stupid thing to do in any proof, because
rule WL discards available assumptions (P in the antecedent) and rule WR discards
available options (P in the succedent) for proving the statement. This seems to make it
harder to prove the statement after using a weakening rule. But weakening is actually
useful for managing computational and conceptual proof complexity by enabling us
to throw away irrelevant assumptions. These assumptions may have been crucial for
another part of the proof, but have just become irrelevant for the particular sequent at
hand, which can, thus, be simplified to Γ ⊢ ∆. Weakening, thus, streamlines proofs,
which can, e.g., also help speed up arithmetic immensely (Sect. 12).

Of course, the oppose of the weakening rules would be terribly unsound. We cannot
just invent extra assumptions out of thin air. But once we have the assumptions, we
are free to not use them. That is, the premise of WL implies the conclusion but not vice
versa.

14 Applying Equations by Substitution

If we have an equation x = e among our assumptions (in the antecedent), it is often sig-
nificantly more efficient to use that equation for substituting e for all other occurrences
of x instead of waiting for a real arithmetic decision procedure to figure this out. If we
have x = e among our assumptions, then any (free) occurrence of x can be replaced by
e, both in the succedent as well as in the antecedent:

=R
Γ, x = e ⊢ p(e),∆

Γ, x = e ⊢ p(x),∆
=L

Γ, x = e, p(e) ⊢ ∆

Γ, x = e, p(x) ⊢ ∆

It would be okay to use the equation in the other direction for replacing all occur-
rences of e by x, because the equation e = x is equivalent to x = e. Both proof rules,
=R and =L apply an equation x = e from the antecedent to an occurrence of x in the
antecedent or succedent to substitute e for x. By using the proof rule sufficiently often,
multiple occurrences of x in Γ and ∆ can be substituted.

Quantifier elimination would have been able to prove the same fact, but with sig-
nificantly more time and effort. So you are advised to exploit these proof shortcuts
whenever you spot them.
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15 Creatively Cutting Real Arithmetic

Weakening is not the only propositional proof rule that can help speed your arithmetic.
The cut rule is not just a logical curiosity, but can actually be shockingly helpful in
practice [Boo84]. It can speed up real arithmetic a lot when using a cut to replace a
difficult arithmetic formula by a simpler one that is sufficient for the proof.

For example, suppose p(x) is a big and very complicated formula of first-order real
arithmetic. Then proving the following formula

(x− y)2 ≤ 0 ∧ p(y) → p(x)

by just real arithmetic will turn out to be surprisingly difficult and can take ages (even
if it ultimately terminates). Yet, thinking about it, (x−y)2 ≤ 0 implies that y = x, which
should make the rest of the proof easy since, p(y) should easily imply p(x) if, indeed,
x = y. How do we exhibit a proof based on these thoughts?

The critical idea to make such a proof work is to use cut for a creative cut with the
suitable arithmetic. So we choose x = y as the cut formula P in cut and proceed as
follows:

∗
R (x− y)2 ≤ 0 ⊢ x = y

WR (x− y)2 ≤ 0 ⊢ x = y, p(x)
WL(x− y)2 ≤ 0, p(y) ⊢ x = y, p(x)

∗
id

p(y), x = y ⊢ p(y)
=R

p(y), x = y ⊢ p(x)
WL(x− y)2 ≤ 0, p(y), x = y ⊢ p(x)

cut (x− y)2 ≤ 0, p(y) ⊢ p(x)
∧L (x− y)2 ≤ 0 ∧ p(y) ⊢ p(x)
→R ⊢ (x− y)2 ≤ 0 ∧ p(y) → p(x)

Indeed, the left premise proves easily using real arithmetic. The right premise proves
comparably easily as well. This proof uses proof rule =R that is discussed next. Ob-
serve that proofs like this one benefit a lot from weakening to get rid of superfluous
assumptions to simplify the resulting arithmetic.

16 Summary

The differential dynamic logic sequent proof rules that we have seen in this lecture are
summarized in Fig. 4. They are sound [Pla08]. There are further proof rules of differ-
ential dynamic logic that later lectures will examine [Pla08, Pla12b, Pla12a, Pla15]. In
addition to having seen the foundation and working principles of how systematic CPS
proofs assemble arguments, this lecture discussed techniques to tame the complexity
of arithmetic, which can become somewhat challenging for complicated systems.
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Note 11.

¬R
Γ, P ⊢ ∆

Γ ⊢ ¬P,∆

¬L
Γ ⊢ P,∆

Γ,¬P ⊢ ∆

∧R
Γ ⊢ P,∆ Γ ⊢ Q,∆

Γ ⊢ P ∧Q,∆

∧L
Γ, P,Q ⊢ ∆

Γ, P ∧Q ⊢ ∆

∨R
Γ ⊢ P,Q,∆

Γ ⊢ P ∨Q,∆

∨L
Γ, P ⊢ ∆ Γ, Q ⊢ ∆

Γ, P ∨Q ⊢ ∆

→R
Γ, P ⊢ Q,∆

Γ ⊢ P → Q,∆

→L
Γ ⊢ P,∆ Γ, Q ⊢ ∆

Γ, P → Q ⊢ ∆

id
Γ, P ⊢ P,∆

cut
Γ ⊢ P,∆ Γ, P ⊢ ∆

Γ ⊢ ∆

⊤R
Γ ⊢ true,∆

⊥L
Γ, false ⊢ ∆

∀R
Γ ⊢ p(y),∆

Γ ⊢ ∀x p(x),∆
(y 6∈ Γ,∆)

∀L
Γ, p(e) ⊢ ∆

Γ, ∀x p(x) ⊢ ∆

∃R
Γ ⊢ p(e),∆

Γ ⊢ ∃x p(x),∆

∃L
Γ, p(y) ⊢ ∆

Γ, ∃x p(x) ⊢ ∆
(y 6∈ Γ,∆)

CER
Γ ⊢ C(Q),∆ P ↔ Q

Γ ⊢ C(P ),∆

CEL
Γ, C(Q) ⊢ ∆ P ↔ Q

Γ, C(P ) ⊢ ∆

=R
Γ, x = e ⊢ p(e),∆

Γ, x = e ⊢ p(x),∆

=L
Γ, x = e, p(e) ⊢ ∆

Γ, x = e, p(x) ⊢ ∆

Figure 4: Proof rules of the dL sequent calculus considered in this lecture

Exercises

Exercise 1. Prove soundness of the following special purpose proof rule from p. 24 and
use it to continue the proof in Fig. 3 similar to the proof in Fig. 2:

R21
Γ, θ > 0 ⊢ ∆

Γ,−(−θ) > 0 ⊢ ∆

Exercise 2 (*). Since we are not adding proof rule R21 from p. 24 to the dL proof cal-
culus, show how you can derive the same proof step using a creative combination of
arithmetic and the other proof rules.

Exercise 3. Prove soundness for the structural and propositional sequent proof rules
considered in this lecture.

Exercise 4. Prove soundness for the dynamic sequent proof rules that this lecture dis-
cussed briefly but did not purse. You can use a general argument how soundness of
the dynamic sequent proof rules follows from soundness of the dL axioms considered
in Lecture 5 on Dynamical Systems & Dynamic Axioms, but first need to prove sound-
ness of those dL axioms.

Exercise 5. Let y(t) be the solution at time t of the differential equation x′ = f(x) with
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initial value y(0) = x. Show that the following sequent proof rule that checks the
evolution domain Q at the end is sound:

R22
Γ ⊢ ∀t≥0

(

[x := y(t)](Q → P )
)

,∆

Γ ⊢ [x′ = θ&Q]P,∆

Would the following also be a sound axiom? Prove or disprove.

R23 [x′ = θ&Q]P ↔ ∀t≥0
(

[x := y(t)](Q → P )
)

Exercise 6 (*). Generalize solution proof rules [′] and 〈′〉 for differential equations to the
case of differential equation systems:

x′1 = e1, . . , x
′
n = en&Q

First consider the easier case where Q ≡ true .
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15-424: Foundations of Cyber-Physical Systems

Lecture Notes on

Control Loops & Invariants

André Platzer

Carnegie Mellon University
Lecture 7

1 Introduction

Lecture 5 on Dynamical Systems & Dynamic Axioms introduced rigorous reasoning for
hybrid program models of cyber-physical systems, which Lecture 6 on Truth & Proof
extended to a systematic and coherent reasoning approach for cyber-physical systems.
Our understanding of the language exceeds our understanding of the reasoning prin-
ciples, though, because we have not seen any credible ways of analyzing loops yet,
despite the fact that loops are a perfectly harmless and common part of CPSs. In fact,
computational thinking would argue that we do not truly understand an element of a
programming language or a system model if we do not also understand ways of rea-
soning about them. This lecture sets out to make sure our analysis capabilities catch up
on our modeling skills. This is, of course, all part of the agenda we set forth initially.
Studying the language of cyber-physical systems gradually in layers that we master
completely before advancing to the next challenge. Today’s challenge are control loops.

Lecture 3 on Choice & Control demonstrated how important control is in CPS and
that control loops are a very important feature for making this control happen. Without
loops, CPS controllers are limited to short finite sequences of control actions, which are
rarely sufficient to get our CPS anywhere. With loops, CPS controllers shine, because
they can inspect the current state of the system, take action to control the system, let the
physics evolve, and then repeat these steps in a loop over and over again to slowly get
the state where the controller wants the system to be. Loops truly make feedback hap-
pen, by enabling a CPS to sense state and act in response to that over and over again.
Think of programming a robot to drive on a highway. Would you be able to do that
without some means of repetition or iteration as in repeated control? Probably not, be-
cause you’ll need to write a CPS program that monitors the traffic situation frequently
and reacts in response to what the other cars do on the highway. There’s no way of
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telling ahead of time, how often the robot will need to change its mind when its driving
a car on a highway.

Hybrid programs’ way of exercising repetitive control actions is the repetition oper-
ator ∗ that can be applied to any hybrid program α. The resulting hybrid program α∗

repeats α any number of times, nondeterministically. That may be zero times or 1 time
or 10 times or . . . .

Now, the flip side of the fact that control loops are responsible for a lot of the power
of CPS is that they can also be tricky to analyze and fully understand. After all, what
a system does in just one step is easier to get a handle on than to understand what it
will do in the long run when the CPS is running for any arbitrary amount of time. This
is the CPS analogue of the fact that ultra-short-term predictions are often much easier
than long-term predictions. It is easy to predict the weather a second into the future but
much harder to predict next week’s weather.

The main insight behind the analysis of loops in CPS is to reduce the (complicated)
analysis of their long-term global behavior to a simpler analysis of their local behav-
ior for one control cycle. This principle significantly reduces the analytic complexity
of loops in CPS. It leverages invariants, i.e. aspects of the system behavior that do not
change as time progresses, so that our analysis can rely on them no matter how long the
system already evolved. Invariants turn out to also lead to an important design princi-
ple for CPS, even more so than in programs [PCL11]. The significance of invariants in
understanding CPS is not a coincidence, because the study of invariants (just of other
mathematical structures) is also central to a large body of mathematics.

More information can be found in [Pla12b, Pla12a] as well as [Pla10, Chapter 2.5.2,2.5.4].
Since it is of central importance to develop a sense how the parts of a proof fit together
and what impact changes to preconditions or invariants have on a proof, today’s lecture
will be very explicit about developing sequent calculus proofs to give you a chance to
understand their structure. These proofs will also serve as a useful exercise to practice
our skills on the sequent calculus reasoning for CPS that Lecture 6 developed. After
some practice, subsequent lectures will often appeal to the canonical structure that a
proof will have in more intuitive ways and focus on developing only its most crucial
elements: invariants.

The most important learning goals of this lecture are:

Modeling and Control: We develop a deeper understanding of control loops as a core
principle behind CPS that is ultimately underlying all feedback mechanisms in
CPS control. This lecture also intensifyies our understanding of the dynamical
aspects of CPS and how discrete and continuous dynamics interact.

Computational Thinking: This lecture extends the rigorous reasoning approach from
Lecture 5 on Dynamical Systems & Dynamic Axioms to systems with repetitions.
This lecture is devoted to the development of rigorous reasoning techniques for
CPS models with repetitive control loops or other loopy behavior, a substantially
nontrivial problem in theory and practice. Without understanding loops, there is
no hope of understanding the repetitive behavior of feedback control principles
that are common to almost all CPS. Understanding such behavior can be tricky,
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because so many things can change in the system and its environment over the
course of the runtime of even just a few lines of code if that program runs re-
peatedly to control the behavior of a CPS. That is why the study of invariants, i.e.
properties that do not change throughout the execution of the system are crucial
for their analysis. Invariants constitute the single most insightful and most impor-
tant piece of information about a CPS. As soon as we understand the invariants
of a CPS, we almost understand everything about it and will even be in a position
to design the rest of the CPS around this invariant, a process known as design-by-
invariant principle. Identifying and expressing invariants of CPS models will be
a part of this lecture as well.

The first part of the lecture shows a careful and systematic development of the
invariants, discussing some proof rules and proof principles of more general in-
terest along the way. The second part of the lecture focuses on invariants.

Another aspect of today’s lecture is the important concept of global proof rules,
which have global premises rather than the local premises from the previous se-
quent proof rules.

CPS Skills: We will develop a better understanding of the semantics of CPS models
by understanding the core aspects of repetition and relating its semantics to cor-
responding reasoning principles. This understanding will lead us to develop a
higher level of intuition for the operational effects involved in CPS by truly un-
derstanding what control loops fundamentally amount to.

CT

M&C CPS

rigorous reasoning for repetitions
identifying and expressing invariants
global vs. local reasoning
relating iterations to invariants
finitely accessible infinities
operationalize invariant construction
splitting & generalizations

control loops
feedback mechanisms
dynamics of iteration

semantics of control loops
operational effects of control
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2 Control Loops

Recall Quantum, the little acrophobic bouncing ball from Lecture 4 on Safety & Con-
tracts:

@requires(0 ≤ x ∧ x = H ∧ v = 0)

@requires(g > 0 ∧ 1 ≥ c ≥ 0)

@ensures(0 ≤ x ∧ x ≤ H)
(

x′ = v, v′ = −g&x ≥ 0;

if(x = 0) v :=−cv
)

∗

(1)

The contracts above have been augmented with the ones that we have identified in
Lecture 4 by converting the initial contract specification into a logical formula in differ-
ential dynamic logic and then identifying the required assumptions to make it true in
all states:

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 →
[(

x′ = v, v′ = −g&x ≥ 0; if(x = 0) v :=−cv
)

∗
]

(0 ≤ x ∧ x ≤ H) (2)

Because we did not want to be bothered by the presence of the additional if-then-else
operator, which is not officially part of the minimal set of operators that differential
dynamic logic dL provides, we simplified (2) to:

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 →
[(

x′ = v, v′ = −g&x ≥ 0; (?x = 0; v :=−cv ∪ ?x 6= 0)
)

∗
]

(0 ≤ x ∧ x ≤ H) (3)

In Lecture 4, we had an informal understanding why (3) is valid (true in all states),
but no formal proof, albeit we proved a much simplified version of (3) in which we sim-
ply threw away the loop. Such ignorance is clearly not a correct way of understanding
loops. Let’s make up for that now by properly proving (3) in the dL calculus.

Yet, before going for a proof of this bouncing ball property, however much Quantum
may long for it, let us first take a step back and understand the role of loops in more
general terms. Their semantics has been explored in Lecture 3 on Choice & Control and
more formally in Lecture 5 on Dynamical Systems & Dynamic Axioms.

Quantum had a loop in which physics and its bounce control alternated. Quantum
desperately needs a loop for he wouldn’t know ahead of time how often he would
bounce today. When falling from great heights, Quantum bounces quite a bit. Quan-
tum also has a controller, albeit a rather impoverished one. All it could do is inspect the
current height, compare it to the ground floor (at height 0) and, if x = 0, flip its velocity
vector around after some casual damping by factor c. That is not a whole lot of flexibil-
ity for control choices, but Quantum was still rather proud to serve such an important
role in controlling the ball’s behavior. Indeed, without the control action, Quantum
would never bounce back from the ground but would keep on falling forever—what a
frightful thought for the acrophobic Quantum. On second thought, Quantum would,
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actually, not even fall for very long without its controller, because of the evolution do-
main x ≥ 0 for physics x′′ = −g&x ≥ 0, which would only allow physics to evolve for
time zero if the ball is already at height 0, because gravity would otherwise try to pull
it further down, except that the x ≥ 0 constraint won’t have it. So, in summary, with-
out Quantum’s control statement, it would simply fall and then lie flat on the ground
without time being allowed to proceed. That would not sound very reassuring and
certainly not as much fun as bouncing back up, so the Quantum is really jolly proud of
its control.

This principle is not specific to the bouncing ball, but, rather, quite common in CPS.
The controller performs a crucial task, without which physics would not evolve in the
way that we want it to. After all, if physics did already always do what we want it to
without any input from our side, we would not need a controller for it in the first place.
Hence, control is crucial and understanding and analyzing its effect on physics one of
the primary responsibilities in CPS. While the implication in (3) is quickly consumed
by the →R proof rule, the trouble starts right away since Quantum needs to prove the
safety of the loop.

3 Loops of Proofs

Recall the loop semantics from Lecture 3 on Choice & Control and its unwinding axiom
from Lecture 5 on Dynamical Systems & Dynamic Axioms:

[[α∗]] =
⋃

n∈N

[[αn]] with αn+1 ≡ αn;α and α0 ≡ ?true

ω ν

α∗

P ∧ [α][α∗]P
α

[α∗]P

α α
P

α∗

Lemma 1 ([∗] soundness). The iteration axiom is sound:

[∗] [α∗]P ↔ P ∧ [α][α∗]P

Using proof rule [∗] on the succedent of a sequent has the same effect as using axiom
[∗] from left-hand side to right-hand side. Axiom [∗] can be used to turn a formula

A→ [α∗]B (4)

into
A→ B ∧ [α][α∗]B

What could we do to prove that loop?
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Investigating our proof rules so far, there is exactly one that address loops: the it-
eration [∗] axiom again. Recall that, unlike sequent proof rules, axioms do not dictate
where they can be used, so we might as well use them anywhere in the middle of the
formula. Hence using axiom [∗] on the inner loop yields:

A→ B ∧ [α](B ∧ [α][α∗]B)

Let’s do that again because that was so much fun and use the [∗] axiom on the only
occurrence of [α∗]B to obtain

A→ B ∧ [α](B ∧ [α](B ∧ [α][α∗]B)) (5)

This is all very interesting but won’t exactly get us any closer to a proof, because we
could keep expanding the ∗ star forever that way. How do we ever break out of this
loop of never-ending proofs?

Before we get too disillusioned about our progress with [∗] so far, notice that (5) still
allows us to learn something about α and whether it always satisfies B when repeating
α. Since [∗] is an equivalence axiom, formula (5) still expresses the same thing as (4),
i.e. that B always holds after repeating α when A was true in the beginning. Yet, (5)
explicitly singles out the first 3 runs of α. Let’s make this more apparent with the
derived axiom for box splitting:

Lemma 2 (Boxes distribute over conjunctions). The following is a sound axiom

[]∧ [α](P ∧Q) ↔ [α]P ∧ [α]Q

Using this valid equivalence turns (5) into

A→ B ∧ [α]B ∧ [α][α](B ∧ [α][α∗]B)

Using []∧ again gives us

A→ B ∧ [α]B ∧ [α]([α]B ∧ [α][α][α∗]B)

Using []∧ once more gives

A→ B ∧ [α]B ∧ [α][α]B ∧ [α][α][α][α∗]B (6)

Fig. 1 illustrates the proof construction so far.1 Looking at it this way, (6) could be more
useful than the original (4), because, even though both are equivalent, (6) explicitly
singles out the fact that B has to hold initially, after doing α once, after doing α twice,

1Observe the ∧R,∧R,∧R at the top, which is not to be taken as an indication that the proof is stuttering,
but merely meant as a notational reminder that the ∧R proof rule was actually used 3 times for that
step. Because it will frequently simplify the notation, we will take the liberty of applying multiple rules
at once like that without saying which derivation it was exactly. In fact, mentioning ∧R 3 times seems
a bit repetitive, so we simply abbreviate this by writing ∧R even if we used the rule ∧R 3 times and
should have said ∧R,∧R,∧R.
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[∗]

[∗]

[∗]

[]∧

[]∧

[]∧

∧R,∧R,∧R
A ⊢ B A ⊢ [α]B A ⊢ [α][α]B A ⊢ [α][α][α][α∗]B

A ⊢ B ∧ [α]B ∧ [α][α]B ∧ [α][α][α][α∗]B

A ⊢ B ∧ [α]B ∧ [α]([α]B ∧ [α][α][α∗]B)

A ⊢ B ∧ [α]B ∧ [α][α](B ∧ [α][α∗]B)

A ⊢ B ∧ [α]
(

B ∧ [α](B ∧ [α][α∗]B)
)

A ⊢ B ∧ [α](B ∧ [α][α∗]B)

A ⊢ B ∧ [α][α∗]B

A ⊢ [α∗]B

Figure 1: Loops of proofs: iterating and splitting the box

and that [α∗]B has to hold after doing α three times. Even if we are not quite sure what
to make of the latter [α][α][α][α∗]B, because it still involves a loop, we are quite certain
how to understand and handle the first three:

A→ B ∧ [α]B ∧ [α][α]B (7)

If this formula is not valid, then, certainly, neither is its equivalent (6) and, thus, neither
is the original (4). Hence, if we find a counterexample to (7), we disproved (6) and (4).
That can actually be rather useful!

Yet, if (7) is still valid, we do not know whether (6) and (4) are, since they involve
stronger requirements (B holds after any number of repetitions of α). What can we do
then? Simply unroll the loop once more by using [∗] on (5) to obtain

A→ B ∧ [α](B ∧ [α](B ∧ [α](B ∧ [α][α∗]B))) (8)

Or, equivalently, use axiom [∗] on (6) to obtain the equivalent

A→ B ∧ [α]B ∧ [α][α]B ∧ [α][α][α](B ∧ [α][α∗]B) (9)

By sufficiently many uses of axiom []∧, (8) and (9) are both equivalent to

A→ B ∧ [α]B ∧ [α][α]B ∧ [α][α][α]B ∧ [α][α][α∗]B (10)

which we can again examine to see if we can find a counterexample to the first part

A→ B ∧ [α]B ∧ [α][α]B ∧ [α][α][α]B

If yes, we disproved (4), otherwise we use [∗] once more.

Note 3 (Bounded model checking). This process of iteratively unrolling a loop with the
iteration axiom [∗] and then checking the resulting (loop-free) conjuncts is called Bounded
Model Checking and has been used with extraordinary success, e.g., in the context of
finite-state systems [CBRZ01]. The same principle can be useful to disprove properties of
loops in differential dynamic logic by unwinding the loop, checking to see if the resulting
formulas have counterexamples and, if not, unroll the loop once more.
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L7.8 Control Loops & Invariants

Suppose such a bounded model checking process has been followed to unroll the loop
N ∈ N times. What can you conclude about the safety of the system?

If a counterexample is found or the formula can be disproved, then we are certain
that the CPS is unsafe. If, instead, all but the last conjunct in the N th unrolling of the
loop are provable then the system will be safe for N − 1 steps, but we cannot conclude
anything about the safety of the system after N − 1 steps. On the other hand, what we
learn about the behavior of α from these iterations can still inform us about possible
invariants.

4 Breaking Loops of Proofs

Proving properties of loops by unwinding them forever with [∗] is not a promising
strategy, unless we find that the conjecture is not valid after a number of unwindings.
Or unless we do not mind being busy with the proof forever for infinitely many proof
steps (which would never get our acrophobic bouncing ball off the ground either with
the confidence that a safety argument provides). One way or another, we will have to
find a way to break the loop apart to complete our reasoning.

[∗]

[∗]

[∗]

∧R

A ⊢ B MR

A ⊢ [α]J1 ∧R

J1 ⊢ B MR

J1 ⊢ [α]J2 ∧R

J2 ⊢ B
J2 ⊢ [α]J3 . . .

J2 ⊢ [α][α∗]B

J2 ⊢ B ∧ [α][α∗]B

J1 ⊢ [α](B ∧ [α][α∗]B)

J1 ⊢ B ∧ [α](B ∧ [α][α∗]B)

A ⊢ [α]
(

B ∧ [α](B ∧ [α][α∗]B)
)

A ⊢ B ∧ [α]
(

B ∧ [α](B ∧ [α][α∗]B)
)

A ⊢ B ∧ [α](B ∧ [α][α∗]B)

A ⊢ B ∧ [α][α∗]B

A ⊢ [α∗]B

Figure 2: Loops of proofs: iterations & generalizations

How could we prove the premises? Sect. 3 investigated one way, which essentially
amounts to Bounded Model Checking. Can we be more clever and prove the same
premises in a different way? Preferably one that is more efficient and allows us to get
the proof over with after finitely many steps?

There is not all that much we can do to improve the way we prove the first premise
(A ⊢ B). We simply have to bite the bullet and do it, armed with all our knowledge
of arithmetic from Lecture 6. But it’s actually very easy at least for the bouncing ball.
Besides, no dynamics have actually happened yet in the first premise, so if we despair
in proving this one, the rest cannot become any easier either. For the second premise,
there is not much that we can do either, because we will have to analyze the effect of
the loop body α running once at least in order to be able to understand what happens
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if we run α repeatedly.
Yet, what’s with the third premise A ⊢ [α][α]B? We could just approach it as is and

try to prove it directly using the dL proof rules. Alternatively, however, we could try
to take advantage of the fact that it is the same hybrid program α that is running in the
first and the second modality. Maybe they should have something in common that we
can exploit as part of our proof?

How could that work? Can we possibly find something that is true after the first run
of α and is all we need to know about the state for [α]B to hold? Can we characterize
the intermediate state after the first α and before the second α? Suppose we manage to
do that and identify a formula E that characterizes the intermediate state in this way.
How do we use this intermediate condition E to simplify our proof?

Recall the intermediate condition contract version of the sequential composition proof
rule from Lecture 4 on Safety & Contracts that we briefly revisited again in Lecture 5.

R3
A→ [α]E E → [β]B

A→ [α;β]B

Lecture 5 ended up dismissing the intermediate contract rule R3 in favor of the more
general axiom

[;] [α;β]P ↔ [α][β]P

But, let us revisit R3 just the same and see if we can learn something from its way of
using intermediate condition E. The first obstacle is that the conclusion of R3 does not
match the form we need for A ⊢ [α][α]B. That’s not a problem in principle, because we
could use axiom [;] backwards from right-hand side to left-hand side in order to turn
A ⊢ [α][α]B back into

A ⊢ [α;α]B

and then use rule R3 to generalize with an intermediate condition E in the middle.
However, this is what we wanted to stay away from, because using the axioms both
forwards and backwards can get our proof search into trouble because we might loop
around trying to find a proof forever without making any progress by simply using
axiom [;] forwards and then backwards and then forwards again and so on until the end
of time. Such a looping proof does not strike us as useful. Instead, we’ll adopt a proof
rule that has some of the thoughts of R3 but is more general. It is called generalization
and allows us to prove any stronger postcondition φ for a modality, i.e. a postcondition
that implies the original postcondition ψ.

Lemma 3 (Generalization rule). The following is a sound proof rule

MR
Γ ⊢ [α]Q,∆ Q ⊢ P

Γ ⊢ [α]P,∆

If we apply rule MR on the third premiseA ⊢ [α][α]B of our bounded model checking
style proof attempt with the intermediate condition E for φ that we assume to have
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identified, then we end up with

A ⊢ [α]E E ⊢ [α]B
MR

A ⊢ [α][α]B

Let us try to use this principle to see if we can find a way to prove

A→ B ∧ [α](B ∧ [α](B ∧ [α](B ∧ [α][α∗]B))) (8)

Using rules ∧R and MR a number of times for a sequence of intermediate conditions
E1, E2, E3 derives:

∧R

A ⊢ BMR

A ⊢ [α]E1∧R

E1 ⊢ BMR

E1 ⊢ [α]E2∧R

E2 ⊢ BMR

E2 ⊢ [α]E3∧R
E3 ⊢ B E3 ⊢ [α][α∗]B

E3 ⊢ B ∧ [α][α∗]B

E2 ⊢ [α](B ∧ [α][α∗]B)

E2 ⊢ B ∧ [α](B ∧ [α][α∗]B)

E1 ⊢ [α](B ∧ [α](B ∧ [α][α∗]B))

E1 ⊢ B ∧ [α](B ∧ [α](B ∧ [α][α∗]B))

A ⊢ [α](B ∧ [α](B ∧ [α](B ∧ [α][α∗]B)))

→R
A ⊢ B ∧ [α](B ∧ [α](B ∧ [α](B ∧ [α][α∗]B)))

A→ B ∧ [α](B ∧ [α](B ∧ [α](B ∧ [α][α∗]B)))
This particular derivation is still not very useful because it still has a loop in one of

the premises, which is what we had originally started out with in (4) in the first place.
But the derivation hints at a useful way how we could possibly shortcut proofs. To lead
to a proof of the conclusion, the above derivation requires us to prove the premises

A ⊢ [α]E1

E1 ⊢ [α]E2

E2 ⊢ [α]E3

as well as some other premises. What is an easy case to make that happen? What if
all the intermediate conditions Ei were the same? Let’s assume they are all the same
condition E, that is, E1 ≡ E2 ≡ E3 ≡ E. In that case, most of the resulting premises
actually turn out to be one and the same premise:

E ⊢ B

E ⊢ [α]E

except for the two left-most and the right-most premise. Let us leverage this observation
and develop a proof rule for which the same intermediate condition is used for all iterates of the
loop. Furthermore, we would even know the first premise

A ⊢ [α]E

if we could prove that the precondition A implies E:

A ⊢ E

because, we already have E ⊢ [α]E as one of the premises.

15-424 LECTURE NOTES ANDRÉ PLATZER
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5 Invariant Proofs of Loops

The condition E ⊢ [α]E identified in the previous section seems particularly useful,
because it basically says that whenever the system α starts in a state satisfying E, it will
stay in E, no matter which of the states in E it was where the system started in the first
place. It sounds like the system α∗ couldn’t get out of E either if it starts in E since all
that α∗ can do is to repeat α some number of times. But every time we repeat α, the
sequent E ⊢ [α]E expresses that we cannot leave E that way. So no matter how often
our CPS repeats α∗, it will still reside in E.

The other condition that the previous section identified as crucial is E ⊢ B. And,
indeed, if E does not imply the postcondition B that we have been interested in in the
first place, then E is a perfectly true invariant of the system, but not a very useful one
as far as proving B goes.

What else could go wrong in a system that obeys E ⊢ [α]E, i.e. where this sequent
is valid, because we found a proof for it? Indeed, the other thing that could happen is
that E is an invariant of the system that would imply safety, but our system just does
not initially start in E, then we still don’t know whether it’s safe.

Recall the semantics of nondeterministic repetitions from Lecture 3 on Choice & Con-
trol

[[α∗]] =
⋃

n∈N

[[αn]] with αn+1 ≡ αn;α and α0 ≡ ?true

ω ν

α∗

J

[α∗]P

α

J → [α]J

α α

J → P

Lemma 4 (Induction). The (loop) induction rule is sound:

loop
Γ ⊢ J,∆ J ⊢ [α]J J ⊢ P

Γ ⊢ [α∗]P,∆

First observe that the inductive invariant J (which we called E in the previous more
concrete examples) occurs in all premises but not in the conclusion of loop. That means,
whenever we apply the induction rule loop to a desired conclusion, we get to choose
what invariant J we want to use it for. Good choices of J will lead to a successful proof
of the conclusion. Bad choices of J will stall the proof, because some of the premises
cannot be proved.

The first premise of loop says that the initial state, about which we assume Γ (and that
∆ does not hold), satisfies the invariant J , i.e. the invariant is initially true. The second
premise of loop shows that the invariant J is inductive. That is, whenever J was true
before running the loop body α, then J is always true again after running α. The third
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premise of loop shows that the invariant J is strong enough to imply the postcondition
ψ that the conclusion was interested in.

Rule loop says that ψ holds after any number of repetitions of α if an invariant J
holds initially (left premise), if invariant J remains true after one iteration of α from
any state where J was true (middle premise), and if invariant J finally implies the
desired postcondition ψ (right premise). If J is true after executing α whenever J has
been true before (middle premise), then, if J holds in the beginning (left premise), J
will continue to hold, no matter how often we repeat α in [α∗]ψ, which is enough to
imply [α∗]ψ if J implies ψ (right premise).

Taking a step back, these three premises look somewhat familiar, because they corre-
spond exactly to the proof steps that the 15-122 Principles of Imperative Computation
course used to show that the contract of a function with a @requires contract Γ (and
not ∆), @ensures contract ψ, and a loop invariant J is correct. Now, we have this rea-
soning in a more general and formally more precisely defined context. We no longer
need to appeal to intuition to justify why such a proof rule is fine, but can evoke a
soundness proof for loop. We will also no longer be limited to informal arguments to
justify invariance for a program but can do actual solid and rigorous formal proofs if
we combine proof rule loop with the other proof rules from Lecture 6 on Truth & Proof.

Invariants are crucial concepts for conventional programs and continue to be even
more crucial for cyber-physical systems, where change is ubiquitous and any identifi-
cation of aspects that remain unchanged over time is a blessing. As the technically most
challenging proof rule we saw so far, rule loop deserves a soundness-proof [Pla10].

Proof (of Lemma 4). In order to prove that rule loop is sound, we assume that all its
premises are valid and need to show that its conclusion is valid, too. So let � Γ ⊢ J,∆
and � J ⊢ [α]J and � J ⊢ P . In order to prove that � Γ ⊢ [α∗]P,∆, consider any state
ω and show that ω ∈ [[Γ ⊢ [α∗]P,∆]]. If one of the formulas Q ∈ Γ does not hold in ω

(ω 6∈ [[Q]]) or if one of the formulas in Q ∈ ∆ holds in ω (ω ∈ [[Q]]), then there is nothing
to show, because the formula that the sequent Γ ⊢ [α∗]P,∆ represents already holds in
ω, either because one of the conjunctive assumptions Γ are not met in ω or because one
of the other disjunctive succedents ∆ already holds. Consequently, let all Q ∈ Γ be true
in ω and all Q ∈ ∆ be false in ω or else there is nothing to show.

In that case, however, the first premise implies that ω ∈ [[J ]] because all its assump-
tions (which are the same Γ) are met in ω and all alternative succedents (which are the
same ∆) do not already hold.2

In order to show that ω ∈ [[[α∗]P ]], consider any run (ω, ν) ∈ [[α∗]] from the initial state
ω to some state ν and show that ν ∈ [[α]]. According to the semantics of loops from Lec-
ture 3 on Choice & Control, (ω, ν) ∈ [[α∗]] if and only if, for some natural number n ∈ N

that represents the number of loop iterations, there is a sequence of states µ0, µ1, . . . , µn
such that µ0 = ω and µn = ν such that (µi, µi+1) ∈ [[α]] for all i < n. The proof that
µn ∈ [[J ]] is now by induction on n.

2In future soundness proofs, we will fast-forward to this situation right away, but it is instructive to see
the full argument.
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n=0: If n = 0, then ν = µ0 = µn = ω, which implies by the first premise that ν ∈ [[J ]].

n n+1: By induction hypothesis, µn ∈ [[J ]]. By the second premise, � J ⊢ [α]J in par-
ticular for state µn we have µn ∈ [[J → [α]J ]], recalling the semantics of sequents.
Combined with the induction hypothesis, this implies µn ∈ [[[α]J ]], which means
that µ ∈ [[J ]] for all states µ such that (µn, µ) ∈ [[α]]. Hence, µn+1 ∈ [[J ]] because
(µn, µn+1) ∈ [[α]].

This implies, in particular, that ν ∈ [[J ]], because µn = ν. By the third premise, � J ⊢ P .
In particular, ν ∈ [[J → P ]], which with ν ∈ [[J ]] implies ν ∈ [[P ]]. This concludes the
soundness proof, since ν was an arbitrary state such that (ω, ν) ∈ [[α∗]], so ω ∈ [[[α∗]P ]].

6 A Proof of a Repetitive Bouncing Ball

Now that he understand the principles of how to prove loops in CPS, Quantum is eager
to put these skills to use. Quantum wants to relieve himself of its acrophobic fears once
and for all by conducting a proof that he won’t ever have to be afraid of excess heights
> H again nor of falling through the cracks in the ground to heights < 0.

Abbreviations have served Quantum well in trying to keep proofs onto one page:

A
def
≡ 0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0

B(x,v)
def
≡ 0 ≤ x ∧ x ≤ H

(x′′ = . . . )
def
≡ (x′ = v, v′ = −g)

Note the somewhat odd abbreviation for the differential equation just to simplify nota-
tion, so that the bouncing ball conjecture (3) turns into:

A→ [(x′′ = . . .; (?x = 0; v :=−cv ∪ ?x 6= 0))
∗
]B(x,v) (3)

This formula is swiftly turned into the sequent at the top using proof rule →R:

A ⊢ [(x′′ = . . .; (?x = 0; v :=−cv ∪ ?x 6= 0))∗]B(x,v)
→R

⊢ A→ [(x′′ = . . .; (?x = 0; v :=−cv ∪ ?x 6= 0))∗]B(x,v)

This leaves a loop to be worried about.
The first thing that Quantum will need for the proof of (3) is the appropriate choice

for the invariant J to be used in the induction proof rule loop. Quantum will use a
dL formula j(x,v) for the invariant when instantiating J in the proof rule loop. But
Quantum is still a little unsure about how exactly to define that formula j(x,v), not an
unusual situation when trying to master the understanding of CPS. Can you think of a
good choice for the formula j(x,v) to help Quantum?

Before you read on, see if you can find the answer for yourself.
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I don’t know about you, but Quantum settles for the choice of using its postcondition
as an invariant, because that is what it wants to show about its behavior:

j(x,v)
def
≡ 0 ≤ x ∧ x ≤ H (11)

Because Quantum is so proud of its wonderful invariant j(x,v), he even uses it to per-
form a generalization with the newly acquired skill of the generalization proof rule MR
in the inductive step to completely separate the proof about the differential equation
and the proof about the bouncing dynamics.3 Let there be proof.

loop

A ⊢ j(x,v)MR

j(x,v) ⊢ [x′ = . . .]j(x,v)[∪]

∧R

[;]

[?]

[:=]
j(x,v), x = 0 ⊢ j(x,−cv)

j(x,v), x = 0 ⊢ [v :=−cv]j(x,v)

j(x,v) ⊢ [?x = 0][v :=−cv]j(x,v)

j(x,v) ⊢ [?x = 0; v :=−cv]j(x,v)
[?]
j(x,v), x > 0 ⊢ j(x,v)

j(x,v) ⊢ [?x 6= 0]j(x,v)

j(x,v) ⊢ [?x = 0; v :=−cv]j(x,v) ∧ [?x 6= 0]j(x,v)

j(x,v) ⊢ [?x = 0; v :=−cv ∪ ?x 6= 0]j(x,v)

[;]
j(x,v) ⊢ [x′ = . . .][?x = 0; v :=−cv ∪ ?x 6= 0]j(x,v)

j(x,v) ⊢ [x′ = . . .; (?x = 0; v :=−cv ∪ ?x 6= 0]j(x,v)

j(x,v) ⊢ B(x,v)

→R
A ⊢ [

(

x′ = . . .; (?x = 0; v :=−cv ∪ ?x 6= 0)
)

∗
]B(x,v)

A→ [
(

x′ = . . .; (?x = 0; v :=−cv ∪ ?x 6= 0)
)

∗
]B(x,v)

This sequent proof has 5 premises remaining to be proved. Quantum is pretty sure how
to prove the first premise (A ⊢ j(x,v)) corresponding to the initial condition, because
0 ≤ x ≤ H is true initially as 0 ≤ x = H follows from A. Quantum also knows how to
prove the last premise (j(x,v) ⊢ B(x,v)), because the invariant j(x,v) from (11) happens to
be equal to the desired postcondition B(x,v), so this holds by identity id. But Quantum
is running into unforeseen(?) trouble with the inductive step in the middle. While the
third and fourth premise hold, the second premise j(x,v) ⊢ [x′ = . . .]j(x,v) with the differ-
ential equation resists a proof for the choice (11). And that makes sense, because, even
if the current height is bounded by 0 ≤ x ≤ H before the differential equation, there is
no reason to believe it would remain bounded afterwards if this is all we know about
the bouncing ball. After all, if the ball is just below x = H , it would still ultimately
exceed H if its velocity were too big.

Ah, right! We actually found that out about the bouncing ball in Lecture 4 on Safety
& Contracts already when were were wondering under which circumstance it might
be safe to let a ball bounce around. And, as a matter of fact, everything we learn by
Principle of Cartesian Doubt about when it would be safe to start a CPS can be very
valuable information to preserve in the invariant. If it wasn’t safe to start a CPS in a
state, chances are, it wouldn’t be safe either if we kept it running in such a state as we
do in an inductive step.

Well, so Quantum found a (poor) choice of an invariant j(x,v) as in (11) that just does
not prove because of the inductive step. What to do wonders our little Quantum.

Before you read on, see if you can find the answer for yourself.

3This is not necessary and Quantum might just as well not have used MR and go for a direct proof using
[′] right away instead. But it does save us some space on this page if Quantum goes for that and also
serves as a showcase for the practical use of proof rule MR.
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There was trouble in the induction step, because x ≤ H could not be proved to be
inductive. So Quantum could demand a little less from the invariant and use the fol-
lowing weaker choice for j(x,v) instead of (11):

j(x,v)
def
≡ x ≥ 0 (12)

Armed with this new choice for an invariant, Quantum quickly gets to work construct-
ing a new proof for (3). After frantically scribbling a couple of pages with sequent
proofs, Quantum experiences a déjà vu and notices that its new proof has exactly the
same form as the last sequent proof it began. Just with a different choice for the logical
formula j(x,v) to be used as the invariant when applying rule loop. With the choice (12)
rather than (11). Fortunately, Quantum already worked with an abbreviation last time
it started a proof, so it is actually not surprising after all to see that the proof structure
stays exactly the same and that the particular choice of j(x,v) only affects the premises,
not the way the proof unraveled its program statements in the modalities.

Inspecting the 5 premises of the above sequent proof attempt in light of the improved
choice (12) for the invariant, Quantum is delighted to find out that the inductive step
works out just fine. The height stays above ground always by construction with the
evolution domain constraint x ≥ 0 and is not changed in the subsequent discrete bounc-
ing control. The initial condition (A ⊢ j(x,v)) also works out alright, because 0 ≤ x was
among the assumptions inA. Only this time, the last premise (j(x,v) ⊢ B(x,v)) falls apart,
because x ≥ 0 is not at all enough to conclude the part x ≤ H of the postcondition.
What’s a ball to do to get itself verified these days?

Before you read on, see if you can find the answer for yourself.
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Quantum takes the lesson from Cartesian Doubt to heart and realizes that the invari-
ant needs to transport enough information about the state of the system to make sure
the inductive step has a chance of holding true. In particular, the invariant desperately
needs to preserve knowledge about the velocity, because how the height changes de-
pends on the velocity (after all the differential equation reads x′ = v, . . .), so it would be
hard to get a handle on height x without first understanding how velocity v changes.

Fine, so Quantum quickly discards the failed invariant choice from (11), which it is
no longer so proud of, and also gives up on the weaker version (12), but instead shoots
for a stronger invariant of which it would be sure to be inductive and strong enough to
imply safety:

j(x,v)
def
≡ x = 0 ∧ v = 0 (13)

This time, Quantum learned his lesson and won’t blindly set out to prove the property
(3) from scratch again, but, rather, be clever about it and realize that it’s still going to
find the same shape of the sequent proof attempt above, just with a, once again, dif-
ferent choice for the invariant j(x,v). So Quantum quickly jumps to conclusions and
inspects its famous 5 premises of the above sequent proof attempt. This time, the post-
condition works out easily and the inductive step works like a charm (no velocity, no
height, no motion). But the initial condition is giving Quantum a headache, because
there is no reason to believe the ball would initially lie flat on the ground with velocity
zero.

For a moment there, Quantum fancied the option of simply changing the initial con-
dition A around to include x = 0, because that would make this proof attempt work
out swell. But then he realized that this would mean the he would from now on be
doomed to only start the day at speed zero on the ground, which would not lead to all
that much excitement for a cheerful bouncing ball. That would be safe, but a bit too
much so for lack of motion.

What, then, is poor Quantum supposed to do to finally get a proof without crippling
its permitted initial conditions?

Before you read on, see if you can find the answer for yourself.
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This time, Quantum thinks really hard and has a smart idea. Thinking back of how
the lecture notes had motivated the idea of invariants for loops, commonalities of states
before and after running the loop body as well as intermediate conditions featured
a prominent role in shaping the intuition for invariants. Lecture 4 on Safety & Con-
tracts had already identified an intermediate condition for the single-hop bouncing ball.
Maybe that will prove useful as an invariant, too:

j(x,v)
def
≡ 2gx = 2gH − v2 ∧ x ≥ 0 (14)

After all, an invariant is something like a permanent intermediate condition, i.e. an
intermediate condition that keeps on working out alright for all future iterations. The
bouncing ball is not so sure whether this will work but it seems worth trying.

The shape of the above proof again stays exactly the same, just with a different choice
of j(x,v), this time coming from (14). The remaining 5 premises are then proved easily.
The first premise A ⊢ j(x,v) proves easily using x = H and v = 0:

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ⊢ 2gx = 2gH − v2 ∧ x ≥ 0

Recalling the usual abbreviations, the second premise j(x,v) ⊢ [x′ = . . .]j(x,v) is

2gx = 2gH − v2 ∧ x ≥ 0 ⊢ [x′ = v, v′ = −g&x ≥ 0](2gx = 2gH − v2 ∧ x ≥ 0)

a proof whose pieces we have seen in previous lectures (Exercise 1). The third premise
j(x,v), x = 0 ⊢ j(x,−cv) is

2gx = 2gH − v2 ∧ x ≥ 0, x = 0 ⊢ 2gx = 2gH − (−cv)2 ∧ x ≥ 0

which would prove easily if we knew c = 1. Do we know c = 1? No, we do not
know c = 1, because we only assumed 1 ≥ c ≥ 0 in A. But we could prove this
third premise easily if we would also change the definition of the initial condition A

around to include c = 1. That may not be the most general possible statement about
bouncing balls, but let’s happily settle for it. Note that even then, however, we still
need to augment j(x,v) to include c = 1 as well, since we otherwise would have lost
this knowledge before we need it in the third premise. Having lost critical pieces of
knowledge is a phenomenon you may encounter when you are conducting proofs. In
that case, you should trace where you lost the assumption in the first place and put it
back in. But then you have also learned something valuable about your system, namely
which assumptions are crucial for the correct functioning of which part of the system.
The fourth premise, j(x,v), x ≥ 0 ⊢ j(x,v) proves whatever the abbreviations stand for
simply using the identity rule id. In fact, Quantum could have noticed this earlier
already but might have been distracted by its search for a good choice for the invariant
j(x,v). This is but one indication for the fact that it may pay off to take a step back from
a proving effort and critically reflect on what all the pieces of the argument rely on
exactly. Finally, the fifth premise j(x,v) ⊢ B(x,v), which is

2gx = 2gH − v2 ∧ x ≥ 0 ⊢ 0 ≤ x ∧ x ≤ H
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proves easily with arithmetic as long as we know g > 0. This condition is already
included in A. But we still managed to forget about that in our invariant j(x,v). So,
again, g > 0 should have been included in the invariant j(x,v), which, overall, should
have been defined as

j(x,v)
def
≡ 2gx = 2gH − v2 ∧ x ≥ 0 ∧ c = 1 ∧ g > 0 (15)

This is nearly the same definition as (14) except that assumptions about the system pa-
rameter choices are carried through. The last two conjuncts are trivial, because neither c
nor g changes while the little bouncing ball falls. We, unfortunately, still have to include
it in the invariant. This is one of the downsides of working with intermediate condition
style proofs such as what we get with rule MR. Later lectures investigate significant
simplifications for this nuisance and will enable you to elide the trivial constant part
c = 1 ∧ g > 0 from the invariant.

For the record, we now really have a full sequent proof of the undamped bouncing
ball with repetitions. Quantum is certainly quite thrilled!

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 = c→

[
(

x′ = v, v′ = −g&x ≥ 0; (?x = 0; v :=−cv ∪ ?x 6= 0)
)

∗
](0 ≤ x ∧ x ≤ H) (16)

Since invariants are a crucial part of a CPS design, you are encouraged to always de-
scribe invariants in your hybrid programs: Let’s capture the bouncing ball’s contracts,
which has now been verified by way of proving the corresponding dL formula (16):

@requires(0 ≤ x ∧ x = H ∧ v = 0)

@requires(g > 0 ∧ c = 1)

@ensures(0 ≤ x ∧ x ≤ H)
(

x′ = v, v′ = −g&x ≥ 0;

(?x = 0; v :=−cv ∪ ?x 6= 0))
)

∗
@invariant(2gx = 2gH − v2 ∧ x ≥ 0 ∧ c = 1 ∧ g > 0)

(17)
KeYmaera X will also make use of the invariants annotated using the @invariant con-
tract in hybrid programs to simplify your proof effort. But KeYmaera X does not re-
quire a list of the constant expressions in the invariant contracts. So the following slight
simplification of (17) will suffice:

@requires(0 ≤ x ∧ x = H ∧ v = 0)

@requires(g > 0 ∧ c = 1)

@ensures(0 ≤ x ∧ x ≤ H)
(

x′ = v, v′ = −g&x ≥ 0;

(?x = 0; v :=−cv ∪ ?x 6= 0))
)

∗
@invariant(2gx = 2gH − v2 ∧ x ≥ 0)
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Since KeYmaera X uses @invariant contracts whenever possible, it is a good idea to
rephrase (16) by explicitly including the invariant contract as:

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 = c→

[
(

x′ = v, v′ = −g&x ≥ 0;

(?x = 0; v :=−cv ∪ ?x 6= 0)
)

∗
@invariant(2gx = 2gH − v2 ∧ x ≥ 0)]

(0 ≤ x ∧ x ≤ H)

(18)

Expedition 1 (Essentials of Induction). The induction rule loop is very useful in
practice. But there is also a more elegant and more essential way of stating the
induction principle with the following sound proof rule (which, incidentally also
comes with more elegant soundness proof).

ind
J ⊢ [α]J

J ⊢ [α∗]J

The new rule ind is clearly a special case of rule loop, obtained by specializing

Γ
def
≡ ψ, ∆ = . (empty), and J

def
≡ ψ, in which case the left and right premises of

loop are provable directly by id so that only the middle premise remains. If ind is a
special case of loop, why should we still prefer ind from a perspective of essentials?
Rule ind is more fundamental and conceptually easier. But if this came at the cost of
being less powerful, loop should still be preferred. It turns out that loop is actually
a special case of indwith a little extra work. This extra work needs a bit of attention
but is insightful.

Let’s use the following variation of the monotone generalization rule:

M
φ ⊢ ψ

[α]φ ⊢ [α]ψ

For example, using a cut with J → [α∗]J , rule loop can be derived from rules ind
and M as follows (using weakening WL,WR without notice):

J ⊢ [α]J
ind
J ⊢ [α∗]J

→RΓ ⊢ J → [α∗]J,∆

Γ ⊢ J,∆

J ⊢ ψ
M[α∗]J ⊢ [α∗]ψ

→LΓ, J → [α∗]J ⊢ [α∗]ψ,∆
cut Γ ⊢ [α∗]ψ,∆

Hence loop is a derived rule, because it can be derived using ind and some other
rules. Thus, loop is not necessary in theory, but still useful in practice.

We are about to see a second illustration how creative uses of cuts can suddenly make
proves and concepts easier. A phenomenon that we will see in action much more often
in this course.
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Expedition 2 (Essentials of generalizations). Now, in order to derive rule loop out
of the more fundamental ind, we had to add the revised generalization rule M. Is
that any easier? Well it is, because M actually makes MR unnecessary by another
smart argument using a cut with the desired formula [α]φ.

Γ ⊢ [α]φ,∆
WRΓ ⊢ [α]φ, [α]ψ,∆

φ ⊢ ψ
M [α]φ ⊢ [α]ψ

WL,WRΓ, [α]φ ⊢ [α]ψ,∆
cut Γ ⊢ [α]ψ,∆

This leaves exactly the premises of rule MR, making MR a derived rule. Whenever
we need MR, we could simply expand the proof out in the above form to reduce it
just a proof involving M and cut and weakening.

Before you despair that you would have to derive loop and MR every time you need
them: that is not the case. The theorem prover KeYmaera X is very well aware of
how useful the rules loop and MR are and has them at your disposal (as tactics). For
theoretical investigations, however, as well as for understanding the truly fundamental
reasoning steps, it is instructive to see that ind and M are fundamental, while the others
are mere consequences.

7 Summary

This lecture focused on developing and using the concept of invariants for CPS. Invari-
ants enable us to prove properties of CPS with loops, a problem of ubiquitous signifi-
cance, because hardly any CPS get by without repeating some operations in a control
loop. Invariants constitute the single most insightful and most important piece of in-
formation about a CPS.

Note 6. This lecture discussed a number of useful axioms and proof rules, including:

loop
Γ ⊢ J,∆ J ⊢ [α]J J ⊢ P

Γ ⊢ [α∗]P,∆

MR
Γ ⊢ [α]Q,∆ Q ⊢ P

Γ ⊢ [α]P,∆

[]∧ [α](P ∧Q) ↔ [α]P ∧ [α]Q

The development that led to invariants has some interesting further consequences
especially for finding bugs in CPS by unrolling loops and disproving the resulting
premises. But this bounded model checking principle is of limited use for ultimately
verifying safety, because it only considers the system some finite number of steps in the
future. You may find unwinding useful when you are looking for bugs in your CPS,
though.
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In our effort of helping the bouncing ball succeed with its proof, we saw a range of
reasons why an inductive proof may not work out and what needs to be done to adapt
the invariant.

Exercises

Exercise 1. Give a sequent proof for

2gx = 2gH − v2 ∧ x ≥ 0 → [x′ = v, v′ = −g&x ≥ 0](2gx = 2gH − v2 ∧ x ≥ 0)

Does this property also hold if we remove the evolution domain constraint x ≥ 0? That
is, is the following formula valid?

2gx = 2gH − v2 ∧ x ≥ 0 → [x′ = v, v′ = −g](2gx = 2gH − v2 ∧ x ≥ 0)

Exercise 2. To develop an inductive proof rule, we have started systematic unwinding
considerations from formula (8) in Sect. 4. In lecture, we started from the form (10)
instead and have seen that that takes us to the same inductive principle. Which of
the two ways of proceeding is more efficient? Which one produces less premises that
are distractions in the argument? Which one has less choices of different intermediate
conditions Ei in the first place?

Exercise 3. Could the bouncing ball use any of these formulas as invariants to prove (3)?

j(x,v)
def
≡ (x = 0 ∨ x = H) ∧ v = 0

j(x,v)
def
≡ 0 ≤ x ∧ x ≤ H ∧ v2 ≤ 2gH

j(x,v)
def
≡ 0 ≤ x ∧ x ≤ H ∧ v ≤ 0

Exercise 4. Conduct a sequent proof for (16) without using the generalization rule MR.

Exercise 5. Fulfill the promise of Expedition 1 by proving soundness of proof rule ind
and contrast its soundness proof with the soundness proof of rule loop to observe sim-
ilarities and differences.
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15-424: Foundations of Cyber-Physical Systems

Lecture Notes on

Events & Responses

André Platzer

Carnegie Mellon University
Lecture 8

1 Introduction

Lecture 3 on Choice & Control demonstrated the importance of control and loops in
CPS models, Lecture 5 on Dynamical Systems & Dynamic Axioms presented a way of
unwinding loops iteratively to relate repetition to runs of the loop body, Lecture 6 on
Truth & Proof showed a corresponding way of unwinding loops in sequent calculus,
and Lecture 7 on Control Loops & Invariants finally explained the central proof princi-
ple for loops based on induction using invariants.

That has been a lot of attention on loops, but there are even more things to be learned
about loops. Not by coincidence, because loops are one of the difficult challenges in
CPS. The other difficult challenge comes from the differential equations. If the differen-
tial equations are simple and there are no loops, CPS suddenly become easy (they are
even decidable [Pla12a]).

This lecture will focus on how these two difficult parts of CPS interact: how loops in-
terface with differential equations. That interface is ultimately the connection between
the cyber and the physical part, which, as we know since Lecture 2 on Differential Equa-
tions & Domains, is fundamentally represented by the evolution domain constraints
that determine when physics pauses to let cyber look and act.

Today’s and the next lecture focuses on two important paradigms for making cy-
ber interface with physics to form cyber-physical systems. Both paradigms played an
equally important role in classical embedded systems. One paradigm is that of event-
driven control, where responses to events dominate the behavior of the system and an
action is taken whenever one of the events is observed. The other paradigm is time-
triggered control, which uses periodic actions to affect the behavior of the system at cer-
tain frequencies. Both paradigms follow naturally from an understanding of the hybrid
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http://symbolaris.com/course/fcps16.html
http://www.cs.cmu.edu/~aplatzer/andre.html
http://symbolaris.com/course/fcps16/03-choicecontrol.pdf
http://symbolaris.com/course/fcps16/05-dynax.pdf
http://symbolaris.com/course/fcps16/06-truth.pdf
http://symbolaris.com/course/fcps16/06-truth.pdf
http://symbolaris.com/course/fcps16/07-loops.pdf
http://symbolaris.com/course/fcps16/02-diffeq.pdf
http://symbolaris.com/course/fcps16/02-diffeq.pdf


L8.2 Events & Responses

program principle for CPS. Event-driven control will be studied in this lecture, while
time-triggered control will be pursued in the next lecture.

These lecture notes are loosely based on [Pla12b].
Based on the understanding of loops from Lecture 7 on Loops & Invariants, the most

important learning goals of this lecture are:

Modeling and Control: Today’s lecture provides a number of crucial lessons for mod-
eling CPS. We develop an understanding of one important design paradigm for
control loops in CPS: event-driven control. This lecture studies ways of develop-
ing models and controls corresponding to this feedback mechanism, which will
turn out to be surprisingly subtle to model. Today’s lecture focuses on CPS mod-
els assuming continuous sensing, which assumes that sensor data is available and
can be checked all the time.

Computational Thinking: This lecture uses the rigorous reasoning approach from Lec-
ture 5 on Dynamical Systems & Dynamic Axioms and particularly the rigorous
reasoning approach for CPS loops from Lecture 7 on Loops & Control to study
CPS models with event-driven control. A discussion of reasoning for CPS mod-
els with time-triggered control will be pursued in the next lecture. As a running
example, the lecture continues to develop the bouncing ball that has served us
so well for conveying subtleties of hybrid system models in an intuitive exam-
ple. This time, we add control decisions to the bouncing ball, turning it into a
ping pong ball, which retains the intuitive simplicity of the bouncing ball, while
enabling us to develop generalizable lessons about how to design event-driven
control systems correctly. While the lecture could hardly claim showing how to
verify CPS models of appropriate scale, the basics laid in this lecture definitely
carry significance for numerous practical applications.

CPS Skills: This lecture develops an understanding for the precise semantics of event-
driven control, which can often be surprisingly subtle even if superficially simple.
This understanding of the semantics will also guide our intuition of the opera-
tional effects caused by event-driven control. Finally, the lecture shows a brief
first glimpse of higher-level model-predictive control, even if that topic will have
to be followed up on in much more detail later in the course.
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CT

M&C CPS

using loop invariants
design event-triggered control

modeling CPS
event-triggered control
continuous sensing
feedback mechanisms
control vs. physics

semantics of event-triggered control
operational effects
model-predictive control

2 The Need for Control

Having gotten accustomed to the little bouncing ball Quantum, this lecture will simply
stick to it. Yet, Quantum asks for more action, for it had so far no choice but to wait
until it was at ground height x = 0. And when its patience paid off so that it finally
observed height x = 0, then its only action was to make its velocity bounce back up.
Frustrated by this limited menu of actions to choose from, Quantum begs for a ping
pong paddle. Thrilled at the opportunities opened up by a ping pong paddle, Quantum
first performs some experiments and then settles on using the ping pong paddle high
up in the air to push itself back down again. It had high hopes that proper control
exerted by the ping pong paddle at just the right moments would allow the ball to go
faster without risking the terrified moments inflicted on it by its acrophobic attitude to
heights. Setting aside all Münchausian concerns about how effective ping pong paddles
can be for the ball if the ball is using the paddle on itself in light of Newton’s third law
about opposing forces, let us investigate this situation regardless.1 After all, the ping-
pong-crazy bouncing ball Quantum still has what it takes to make control interesting:
the dynamics of a physical system and decisions on when to react and how to react to
the observed status of the system.

Lecture 7 on Loops & Invariants developed a sequent proof of the undamped bounc-
ing ball with repetitions:

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 = c →

[
(

x′ = v, v′ = −g&x ≥ 0; (?x = 0; v :=−cv ∪ ?x 6= 0)
)

∗

](0 ≤ x ∧ x ≤ H) (1)

1If you find it hard to imagine a bouncing ball that uses a ping pong paddle to pad itself on its top to
propel itself down to the ground again, just step back and consider the case where the ping pong ball
has a remote control to activate a device that moves the ping pong paddle. That will do as well, but is
less fun. Besides, Baron Münchhausen would be horribly disappointed if we settled for such a simple
explanation for the need of control.
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Figure 1: Sample trajectory of a bouncing ball (plotted as position over time)

With this pretty complete understanding of (undamped) bouncing balls, let’s exam-
ine how to turn the simple bouncing ball into a fancy ping pong ball using clever ac-
tuation of a ping pong paddle. Quantum tried to actuate the ping pong paddle in all
kinds of directions. But it never knew where it was going to land if it tried the ping
pong paddle sideways. So it quickly gave up the thought of using the ping pong pad-
dle sideways. The ball probably got so accustomed to its path of going up and down
on the spot that it embraced the thought of keeping it that way. With the ping pong
paddle, it wanted to do the same, just faster.

By making the ping pong paddle move up and down, Quantum ultimately figured
out that the ball would go back down pretty fast as soon as it got a pat on the top by
the paddle. It also learned that the other direction turned out to be not just difficult but
also rather dangerous. Moving the ping pong paddle up when the ball was above it to
give it a pat on the bottom was first of all rather tricky, but when it worked would, fur-
thermore, make the ball fly up even higher than before. Yet, that is what the acrophobic
bouncing ball Quantum did not enjoy at all, so it tries to control the ping pong paddle
so that the ping pong paddle only ever bounces the ball down, never up.

As a height that Quantum feels comfortable with, it chooses the magic number 5
and so it wants to establish 0 ≤ x ≤ 5 to always hold as its favorite safety condition.
The ball further installs the ping pong paddle at a similar height so that it can actuate
somewhere between 4 and 5. It exercises great care to make sure it would ever only
move the paddle downwards when the ball is underneath, never above, because that
would take it frightfully high up. Thus, the effect of the ping pong paddle will only be
to reverse the ball’s direction. For simplicity, the ball figures that being hit by a ping
pong paddle might have a similar effect as being hit by the floor, except with a possibly
different bounce factor f ≥ 0 instead of the damping coefficient c.2 So the paddle
actuated this way is simply assumed to have the effect v :=−fv. Since Quantum can
decide to use the ping pong paddle as he sees fit (within the ping pong paddle’s reach
between height 4 and 5), the ping pong model is obtained from the bouncing ball model

2The real story is quite a bit more complicated, but Quantum does not know any better yet.
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Figure 2: Sample trajectory of a ping pong ball (plotted as position over time) with the
indicated ping pong paddle actuation range

by adding this additional (nondeterministic) choice to the HP. A sample trajectory for
the ping pong ball, where the ping pong paddle is used twice is illustrated in Fig. 2.
Observe how the use of the ping pong paddle (here only at height x = 5) makes the ball
bounce back faster.

Taking these thoughts into account, the ball devises an HP and conjectures safety as
expressed in the following dL formula:

0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ f ≥ 0 →
[(

x′ = v, v′ = −g&x ≥ 0;

(?x = 0; v :=−cv ∪ ?4 ≤ x ≤ 5; v :=−fv ∪ ?x 6= 0)
)

∗
]

(0 ≤ x ≤ 5)

(2)

Having taken the Principle of Cartesian Doubt from Lecture 4 on Safety & Contracts
to heart, the aspiring ping-pong ball first scrutinizes conjecture (2) before setting out to
prove it. What could go wrong?

For one thing, (2) allows the right control options of using the paddle by ?4 ≤ x ≤

5; v := −fv but it also always allows the wrong choice ?x 6= 0 when above ground.
Remember that nondeterministic choices are just that: nondeterministic. So if Quantum
is unlucky, the HP in (2) could run so that the middle choice is never chosen and, if the
ball has a large downwards velocity v initially, it will jump back up higher than 5 even
if it was below 5 initially. That scenario falsifies (2) and a concrete counterexample can
be constructed correspondingly, e.g., from initial state ω with

ω(x) = 5, ω(v) = −1010, ω(c) =
1

2
, ω(f) = 1, ω(g) = 10

A less extreme scenario is shown in Fig. 3, where the first control at around time 3 works
flawlessly but the second event is missed.

Despite this setback in its first control attempt, Quantum is thrilled by the extra
prospects of a proper control decision for it to be made. So Quantum “only” needs
to figure out how to restrict the control decisions such that nondeterminism will only
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Figure 3: Sample trajectory of a ping pong ball (plotted as position over time) which
misses one event to actuate the ping pong paddle

ever take one of the (possibly many) correct control choices, quite a common problem
in CPS control. How can Quantum fix this bug in its control and turn itself into a proper
ping pong ball? The problem with the controller in (2) is that it permits too much choice,
some of which are unsafe. Restricting these choices and making them more determin-
istic is what it takes to ensure the ping pong paddle is actuated as intended.

0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ f ≥ 0 →
[(

x′ = v, v′ = −g&x ≥ 0;

(?x = 0; v :=−cv ∪ ?4 ≤ x ≤ 5; v :=−fv ∪ ?x 6= 0 ∧ x < 4 ∨ x > 5)
)

∗
]

(0 ≤ x ≤ 5)
(3)

Recalling the if(E)α elseβ statement, the same system can be modeled equivalently:

0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ f ≥ 0 →
[(

x′ = v, v′ = −g&x ≥ 0;

(?x = 0; v :=−cv ∪ ?x 6= 0; if(4 ≤ x ≤ 5) v :=−fv)
)

∗
]

(0 ≤ x ≤ 5)

Or, even shorter as the equivalent

0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ f ≥ 0 →
[(

x′ = v, v′ = −g&x ≥ 0;

if(x = 0) v :=−cv else if(4 ≤ x ≤ 5) v :=−fv
)

∗
]

(0 ≤ x ≤ 5)

(4)

Is conjecture (4) valid?
Before you read on, see if you can find the answer for yourself.
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3 Events in Control

The problem with the controller in (4) is that, even though it exercises the appropriate
control choice whenever the controller runs, the model does not ensure the controller
would run at all when needed. The paddle control only runs after the differential equa-
tion stops, which could be almost any time. The differential equation is only guaran-
teed to stop when the ball bounces down to the ground (x = 0), because its evolution
domain constraint x ≥ 0 would not be satisfied any longer on its way down. Above
ground, the differential equation model does not provide any constraints on how long
it might evolve. Recall from Lecture 2 on Differential Equations & Domains that the
semantics of differential equations is nondeterministic in that the system can follow a
differential equation any amount of time, as long as it does not violate the evolution do-
main constraints. In particular, the HP in (4) could miss the interesting event 4 ≤ x ≤ 5
that the ping pong ball’s paddle control wanted to respond to. The system might sim-
ply skip over that region by following the differential equation x′ = v, v′ = −g&x ≥ 0
obliviously until the event 4 ≤ x ≤ 5 has passed.

How can the HP from (4) be modified to make sure that the event 4 ≤ x ≤ 5 will
always be noticed and never missed?

Before you read on, see if you can find the answer for yourself.
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Essentially the only way to prevent the system from following a differential equa-
tion for too long is to restrict the evolution domain constraint, which is the predomi-
nant way to make cyber and physics interact. Indeed, that is what the evolution do-
main constraint . . .&x ≥ 0 in (4) did in the first place. Even though this domain was
introduced for different reasons (first principle arguments that light balls never fall
through solid ground), its secondary effect was to make sure that the ground controller
?x = 0; v :=−cv will never miss the right time to take action and reverse the direction
of the ball from falling to climbing.

Note 1 (Evolution domains detect events). Evolution domain constraints of differential
equations in hybrid programs can detect events. That is, they can make sure the system
evolution stops whenever an event happens on which the control wants to take action.
Without such evolution domain constraints, the controller is not necessarily guaranteed to
execute but may miss the event.

Following these thoughts further indicates that the evolution domain somehow ought
to be augmented with more constraints that ensure the interesting event 4 ≤ x ≤ 5 will
never be missed accidentally. How can this be done? Should the event be conjoined to
the evolution domain as follows

0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ f ≥ 0 →
[(

x′ = v, v′ = −g&x ≥ 0 ∧ 4 ≤ x ≤ 5;

if(x = 0) v :=−cv else if(4 ≤ x ≤ 5) v :=−fv
)

∗
]

(0 ≤ x ≤ 5)

Before you read on, see if you can find the answer for yourself.
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Of course not! This evolution domain would be entirely counterfactual and require
the ball to always be at height between 4 and 5, which is hardly the right physical
model. How could the ball ever fall on the ground and bounce back, this way? It
couldn’t.

Yet, on second thought, the way the event x = 0 got detected by the HP was not
by including . . .&x = 0 in the evolution domain constraint, either, but by merely in-
cluding the inclusive limiting constraint . . .&x ≥ 0, which made sure the system could
perfectly well evolve before the event domain x = 0, but that it just couldn’t miss the
event rushing past the event x = 0. What would the inclusion of such an inclusive
limiting constraint correspond to for the intended ping pong paddle event 4 ≤ x ≤ 5?

When the ball is hurled up into the sky, the last point at which action has to be taken
to make sure not to miss the event 4 ≤ x ≤ 5 is x = 5. The corresponding inclusive
limiting constraint x ≤ 5 thus should be somewhere in the evolution domain constraint.

0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ f ≥ 0 →
[(

x′ = v, v′ = −g&x ≥ 0 ∧ x ≤ 5;

if(x = 0) v :=−cv else if(4 ≤ x ≤ 5) v :=−fv
)

∗
]

(0 ≤ x ≤ 5)

(5)

Is this the right model? Is dL formula (5) valid? Will its HP ensure that the critical event
4 ≤ x ≤ 5 will not be missed out on?

Before you read on, see if you can find the answer for yourself.
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Formula (5) is valid. And, yet, (5) is not at all the appropriate formula to consider! It is
crucial to understand why.

First, however, note that the hybrid program in (5) allows the use of the ping pong
paddle anywhere in between the height range 4 ≤ x ≤ 5. Its evolution domain con-
straint enforces that this event 4 ≤ x ≤ 5 will be noticed at the latest at height x = 5.
So when exactly the ping pong paddle is exercised in that range is nondeterministic
(even if the control is written deterministically), because the duration of the differential
equation is still chosen nondeterministically. This allows the ping pong paddle to be
controlled at the last height x = 5 or before it reaches height x = 5 as in Fig. 4.

Figure 4: Sample trajectory of a ping pong ball (plotted as position over time) with the
indicated ping pong paddle actuation range, sometimes actuating early, some-
times late

Notice, however, that (5) does not make sure that the critical event 4 ≤ x ≤ 5 will
not be missed out on in the case of a ball that is bouncing up above the lower trigger 4
but starts falling down again already before it exceeds the upper trigger 5 of the event.
Such a possible behavior of the ping pong ball was already shown in Fig. 2. Yet, this is
not actually problematic, because missing out on the chance of actuating the ping pong
paddle in a situation where it is not needed to ensure height control is just missing an
opportunity for fun, not missing a critical control choice.

But there is a much deeper problem with (5). So, formula (5) is perfectly valid. But
why? Because all runs of the differential equation x′ = v, v′ = −g&x ≥ 0∧x ≤ 5 remain
within the safety condition 0 ≤ x ≤ 5 by construction. None of them are ever allowed to
leave the region x ≥ 0 ∧ x ≤ 5, which, after all, is their evolution domain constraint. So
formula (5) is trivially safe, because it says that a system that is constrained to not leave
x ≤ 5 cannot leave x ≤ 5, which is a rather trivial insight since 5 = 5. A more careful
argument involves that, every time around the loop, the postcondition holds trivially,
because the differential equation’s evolution constraint maintains it by definition, the
subsequent discrete control never changes the only variable x on which the postcon-
dition depends. Hold on, the loop does not have to run but could be skipped over by
zero iterations as well. Yet, in that case, the precondition ensures the postcondition, so,
indeed, (5) is valid, but only trivially so.
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Note 2 (Non-negotiability of Physics). It is a good idea to make systems safe by con-
struction. For computer programs, that is a great idea. But we need to remember that
physics is unpleasantly non-negotiable. So if the only reason why a CPS model is safe is
because we forgot to model all relevant behavior of the real physical system, then correctness
statements about those inadequate models are not particularly applicable to reality.

One common cause for counterfactual models are too restrictive evolution domain con-
straints that rule out physically realistic behavior.

And that is what happened in (5). Quantum got so carried away with trying not to
miss the event 4 ≤ x ≤ 5 that it forgot to include a behavior in the model that takes
place after the event has happened.

Contrast this with the role of the evolution domain constraint . . .&x ≥ 0, which came
into the system because of physics: to model the guaranteed bouncing back on the
ground and to prevent the ball from falling through the ground. The constraint x ≥ 0 is
there for physical reasons. It models the physical limitations of balls which cannot fall
through solid soil. The evolution domain constraint . . .&x ≤ 5 got added to the ping
pong HP for an entirely different reason. It came into play to model what our controller
does, and inaptly so, because our feeble attempt ruled out physical behavior that could
actually have happened in reality. There is no reason to believe that physics would be
so kind to only evolve within x ≤ 5 just because our controller model wants to respond
to an event then. Remember never to do that ever.

Note 3 (Physical constraints versus control constraints). Some constraints of the sys-
tem models are included for physical reasons, other constraints are added later to describe
the controllers. Take care to ensure not to accidentally limit the behavior of physics when
all you meant to do is impose a constraint on your system controller. Physics will not listen
to your desire. This applies to evolution domain constraints but also other aspects of your
system model such as tests. It is fine, for example, to limit the force that the ping pong
paddle is exerting, because that is for the controller to decide. But it is not necessarily a
good idea for a controller to limit or change the values of gravity or damping coefficients,
because that is rather hard to implement without leaving the planet.

Let’s make up for this modeling mishap by developing a model that has both behav-
iors, the behaviors before and after the event, just in different continuous programs so
that the decisive event in the middle could not accidentally have been missed.

0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ f ≥ 0 →
[(

((x′ = v, v′ = −g&x ≥ 0 ∧ x ≤ 5) ∪ (x′ = v, v
′ = −g&x > 5));

if(x = 0) v :=−cv else if(4 ≤ x ≤ 5) v :=−fv
)

∗
]

(0 ≤ x ≤ 5)

(6)

Instead of the single differential equation with a single evolution domain constraint
in (5), the HP in (6) has a (nondeterministic) choice between two differential equations,
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actually both the same, with two different evolution domain constraints. The left con-
tinuous system is restricted to the lower physics space x ≥ 0 ∧ x ≤ 5, the right continu-
ous system is restricted to the upper physics space x > 5. Every time the loop repeats,
there is a choice of either the lower physics equation or the upper physics equation.
But the system can never stay in these differential equations for too long, because, e.g.,
when the ball is below 5 and speeding upwards very fast, then it cannot stay in the
left differential equation above height 5, so it will have to stop evolving continuously
and give the subsequent controller a chance to inspect the state and respond in case the
event 4 ≤ x ≤ 5 happened.

Now dL formula (6) has a much better model of events than the ill-advised (5). Is
formula (6) valid?

Before you read on, see if you can find the answer for yourself.
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The model in (6) is, unfortunately, quite horribly broken. We meant to split the con-
tinuous evolution space into the regions before and after the event 4 ≤ x ≤ 5. But
we overdid it, because the space is now fractured into two disjoint regions, the lower
physics space x ≥ 0 ∧ x ≤ 5 and the upper physics space x > 5. How could the ping
pong ball ever transition from one to the other? Certainly, as the ball moves upwards
within lower physics space x ≥ 0 ∧ x ≤ 5, it will have to stop evolving at x = 5 at the
latest. But then even if the loop repeats, the ball still could not continue in the upper
physics space x > 5, because it is not quite there yet. It is an infinitesimal step away
from x > 5. Of course, Quantum will only ever move continuously along a differen-
tial equation. There is no continuous motion that would take the ball from the region
x ≥ 0∧x ≤ 5 to the disjoint region x > 5. In other words, the HP in (6) has accidentally
modeled that there will never ever be a transition from lower to upper physics space
nor the other way around, because of an infinitesimal gap in between.

Note 4 (Connectedness & disjointness in evolution domains). Evolution domain con-
straints need to be thought out carefully, because they determine the respective regions
within which the system can evolve. Disjoint or unconnected evolution domain constraint
regions often indicate that the model will have to be thought over again, because there can-
not be any continuous transitions from one domain to the other if they are not connected.

Let’s close the infinitesimal gap between x ≥ 0 ∧ x ≤ 5 and x > 5 by including the
boundary x = 5 in both domains:

0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ f ≥ 0 →
[(

((x′ = v, v′ = −g&x ≥ 0 ∧ x ≤ 5) ∪ (x′ = v, v′ = −g&x ≥ 5));

if(x = 0) v :=−cv else if(4 ≤ x ≤ 5) v :=−fv
)

∗
]

(0 ≤ x ≤ 5)

(7)

Now there is a proper separation into lower physics x ≥ 0 ∧ x ≤ 5 and upper physics
x ≥ 5 but the system can be in either physics space at the switching boundary x = 5.
This makes it possible for the ball to pass from lower physics into upper physics or
back, yet only on the boundary x = 5, which, in this case, is the only point that the two
evolution domain constraints have in common.

Now dL formula (7) has a much better model of events than the ill-advised (5). Is
formula (7) valid?

Before you read on, see if you can find the answer for yourself.
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When the ball is jumping up from the ground, the model in (7) makes it impossible for
the controller to miss the event 4 ≤ x ≤ 5, because the only evolution domain constraint
in the HP that applies at the ground is x ≥ 0 ∧ x ≤ 5. And that evolution domain stops
being true above 5. Yet, suppose the ping pong ball was jumping up from the ground
following the continuous program in the left choice and then stopped its evolution
at height x = 4.5, which always remains perfectly within the evolution domain x ≥

0 ∧ x ≤ 5 and is, thus, allowed. Then, after the sequential composition between the
middle and last line of (7), the controller in the last line of (7) runs, notices that the
formula 4 ≤ x ≤ 5 for the event checking is true, and changes the velocity according to
v :=−fv, corresponding to the assumed effect of a pat with the paddle. That is actually
its only choice in such a state, because the controller is deterministic, much unlike the
differential equation. Consequently, the velocity has just become negative since it was
positive before as the ball was climbing up. So the loop can repeat and the differential
equation runs again. Yet, then the differential equation might evolve until the ball is
at height x = 4.25, which will happen since its velocity is negative. If the differential
equation stops then, the controller will run again, determine that 4 ≤ x ≤ 5 is true
still and so take action to change the velocity to v :=−fv again. That will, however,
make the velocity positive again, since it was previously negative as the ball was in the
process of falling. Hence, the ball will keep on climbing now, which, again, threatens
the postcondition 0 ≤ x ≤ 5. Will this falsify (7) or is it valid?

Before you read on, see if you can find the answer for yourself.
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On second thought, that alone still will not cause the postcondition to evaluate to
false , because the only way the bouncing ball can evolve continuously from x = 4.25 is
still by the continuous program in the left choice of (7). And that differential equation
is restricted to the evolution domain x ≥ 0 ∧ x ≤ 5, which causes the controller to run
before leaving x ≤ 5. That is, the event 4 ≤ x ≤ 5 will again be noticed by the controller
so that the ball is ping pong paddle pats the ball back down; see Fig. 5.

Figure 5: Sample trajectory of a ping pong ball (plotted as position over time) with the
controller firing multiple times for the same event

However, the exact same reasoning applies also to the case where the ball success-
fully made it up to height x = 5, which is the height at which any climbing ball has
to stop its continuous evolution, because it would otherwise violate the evolution do-
main x ≥ 0 ∧ x ≤ 5. As soon as that happens, the controller runs, notices that the event
4 ≤ x ≤ 5 came true and responds with a ping pong paddle to cause v :=−fv. If, now,
the loop repeats, yet the continuous evolution evolves for duration zero only, which is
perfectly allowed, then the condition 4 ≤ x ≤ 5 will still be true so that the controller
again notices this “event” and responds with ping pong paddle v :=−fv. That will
make the velocity positive, the loop can repeat, the continuous program on the right of
the choice can be chosen since x ≥ 5 holds true, and then the bouncing ball can climb
and disappear into nothingness high up in the sky if only its velocity has been large
enough. Such a behavior is shown in Fig. 6. The second illustration in Fig. 6 uses the
artistic liberty of delaying the second ping pong paddle use just a tiny little bit to make
it easier to see the two ping pong paddle uses separately, even if that is not actually
quite allowed by the HP model, because such behavior would actually be reflected by
a third ping pong paddle use as in Fig. 5.

Ergo, (7) is not valid. What a pity! The poor Quantum would still have to be afraid
of heights when following the control in (7). How can this problem be resolved?

Before you read on, see if you can find the answer for yourself.
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Figure 6: Sample trajectory of a ping pong ball (plotted as position over time) with the
controller firing multiple times for the same event on the event boundary x =
5 within lower and upper physics
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The problem in (7) is that its left differential equation makes sure never to miss out on
the event 4 ≤ x ≤ 5 but its control may respond to it multiple times. It is not even sure
whether each occasion of 4 ≤ x ≤ 5 should be called an event. But certainly repeated
responses to the same event according to control (7) causes trouble.

Note 5 (Multi-firing of events). In event-driven control, exercise care to ensure whether
you want events to fire only once when they occur for the first time, or whether the system
stays safe even if the same event is detected and responded to multiple times in a row.

One way of solving this problem is to change the condition in the controller to make
sure it only responds to the 4 ≤ x ≤ 5 event when the ball is on its way up, i.e. when its
velocity is not negative (v ≥ 0). That is what Quantum wanted to ensure in any case.
The ping pong paddle should only be actuated downwards when the ball is flying up.

These thoughts lead to the following variation:

0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ f ≥ 0 →
[(

((x′ = v, v′ = −g&x ≥ 0 ∧ x ≤ 5) ∪ (x′ = v, v′ = −g&x ≥ 5));

if(x = 0) v :=−cv else if(4 ≤ x ≤ 5 ∧ v ≥ 0) v :=−fv
)

∗
]

(0 ≤ x ≤ 5)

(8)

Because the paddle action v :=−fv will disable the condition v ≥ 0 for nonzero ve-
locities (Exercise 1), the controller in (8) can only respond once to the event 4 ≤ x ≤ 5
to turn the upwards velocity into a downwards velocity, scaled by f . Unlike in (7), this
control decision cannot be reverted inadvertently by the controller.

Is dL formula (8) valid?
Before you read on, see if you can find the answer for yourself.
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Yes, formula (8) is valid. Note that it is still the case in (8) that, every time around the
loop, there will be a nondeterministic choice to evolve within lower physics x ≥ 0 ∧ x ≤ 5
or within upper physics x ≥ 5. This choice is nondeterministic, so any outcome will be
possible. If the left differential equation is chosen, the subsequent continuous evolution
must be confined to x ≥ 0 ∧ x ≤ 5 and stop before leaving that lower physics region to
give the controller a chance to check for events and respond. If the right differential
equation is chosen, the subsequent continuous evolution must be limited to x ≥ 5 and
must stop before leaving that upper physics region to give the controller a chance to
inspect. In fact, the only way of leaving the upper physics space is downwards (with
velocity v < 0), which, unlike in (7), will not trigger a response from the subsequent
control in (8), because that controller checks for v ≥ 0.

How could dL formula (8) be proved, so that we have unquestionable evidence that
it is, indeed, valid? The most critical element of a proof is finding a suitable invariant.
What could be the invariant for proving (8)?

Before you read on, see if you can find the answer for yourself.
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The formula
5 ≥ x ≥ 0 (9)

is an obvious candidate for an invariant. If it is true, it trivially implies the postcondi-
tion 0 ≤ x ≤ 5 and it holds in the initial state. It is not inductive, though, because a state
that satisfies (9) could follow the second differential equation if it satisfies x ≥ 5. In that
case, if the velocity is positive, the invariant (9) would be violated immediately. Hence,
at the height x = 5, the control has to make sure that the velocity is negative, so that the
right differential equation in (8) has to stop immediately. Could (9) be augmented with
a conjunction v ≤ 0 to form an invariant?

5 ≥ x ≥ 0 ∧ v ≤ 0

No, that would not work either, because the bounce on the ground immediately violates
that invariant, because the whole point of bouncing is that the velocity will become
positive again. In fact, the controller literally only ensures v ≤ 0 at the event, which is
detected at x = 5 at the latest. Gathering these thoughts, it turns out that the dL formula
(8) can be proved in the dL calculus using the invariant:

5 ≥ x ≥ 0 ∧ (x = 5 → v ≤ 0) (10)

This invariant retains that the possible range of x is safe but is just strong enough to
also remember the correct control choice at the event boundary x = 5. It expresses that
the ball is either in lower physics space or at the boundary of both physics spaces. But
if the ball is at the boundary of the physics spaces, then it is moving downward.

That is the reason why (10) is easily seen to be an invariant of (8). The invariant (8)
is initially true, because the ball is initially in range and moving down. The invariant
trivially implies the postcondition, because it consists of the postcondition plus an extra
conjunction. The inductive step is most easily seen by considering cases. If the position
before the loop body ran was x < 5, then the only physics possible to evolve is lower
physics, which, by construction, implies the conjunct 5 ≥ x ≥ 0 from its evolution
domain constraint. The extra conjunct x = 5 → v ≤ 0 is true after the loop body
ran, because, should the height actually be 5, which is the only case for which this extra
conjunct is not already vacuously true, then the controller made sure to turn the velocity
downwards by checking 4 ≤ x ≤ 5 ∧ v ≥ 0 and negating the velocity. If the position
before the loop body ran was x ≥ 5 then the invariant (10) implies that the only position
it could have had is x = 5 in which case either differential equation could be chosen.
Except, if the first differential equation is chosen, the reasoning for inductiveness is as
for the case x < 5. If the second differential equation is chosen, then the invariant (10)
implies that the initial velocity is v ≤ 0, which implies that the only possible duration
that keeps the evolution domain constraint x ≥ 5 of the upper physics true is duration
0, after which nothing changed so the invariant still holds.

Observe how the scrutiny of a proof, which necessitated the transition from the bro-
ken invariant (9) to the provable invariant (10), would have pointed us to subtleties
with events and how ping pong balls would become unsafe if they fired repeatedly. We
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found these issues out by careful formal modeling with our “safety first” approach and
a good dose of Cartesian Doubt. But had we not noticed it, the proof would have not
let us get away with such oversights, because the (unreflected) invariant candidate (9)
would not have worked, nor would the broken controller (7) have been provable.

Finally, recall that (global) invariants need to be augmented with the usual mundane
assumptions about the unchanged variables, like c ≥ 0 ∧ g > 0 ∧ f ≥ 0.

See ≪Event-driven ping pong ball KeYmaera model≫
The model that (8) and the other controllers in this section adhere to is called event-

driven control or sometimes also called event-driven architecture.

Note 6 (Event-driven control). One common paradigm for designing controllers is event-
driven control, in which the controller runs in response to certain events that happen in
the system. The controller could possibly run under other circumstances as well—when
in doubt, the controller simply skips over without any effect if it does not want to change
anything about the behavior of the system. But event-driven controllers assume they will
run for sure whenever certain events in the system happen.

These events cannot be all too narrow, or else the system will not be implementable,
though. For example, it is nearly impossible to build a controller that responds exactly at
the point in time when the height of the bouncing ball is x = 9.8696. Chances are high that
any particular execution of the system will have missed this particular height. Care must
be taken in event-driven design models also that the events do not inadvertently restrict the
evolution of the system to the behavioral cases outside or after the events have happened.
Those executions must still be verified.

Are we sure in model (8) that events are taken into account faithfully? That depends
on what exactly we mean by an event like 4 ≤ x ≤ 5. Do we mean that this event
happens for the first time? Or do we mean every time this event happens? If mul-
tiple successive runs of the ping pong ball’s controller see this condition satisfied, do
these count as the same or separate instances of that event happening? Comparing the
validity of (7) with the non-validity of (7) illustrates that these subtleties can have con-
siderable impact on the system. Hence, a precise understanding of events and careful
modeling is required.

The controller in (8) only takes an action for event 4 ≤ x ≤ 5 when the ball is on the
way up. Hence, the evolution domain constraint in the right continuous evolution is
x ≥ 5. Had we wanted to model the occurrence of event 4 ≤ x ≤ 5 also when the ball
is on its way down, then we would have to have a differential equation with evolution
domain x ≥ 4 to make sure the system does not miss 4 ≤ x ≤ 5 when the ball is on its
way down either, without imposing that it would have to notice x = 5 already. This
could be achieved by splitting the evolution domain regions appropriately, but was
not necessary for (8) since it never responds to balls falling down, only those climbing
up.
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Note 7 (Subtleties with events). Events are a slippery slope and great care needs to be
exercised to use them without introducing an inadequate executional bias into the model.

There is a highly disciplined way of defining, detecting, and responding to general
events in differential dynamic logic based on the there and back again axiom of dif-
ferential dynamic logic [Pla12a]. That is, however, much more complicated than the
simpler account shown here.

Finally, notice that the proof for (8) was entirely independent of the differential equa-
tion and just a consequence of the careful choices of the evolution domain constraint to
reflect the events of interest as well as getting the controller responses to these events
right. That is, ultimately, the reason why the invariant (10) could be so simple. This also
often contributes to making event-driven controllers are easier to get right.

Note 8 (Correct event-driven control). As long as the controller responds in the right
ways to the right events, event-driven controllers can be built rather systematically and are
easier to prove correct. But beware! You have to get the handling of events right, otherwise
you only end up with a proof about counterfactual physics, which is not at all helpful since
your actual CPS then follows an entirely different kind of physics.

Note 9 (Physics versus control). Observe that some parts of hybrid program models
represent facts and constraints from physics, other parts represent controller decisions and
choices. It is a good idea to keep the facts straight and remember which part of a hybrid
program model comes from which. Especially, whenever a constraint is added, because of
a controller decision, it is good practice to carefully think through what happens if this is
not the case. That is how we ended up splitting physics into different evolution domain
constraints, for example.

Partitioning the hybrid program in (8) into the parts that come from physics (typo-
graphically marked like physics) and the parts that come from control (typographically
marked like control) leads to:

0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ f ≥ 0 →
[(

((x′ = v, v′ = −g&x ≥ 0 ∧ x ≤ 5) ∪ (x′ = v, v′ = −g&x ≥ 5));

if(x = 0) v :=−cv else if(4 ≤ x ≤ 5 ∧ v ≥ 0) v :=−fv
)

∗
]

(0 ≤ x ≤ 5)

(8)

Note that there could have been a second evolution domain constraint x ≥ 0 for the
physics in the second differential equation, but that evolution domain constraint was
elided, because it is redundant in the presence of the evolution domain constraint x ≥ 5
coming from the controller. Observe that only controller constraints have been added
compared to the initial physical model of the bouncing ball (1) that was entirely physics.
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4 Summary

This lecture studied event-driven control, which is one important principle for design-
ing feedback mechanisms in CPS and embedded systems. The lecture illustrated the
most important aspects for a running example of a ping pong ball. Even if the ping
pong ball may not be the most exciting application of control in the world, the effects
and pitfalls of events in control were sufficiently subtle to merit focusing on a simple
intuitive case.

Event-driven control assumes that all events are detected perfectly and right away.
The event-driven controller in (8) took some precautions by defining the event of inter-
est for using the ping pong paddle to be 4 ≤ x ≤ 5. This may look like a big event in
space to be noticed in practice, except when the ball moves too quickly, in which case
the event 4 ≤ x ≤ 5 is over rather quickly. However, the model still has x ≤ 5 as a
hard limit in the evolution domain constraint to ensure that the event would never be
missed in its entirety as the ball is rushing upwards.

Event-driven control assumes permanent continuous sensing of the event of inter-
est, because the hard limit of the event is ultimately reflected in the evolution domain
constraint of the differential equation. This evolution domain constraint is checked
permanently according to its semantics (Lecture 3 on Choice & Control).

Exercises

Exercise 1. Can the ping pong paddle in (8) ever respond to the event 4 ≤ x ≤ 5 twice
in a row? What would happen if it did?

Exercise 2. Is the following formula an invariant for proving (8)?

0 ≤ x ≤ 5 ∧ (x = 5 → v ≤ 0) ∧ (x = 0 → v ≥ 0)

Exercise 3. Would the invariant (10) succeed in proving a variation of (8) in which the
controller conjunction ∧v ≥ 0 is removed? If so explain why. If not, explain which part
of the proof will fail.

Exercise 4. Would a generalization of formula (8) be valid in which the assumption v ≤ 0
on the initial state is dropped? If yes, give a proof. If not, show a counterexample and
explain how to fix this problem in a way that leads to a generalization of (8) that is still
a valid formula.

Exercise 5. Could we replace the two differential equations in (8) with a single differen-
tial equation and a disjunction of their evolution domain constraints instead to retain a
valid formula?

0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ f ≥ 0 →
[(

(x′ = v, v′ = −g&(x ≥ 0 ∧ x ≤ 5) ∨ x ≥ 5);

if(x = 0) v :=−cv else if(4 ≤ x ≤ 5 ∧ v ≥ 0) v :=−fv
)

∗
]

(0 ≤ x ≤ 5)
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Exercise 6. Conduct a sequent proof proving the validity of dL formula (8). Track which
assumptions are used for which case.

Exercise 7. The hybrid program in (5) was an inadequate model of physics because it
terminated the world beyond height 5. Model (7) fixed this by introducing the same dif-
ferential equation with the upper physics world and a nondeterministic choice. Would
the following model have worked just as well? Would it be valid? Would it be an
adequate model?

0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ f ≥ 0 →
[(

x′ = v, v′ = −g&x ≥ 0 ∧ (x = 5 → v ≤ 0);

if(x = 0) v :=−cv else if(4 ≤ x ≤ 5) v :=−fv
)

∗
]

(0 ≤ x ≤ 5)

Would the evolution domain constraint . . .&x ≥ 0 ∧ x 6= 5 have fixed the deficiency?

Exercise 8. What happens if we add an inner loop to (8)? Will the formula be valid? Will
it be an adequate model of physics?

0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ f ≥ 0 →
[(

((x′ = v, v′ = −g&x ≥ 0 ∧ x ≤ 5) ∪ (x′ = v, v′ = −g&x ≥ 5))∗;

if(x = 0) v :=−cv else if(4 ≤ x ≤ 5 ∧ v ≥ 0) v :=−fv
)

∗
]

(0 ≤ x ≤ 5)

Exercise 9 (*). Design a variation of the event-driven controller for the ping pong ball
that is allowed to use the ping pong paddle within height 4 ≤ x ≤ 5 but has a relaxed
safety condition that accepts 0 ≤ x ≤ 2 · 5. Make sure to only force the use of the ping
pong paddle when necessary. Find an invariant and conduct a proof.
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15-424: Foundations of Cyber-Physical Systems

Lecture Notes on

Reactions & Delays

André Platzer

Carnegie Mellon University
Lecture 9

1 Introduction

Lecture 7 on Control Loops & Invariants explained the central proof principle for loops
based on induction using invariants. Lecture 8 on Events & Responses studied the im-
portant feedback mechanism of event-driven control and made crucial use of invariants
for rigorously reasoning about event-driven control loops. Those invariants uncovered
important subtleties with events that could be easily missed. In Lecture 8 on Events
& Responses, we, in fact, already noticed these subtleties thanks to our “safety first”
approach to CPS design, which guided us to exercise the scrutiny of Cartesian Doubt
on the CPS model before even beginning a proof.

But, even if the final answer for the event-driven controller for ping pong balls was
rather clear and systematic, event-driven control had an unpleasantly large number of
modeling subtleties in store for us. Furthermore, event-driven control has a rather high
level of abstraction, because it assumes that all events would be detected perfectly and
right away in continuous sensing. However, the event-driven model had x ≤ 5 as a
hard limit in the evolution domain constraint to ensure that the event 4 ≤ x ≤ 5 would
never be missed as the ball is rushing upwards.

As soon as we want to implement such an event detection, it becomes clear that
real controller implementations can only perform discrete sensing, i.e. checking sensor
data every once in a while at certain discrete points in time, whenever the measure-
ment comes from the sensor and the controller has a chance to run. Most controller
implementations would, thus, only end up checking for an event every once in a while,
whenever the controller happens to run, rather than permanently as event-driven con-
trollers pretend.

Today’s lecture focuses on the second important paradigm for making cyber interface
with physics to form cyber-physical systems. The paradigm of time-triggered control,
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which uses periodic actions to affect the behavior of the system at certain frequencies.
This is to be contrasted with the paradigm from Lecture 8 on Events & Responses of
event-driven control, where responses to events dominate the behavior of the system
and an action is taken whenever one of the events is observed. Both paradigms play
an equally important role in classical embedded systems and both paradigms fall out
naturally from an understanding of the hybrid program principle for CPS.

These lecture notes are loosely based on [Pla12, Pla10].
Based on the understanding of loops from Lecture 7 on Loops & Invariants, the most

important learning goals of this lecture are:

Modeling and Control: Today’s lecture provides a number of crucial lessons for mod-
eling CPS and designing their controls. We develop an understanding of time-
triggered control, which is an important design paradigm for control loops in
CPS. This lecture studies ways of developing models and controls corresponding
to this feedback mechanism, which will turn out to be surprisingly subtle to con-
trol. Knowing and contrasting both event-driven and time-triggered feedback
mechanisms helps with identifying relevant dynamical aspects in CPS coming
from events and reaction delays. Today’s lecture focuses on CPS models assum-
ing discrete sensing, i.e. sensing at (nondeterministic) discrete points in time.

Computational Thinking: This lecture uses the rigorous reasoning approach from Lec-
ture 5 on Dynamical Systems & Dynamic Axioms and Lecture 7 on Loops & Con-
trol to study CPS models with time-triggered control. As a running example, the
lecture continues to develop the extension from bouncing balls to ping pong balls,
now using time-triggered control. We again add control decisions to the bounc-
ing ball, turning it into a ping pong ball, which retains the intuitive simplicity of
the bouncing ball, while enabling us to develop generalizable lessons about how
to design time-triggered control systems correctly. The lecture will also crucially
study invariants and show a development of the powerful technique of design-
by-invariant in a concrete example. While the lecture could hardly claim showing
how to verify CPS models of appropriate scale, the basics laid in this lecture defi-
nitely carry significance for numerous practical applications.

CPS Skills: This lecture develops an understanding for the semantics of time-triggered
control. This understanding of the semantics will also guide our intuition of the
operational effects of time-triggered control and especially the impact it has on
finding correct control constraints. Finally, the lecture studies some aspects of
higher-level model-predictive control, which will be followed up on later in the
course.
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http://symbolaris.com/course/fcps16/08-events.pdf
http://symbolaris.com/course/fcps16/07-loops.pdf
http://symbolaris.com/course/fcps16/05-dynax.pdf
http://symbolaris.com/course/fcps16/05-dynax.pdf
http://symbolaris.com/course/fcps16/07-loops.pdf
http://symbolaris.com/course/fcps16/07-loops.pdf


Reactions & Delays L9.3

CT

M&C CPS

using loop invariants
design time-triggered control
design-by-invariant

modeling CPS
designing controls
time-triggered control
reaction delays
discrete sensing

semantics of time-triggered control
operational effect
finding control constraints
model-predictive control

2 Delays in Control

Event-driven control is a useful and intuitive model matching our expectation of hav-
ing controllers react in response to certain critical conditions or events that necessitate
intervention by the controller. Yet, one of its difficulties is that event-driven control
with its continuous sensing assumption can be hard or impossible to implement in re-
ality. On a higher level of abstraction, it is very intuitive to design controllers that react
to certain events and change the control actuation in response to what events have hap-
pened. Closer to the implementation, this turns out to be difficult, because actual com-
puter control algorithms do not actually run all the time, only sporadically every once
in a while, albeit sometimes very often. Implementing event-driven control faithfully
would, in principle, requires permanent continuous monitoring of the state to check
whether an event has happened. That is not particularly realistic, because fresh sensor
data will only be available every once in a while, and controller implementations will
only run at certain discrete points in time causing delays in processing, and because
actuators may sometimes take quite some time to get going. Think of the reaction time
it takes you to turn the insight “I want to hit this ping pong ball there” into action so
that your ping pong paddle will actually hit the ping pong ball.

Back to the drawing desk. Let us reconsider the original dL formula (1) for the ping
pong ball (Fig. 1) that we started out from for designing the event-driven version in
Lecture 8 on Events & Responses.

0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ f ≥ 0 →
[(

x′ = v, v′ = −g&x ≥ 0;

if(x = 0) v :=−cv else if(4 ≤ x ≤ 5) v :=−fv
)

∗
]

(0 ≤ x ≤ 5)

(1)

This simplistic formula (1) turned out not to be valid, because its differential equa-
tion was not guaranteed to be interrupted when the event 4 ≤ x ≤ 5 happens. Conse-
quently, (1) needs some other evolution domain constraint to make sure all continuous
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Figure 1: Sample trajectory of a ping pong ball (plotted as position over time) with the
indicated ping pong paddle actuation range, sometimes actuating early, some-
times late

evolutions are stopped at some point for the control to have a chance to react to situa-
tion changes. Yet, it should not be something like . . .&x ≤ 5 as in Lecture 8 on Events &
Responses, because continuously monitoring for x ≤ 5 requires permanent continuous
sensing of the height, which is difficult to implement.

Note 1 (Physical versus controller events). Observe that the event x = 0 in the (physics)
controller as well as the (physics) evolution domain constraint x ≥ 0 for detecting the event
x = 0 are perfectly justified in bouncing ball and ping pong ball models, because both rep-
resent physics. And physics is very well capable of keeping a ball above the ground, no
matter how much checking for x = 0 it takes to make that happen. It is just in our con-
troller code that we need to exercise care when modeling events and their reactions, because
the controller implementations will not have the privilege that physics possesses of run-
ning all the time. Cyber happens every once in a while (even if it may run quickly), while
physics happens all the time.

How else could the continuous evolution of physics be interrupted to make sure the
controller actually runs? By bounding the amount of time that physics is allowed to
evolve before running the controller again. Before we can talk about time, the model
needs to be changed to include a variable, say t, that reflects the progress of time with
a differential equation t′ = 1.

0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ f ≥ 0 →
[(

x′ = v, v′ = −g, t′ = 1&x ≥ 0 ∧ t ≤ 1;

if(x = 0) v :=−cv else if(4 ≤ x ≤ 5) v :=−fv
)

∗
]

(0 ≤ x ≤ 5)

(2)

In order to bound time by 1, the evolution domain now includes . . .& t ≤ 1 and declares
that the clock variable t evolves with time as t′ = 1. Oops, that does not actually quite
do it, because the HP in (2) restricts the evolution of the system so that it will never ever
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evolve beyond time 1, no matter how often the loop repeats. That is not what we meant
to say. Rather we wanted the duration of each individual continuous evolution limited
to at most one second. The trick is to reset the clock t to zero before the continuous
evolution starts:

0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ f ≥ 0 →
[(

t := 0; (x′ = v, v′ = −g, t′ = 1&x ≥ 0 ∧ t ≤ 1);

if(x = 0) v :=−cv else if(4 ≤ x ≤ 5) v :=−fv
)

∗
]

(0 ≤ x ≤ 5)

(3)

In order to bound time by 1, the evolution domain now includes . . .& t ≤ 1 and the
variable t is reset to 0 by t := 0 right before the differential equation. Hence, t represents
a local clock measuring how long the evolution of the differential equation was. Its
bound of 1 ensures that physics gives the controller a chance to react at least once per
second. The system could very well stop the continuous evolution more often and
earlier, because there is no lower bound on t in (3). Also see Exercise 1.

Before going any further, let’s take a step back to notice an annoyance in the way
the control in (3) was written. It is written in the style that the original bouncing ball
and the event-driven ping pong ball were phrased: continuous dynamics followed by
control. That has the unfortunate effect that (3) lets physics happen before control does
anything, which is not a very safe start. In other words, the initial condition would have
to be modified to assume the initial control was fine. That is a nuisance duplicating
part of the control into the assumptions on the initial state. Instead, let’s switch the
statements around to make sure control always happens before physics does anything.

0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ f ≥ 0 →
[(

if(x = 0) v :=−cv else if(4 ≤ x ≤ 5) v :=−fv;

t := 0; (x′ = v, v′ = −g, t′ = 1&x ≥ 0 ∧ t ≤ 1)
)

∗
]

(0 ≤ x ≤ 5)

(4)

Now that dL formula (4) has an upper bound on the time it takes between two sub-
sequent control actions, is it valid? If so, which invariant can be used to prove it? If not,
which counterexample shows its invalidity?

Before you read on, see if you can find the answer for yourself.
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Figure 2: Sample trajectory of a time-triggered ping pong ball (as position over time),
missing the first event

Even though (4) ensures a bound on how long it may take at most until the controller
inspects the state and reacts, there is still a fundamental issue with (4). We can try to
prove (4) and inspect the non-provable cases in the proof to find out what the issue is.
The controller of (4) runs at least after one second (hence at least once per second) and
then checks whether 4 ≤ x ≤ 5. But if 4 ≤ x ≤ 5 was not true when the controller
ran last, there is no guarantee that it will be true when the controller runs next. In fact,
the ball might very well have been at x = 3 at the last controller run, then evolved
continuously to x = 6 within a second and so missed the event 4 ≤ x ≤ 5 that it was
supposed to detect (Exercise 2); see Fig. 2. Worse than that, the ping pong ball has then
already become unsafe.

For illustration, driving a car would be similarly unsafe if you would only open your
eyes once a second and monitor whether there is a car right in front of you. Too many
things could have happened in between that should have prompted you to brake.

Note 2 (Delays may miss events). Delays in controller reactions may cause events to
be missed that they were supposed to monitor. When that happens, there is a discrepancy
between an event-driven understanding of a CPS and the real time-triggered implementa-
tion. That happens especially for slow controllers monitoring small regions of a fast moving
system. This relationship deserves special attention to make sure the impact of delays on a
system controller cannot make it unsafe.

It is often a good idea to first understand and verify an event-driven design of a CPS
controller and then refine it to a time-triggered controller to analyze and verify that CPS
in light of its reaction time. Discrepancies in this analysis hint at problems that event-
driven designs will likely experience at runtime and they indicate a poor event abstraction.

How can this problem of (4) be solved? How can the CPS model make sure the
controller does not miss its time to take action? Waiting until 4 ≤ x ≤ 5 holds true is
not guaranteed to be the right course of action for the controller.

Before you read on, see if you can find the answer for yourself.
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The problem with (4) is that its controller is unaware of its own delay. It does not take
into account how the ping pong ball could have moved further before it gets a chance
to react next. If the ball is already close to the ping pong paddle’s intended range of
actuation, then the controller had better take action already if it is not sure whether
next time will still be fine.

The controller would be in trouble if x > 5 might already hold in its next control
cycle after the continuous evolution, which will be outside the operating range of the
ping pong paddle (and already unsafe). Due to the evolution domain constraint, the
continuous evolution can take at most 1 time unit, after which the ball will be at position
x + v −

g

2
as Lecture 4 already showed by solving the differential equation. Choosing

gravity g = 1 to simplify the math, the controller would be in trouble in the next control
cycle after 1 second which would take the ball to position x + v − 1

2
> 5 if x > 51

2
− v

holds now.
The idea is to make the controller now act based on how it estimates the state might

have evolved until the next control cycle (this is a very simple example of model-
predictive control). Lecture 8 on Events & Responses already discovered for the event-
driven case that the controller only wants to trigger action if the ball is flying up, not if
it is already flying down. Thus, making (4) aware of the future in this way leads to:

0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g = 1 > 0 ∧ 1 ≥ c ≥ 0 ∧ f ≥ 0 →

[(

if(x = 0) v :=−cv else if((x > 5
1

2
− v) ∧ v ≥ 0) v :=−fv;

t := 0; (x′ = v, v′ = −g, t′ = 1&x ≥ 0 ∧ t ≤ 1)
)

∗
]

(0 ≤ x ≤ 5)

(5)

Is conjecture (5) about its future-aware controller valid? If so, which invariant can be
used to prove it? If not, which counterexample shows its invalidity?

Before you read on, see if you can find the answer for yourself.
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The controller in formula (5) has been designed based on the prediction that the fu-
ture may evolve for 1 time unit. If an action will no longer be possible in 1 time unit,
because the event x ≤ 5 has passed in that future time instant, then the controller in (5)
takes action right now already. The issue with that, however, is that there is no guar-
antee at all that the ping pong ball will fly for exactly 1 time unit before the controller
is asked to act again (and the postcondition is checked). The controller in (5) checks
whether the ping pong ball could be too far up after one time unit and does not inter-
vene unless that is the case. Yet, what if the ball only flies for 1

2
time units? Clearly, if

the ball will be safe after 1 time unit, which is what the controller in (5) checks, it will
also be safe after just 1

2
time unit, right?

Before you read on, see if you can find the answer for yourself.
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Wrong! The ball may well be below 5 after 1 time unit but still could have been above
5 in between the current point of time and the time that is 1 time unit from now. Then
the safety of the controller will be a mere rope of sand, because controller will have a
false sense of safety after having checked what happens 1 time unit from now, ignoring
whether it was safe until then. Such trajectories are shown in Fig. 3 from the same
initial state and the same controller with different sampling periods. Such a bouncing
ball would not be safe if it has been above 5 in between two sampling points.

Figure 3: Sample trajectory of a time-triggered ping pong ball (as position over time),
missing different events with different sampling periods

In order to get to the bottom of this, recall the invariant for the bouncing ball identi-
fied in Lecture 4 on Safety & Contracts and then used in Lecture 7 on Loops & Invariants
to prove safety of the bouncing ball:

2gx = 2gH − v2 ∧ x ≥ 0 ∧ c = 1 ∧ g > 0 (6)

This formula was proved to be an invariant of the bouncing ball, which means it holds
true always while the bouncing ball is bouncing around. Invariants are the most crucial
information about the behavior of a system that we can rely on all the time. Since (6) is
only an invariant of the bouncing dynamics not the ping pong ball, it, of course, only
holds until the ping pong paddle hits, which changes the control. But until the ping
pong paddle is used, (6) summarizes concisely what we know about the state of the
bouncing ball at all times. Of course, (6) is an invariant of the bouncing ball, but it
still needs to be true initially. The easiest way to make that happen is to assume (6)
in the beginning of the ping pong ball’s life.1 Because Lecture 7 only conducted the
proof of the bouncing ball invariant (6) for the case c = 1 to simplify the arithmetic,
the ping pong ball now adopts this assumption as well. To simplify the arithmetic and
arguments, also adopt the assumption f = 1 in addition to c = 1 ∧ g = 1 for the proofs.

1Note that H is a variable that does not need to coincide with the upper height limit 5 like it did in the
case of the bouncing ball, because the ping pong ball has more control at its fingertips. In fact, the most
interesting case is if H > 5 in which case the ping pong ball will only stay safe because of its control.
One way to think of H is as an indicator for the energy of the ball showing how high it might jump up
if it would not be for all its interaction with the ground and the ping pong paddle.
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Substituting the safety-critical height 5 for H in the invariant (6) for this instance of
parameter choices leads to the following condition

2x > 2 · 5− v2 (7)

as an indicator for the fact that the ball might end up climbing too high, because its
energy would allow it to. Adding this condition (7) to the controller (5) leads to:

2x = 2H − v2 ∧ 0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g = 1 > 0 ∧ 1 = c ≥ 0 ∧ 1 = f ≥ 0 →

[(

if(x = 0) v :=−cv else if((x > 5
1

2
− v ∨ 2x > 2 · 5 − v2) ∧ v ≥ 0) v :=−fv;

t := 0; (x′ = v, v′ = −g, t′ = 1&x ≥ 0 ∧ t ≤ 1)
)

∗
]

(0 ≤ x ≤ 5)

(8)

Recall that the bouncing ball invariant (6) is now assumed to hold in the initial state.
Is dL formula (8) about its time-triggered controller valid? As usual, use an invariant

or a counterexample for justification.
Before you read on, see if you can find the answer for yourself.
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Formula (8) is “almost valid”. But it is still not valid for a very subtle reason. It is
great to have proof to catch those subtle issues. The controller in (8) takes action for
two different conditions on the height x. However, the ping pong paddle controller
actually only runs in (8) if the ball is not at height x = 0, for otherwise ground control
takes action of reversing the direction of the ball. Now, if the ball is flat on the floor
already (x = 0) yet its velocity so incredibly high that it will rush past height 5 in less
than 1 time unit, then the ping pong paddle controller will not even have had a chance
to react before it is too late, because it does not execute on the ground according to (8);
see Fig. 4.

Figure 4: Sample trajectory of a time-triggered ping pong ball (as position over time),
failing to control on the ground

Fortunately, these thoughts already indicate how that problem can be fixed. By turn-
ing the nested if-then-else cascade into a sequential composition of two separate
if-then that will ensure the ping pong paddle controller to run for sure even if the
bouncing ball is still on the ground (Exercise 3).

2x = 2H − v2 ∧ 0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g = 1 > 0 ∧ 1 = c ≥ 0 ∧ 1 = f ≥ 0 →

[(

if(x = 0) v :=−cv ; if((x > 5
1

2
− v ∨ 2x > 2 · 5− v2) ∧ v ≥ 0) v :=−fv;

t := 0; (x′ = v, v′ = −g, t′ = 1&x ≥ 0 ∧ t ≤ 1)
)

∗
]

(0 ≤ x ≤ 5)

(9)

Now, is formula (9) finally valid, please? If so, using which invariant? Otherwise,
show a counterexample.

Before you read on, see if you can find the answer for yourself.
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Yes, formula (9) is valid. What invariant can be used to prove formula (9)?
Formula (9) is valid, which, for the case g = c = f = 1, can be proved with the

following invariant:
2x = 2H − v2 ∧ x ≥ 0 ∧ x ≤ 5 (10)

This invariant instantiates (6) for the present case of parameter choices and augments
it with the desired safety constraint x ≤ 5.

Yet, is the controller in (9) useful? That is where the problem lies now. The condition
(7) that is the second disjunct in the controller of (9) checks whether the ping pong ball
could possibly ever fly up to height 5. If this is ever true, it might very well be true long
before the bouncing ball even approaches the critical control cycle where a ping pong
paddle action needs to be taken. In fact, if (7) is ever true, it will also be true in the very
beginning. After all, the formula (6), from which condition (7) derived, is an invariant,
so always true for the bouncing ball. What would that mean?

That would cause the controller in (9) to take action right away at the mere prospects
of the ball ever being able to climb way up high, even if the ping pong ball is still
close to the ground and pretty far away from the last triggering height 5. That would
make the ping pong ball safe, after all (9) is a valid formula. But it would also make it
rather conservative and would not allow the ping pong ball to bounce around nearly as
much as it would have loved to. It would basically make the bouncing ball lie flat on the
ground, because of an overly anxious ping pong paddle. That would be a horrendously
acrophobic bouncing ball if it never even started bouncing around in the first place.
And the model would even require the (model) world to end, because there can be no
progress beyond the point in time where the ball gets stuck on the ground. How can
the controller in (9) be modified to resolve this problem?

Figure 5: Sample trajectory of a time-triggered ping pong ball (as position over time),
stuck on the ground

Before you read on, see if you can find the answer for yourself.
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Note 3 (Zeno paradox). There is something quite surprising about how (9) may cause
the time to freeze. But, come to think of it, time did already freeze in mere bouncing balls.

The duration between two hops on the ground in a bouncing ball keeps on decreasing
rapidly. If, for simplicity, the respective durations are 1, 1

2
, 1
4
, 1
8
, . . ., then these durations

sum to
∞
∑

i=0

1

2i
=

1

1− 1

2

= 2

which shows that the bouncing ball model will make the (model) world stop to never reach
time 2 nor any time after. Hence, the bouncing ball model disobeys what is called divergence
of time, i.e. that the real time keeps diverges to ∞. The reason this happens is that the
bouncing ball keeps on switching directions on the ground more and more frequently. This
is very natural for bouncing balls, but can cause subtleties and issues in other systems if
they switch infinitely often in finite time.

The name Zeno paradox comes from the Greek philosopher Zeno (ca. 490–430 BC) who
found a paradox when fast runner Achilles gives the slow Tortoise a head start of 100 meters
in a race: In a race, the quickest runner can never overtake the slowest, since the pursuer
must first reach the point whence the pursued started, so that the slower must always hold
a lead. – recounted by Aristotle, Physics VI:9, 239b15

Pragmatic solutions for the Zeno paradox in bouncing balls add a statement that make
the ball stop when the remaining velocity on the ground is too small. For example:

if(x = 0 ∧ −0.1 < v < −0.1) v := 0;x′ = 0

The idea is to restrict the use of the second if-then disjunct (7) in (9) to slow velocities
in order to make sure it only applies to the occasions that the first controller disjunct
x > 51

2
− v misses, because the ball will have been above height 5 in between. Only

with slow velocities will the ball ever move so slowly that it is near its turning point to
begin its descent and start falling down again before 1 time unit. And only then could
the first condition miss out on the ball being able to evolve above 5 before 1 time unit.
When is a velocity slow in this respect?
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For the ball to turn around and descend, it first needs to reach velocity v = 0 by conti-
nuity (during the flying phase) on account of the mean-value theorem. In gravity g = 1
the ball can reach velocity 0 within 1 time unit exactly when its velocity was v < 1 be-
fore the differential equation, because the velocity changes according to v(t) = v − gt.
Consequently, adding a conjunct v < 1 to the second disjunct in the controller makes
sure that the controller only checks for turnaround when it might actually happen dur-
ing the next control cycle.

2x = 2H − v2 ∧ 0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g = 1 > 0 ∧ 1 = c ≥ 0 ∧ 1 = f ≥ 0 →

[(

if(x = 0) v :=−cv; if((x > 5
1

2
− v ∨ 2x > 2 · 5− v2 ∧ v < 1) ∧ v ≥ 0) v :=−fv;

t := 0; (x′ = v, v′ = −g, t′ = 1&x ≥ 0 ∧ t ≤ 1)
)

∗
]

(0 ≤ x ≤ 5)
(11)

This dL formula is valid and provable with the same invariant (10) that was already
used to prove (9). It has a much more aggressive controller than (9), though, so it is
more fun for the ping pong ball to bounce around with it.

The easiest way of proving that dL formula (11) is valid using invariant (10) is to
show that the invariant (10) holds after every line of code. Formally, this reasoning by
lines corresponds to a number of uses of the generalization proof rule MR to show that
the invariant (11) remains true after each line if it was true before. The first statement
if(x = 0) v :=−cv does not change the truth-value of (10), i.e.

2x = 2H − v2 ∧ x ≥ 0 ∧ x ≤ 5 → [if(x = 0) v :=−cv](2x = 2H − v2 ∧ x ≥ 0 ∧ x ≤ 5)

is valid, because, when c = 1, the statement can only change the sign of v and (10) is
independent of signs, because the only occurrence of v satisfies (−v)2 = v2. Likewise,
the second statement if((x > 51

2
− v ∨ 2x > 2 · 5− v2 ∧ v < 1) ∧ v ≥ 0) v :=−fv does

not change the truth-value of (10), i.e.

2x = 2H − v2 ∧ x ≥ 0 ∧ x ≤ 5 →

[if((x > 5
1

2
− v ∨ 2x > 2 · 5− v2 ∧ v < 1) ∧ v ≥ 0) v :=−fv](2x = 2H−v2∧x ≥ 0∧x ≤ 5)

is valid, because, for f = 1, the second statement can also only change the sign of v,
which is irrelevant for the truth-value of (10). Finally, the relevant parts of (10) are a
special case of (6), which has already been shown to be an invariant for the bouncing
ball differential equation in Lecture 7 on Loops & Invariants and, thus, continues to
be an invariant when adding a clock t′ = 1& t ≤ 1, which does not occur in (10). The
additional invariant x ≤ 5 that (10) has compared to (6) is easily taken care off using the
corresponding knowledge about H .

Recall that (global) invariants need to be augmented with the usual trivial assump-
tions about the unchanged variables: g = 1 ∧ 1 = c ∧ 1 = f .

See ≪Time-triggered ping pong ball KeYmaera model≫
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Note 4 (Time-triggered control). One common paradigm for designing controllers is
time-triggered control, in which controllers run periodically or pseudo-periodically with
certain frequencies to inspect the state of the system. Time-triggered systems are closer to
implementation than event-driven control. They can be harder to build, however, because
they invariably require the designer to understand the impact of delay on control decisions.
That impact is important in reality, however, and, thus, effort invested in understanding
the impact of time delays usually pays off in designing a safer system that is robust to
bounded time delays.

Partitioning the hybrid program in (11) into the parts that come from physics (typo-
graphically marked like physics) and the parts that come from control (typographically
marked like control) leads to:

2x = 2H − v2 ∧ 0 ≤ x ∧ x ≤ 5 ∧ v ≤ 0 ∧ g = 1 > 0 ∧ 1 = c ≥ 0 ∧ 1 = f ≥ 0 →

[(

if(x = 0) v :=−cv; if((x > 5
1

2
− v ∨ 2x > 2 · 5− v2 ∧ v < 1) ∧ v ≥ 0) v :=−fv;

t := 0; (x′ = v, v′ = −g, t′ = 1&x ≥ 0 ∧ t ≤ 1)
)

∗
]

(0 ≤ x ≤ 5)
(11)

Note how part of the differential equation, namely t′ = 1, comes from the controller,
because it corresponds to putting a clock or on the controller and running it with at
least the sampling frequency 1 (coming from the evolution domain constraint t ≤ 1).

3 Summary

This lecture studied time-triggered control, which, together with event-driven control
from Lecture 8 on Events & Responses, is an important principle for designing feedback
mechanisms in CPS and embedded systems. The lecture illustrated the most important
aspects for a running example of a ping pong ball. Despite or maybe even because
of its simplicity, the ping pong ball was an instructive source for the most important
subtleties involved with time-triggered control decisions. Getting time-triggered con-
trollers correct requires predictions about how the system state might evolve over short
periods of time (one control cycle). The effects and subtleties of time-triggered actions
in control were sufficiently subtle to merit focusing on a simple intuitive case.

Unlike event-drive control, which assumes continuous sensing, time-triggered con-
trol is more realistic by only assuming the availability and processing of sensor data
at discrete instants of time (discrete sensing). Time-triggered system models avoid the
modeling subtleties that events tend to cause for the detection of events. It is, thus,
often much easier to get the models right for time-triggered systems than it is for event-
driven control. The price is that the burden of event-detection is then brought to the
attention of the CPS programmer, whose time-triggered controller will now have to en-
sure it predicts and detects events early enough before it is too late to react to them.
That is what makes time-triggered controllers more difficult to get correct, but is also

15-424 LECTURE NOTES ANDRÉ PLATZER
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crucial because important aspects of reliable event detection may otherwise be brushed
under the rug, which does not exactly help the final CPS become any safer either.

CPS design often begin by pretending the idealized world of event-driven control
(if the controller is not even safe when events are checked and responded to continu-
ously, it is broken already) and then subsequently morphing the event-driven controller
into a time-triggered controller. This second step then often indicates additional sub-
tleties that were missed in the event-driven designs. The additional insights gained in
time-triggered controllers are crucial whenever the system reacts slowly or whenever it
reacts fast but needs a high precision to remain safe. For example, the reaction time for
ground control decisions to reach a rover on Mars are so prohibitively large that they
could hardly be ignored. Reaction times in a surgical robotics system that is running at,
say, 55Hz, are still crucial even if the system is moving slow and reacting fast, because
the required precision of the system is in the sub-millimeter range [KRPK13].

Overall, the biggest issues with event-driven control, besides sometimes being hard
to implement, is the subtleties involved in properly modeling event detection without
accidentally defying the laws of physics in pursuit of an event. But controlling event-
driven systems is reasonably straight-forward as long as the events are chosen well.
Finding a model is comparably canonical in time-triggered control, but identifying the
controller constraints takes a lot more thought, leading, however, to important insights
about the system at hand.

Exercises

Exercise 1. The HP in (4) imposes an upper bound on the duration of a continuous
evolution. How can you impose an upper bound 1 and a lower bound 0.5?

Exercise 2. Give an initial state for which the controller in (4) would skip over the event
without noticing it.

Exercise 3. What would happen if the controller in (9) uses the ping pong paddle while
the ball is still on the ground? To what physical phenomenon does that correspond?

Exercise 4. The formula (11) with the time-triggered controller of reaction time at most
1 time unit is valid. Yet, if a ball is let loose a wee bit above ground with a very fast
negative velocity, couldn’t it possibly bounce back and exceed the safe height 5 faster
than the reaction time of 1 time unit? Does that mean the formula ought to have been
falsifiable? No! Identify why and give a physical interpretation.

Exercise 5. The controller in (11) ran at least once a second. How can you change the
model and controller so that it runs at least twice a second? What changes can you do
in the controller to reflect that increased frequency? How do you need to change (11) if
the controller only runs at least once every two seconds?

Exercise 6. Conduct a sequent proof proving the validity of dL formula (10). Is it easier
to follow a direct proof or is it easier to use the generalization rule ?? for the proof?
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Exercise 7. The event-driven controller we designed in Lecture 8 on Events & Responses
monitored the event 4 ≤ x ≤ 5. The time-triggered controller in Sect. 2, however, ulti-
mately only took the upper bound 5 into account. How and under which circumstances
can you modify the controller so that it really only reacts for the event 4 ≤ x ≤ 5 rather
than under all circumstances where the ball is in danger of exceeding 5?

Exercise 8. Devise a controller that reacts if the height changes by 1 when comparing
the height before the continuous evolution to the height after. Can you make it safe?
Can you implement it? Is it an event-driven or a time-triggered controller? How does
it compare to the controllers developed in this lecture?

Exercise 9. The ping pong ball proof relied on the parameter assumptions g = c = f =
1 for mere convenience of the resulting arithmetic. Develop a time-triggered model,
controller, and proof for the general ping pong ball.

Exercise 10. Show that the ping pong ball (11) can also be proved safe using just the
invariant 0 ≤ x ≤ 5 (possibly including assumptions on constants such as g > 0).
Which assumptions on the initial state does this proof crucially depend on?

Exercise 11 (*). Design a variation of the time-triggered controller for the ping pong ball
that is allowed to use the ping pong paddle within height 4 ≤ x ≤ 5 but has a relaxed
safety condition that accepts 0 ≤ x ≤ 2 · 5. Make sure to only force the use of the ping
pong paddle when necessary. Find an invariant and conduct a proof.
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15-424: Foundations of Cyber-Physical Systems

Lecture Notes on

Differential Equations

& Differential Invariants

André Platzer

Carnegie Mellon University
Lecture 10

1 Introduction

So far, this course explored only one way to deal with differential equations: the [′] ax-
iom from Lecture 5 on Dynamical Systems & Dynamic Axioms. However, in order to
use the [′] axiom or its sequent calculus counterpart the [′] rule from Lecture 6 on Truth
& Proof for a differential equation x′ = f(x), we must be able to find a symbolic solu-
tion to the symbolic initial value problem (i.e. a function y(t) such that y′(t) = f(y) and
y(0) = x). But what if the differential equation does not have such a solution y(t)? Or
if y(t) cannot be written down in first-order real arithmetic? Lecture 2 on Differential
Equations & Domains allows many more differential equations to be part of CPS mod-
els than just the ones that happen to have simple solutions. These are the differential
equations we will look at in this lecture.

You may have seen a whole range of methods for solving differential equations in
prior courses. But, in a certain sense, “most” differential equations are impossible to
solve, because they have no explicit closed-form solution with elementary functions,
for instance [Zei03]:

x′′(t) = et
2

And even if they do have solutions, the solution may no longer be in first-order real
arithmetic. One solution of

v′ = w,w′ = −v

for example is v(t) = sin t, w(t) = cos t, which is not expressible in real arithmetic (recall
that both are infinite power series) and leads to undecidable arithmetic [Pla08a].
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L10.2 Differential Equations & Differential Invariants

Today’s lecture reinvestigates differential equations from a more fundamental per-
spective, which will lead to a way of proving properties of differential equations with-
out using their solutions.

The lecture seeks unexpected analogies among the seemingly significantly different
dynamical aspects of discrete dynamics and of continuous dynamics. The first and
influential observation is that differential equations and loops have more in common
than one might suspect.1 Discrete systems may be complicated, but have a powerful
ally: induction as a way of establishing truth for discrete dynamical systems by generi-
cally analyzing the one step that it performs (repeatedly like the body of a loop). What
if we could use induction for differential equations? What if we could prove proper-
ties of differential equations directly by analyzing how these properties change along
the differential equation rather than having to find a global solution first and inspecting
whether it satisfies that property? What if we could tame the analytic complexity of dif-
ferential equations by analyzing the generic local “step” that a continuous dynamical
system performs (repeatedly). The biggest conceptual challenge will, of course, be in
understanding what exactly the counterpart of a step even is for continuous dynamical
systems, because there is no such thing as a next step for a differential equation.

More details can be found in [Pla10b, Chapter 3.5] and [Pla10a, Pla12d, Pla12a, Pla12b].
Differential invariants were originally conceived in 2008 [Pla10a, Pla08b] and later used
for an automatic proof procedure for hybrid systems [PC08, PC09]. These lecture notes
are based on an advanced axiomatic logical understanding of differential invariants via
differential forms [Pla15].

This lecture is of central significance for the Foundations of Cyber-Physical Systems.
The analytic principles begun in this lecture will be a crucial basis for analyzing all
complex CPS. The most important learning goals of this lecture are:

Modeling and Control: This lecture will advance the core principles behind CPS by
developing a deeper understanding of their continuous dynamical behavior. This
lecture will also illuminate another facet of how discrete and continuous systems
relate to one another, which will ultimately lead to a fascinating view on under-
standing hybridness [Pla12a].

Computational Thinking: This lecture exploits computational thinking in its purest
form by seeking and exploiting surprising analogies among discrete dynamics
and continuous dynamics, however different both may appear at first sight. This
lecture is devoted to rigorous reasoning about the differential equations in CPS
models. Such rigorous reasoning is crucial for understanding the continuous be-
havior that CPS exhibit over time. Without sufficient rigor in their analysis it can
be impossible to understand their intricate behavior and spot subtle flaws in their
control or say for sure whether and why a design is no longer faulty. This lecture
systematically develops one reasoning principle for equational properties of dif-
ferential equations that is based on induction for differential equations. Subsequent

1 In fact, discrete and continuous dynamics turn out to be proof-theoretically quite intimately related
[Pla12a].
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lectures expand the same core principles developed in this lecture to the study of
general properties of differential equations. This lecture continues the axiomatiza-
tion of differential dynamic logic dL [Pla12c, Pla12a] pursued since Lecture 5 on
Dynamical Systems & Dynamic Axioms and lifts dL’s proof techniques to systems
with more complex differential equations. The concepts developed in this lecture
form the differential facet illustrating the more general relation of syntax (which
is notation), semantics (what carries meaning), and axiomatics (which internalizes
semantic relations into universal syntactic transformations). These concepts and
their relations jointly form the significant logical trinity of syntax, semantics, and
axiomatics. Finally, the verification techniques developed in this lecture are criti-
cal for verifying CPS models of appropriate scale and technical complexity.

CPS Skills: We will develop a deeper understanding of the semantics of the contin-
uous dynamical aspects of CPS models and develop and exploit a significantly
better intuition for the operational effects involved in CPS.

CT

M&C CPS

discrete vs. continuous analogies
rigorous reasoning about ODEs
induction for differential equations
differential facet of logical trinity

understanding continuous dynamics
relate discrete+continuous

semantics of continuous dynamics
operational CPS effects

2 Global Descriptive Power of Local Differential Equations

Differential equations let the physics evolve continuously for longer periods of time.
They describe such global behavior locally, however, just by the right-hand side of the
differential equation.

Note 1 (Local descriptions of global behavior by differential equations). The key
principle behind the descriptive power of differential equations is that they describe the
evolution of a continuous system over time using only a local description of the direction
into which the system evolves at any point in space. The solution of a differential equation
is a global description of how the system evolves, while the differential equation itself is a
local characterization. While the global behavior of a continuous system can be subtle and
challenging, its local description as a differential equation is much simpler.

This difference between local description and global behavior can be exploited for proofs.
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Based on Lecture 2 on Differential Equations & Domains, the semantics of differential
equations was defined in Lecture 3 on Choice & Control as:

Note 2 (Semantics of differential equations).

[[x′ = f(x)&Q]] = {(ϕ(0), ϕ(r)) : ϕ(ζ) |= x′ = f(x) and ϕ(ζ) |= Q for all 0≤ζ≤r

for a solution ϕ : [0, r] → S of any duration r}

That is,a the final state ϕ(r) is connected to the initial state ϕ(0) by a continuous function
of some duration r ≥ 0 that solves the differential equation and satisfies Q at all times,

when interpreting ϕ(ζ)(x′)
def
= dϕ(t)(x)

dt
(ζ) as the derivative of the value of x over time t at

time ζ.

aTwo subtleties will ultimately give rise to a minor clarification. Can you foresee them already?

The solution ϕ describes the global behavior of the system, which is specified locally
by the right-hand side f(x) of the differential equation.

Lecture 2 has shown a number of examples illustrating the descriptive power of dif-
ferential equations. That is, examples in which the solution was very complicated even
though the differential equation was rather simple. This is a strong property of differ-
ential equations: they can describe even complicated processes in simple ways. Yet,
that representational advantage of differential equations does not carry over into the
verification when verification is stuck with proving properties of differential equations
only by way of their solutions, which, by the very nature of differential equations, are
more complicated again.

This lecture, thus, investigates ways of proving properties of differential equations
using the differential equations themselves, not their solutions. This leads to differential
invariants [Pla10a, Pla12d, Pla15], which can perform induction for differential equa-
tions.

3 Differential Equations vs. Loops

A programmatic way of developing an intuition for differential invariants leads through
a comparison of differential equations with loops. This perhaps surprising relation can
be made completely rigorous and is at the heart of a deep connection equating discrete
and continuous dynamics proof-theoretically [Pla12a]. This lecture will stay at the sur-
face of this surprising connection but still leverage the relation of differential equations
to loops for our intuition.

To get started with relating differential equations to loops, compare

x′ = f(x) vs. (x′ = f(x))
∗

How does the differential equation x′ = f(x) compare to the same differential equation
in a loop (x′ = f(x))∗ instead? Unlike the differential equation x′ = f(x), the repeated
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Differential Equations & Differential Invariants L10.5

differential equation (x′ = f(x))∗ can run the differential equation x′ = f(x) repeatedly.
Albeit, on second thought, does that get the repetitive differential equation (x′ = f(x))∗

to any more states than where the differential equation x′ = f(x) could evolve to?
Not really, because chaining lots of solutions of differential equations from a repeti-

tive differential equation (x′ = f(x))∗ together will still result in a single solution for the
same differential equation x′ = f(x) that we could have followed all the way.2

Note 3 (Looping differential equations). (x′ = f(x))∗ is equivalent to x′ = f(x), writ-
ten (x′ = f(x))∗ ≡ (x′ = f(x)), i.e. both have the same transition semantics:

[[(x′ = f(x))
∗
]] = [[x′ = f(x)]]

Differential equations “are their own loop”.3

In light of Note 3, differential equations already have some aspects in common with
loops. Like nondeterministic repetitions, differential equations might stop right away.
Like nondeterministic repetitions, differential equations could evolve for longer or shorter
durations and the choice of duration is nondeterministic. Like in nondeterministic rep-
etitions, the outcome of the evolution of the system up to an intermediate state influ-
ences what happens in the future. And, in fact, in a deeper sense, differential equations
actually really do correspond to loops executing their discrete Euler approximations
[Pla12a].

With this rough relation in mind, let’s advance the dictionary translating differential
equation phenomena into loop phenomena and back. The local description of a differ-
ential equation as a relation x′ = f(x) of the state to its derivative corresponds to the
local description of a loop by a repetition operator ∗ applied to the loop body α. The
global behavior of a global solution of a differential equation x′ = f(x) corresponds to
the full global execution trace of a repetition α∗, but are similarly unwieldy objects to
handle. Because the local descriptions are so much more concise than the respective
global behaviors, but still carry all information about how the system will evolve over
time, we also say that the local relation x′ = f(x) is the generator of the global system
solution and that the loop body α is the generator of the global behavior of repetition
of the loop. Proving a property of a differential equation in terms of its solution corre-
sponds to proving a property of a loop by unwinding it (infinitely long) by axiom [∗]
from Lecture 5 on Dynamical Systems & Dynamic Axioms.

Now, Lecture 7 on Control Loops & Invariants made the case that unwinding the
iterations of a loop can be a rather tedious way of proving properties about the loop,
because there is no good way of ever stopping to unwind, unless a counterexample can
be found after a finite number of unwindings. This is where working with a global
solution of a differential equation with axiom [′] is actually already more useful, be-
cause the solution can actually be handled completely because of the quantifier ∀t≥0

2This is related to classical results about the continuation of solutions, e.g., [Pla10b, Proposition B.1].
3Beware not to confuse this with the case for differential equations with evolution domain constraints,

which is subtly different (Exercise 1).
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L10.6 Differential Equations & Differential Invariants

Note 4 (Correspondence map between loops and differential equations).

loop α∗ differential equation x′ = f(x)

could repeat 0 times could evolve for duration 0
repeat any number n ∈ N of times evolve for any duration r ∈ R, r ≥ 0
effect depends on previous loop iteration effect depends on the past solution
local generator α local generator x′ = f(x)
full global execution trace global solution ϕ : [0, r] → S
proof by unwinding iterations with axiom [∗] proof by global solution with axiom [′]
proof by induction with loop invariant rule loop proof by differential invariant

over all durations. But Lecture 7 introduced induction with invariants as the preferred
way of proving properties of loops, by, essentially, cutting the loop open and arguing
that the generic state after any run of the loop body has the same characterization as
the generic state before. After all these analogous correspondences between loops and
differential equations, the obvious question is what the differential equation analogue
of a proof concept would be that corresponds to proofs by induction for loops, which
is the premier technique for proving loops.

Induction can be defined for differential equations using what is called differential
invariants [Pla10a, Pla12d]. The have a similar principle as the proof rules for induction
for loops. Differential invariants prove properties of the solution of the differential
equation using only its local generator: the right-hand side of the differential equation.

Recall the loop induction proof rule from Lecture 7 on Loops & Invariants:

[[α∗]] =
⋃

n∈N

[[αn]] with αn+1 ≡ αn;α and α0 ≡ ?true

loop
Γ ⊢ F,∆ F ⊢ [α]F F ⊢ P

Γ ⊢ [α∗]P,∆ ω ν

[[α∗]]

F

[α∗]F
[[α]]

F → [α]F

[[α]] [[α]]

F

4 Intuition of Differential Invariants

Just as inductive invariants are the premier technique for proving properties of loops,
differential invariants [Pla10a, Pla12d, Pla08b, Pla10b] provide the primary inductive
technique we use for proving properties of differential equations (without having to
solve them).

The core principle behind loop induction is that the induction step investigates the
local generator α ands shows that it never changes the truth-value of the invariant F
(see the middle premise F ⊢ [α]F of proof rule loop or the only premise of the core
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essentials induction proof rule ind from Lecture 7). Let us try to establish the same
inductive principle, just for differential equations. The first and third premise of rule
loop transfer easily to differential equations. The challenge is to figure out what the
counterpart of F ⊢ [α]F would be since differential equations do not have a notion of
“one step”.

What does the local generator of a differential equation x′ = f(x) tell us about the
evolution of a system? And how does it relate to the truth of a formula F all along the
solution of that differential equation? That is, to the truth of the dL formula [x′ = f(x)]F
expressing that all runs of x′ = f(x) lead to states satisfying F . Fig. 1 depicts an example
of a vector field for a differential equation (plotting the right-hand side of the differen-
tial equation as a vector at every point in the state space), a global solution (in red), and
an unsafe region ¬F (shown in blue). The safe region F is the complement of the blue
unsafe region ¬F .

Figure 1: Vector field and one solution of a differential equation that does not enter the
blue unsafe regions

One way of proving that [x′ = f(x)]F is true in a state ω would be to compute a
solution from that state ω, check every point in time along the solution to see if it is in the
safe region F or the unsafe region ¬F . Unfortunately, these are uncountably infinitely
many points in time to check. Furthermore, that only considers a single initial sate ω,
so proving validity of a formula would require considering every of the uncountably
infinitely many possible initial states and computing and following a solution in each
of them. That is why this naı̈ve approach would not compute.

A similar idea can still be made to work when the symbolic initial-value problem can
be solved with a symbolic initial value x and a quantifier for time can be used, which
is what the solution axiom [′] does. Yet, even that only works when a solution to the
symbolic initial-value problem can be computed and the arithmetic resulting from the
quantifier for time can be decided. For polynomial solutions, this works, for example.
But polynomial come from very simple systems only (called nilpotent linear differential
equation systems).

Reexamining the illustration in Fig. 1, we suggest an entirely different way of check-
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Figure 2: One scenario for the rotational dynamics and relationship of vector (v, w) to
radius r and angle ϑ

ing whether the system could ever lead to an unsafe state in ¬F when following the
differential equation x′ = f(x). The intuition is the following. If there were a vector in
Fig. 1 that points from a safe state in F to an unsafe state ¬F (in the blue region), then
following that vector could get the system into an unsafe ¬F . If, instead, all vectors
point from safe states to safe states in F , then, intuitively, following such a chain of
vectors will only lead from safe states to safe states. So if the system also started in a
safe state, it would stay safe forever.

Let us make this intuition rigorous to obtain a sound proof principle that is perfectly
reliable in order to be usable in CPS verification. What we need to do is to find a way of
characterizing how the truth of F changes when moving along the differential equation.

5 Deriving Differential Invariants

How can the intuition about directions of evolution of a logical formula F with respect
to a differential equation x′ = f(x) be made rigorous? We develop this step by step.

Example 1 (Rotational dynamics). As a guiding example, consider a conjecture about the
rotational dynamics where v and w represent the direction of a vector rotating clockwise
in a circle of radius r (Fig. 2):

v2 + w2 = r2 → [v′ = w,w′ = −v]v2 + w2 = r2 (1)

The conjectured dL formula (1) is valid, because, indeed, if the vector (v, w) is ini-
tially at distance r from the origin (0,0), then it will always be when rotating around
the origin, which is what the dynamics does. That is, the point (v, w) will always re-
main on the circle of radius r. But how can we prove that? In this particular case, we
could possibly investigate solutions, which are trigonometric functions (although the
ones shown in Fig. 2 are not at all the only solutions). With those solutions, we could
perhaps find an argument why they stay at distance r from the origin. But the resulting
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¬
¬F

F
F

Figure 3: Differential invariant F remains true in the direction of the dynamics

arithmetic will be unnecessarily difficult and, after all, the argument for why the sim-
ple dL formula (1) is valid should be easy. And it is, after we have discovered the right
proof principle as this lecture will do.

First, what is the direction into which a continuous dynamical system evolves? The
direction is exactly described by the differential equation, because the whole point of a
differential equation is to describe in which direction the state evolves at every point in
space. So the direction into which a continuous system obeying x′ = f(x) follows from
state ω is exactly described by the time-derivative, which is exactly the value [[f(x)]]ω
of term f(x) in state ω. Recall that the term f(x) can mention x and other variables so
its value [[f(x)]]ω depends on the state ω.

Note 5 (Differential invariants are “formulas that remain true in the direction of
the dynamics”). Proving dL formula [x′ = f(x)]F does not really require us to answer
where exactly the system evolves to but just how the evolution of the system relates to the
formula F and the set of states ω in which F evaluates to true . It is enough to show that
the system only evolves into directions in which formula F will stay true (Fig. 3).

A logical formula F is ultimately built from atomic formulas that are comparisons of
(polynomial or rational) terms such as e = 5 or v2 + w2 = r2. Let e denote such a
(polynomial) term in the variable (vector) x that occurs in the formula F . The semantics
of a polynomial term e in a state ω is the real number [[e]]ω that it evaluates to. In which
direction does the value of e evolve when following the differential equation x′ = f(x)
for some time? That depends both on the term e that is being evaluated and on the
differential equation x′ = f(x) that describes how the respective variables x evolve over
time.

Note 6. Directions of evolutions are described by derivatives, after all the differential equa-
tion x′ = f(x) describes that the time-derivative of x is f(x).

Let’s derive the term e of interest and see what that tells us about how e evolves over
time. How can we derive e? The term e could be built from any of the operators dis-
cussed in Lecture 2 on Differential Equations & Domains, to which we now add divi-
sion for rational terms to make it more interesting. Let V denote the set of all variables.
Recall from Lecture 2 that terms e are defined by the grammar (where e, ẽ are terms, x
is a variable, and c is a rational number constant):

e ::= x | c | e+ ẽ | e− ẽ | e · ẽ | e/ẽ
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It is, of course, important to take care that division e/ẽ only makes sense in a context
where the divisor ẽ is guaranteed not to be zero in order to avoid undefinedness. We
only allow division to be used in a context where the divisor is ensured not to be zero.

If the term is a sum e + k, then the mathematical expectation is that its derivative
should be the derivative of e plus the derivative of k. If the term is a product e · k, its
derivative is the derivative of e times k plus e times the derivative of k by Leibniz’ rule.
The derivative of a rational number constant c ∈ Q is zero.4 The other operators are
similar, leaving only the case of a single variable x. What is its derivative?

Before you read on, see if you can find the answer for yourself.

4Of course, the derivative of real number constants c ∈ R is also zero, but only rational number constants
are allowed to occur in the formulas of first-order logic of real arithmetic (or any real-closed fields).
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The exact value of the derivative of a variable x very much depends on the current
state and on the overall continuous evolution of the system. So we punt on that for now
and define the derivative of a variable x in a seemingly innocuous way to be the differ-
ential symbol x′ and consider what to do with it later. This gives rise to the following
way of computing the derivative of a term syntactically.

Remark 2 (Derivatives). Recall the familiar syntactic laws for derivatives:

(c())′ = 0 for numbers or constants c() (2a)

(x)′ = x′ for variable x ∈ V (2b)

(e+ k)′ = (e)′ + (k)′ (2c)

(e− k)′ = (e)′ − (k)′ (2d)

(e · k)′ = (e)′ · k + e · (k)′ (2e)

(e/k)′ = ((e)′ · k − e · (k)′)/k2 (2f)

Note that, while the intuition and precise semantics of derivatives of terms will ul-
timately be connected with more involved aspects of how values change over time,
the computation of derivatives of terms according to 2 is a seemingly innocuous but
straightforward recursive computation on terms. If we apply the equations (6) from
left to right, they define a recursive operator on terms (·)′ called syntactic (total) deriva-
tion.

Expedition 1 (Differential Algebra). Even though the following names and con-
cepts are not needed directly for his course, let’s take a brief scientific expedition
to align 2 with the algebraic structures from differential algebra [Kol72] in order
to illustrate the systematic principles behind 2. Case (6a) defines (rational) num-
ber symbols alias literals as differential constants, which do not change their value
during continuous evolution. Their derivative is zero. The number symbol 5 will
always have the value 5 and never change, no matter what differential equation is
considered. Equation (6c) and the Leibniz or product rule (6e) are the defining con-
ditions for derivation operators on rings. The derivative of a sum is the sum of the
derivatives (additivity or a homomorphic property with respect to addition, i.e. the
operator (·)′ applied to a sum equals the sum of the operator applied to each sum-
mand) according to equation (6c). Furthermore, the derivative of a product is the
derivative of one factor times the other factor plus the one factor times the deriva-
tive of the other factor as in (6e). Equation (6d) is a derived rule for subtraction
according to the identity e− k = e+ (−1) · k and again expresses a homomorphic
property, now with respect to subtraction rather than addition.

The equation (6b) uniquely defines the operator (·)′ on the differential polynomial
algebra spanned by the differential indeterminates x ∈ V , i.e. the symbols x that have
indeterminate derivatives x′. It says that we understand the differential symbol
x′ as the derivative of the symbol x for all state variables x ∈ V . Equation (6f)
canonically extends the derivation operator (·)′ to the differential field of quotients by
the usual quotient rule. As the base field R has no zero divisorsa, the right-hand side
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of (6f) is defined whenever the original division e/k can be carried out, which, as
we assumed for well-definedness, is guarded by k 6= 0.

aIn this setting, R has no zero divisors, because the formula ab = 0 → a = 0 ∨ b = 0 is valid, i.e. a
product is zero only if a factor is zero.

The derivative of a division e/k uses a division, which is where we need to make
sure not to accidentally divide by zero. Yet, in the definition of (e/k)′, the division is by
k2 which, fortunately, has the same roots that k already has, because k = 0 ↔ k2 = 0
is valid for any term k. Hence, in any context in which e/k was defined, its derivative
(e/k)′ will also be defined.

Now that we have a first definition of derivation at hand, the question still is which
of the terms should be derived when trying to prove (1)? Since that is not necessarily
clear so far, let’s turn the formula (1) around and consider the following equivalent
(Exercise 2) dL formula instead, which only has a single nontrivial term to worry about:

v2 + w2 − r2 = 0 → [v′ = w,w′ = −v]v2 + w2 − r2 = 0 (3)

Derivation of the only relevant term v2 + w2 − r2 in the postcondition of (3) according
to 2 gives

(v2 + w2 − r2)′ = 2vv′ + 2ww′ − 2rr′ (4)

2 makes it possible to form the derivative of any polynomial or rational term. The
total derivative operator (·)′ does not, however, result in a term involving the variables

V , but, instead, a differential term, i.e. a term involving V ∪ V ′, where V ′ def
= {x′ : x ∈ V}

is the set of all differential symbols x′ for variables x ∈ V . The total derivative (e)′ of a
polynomial term e is not a polynomial term, but may mention differential symbols such
as x′ in addition to the symbols that where in e to begin with. All syntactic elements of
those differential terms are easy to interpret based on the semantics of terms defined in
Lecture 2, except for the differential symbols. What now is the meaning of a differential
symbol x′? And, in fact, what is the precise meaning of the construct (e)′ for a term e
and the equations in (6) to begin with?

Before you read on, see if you can find the answer for yourself.

15-424 LECTURE NOTES ANDRÉ PLATZER
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6 The Meaning of Prime

The meaning [[x]]ω of a variable symbol x is defined by the state ω as ω(x), so its value
[[x]]ω in state ω is directly determined by the state via [[x]]ω = ω(x). It is crucial to no-
tice the significant subtleties and challenges that arise when trying to give meaning
to a differential symbol x′ or anything else with a derivative connotation such as the
differential term (e)′ of term e.

The first mathematical reflex may be to set out for a definition of x′ in terms of a
time-derivative d

dt
of something. The question is what that something would be. The

meaning of a differential symbol x′ in a state ω simply cannot be defined as a time-
derivative, because derivatives do not even exist in such isolated points. It is utterly
meaningless to ask for the rate of change of the value of x over time in a single isolated
state ω. For time-derivatives to make sense, we at least need a concept of time and
the values understood as a function of time. That function needs to be defined on a
big enough interval for derivatives to have a chance to become meaningful. And the
function needs to be differentiable so that the time-derivatives even exist to begin with.

Expedition 2 (Semantics of differential algebra). The view of Expedition 1 sort of
gave (e)′ a meaning, but, when we think about it, did not actually define it. Dif-
ferential algebra studies the structural algebraic relations of, e.g., the derivative
(e+ k)′ to the derivatives (e)′ plus (k)′ and is incredibly effective about capturing
and understanding them starting from (6). But algebra—and differential algebra is
no exception—is, of course, deliberately abstract about the question what the indi-
vidual pieces mean, because algebra is the study of structure, not the study of the
meaning of the objects that are being structured in the first place. That is why we
can learn all about the structure of derivatives and derivation operators from dif-
ferential algebra, but have to go beyond differential algebra to complement it with
a precise semantics that relates to the needs of understanding the mathematics of
real cyber-physical systems.

Along a (differentiable) continuous function ϕ : [0, r] → S, however, we can make
sense of what x′ means. And in fact we already did. Well, if its duration r > 0 is
nonzero so that we are not just talking about an isolated point ϕ(0) again. At any point
in time ζ ∈ [0, r] along such a continuous evolution ϕ, the differential symbol x′ can
be taken to mean the time-derivative d

dt
of the value [[x]]ϕ(t) of x over time t at time ζ

[Pla10a, Pla12c, Pla15]. That is, at any point in time ζ along the solution ϕ, it makes
sense to give x′ the meaning of the rate of change of the value of x over time along ϕ.
Which is exactly what the semantics of differential equations from Note 2 already did
to give meaning to the differential equation in the first place:
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Note 7 (Semantics of differential symbols along a differential equation). The value
of differential symbol x′ at time ζ ∈ [0, r] along a solution ϕ : [0, r] → S of some duration
r > 0 of a differential equation x′ = f(x)&Q equals the analytic time-derivative at ζ:

ϕ(ζ)(x′)
def
=

dϕ(t)(x)

dt
(ζ) (5)

Intuitively, the value [[x′]]ϕ(ζ) = ϕ(ζ)(x′) of x′ is, thus, determined by considering how
the value [[x]]ϕ(ζ) = ϕ(ζ)(x) of x changes along the function ϕ when we change time ζ
“only a little bit”. Visually, it corresponds to the slope of the tangent of the value of x at
time ζ; see Fig. 4.

0 t

ϕ(t)(x)

x0 ϕ(ζ
)(x

′ )x′ = x3

ζ

ϕ(ζ)(x)

Figure 4: Semantics of differential symbols

Now that we know what value x′ would have along a differential equation that leaves
at least two questions. What does it mean independently without reference to the par-
ticular differential equation? And what value would it have along a differential equa-
tion of duration r = 0 where the right-hand side of (5) but not even exist?

While the latter question may be the more obvious one, the more daunting one is the
former question. What does x′ mean? What is its value? Since the differential symbol
x′ is a term and the semantics of terms is the real-value that they mean in a state ω, the
differential symbol x′ should also have a meaning as a real number in that state ω. So
what is the value ω(x′)?

Hold on, we had considered and discarded that question already. Derivatives do not
carry meaning in isolated states. They still don’t. But it is important to understand why
the lack of having a value and a meaning would cause complications for the fabrics of
logic.

Expedition 3 (Denotational Semantics). The whole paradigm of denotational seman-
tics, initiated for programming languages by Dana Scott and Christopher Strachey
[SS71], is based on the principle that the semantics of expressions of programming
languages should be the mathematical object that it denotes. That is, a denota-
tional semantics is a function assigning a mathematical object [[e]]ω from a semantic
domain (here R) to each term e, depending on the state ω.

The meaning of terms, thus, is a function [[·]] : Trm → (S → R) which maps each
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term e ∈ Trm to the function [[e]] : S → R giving the real value [[e]]ω ∈ R that the
term e has in each state ω ∈ S. In fact, this is exactly how the semantics of terms of
dL has been defined in Lecture 2 in the first place. For classical logics such as first-
order logic, this denotational semantics has always been the natural and dominant
approach since Frege [?].

Scott and Strachey [SS71], however, pioneered the idea of leveraging the denota-
tional style of semantics to give meaning to programming languages. And, indeed,
dL’s hybrid programs have a denotational semantics. The meaning of a HP α is the
reachability relation [[α]] ⊆ S × S that it induces on the states S. Correspondingly,
the (denotational) meaning of hybrid programs as defined in Lecture 3 is a function
[[·]] : HP → ℘(S × S) assigning a relation [[α]] ⊆ S × S in the powerset ℘(S × S) to
each HP α.

A crucial feature of denotational semantics done the right way, however, is com-
positionality. The meaning [[e+ ẽ]] of a compound such as e+ ẽ should be a simple
function of the meaning [[e]] and [[ẽ]] of its pieces e and ẽ. This compositionality is
exactly the way the meaning of differential dynamic logic is defined. For example:

[[e+ ẽ]]ω = [[e]]ω + [[ẽ]]ω

for all states ω, which, with a point-wise understanding of +, can be summarized
as

[[e+ ẽ]] = [[e]] + [[ẽ]]

Consequently, also the meaning of a differential symbol x′ should be defined compo-
sitionally in a modular fashion and without reference to outside elements such as the
differential equation in which it happens to occur. The meaning of terms is a function of
the state, and not a function of the state and the context or purpose for which it happens
to have been mentioned.5 The actual values that x′ is supposed to evaluate to changes
quite a bit depending on the state, e.g. according to (5).

The mystery of giving meaning to differential symbols, thus, resolves by declaring
the state to be responsible for assigning a value not just to all variables x but also to
all differential symbols x′. A state ω is a mapping ω : V ∪ V ′ → R assigning a real
number ω(x) ∈ R to all variables x ∈ V and a real number ω(x′) ∈ R to all differential
symbols x′ ∈ V ′. The values that the states ϕ(ζ) visited along a solution ϕ : [0, r] → S of
a differential equation x′ = f(x)&Q assign to x′ will have a close relationship, namely
(5) and ϕ(ζ) |= x′ = f(x). But that relationship is by virtue of ϕ being a solution of a
differential equation, so that the family of states ϕ(ζ) for ζ ∈ [0, r] have a unique link.
It is perfectly consistent to have a state ω in which ω(x′) = 4 and other equally isolated
state ν in which ν(x′) = 16. In fact, that is just what happen for the initial ω and final
state ν of following the differential equation x′ = x2 from ω(x) = 2 for 1

4 time units. If
we do not know that ω and ν are the initial and final states of that differential equation

5With sufficient care, it would even be possible to restrict the meaning of x′ only to certain contexts for
some purposes, but that comes at the cost of adding significant technical complexity and inconvenience
[Pla10a] and is, thus, quite an undesirable and unnecessary complication.
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or if we do not know that it was exactly 1
4 time units that we followed it, there is no

reason to suspect any relationship between the values of ω(x′) and ν(x′).
Now we finally figured out the answer to the question what x′ means and what its

value is. It all depends on the state. And nothing but the state. So we can come back
to the question what the value of x′ would be along a differential equation that we fol-
lowed for duration r = 0. The right-hand side of (5) does not exist if r = 0 (which, for
duration r = 0 we will take to mean as not imposing any conditions). But the semantics
of differential equations (Note 2) still unambiguously demands that ϕ(ζ) |= x′ = f(x)
holds during the solution including at the end at time r, that is, ϕ(r)(x′) = [[f(x)]]ϕ(r).

Note 8 (Solutions of duration zero). In case of duration r = 0, the only condition for
the transition of a continuous evolution is that the initial ω and final state ν agree (excepta

on {x′}∁) and that ν(x′) = [[f(x)]]ν.

aIn fact, turns out to be useful [Pla15] to allow any arbitrary value of x′ in the initial state ω of a
continuous evolution since the previous value of x′ may not yet be in sync with the expected
derivative in the differential equation x′ = f(x) yet.

Differential symbols x′ have a meaning from now as being interpreted directly by the
state. Yet, what is the meaning of a differential term (e)′ such as those in 2?

Before you read on, see if you can find the answer for yourself.
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7 More Meanings of More Primes: Differentials

At this point it should no longer be a surprise that the first mathematical reflex of un-
derstanding the primes of (e)′ from 2 in terms of time-derivatives will quickly fall short
of its own expectations, because there still is no time-derivative in the isolated state ω
that the value [[(e)′]]ω has at its disposal. Unfortunately, though, we cannot follow the
same solution and ask the state to assign any arbitrary real value to each differential
term. After all, there should be a close relationship of [[(2x2)′]]ω and [[(8x2)′]]ω namely
that 4[[(2x2)′]]ω = [[(8x2)′]]ω. Thus, the structure and meaning of the term e should con-
tribute to the meaning of (e)′. The first step, though, is to ennoble the primes of (e)′ as
in 2 and officially consider them as part of the language of differential dynamic logic
by adding them to its syntax.

Definition 3 (dL Terms). A term e of differential dynamic logic is defined by the
grammar (where e, ẽ are terms, x a variable with corresponding differential symbol
x′, and c a rational number constant):

e ::= x | x′ | c | e+ ẽ | e− ẽ | e · ẽ | e/ẽ | (e)′

The semantics of terms, of course, remains unchanged except that the new addition of
differential terms (e)′ needs to be outfitted with a proper meaning.

The value of (e)′ is supposed to tell us something about how the value of e changes.
But it is not and could not possibly be the change over time that this is referring to,
because there is no time nor time-derivative to speak of in an isolated state ω. The trick
is that we can still determine how the value of e will change, just not over time. We can
tell just from the term e itself how its value will change locally depending on how its
constituents change.

Recall that the partial derivative ∂f
∂x

(ξ) of a function f by variable x at the point ξ
characterizes how the value of f changes as x changes at the point ξ. The term 2x2

will locally change according to the partial derivative of its value by x, but the ultimate
change will also depend on how x itself changes locally. The term 5x2y also changes
according to the partial derivative of its value by x but also its partial derivative by y
and ultimately depends on how x as well as y themselves change locally.

The clou is that the state ω has the values ω(x′) of the differential symbols x′ at its
disposal, which, qua Note 7, are reminiscent of the direction that x would be evolving
to locally, if only state ω were part of a solution of a differential equation. The value
ω(x′) of differential symbol x′ acts like the “local shadow” of the time-derivative dx

dt
at

ω if only that derivative even existed at that point to begin with. But even if that time-
derivative cannot exist at a general isolated state, we can still understand the value
ω(x′) that x′ happens to have in that state as the direction that x would involve in
locally at that state. Likewise the value ω(y′) of y′ can be taken to indicate the direction
that y would involve in locally at that state. Now all it takes is a way to accumulate the
change by summing it all up to lead to the meaning of differentials [Pla15].
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Definition 4 (Semantics of differentials). The semantics of differential term (e)′ in
state ω is the value [[(e)′]]ω defined as

[[(e)′]]ω =
∑

x∈V

ω(x′)
∂[[e]]

∂x
(ω)

The value [[(e)′]]ω is the sum of all (analytic) spatial partial derivatives at ω of the
value of e by all variables x ∈ V multiplied by the corresponding tangent or direc-
tion of evolution described by the value ω(x′) of differential symbol x′ ∈ V ′.

That sum over all variables x ∈ V has finite support, because e only mentions finitely
many variables x and the partial derivative by variables x that do not occur in e is 0,
so do not contribute to the sum. The spatial derivatives exist since the evaluation [[e]]ω
is a composition of smooth functions such as addition, multiplication etc., so is itself
smooth.

Overall the (real) value of (e)′, thus, depends not just on e itself and the values in
the current state ω of the variables x that occur in e but also on the direction that these
variables are taken to evolve to according to the values of the respective differential
symbols x′ in ω; see Fig. 5.

→ R

Figure 5: Differential form semantics of differentials: their value depends on the point
as well as on the direction of the vector field at that point

Quite crucially observe one byproduct of adopting differentials as first-class citizens
in dL. The constructs in 2, which previously were somewhat amorphous and seman-
tically undefined recursive syntactic definitions without proper semantic counterparts,
have now simply become perfectly meaningful equations of differential terms. The
meaning of equations is well-defined on reals and both sides of each of the equations in
(6) has a precise meaning using Def. 4. Of course, it remains to show that the equations
in (6) are valid, meaning they are true in all states so that they can be adopted as sound
axioms. But that turns out to be the case [Pla15].
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Lemma 5 (Derivation lemma). When considered as equations of differentials, the equa-
tions (6) from 2 are valid and can, thus, be adopted as sound axioms:

(c())′ = 0 for numbers or constants c() (6a)

(x)′ = x′ for variable x ∈ V (6b)

(e+ k)′ = (e)′ + (k)′ (6c)

(e− k)′ = (e)′ − (k)′ (6d)

(e · k)′ = (e)′ · k + e · (k)′ (6e)

(e/k)′ = ((e)′ · k − e · (k)′)/k2 (6f)

Proof. We only consider one case of the proof which is reported in full elsewhere [Pla15].

[[(e+ k)′]]ω =
∑

x

ω(x′)
∂[[e+ k]]

∂x
(ω) =

∑

x

ω(x′)
∂([[e]] + [[k]])

∂x
(ω)

=
∑

x

ω(x′)
(∂[[e]]

∂x
(ω) +

∂[[k]]

∂x
(ω)

)

=
∑

x

ω(x′)
∂[[e]]

∂x
(ω) +

∑

x

ω(x′)
∂[[k]]

∂x
(ω)

= [[(e)′]]ω + [[(k)′]]ω = [[(e)′ + (k)′]]ω

This gives us a way of computing simpler forms for differentials of terms by ap-
plying the equations (6) from left to right, which will, incidentally, lead us to the same
result that the total derivation operator would have. Except now the result has been ob-
tained by a chain of logical equivalence transformations each of which are individually
grounded semantically with a soundness proof. It also becomes possible to selectively
apply equations of differentials as need be in a proof without endangering soundness.
Who would have figured that our study of differential equations would lead us down
a path to study equations of differentials instead?

8 Differential Substitution Lemmas

Now that we obtained a precise semantics of differential symbols x′ and differentials
(e)′ that is meaningful in any arbitrary state ω, no matter how isolated it may be, it is
about time to come back to the question what we can learn from those values along a
differential equation.

Along the solution ϕ of a differential equation, differential symbols x′ do not have
arbitrary values but are interpreted as time-derivatives of the values of x at all times ζ
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(Note 7):

[[x′]]ϕ(ζ) = ϕ(ζ)(x′)
def
=

dϕ(t)(x)

dt
(ζ) =

d[[x]]ϕ(t)

dt
(ζ)

That is, along a differential equation, the values of differential symbols x′ coincide with
the analytic time-derivative of the values of x. The key insight is that this continues to
hold not just for differential symbols x′ but also for differentials (e)′ of arbitrary terms
e.

The following central lemma, which is the differential counterpart of the substitution
lemma, establishes the connection between syntactic derivation of terms and seman-
tic differentiation as an analytic operation to obtain analytic derivatives of valuations
along differential state flows. It will allow us to draw analytic conclusions about the
behaviour of a system along differential equations from the truth of purely algebraic
formulas obtained by syntactic derivation. In a nutshell, the following lemma shows
that, along a flow, analytic derivatives of valuations coincide with valuations of syntac-
tic derivations.

Lemma 6 (Differential lemma). Let ϕ |= x′ = f(x) ∧Q for some solution ϕ : [0, r] →
S of duration r > 0. Then for all terms e (defined all along ϕ) and all times ζ ∈ [0, r]:

[[(e)′]]ϕ(ζ) =
d [[e]]ϕ(t)

dt
(ζ)

In particular, [[e]]ϕ(ζ) is continuously differentiable in ζ.

Note 13 (The differential lemma clou). Lemma 6 shows that analytic time-derivatives
coincide with differentials. The clou with Lemma 6 is that it equates precise but sophisti-
cated analytic time-derivatives with purely syntactic differentials. The analytic timederiva-
tives on the right-hand side of Lemma 6 are mathematically precise and pinpoint exactly
what we are interested in: the rate of change of the value of e along ϕ. But they are un-
wieldy for computers, because analytic derivatives are ultimately defined in terms of limit
processes and also need a whole solution to be well-defined. The syntactic differentials on
the left-hand side of Lemma 6 are purely syntactic (putting a prime on a term) and even
their simplifications via the recursive use of the axioms (6) are computationally tame.

Having said that, the syntactic differentials need to be aligned with the intended analytic
time-derivatives, which is exactly what Lemma 6 achieves. To wit, even differentiating
polynomials and rational functions is much easier syntactically than by unpacking the
meaning of analytic derivatives in terms of limit processes.

The differential lemma immediately leads to a first proof principle for differential
equations. If the differential (e)′ is always zero along a differential equation, then e will
always be zero if it was zero initially:
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Lemma 7 (First version of differential invariant rule). The following is a sound proof
rule

DI0
⊢ [x′ = f(x)&Q](e)′ = 0

e = 0 ⊢ [x′ = f(x)&Q]e = 0

Proof. If ϕ is a solution of x′ = f(x)&Q, then the premise implies that ϕ |= (e)′ = 0
since all restrictions of solutions are again solutions. Consequently, Lemma 6 implies

0 = [[(e)′]]ϕ(ζ) =
d [[e]]ϕ(t)

dt
(ζ)

so that e stays zero along ϕ by mean-value theorem, since it initially started out 0
(antecedent of conclusion) and had 0 change over time (above). Hold on, that use of
Lemma 6 was, of course, predicated on having a solution ϕ of duration r > 0 (other-
wise there are no time-derivatives to speak of). Yet, solutions of duration r = 0 directly
imply e = 0 from the initial condition in the antecedent of the conclusion.

The only nuisance with this proof rule is that DI0 never proves any interesting proper-
ties on its own. For Example 1, it would lead to:

⊢ [v′ = w,w′ = −v]2vv′ + 2ww′ − 2rr′ = 0
DI0v2 + w2 − r2 = 0 ⊢ [v′ = w,w′ = −v]v2 + w2 − r2 = 0
→R ⊢ v2 + w2 − r2 = 0 → [v′ = w,w′ = −v]v2 + w2 − r2 = 0

Without knowing anything about v′ and w′ and r′ in the postcondition, this proof has
no chance of ever closing. What stands to reason is to use the right-hand sides of the
differential equations for their left-hand sides, after all both sides of the equation are
supposed to be equal. The question is how to justify that that’s sound.

Lemma 6 shows that, along a differential equation, the value of the differential (e)′

of a term e coincides with the analytic time-derivative of the term e. Now, along a
differential equation x′ = f(x), the differential symbols x′ themselves actually have a
simple interpretation: their values are determined directly by the differential equation.
Putting these thoughts together leads to a way of replacing differential symbols with
the corresponding right-hand sides of their respective differential equations. That is,
replacing left-hand sides of differential equations with their right-hand sides.

Note 15. The direction into which the value of a term e evolves as the system follows a
differential equation x′ = f(x) depends on the differential (e)′ of the term e and on the
differential equation x′ = f(x) that locally describes the evolution of x over time.

Lemma 8 (Differential assignment). If ϕ |= x′ = f(x) ∧Q for a flow ϕ : [0, r] → S of
any duration r ≥ 0, then

ϕ |= P ↔ [x′ := f(x)]P
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Proof. The proof is a direct consequence of the fact that the semantics of differential
equations (Note 2) requires that ϕ(ζ) |= x′ = f(x) holds at all times ζ all along ϕ. Con-
sequently, the assignment x′ := f(x) that changes the value of x′ around to be the value
of f(x) will have no effect, since x′ already does have that value along the differential
equation to begin with. Thus, P and [x′ := f(x)]P are equivalent along ϕ.

By using this equivalence at any state along a differential equation x′ = f(x) this gives
rise to a simple axiom characterizing the effect that a differential equation has on its
differential symbols:

Corollary 9 (Differential effects). The differential effect axiom is sound:

DE [x′ = f(x)&Q]P ↔ [x′ = f(x)&Q][x′ := f(x)]P

The last ingredient is the differential assignment axiom [′:=] for x′ := e in direct analogy
to the assignment axiom [:=] for [x := e]P just for a differential symbol x′ instead of a
variable x:

[′:=] [x′ := e]p(x′) ↔ p(e)

Let’s continue the proof for Example 1:

⊢ [v′ = w,w′ = −v]2v(w) + 2w(−v)− 2rr′ = 0
[′:=] ⊢ [v′ = w,w′ = −v][v′:=w][w′:=− v]2vv′ + 2ww′ − 2rr′ = 0
DE ⊢ [v′ = w,w′ = −v]2vv′ + 2ww′ − 2rr′ = 0
DI0 v2 + w2 − r2 = 0 ⊢ [v′ = w,w′ = −v]v2 + w2 − r2 = 0
→R ⊢ v2 + w2 − r2 = 0 → [v′ = w,w′ = −v]v2 + w2 − r2 = 0

Oops, that did not make all differential symbols disappear, because r′ is still around,
since r did not have a differential equation in (3) to begin with. Stepping back, what
we mean by a differential equation like v′ = w,w′ = −v that does not mention r′ is that
r is not supposed to change. If r is supposed to change during a continuous evolution,
then there has to be a differential equation for r describing how r changes.

Note 18 (Explicit change). Hybrid programs are explicit change: nothing changes un-
less an assignment or differential equation specifies how (compare the semantics from Lec-
ture 3). In particular, if a differential equation (system) x′ = f(x) does not mention z′,
then the variable z does not change during x′ = f(x), so the differential equation systems
x′ = f(x) and x′ = f(x), z′ = 0 are equivalent.

We will assume z′ = 0 without further notice for variables z that do not change during
a differential equation.

Since (3) does not have a differential equation for r, Note 18 implies that its differen-
tial equation v′ = w,w′ = −v is equivalent to v′ = w,w′ = −v, r′ = 0, which, with DE,
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would give rise to an extra [r′:=0], which we will assume implicitly after showing its
use explicitly just once.

∗
R ⊢ 2v(w) + 2w(−v)− 0 = 0
G ⊢ [v′ = w,w′ = −v]2v(w) + 2w(−v)− 0 = 0

[′:=] ⊢ [v′ = w,w′ = −v][v′:=w][w′:=− v][r′:=0]2vv′ + 2ww′ − 2rr′ = 0
DE ⊢ [v′ = w,w′ = −v]2vv′ + 2ww′ − 2rr′ = 0
DI0 v2 + w2 − r2 = 0 ⊢ [v′ = w,w′ = −v]v2 + w2 − r2 = 0
→R ⊢ v2 + w2 − r2 = 0 → [v′ = w,w′ = −v]v2 + w2 − r2 = 0

This is amazing, because we found out that the value of v2 + w2 − r2 does not change
over time (ultimately because its time-derivative is zero) along the differential equation
v′ = w,w′ = −v. And we found that out without ever solving the differential equation,
just by a few lines of simple symbolic proof steps.

9 Differential Invariant Terms

In order to be able to use the above reasoning as part of a sequent proof efficiently, let’s
package up the argument in a simple proof rule. As a first shot, we stay with equations
of the form e = 0, which gives us soundness for the following proof rule.

Lemma 10 (Differential invariant terms). The following special case of the differential
invariants proof rule is sound, i.e. if its premise is valid then so is its conclusion:

DI=0
⊢ [x′:=f(x)](e)′ = 0

e = 0 ⊢ [x′ = f(x)]e = 0

Proof. We could prove soundness of this proof rule by going back to the semantics and
lemmas we proved about it. The easier soundness proof is to prove that it is a derived
rule, meaning that it can be expanded into a sequence of other proof rule applications
that we have already seen to be sound:

⊢ [x′ := f(x)](e)′ = 0
G ⊢ [x′ = f(x)&Q][x′ := f(x)](e)′ = 0

DE ⊢ [x′ = f(x)&Q](e)′ = 0
DI0e = 0 ⊢ [x′ = f(x)&Q]e = 0

This proof shows DI=0 to be a derived rule because it starts with the premise of DI=0

as the only open goal and ends with the conclusion of DI=0, using only proof rules we
already know are sound.
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This proof rule enables us to prove dL formula (3) easily in dL’s sequent calculus:

∗
R ⊢ 2vw + 2w(−v)− 0 = 0

[′:=] ⊢ [v′:=w][w′:=− v]2vv′ + 2ww′ − 0 = 0
DI=0v2 + w2 − r2 = 0 ⊢ [v′ = w,w′ = −v]v2 + w2 − r2 = 0
→R ⊢ v2 + w2 − r2 = 0 → [v′ = w,w′ = −v]v2 + w2 − r2 = 0

See ≪Rotational differential invariant≫
Taking a step back, this is an exciting development, because, thanks to differential in-

variants, the property (3) of a differential equation with a nontrivial solution has a very
simple proof that we can easily check. The proof did not need to solve the differen-
tial equation, which has infinitely many solutions with combinations of trigonometric
functions.6 The proof only required deriving the postcondition and substituting the
differential equation in.

10 Proof by Generalization

So far, the argument captured in the differential invariant term proof rule DI=0 works
for

v2 + w2 − r2 = 0 → [v′ = w,w′ = −v]v2 + w2 − r2 = 0 (3)

with an equation v2 + w2 − r2 = 0 normalized to having 0 on the right-hand side but
not for the original formula

v2 + w2 = r2 → [v′ = w,w′ = −v]v2 + w2 = r2 (1)

because its postcondition is not of the form e = 0. Yet, the postcondition v2 + w2 −
r2 = 0 of (3) is trivially equivalent to the postcondition v2 + w2 = r2 of (1), just by
rewriting the polynomials on one side, which is a minor change. That is an indication,
that differential invariants can perhaps do more than what proof rule DI=0 already
knows about.

But before we pursue our discovery of what else differential invariants can do for us
any further, let us first understand a very important proof principle.

Note 20 (Proof by generalization). If you do not find a proof of a formula, it can some-
times be easier to prove a more general property from which the one you were looking for
follows.

6Granted, the solutions in this case are not quite so terrifying yet. They are all of the form

v(t) = a cos t+ b sin t, w(t) = b cos t− a sin t

But the special functions sin and cos still fall outside the fragments of arithmetic that are known to be
decidable.
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This principle, which may at first appear paradoxical, turns out to be very helpful.
In fact, we have made ample use of Note 20 when proving properties of loops by in-
duction. The loop invariant that needs to be proved is usually more general than the
particular postcondition one is interested in. The desirable postcondition follows from
having proved a more general inductive invariant.

Recall the monotone generalization rule from Lecture 7 on Control Loops & Invariants:

MR
Γ ⊢ [α]Q,∆ Q ⊢ P

Γ ⊢ [α]P,∆

Instead of proving the desirable postcondition P of α (conclusion), proof rule MR
makes it possible to prove the postcondition Q instead (left premise) and prove that
Q is more general than the desired P (right premise). Generalization MR can help
us prove the original dL formula (1) by first turning the postcondition into the form
of the (provable) (3) and adapting the precondition using a corresponding cut with
v2 + w2 − r2 = 0:

→R

MR

cut,WL,WR

R
∗

v2 + w2 = r2 ⊢ v2 + w2 − r2 = 0
DI=0

R
∗

2vw + 2w(−v)− 0 = 0

[v′:=w][w′:=− v]2vv′ + 2ww′ − 0

v2 + w2 − r2 = 0 ⊢ [v′ = w,w′ = −v]v2 + w2 − r2 = 0

v2 + w2 = r2 ⊢ [v′ = w,w′ = −v]v2 + w2 − r2 = 0
R

∗

v2 + w2 − r2 = 0 ⊢ v2 + w2 = r2

v2 + w2 = r2 ⊢ [v′ = w,w′ = −v]v2 + w2 = r2

v2 + w2 = r2 → [v′ = w,w′ = −v]v2 + w2 = r2

This is a possible way of proving the original (1), but also unnecessarily complicated.
Differential invariants can prove (1) directly once we generalize proof rule DI=0 ap-
propriately. For other purposes, however, it is still important to have the principle of
generalization Note 20 in our repertoire of proof techniques.

11 Example Proofs

Of course, differential invariants are just as helpful for proving properties of other dif-
ferential equations.

Example 11 (Self-crossing). Another example is the following invariant property illus-
trated in Fig. 6:

x2 + x3 − y2 − c = 0 → [x′ = −2y, y′ = −2x− 3x2]x2 + x3 − y2 − c = 0

This dL formula proves easily using DI=0:

∗
R ⊢ 2x(−2y) + 3x2(−2y)− 2y(−2x− 3x2) = 0

[′:=] ⊢ [x′:=− 2y][y′:=− 2x− 3x2]2xx′ + 3x2x′ − 2yy′ − 0 = 0
DI=0x2 + x3 − y2 − c = 0 ⊢ [x′ = −2y, y′ = −2x− 3x2]x2 + x3 − y2 − c = 0
→R ⊢ x2 + x3 − y2 − c = 0 → [x′ = −2y, y′ = −2x− 3x2]x2 + x3 − y2 − c = 0
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Figure 6: Two differential invariants of the indicated dynamics (illustrated in thick red)
for different values of c

See ≪Self-crossing polynomial invariant≫

Example 12 (Motzkin). Another nice example is the Motzkin polynomial, which is an
invariant of the following dynamics (see Fig. 7):

x4y2 + x2y4 − 3x2y2 + 1 = c →

[x′ = 2x4y + 4x2y3 − 6x2y, y′ = −4x3y2 − 2xy4 + 6xy2]x4y2 + x2y4 − 3x2y2 + 1 = c

This dL formula proves easily using DI=0, again after normalizing the equation to
have right-hand side 0:

∗

R ⊢ 0 = 0

[′:=] ⊢ [x′:=2x4y + 4x2y3 − 6x2y][y′:=− 4x3y2 − 2xy4 + 6xy2](x4y2 + x2y4 − 3x2y2 + 1− c)′ = 0

DI=0. . . ⊢ [x′ = 2x4y + 4x2y3 − 6x2y, y′ = −4x3y2 − 2xy4 + 6xy2]x4y2 + x2y4 − 3x2y2 + 1− c = 0

→R ⊢ · · · → [x′ = 2x4y + 4x2y3 − 6x2y, y′ = −4x3y2 − 2xy4 + 6xy2]x4y2 + x2y4 − 3x2y2 + 1− c = 0

This time, the proof step that comes without a label is simple, but requires some space:

(x4y2 + x2y4 − 3x2y2 + 1− c)′ = (4x3y2 + 2xy4 − 6xy2)x′ + (2x4y + 4x2y3 − 6x2y)y′

After substituting in the differential equation, this gives

(4x3y2+2xy4−6xy2)(2x4y+4x2y3−6x2y)+(2x4y+4x2y3−6x2y)(−4x3y2−2xy4+6xy2)
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Figure 7: Two differential invariants of the indicated dynamics is the Motzkin polyno-
mial (illustrated in thick red) for different values of c

which simplifies to 0 after expanding the polynomials, and, thus, leads to the equation
0 = 0, which is easy to prove.

See ≪Motzkin polynomial invariant≫ Note that the arithmetic complexity reduces
when hiding unnecessary contexts as shown in Lecture 6 on Truth & Proof.

Thanks to Andrew Sogokon for the nice Example 12.

12 Differential Invariant Terms and Invariant Functions

It is not a coincidence that these examples were provable by differential invariant proof
rule DI=0, because that proof rule can handle arbitrary invariant functions.

Expedition 4 (Lie characterization of invariant functions). The proof rule DI=0

works by deriving the postcondition and substituting the differential equation in:

DI=0
⊢ [x′:=f(x)](e)′ = 0

e = 0 ⊢ [x′ = f(x)]e = 0

There is something quite peculiar about DI=0. Its premise is independent of the
constant term in e. If, for any constant symbol c, the formula e = 0 is replaced by
e− c = 0 in the conclusion, then the premise of DI=0 stays the same, because c′ = 0.
Consequently, if DI=0 proves

e = 0 ⊢ [x′ = f(x)]e = 0
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then it also proves
e− c = 0 ⊢ [x′ = f(x)]e− c = 0 (7)

for any constant c. This observation is the basis for a more general result, which
simultaneously proves all formulas (7) for all c from the premise of DI=0.

On open domains, equational differential invariants are even a necessary and
sufficient characterization of such invariant functions, i.e. functions that are invari-
ant along the dynamics of a system, because, whatever value c that function had in
the initial state, the value will stay the same forever. The equational case of differ-
ential invariants are intimately related to the seminal work by Sophus Lie on what
are now called Lie groups [Lie93, Lie97].

Theorem 13 (Lie [Pla12b]). Let x′ = f(x) be a differential equation system and Q a
domain, i.e., a first-order formula of real arithmetic characterizing a connected open
set. The following proof rule is a sound global equivalence rule, i.e. the conclusion is
valid if and only if the premise is:

DIc
Q ⊢ [x′:=f(x)](e)′ = 0

∀c
(

e = c → [x′ = f(x)&Q]e = c
)

Despite the power that differential invariant terms offer, challenges lie ahead in prov-
ing properties. Theorem 13 gives an indication where challenges remain.

Example 14 (Generalizing differential invariants). The following dL formula is valid

x2 + y2 = 0 → [x′ = 4y3, y′ = −4x3]x2 + y2 = 0 (8)

but cannot be proved directly using DI=0, because x2 + y2 is no invariant function of
the dynamics. In combination with generalization (MR to change the postcondition
to the equivalent x4 + y4 = 0) and a cut (to change the antecedent to the equivalent
x4 + y4 = 0), however, there is a proof using differential invariants DI=0:

∗
R ⊢ 4x3(4y3) + 4y3(−4x3) = 0

[′:=] ⊢ [x′:=4y3][y′:=− 4x3]4x3x′ + 4y3y′ = 0
DI=0 x4 + y4 = 0 ⊢ [x′ = 4y3, y′ = −4x3]x4 + y4 = 0

cut,MRx2 + y2 = 0 ⊢ [x′ = 4y3, y′ = −4x3]x2 + y2 = 0
→R ⊢ x2 + y2 = 0 → [x′ = 4y3, y′ = −4x3]x2 + y2 = 0

The use of MR leads to another branch x4 + y4 = 0 ⊢ x2 + y2 = 0 that is elided above.
Similarly, cut leads to another branch x2 + y2 = 0 ⊢ x4 + y4 = 0 that is also elided. Both
prove easily by real arithmetic (R).

See ≪Differential invariant after generalization≫

How could this happen? How could the original formula (8) be provable only after
generalizing its postcondition to x4 + y4 = 0 and not before?
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Note 22 (Strengthening induction hypotheses). An important phenomenon we already
encountered in Lecture 7 on Loops & Invariants and other uses of induction is that, some-
times, the only way to prove a property is to strengthen the induction hypothesis. Differen-
tial invariants are no exception. It is worth noting, however, that the inductive structure
in differential invariants includes their differential structure. And, indeed, the deriva-
tives of x4 + y4 = 0 are different and more conducive for an inductive proof than those of
x2 + y2 = 0 even if both have the same set of solutions.

Theorem 13 explains why x2 + y2 = 0 was doomed to fail as a differential invariant
while x4 + y4 = 0 succeeded. All formulas of the form x4 + y4 = c for all c are invari-
ants of the dynamics in (8), because the proof succeeded. But x2 + y2 = c only is an
invariant for the lucky choice c = 0 and only equivalent to x4 + y4 = 0 for this case.

There also is a way of deciding equational invariants of algebraic differential equa-
tions using a higher-order generalization of differential invariants called differential
radical invariants [GP14].

13 Summary

This lecture showed one form of differential invariants: the form where the differential
invariants are terms whose value always stays 0 along all solutions of a differential
equation. The next lecture will use the tools developed in this lecture to investigate
more general forms of differential invariants and more advanced proof principles for
differential equations. They all share the important discovery in today’s lecture: that
properties of differential equations can be proved using the differential equation rather
than its solution.

The most important technical insight of today’s lecture was that even very compli-
cated behavior that is defined by mathematical properties of the semantics can be cap-
tured by purely syntactical proof principles using differentials. The differential lemma
proved that the values of differentials of terms coincide with the analytic derivatives
of the values. The derivation lemma gave us the usual rules for computing derivatives
as equations of differentials. The differential assignment lemma allowed us the intu-
itive operation of substituting differential equations into terms. Proving properties of
differential equations using a mix of these simple proof principles is much more civ-
ilized and effective than working with solutions of differential equations. The proofs
are also computationally easier, because the proof arguments are local and derivatives
even decrease the polynomial degrees.

The principles begun in this lecture have more potential, though, and are not lim-
ited to proving only properties of the rather limited form e = 0. Subsequent lectures
will make use of the results obtained and build on the differential lemma, derivation
lemma, and differential assignment lemma to develop more general proof principles
for differential equations.
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Exercises

Exercise 1. Note 3 explained that (x′ = f(x))∗ is equivalent to x′ = f(x). Does the same
hold for differential equations with evolution domain constraints? Are (x′ = f(x)&Q)∗

and x′ = f(x)&Q equivalent or not? Justify or modify the statement and justify the
variation.

Exercise 2. We argued that dL formulas (1) and (3) are equivalent and have then gone on
to find a proof of (3). Continue this proof of (3) to a proof of (1) using the generalization
rule MR and the cut rule.

Exercise 3. Prove the other cases of Lemma 5 where e is of the form e− k or e · k or e/k.

Exercise 4. What happens in the proof of Lemma 10 if there is no solution ϕ? Show that
this is not a counterexample to proof rule DI=0, but that the rule is sound in that case.

Exercise 5. Carry out the polynomial computations needed to prove Example 12 using
proof rule DI=0.

Exercise 6. Prove the following dL formula using differential invariants:

xy = c → [x′ = −x, y′ = y, z′ = −z]xy = c

Exercise 7. Prove the following dL formula using differential invariants:

x2 + 4xy − 2y3 − y = 1 → [x′ = −1 + 4x− 6y2, y′ = −2x− 4y]x2 + 4xy − 2y3 − y = 1

Exercise 8. Prove the following dL formula using differential invariants:

x2 +
x3

3
= c → [x′ = y2, y′ = −2x]x2 +

x3

3
= c

Exercise 9 (Hénon-Heiles). Prove a differential invariant of a Hénon-Heiles system:

1

2
(u2 + v2 +Ax2 +By2) + x2y −

1

3
εy3 = 0 →

[x′ = u, y′ = v, u′ = −Ax− 2xy, v′ = −By + εy2 − x2]
1

2
(u2+v2+Ax2+By2)+x2y−

1

3
εy3 = 0
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15-424: Foundations of Cyber-Physical Systems

Lecture Notes on

Differential Equations & Proofs

André Platzer

Carnegie Mellon University
Lecture 11

1. Introduction

Lecture 10 on Differential Equations & Differential Invariants introduced equational
differential invariants of the form e = 0 for differential equations that are much more
general than the ones supported by axiom [′] from Lecture 5 on Dynamical Systems &
Dynamic Axioms. Axiom [′] replaces properties of differential equations with univer-
sally quantified properties of solutions, but is limited to differential equations that have
explicit closed-form solutions whose arithmetic can be handled (mostly polynomials or
rational functions). But axiom [′] works for any arbitrary postcondition. The equational
differential invariant proof rule dI=0 supports general differential equations, but was
limited to equational postconditions of the form e = 0.

The goal of this lecture is to generalize the differential invariant proof rules to work
for more general postconditions but retaining the flexibility with the differential equa-
tions that differential invariants provide. Indeed, the principles developed in Lecture
10 generalize beautifully to logical formulas other than the limited form e = 0. This lec-
ture will establish generalizations that make the differential invariant proof rule work
for formulas F of more general forms. The most important part will be soundly defin-
ing the total derivative F ′, because the basic shape of the differential invariants proof
rule stays the same:

⊢ [x′ := f(x)](F )′

F ⊢ [x′ = f(x)]F

More details can be found in [Pla10b, Chapter 3.5] and [Pla10a, Pla12d, Pla12a, Pla12b].
Differential invariants were originally conceived in 2008 [Pla10a, Pla08] and later used
for an automatic proof procedure for hybrid systems [PC08]. These lecture notes are
based on an advanced axiomatic logical understanding of differential invariants via
differential forms [Pla15].
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L11.2 Differential Equations & Proofs

This lecture advances the capabilities of differential invariants begun in Lecture 10
on Differential Equations & Differential Invariants and continues to be of central sig-
nificance for the Foundations of Cyber-Physical Systems. The most important learning
goals of this lecture are:

Modeling and Control: This lecture continues the study of the core principles behind
CPS by developing a deeper understanding of how continuous dynamical behav-
ior affects the truth of logical formulas. The differential invariants developed in
this lecture also have a significance for developing models and controls using the
design-by-invariant principle.

Computational Thinking: This lecture exploits computational thinking continuing the
surprising analogies among discrete dynamics and continuous dynamics discov-
ered in Lecture 10. This lecture is devoted to rigorous reasoning about the differ-
ential equations in CPS models, which is crucial for understanding the continuous
behavior that CPS exhibit over time. This lecture systematically expands on the
differential invariant terms for equational properties of differential equations de-
veloped in Lecture 10 and generalizes the same core principles to the study of
general properties of differential equations. Computational thinking is exploited
in a second way by generalizing Gentzen’s cut principle, which is of seminal sig-
nificance in discrete logic, to differential equations. This lecture continues the
axiomatization of differential dynamic logic dL [Pla12c, Pla12a] pursued since Lec-
ture 5 on Dynamical Systems & Dynamic Axioms and lifts dL’s proof techniques
to systems with more complex properties of more complex differential equations.
The concepts developed in this lecture continue the differential facet illustrating
the more general relation of syntax (which is notation), semantics (what carries
meaning), and axiomatics (which internalizes semantic relations into universal
syntactic transformations). These concepts and their relations jointly form the
significant logical trinity of syntax, semantics, and axiomatics. Finally, the verifi-
cation techniques developed in this lecture are critical for verifying CPS models
of appropriate scale and technical complexity.

CPS Skills: The focus in this lecture is on reasoning about differential equations. As
a beneficial side effect, we will develop a better intuition for the operational ef-
fects involved in CPS by getting better tools for understanding how exactly state
changes while the system follows a differential equation and what properties of
it will not change.
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CT

M&C CPS

discrete vs. continuous analogie
rigorous reasoning about ODEs
beyond differential invariant terms
differential invariant formulas
cut principles for differential equations
axiomatization of ODEs
differential facet of logical trinity

understanding continuous dynamics
relate discrete+continuous
design-by-invariant

operational CPS effects
state changes along ODE

2. Recall: Ingredients for Differential Equation Proofs

First recall the semantics of differentials from Lecture 10 on Differential Equations &
Differential Invariants as well as the semantics of differential equations from Lecture 3
on Choice & Control:

Definition 1 (Semantics of differentials). The semantics of differential term (e)′ in
state ω is the value [[(e)′]]ω defined as

[[(e)′]]ω =
∑

x∈V

ω(x′)
∂[[e]]

∂x
(ω)

Note 2 (Semantics of differential equations).

[[x′ = f(x)&Q]] = {(ϕ(0)|{x′}∁ , ϕ(r)) : ϕ(ζ) |= x′ = f(x) ∧Q for all 0≤ζ≤r

for some solution ϕ : [0, r] → S of some duration r ∈ R}

where ϕ(ζ)(x′) =
dϕ(t)(x)

dt
(ζ)

Recall the following results from Lecture 10 on Differential Equations & Differential
Invariants:
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Lemma 2 (Derivation lemma). The following equations of differentials are valid formu-
las so sound axioms.
+′ (e+ k)′ = (e)′ + (k)′

−′ (e− k)′ = (e)′ − (k)′

·′ (e · k)′ = (e)′ · k + e · (k)′

/′ (e/k)′ =
(
(e)′ · k − e · (k)′

)
/k2

c′ (c())′ = 0

x′ (x)′ = x′

Lemma 3 (Differential lemma). Let ϕ |= x′ = f(x) ∧Q for some solution ϕ : [0, r] →
S of duration r > 0. Then for all terms e (defined all along ϕ) and all times ζ ∈ [0, r]:

[[(e)′]]ϕ(ζ) =
d [[e]]ϕ(t)

dt
(ζ)

In particular, [[e]]ϕ(ζ) is continuously differentiable in ζ.

Lemma 4 (Differential assignment). If ϕ |= x′ = f(x) ∧Q for a flow ϕ : [0, r] → S of
any duration r ≥ 0, then

ϕ |= P ↔ [x′ := f(x)]P

Corollary 5 (Differential effects). The differential effect axiom is sound:

DE [x′ = f(x)&Q]P ↔ [x′ = f(x)&Q][x′ := f(x)]P

Lemma 4 and its corollary are already more general and work for any postcondition
P , not just for normalized equations e = 0. Lemma 2 covers general polynomial (and
rational) terms.

3. Differential Weakening

Just like the differential effect axiom DE perfectly internalizes the effect that differential
equations have on the differential symbols, the differential weakening axiom internal-
izes the semantic effect of their evolution domain constraints (Note 2). Of course, the
effect of an evolution domain constraint Q is not to change values around, but rather to
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limit the continuous evolution to always remain within Q. There are multiple ways of
achieving that [Pla15] and you are invited to discover them.

One simple but useful way is the following differential weakening axiom, somewhat
reminiscent of the way axiom DE is phrased:

Lemma 6 (Differential weakening). The following axiom is sound:

DW [x′ = f(x)&Q]P ↔ [x′ = f(x)&Q](Q→ P )

Since differential equations can never leave their evolution domain constraints, any
property P is true after the differential equation if and only if it is true whenever the
evolution domain constraintQ is. After all, the evolution domain constraintQ is always
true throughout all evolutions of x′ = f(x)&Q.

Because of its frequent use, the following differential weakening sequent proof rule
that follows with a generalization step G from the differential weakening axiom DW is
useful, too:

dW
Q ⊢ P

Γ ⊢ [x′ = f(x)&Q]P,∆

This rule is obviously sound, too, because the system x′ = f(x)&Q, by definition, will
stop before it leaves Q, hence, if Q implies F (i.e. the region Q is contained in the region
F ), then F is an invariant, no matter what the actual differential equation x′ = f(x)
does.

Of course, it is crucial for soundness that dW drops the context Γ,∆, which could not
soundly be available in the premise (Exercise 1). The context Γ contains information
about the initial state which is no longer guaranteed to remain true in the final state.
When adding an additional universal quantifier ∀x, however, it is sound to keep the
context around, because ∀x soundly overapproximates all the changes that any differ-
ential equation x′ = f(x) could possibly ever do:

dW
Γ ⊢ ∀x (q(x) → p(x)),∆

Γ ⊢ [x′ = f(x)& q(x)]p(x),∆

Neither of those simple proof rules can prove particularly interesting properties, be-
cause they only work when Q is rather informative. They can, however, be useful to
obtain partial information about the domains of differential equations or in combina-
tion with stronger proof rules (e.g., differential cuts).

4. Differential Invariant Terms

Lecture 10 on Differential Equations & Differential Invariants proved soundness for
a proof rule for differential invariant terms, which can be used to prove normalized
invariant equations of the form e = 0. In addition to recalling it, we will immediately
generalize it to the presence of evolution domain constraints using our new differential
weakening principles.
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Lemma 7 (Differential invariant terms). The following special case of the differential invari-
ants proof rule is sound, i.e. if its premise is valid then so is its conclusion:

dI=0
Q ⊢ [x′ := f(x)](e)′ = 0

e = 0 ⊢ [x′ = f(x)&Q]e = 0

This rule can be derived with DE,G,DW from the more elementary rule:

DI=0
⊢ [x′ = f(x)&Q](e)′ = 0

e = 0 ⊢ [x′ = f(x)&Q]e = 0

as follows
Q ⊢ [x′ := f(x)](e)′ = 0

→R ⊢ Q→ [x′ := f(x)](e)′ = 0
G ⊢ [x′ = f(x)&Q](Q→ [x′ := f(x)](e)′ = 0)

DW ⊢ [x′ = f(x)&Q][x′ := f(x)](e)′ = 0
DE ⊢ [x′ = f(x)&Q](e)′ = 0

DI=0e = 0 ⊢ [x′ = f(x)&Q]e = 0

Observe how useful it is that we have assembled an array of independent reasoning
principles, differential effect DE, differential weakening DW, generalization G, to com-
bine and bundle the logically more elementary rule DI=0 to the more useful rule dI=0.
Such modular combinations of reasoning principles are not just easier to get sound, but
also more flexible because they allow free variations in the argument structure. Cor-
responding counterparts of dI=0 will, consequently, result directly from the stronger
forms of the elementary differential invariant rule DI=0 that we consider subsequently.

Differential invariant terms led to an indirect proof of

v2 + w2 = r2 → [v′ = w,w′ = −v]v2 + w2 = r2 (1)

by generalizing the formula using MR and cut to

v2 + w2 − r2 = 0 → [v′ = w,w′ = −v]v2 + w2 − r2 = 0 (2)

after normalizing the equation to have 0 on the right-hand side as required by the dif-
ferential invariant term proof rule dI=0. Let’s find a more direct proof, though.

5. Equational Differential Invariants

There are more general logical formulas that we would like to prove to be invariants
of differential equations, not just the polynomial equations normalized such that they
are single terms equaling 0. For example, we should generalize differential invariants
to enable a direct proof of (1) with an invariant of the form of a general equation e = k,
rather than insisting on normalizing equations to the form e = 0 by generalization MR
first.
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Thinking back of the soundness proof for dI=0 in Lecture 10, the argument was based
on the value of the left-hand side term h(t) = [[e]]ϕ(t) as a function of time t. The same
argument can be made by considering the difference h(t) = [[e− k]]ϕ(t) instead to prove
postconditions of the form e = k. How does the inductive step for formula e = k need
to be define to make a corresponding differential invariant proof rule sound? That is,
for what premise is the following a sound proof rule where e and k are arbitrary terms?

???

e = k ⊢ [x′ = f(x)]e = k

Before you read on, see if you can find the answer for yourself.
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If we mnemonically define the “differential” of an equation e = k as

(e = k)′
def
≡ ((e)′ = (k)′)

this results in a sound proof rule by a simple variation of the soundness proof for DI=0

as sketched above:

DI=
⊢ [x′ = f(x)&Q](e)′ = (k)′

e = k ⊢ [x′ = f(x)&Q]e = k

This rule for equational differential invariants captures the basic intuition that e always
stays equal to k if it has been initially (antecedent of conclusion) and the derivative of
e is the same as the derivative of k with respect to the differential equation x′ = f(x).
The intuition, thus, is that two quantities that start with the same rate of change from
the same value initially will always remain the same. This intuition is made precise
by Lemma 3. Instead of going through a proper soundness proof for DI=, however,
let’s directly generalize the proof principles further and see if differential invariants
can prove even more formulas for us. We will later prove soundness for the general
differential invariant rule, from which DI= derives as a special case. In example proofs,
we will frequently refer to dI of which dI= is merely a special form for the sake of
development.

Observe that the following rule derives from DI= just like dI=0 derives from DI=0:

dI=
⊢ [x′ := f(x)](e)′ = (k)′

e = k ⊢ [x′ = f(x)]e = k

Example 8 (Rotational dynamics). The rotational dynamics v′ = w,w′ = −v is compli-
cated in that the solution involves trigonometric functions, which are generally outside
decidable classes of arithmetic. Yet, we can easily prove interesting properties about
it using dI and decidable polynomial arithmetic. For instance, dI= can directly prove
formula (1), i.e. that v2 + w2 = r2 is a differential invariant of the dynamics, using the
following proof:

∗
R ⊢ 2vw + 2w(−v) = 0

[′:=] ⊢ [v′ :=w][w′ :=−v]2vv′ + 2ww′ = 0
dI v2 + w2 = r2 ⊢ [v′ = w,w′ = −v]v2 + w2 = r2

→R ⊢ v2 + w2 = r2 → [v′ = w,w′ = −v]v2 + w2 = r2

This proof is certainly easier and more direct than the previous proof based on MR.

6. Differential Invariant Inequalities

The differential invariant proof rules considered so far give a good (initial) understand-
ing of how to prove equational invariants. What about inequalities? How can they be
proved?

Before you read on, see if you can find the answer for yourself.
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The primary question to generalize the differential invariant proof rule is again how
to mnemonically define a “differential”

(e ≤ k)′
def
≡ ((e)′ ≤ (k)′)

which gives the following pair of differential invariant proof rules, which we simply
also just call ?? and dI again:

⊢ [x′ = f(x)&Q](e)′ ≤ (k)′

e ≤ k ⊢ [x′ = f(x)&Q]e ≤ k

⊢ [x′ := f(x)](e)′ ≤ (k)′

e ≤ k ⊢ [x′ = f(x)]e ≤ k

The intuition is that a quantity e that starts with smaller or equal rate of change than
that of k from a smaller or equal value initially will always remain smaller or equal.

Example 9 (Cubic dynamics). Similarly, differential induction can easily prove that 1
3 ≤ 5x2

is an invariant of the cubic dynamics x′ = x3; see the proof in Fig. 9 for the dynamics
in Fig. 1. To apply the differential induction rule dI, we form the derivative of the dif-

∗
R ⊢ 0 ≤ 5 · 2x(x3)

[′:=] ⊢ [x′ := x3]0 ≤ 5 · 2xx′

dI 1
3 ≤ 5x2 ⊢ [x′ = x3]13 ≤ 5x2 0 t

x

x0
x′ = x3

Figure 1: a Cubic dynamics proof 1b: Cubic dynamics

ferential invariant F ≡ 1
3 ≤ 5x2, which gives (F )′ ≡ (13 ≤ 5x2)′ ≡ 0 ≤ 5 · 2xx′. Now, the

differential induction rule dI takes into account that the derivative of state variable x
along the dynamics is known. Substituting the differential equation x′ = x3 into the
inequality yields [x′ := x3](F )′ ≡ 0 ≤ 5 · 2xx3, which is a valid formula and closes by
quantifier elimination with R.

Differential invariants that are inequalities are not just a minor variation of equa-
tional differential invariants, because they can prove more. That is, it can be shown
[Pla12d] that there are valid formulas that can be proved using differential invariant
inequalities but cannot be proved just using equations as differential invariants (dI=).
So sometimes, you need to be prepared to look for inequalities that you can use as dif-
ferential invariants. The converse is not true. Everything that is provable using dI= is
also provable using differential invariant inequalities [Pla12d], but you should still look
for equational differential invariants if they give easier proofs.

Strict inequalities can also be used as differential invariants when defining their “dif-
ferentials” mnemonically as:

(e < k)′
def
≡ ((e)′ < (k)′)
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-1.5

-1.0

-0.5

0.5

1.0

Figure 2: Damped oscillator time trajectory (left) and invariant in phase space (right)

It is easy to see (Exercise 2) that the following slightly relaxed definition is also sound:

(e < k)′
def
≡ ((e)′ ≤ (k)′)

Example 10 (Rotational dynamics). An inequality property can be proved easily for the
rotational dynamics v′ = w,w′ = −v using the following proof:

∗
R ⊢ 2vw + 2w(−v) ≤ 0

[′:=] ⊢ [v′ :=w][w′ :=−v]2vv′ + 2ww′ ≤ 0
dI v2 + w2 ≤ r2 ⊢ [v′ = w,w′ = −v]v2 + w2 ≤ r2

→R ⊢ v2 + w2 ≤ r2 → [v′ = w,w′ = −v]v2 + w2 ≤ r2

Example 11 (Damped oscillator). This proof shows the invariant of the damped oscilla-
tor illustrated in Fig. 2:

∗
R ω≥0 ∧ d≥0 ⊢ 2ω2xy + 2y(−ω2x− 2dωy) ≤ 0

[′:=] ω≥ 0 ∧ d≥0 ⊢ [x′ := y][y′ :=−ω2x− 2dωy]2ω2xx′ + 2yy′ ≤ 0
dI ω2x2+y2≤c2 ⊢ [x′ = y, y′ = −ω2x− 2dωy&(ω≥0 ∧ d≥0)]ω2x2+y2≤c2

7. Disequational Differential Invariants

The case that is missing in differential invariant proof rules of atomic formulas are for
postconditions that are disequalities e 6= k? How can they be proved?

Before you read on, see if you can find the answer for yourself.
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By analogy to the previous cases, one might expect the following definition:

(e 6= k)′
?
≡ ((e)′ 6= (k)′) ???

It is crucial for soundness of differential invariants that (e 6= η)′ is not defined that
way! In the following counterexample, variable x can reach x = 0 without its derivative
ever being 0; again, see Fig. 3 for the dynamics. Of course, just because e and k start out

∗ (unsound)

⊢ 1 6= 0
 x 6= 5 ⊢ [x′ = 1]x 6= 5 0 t

x

x
′ = 1

x0 + t

Figure 3: a Unsound attempt of using disequalities 3b: Linear dynamics

different, does not mean they would always stay different if they evolve with different
derivatives. Au contraire, it is because both evolve with different derivatives that they
might catch each other.

Instead, if e and k start out differently and evolve with the same derivatives, they
will always stay different. So the sound definition is slightly unexpected:

(e 6= k)′
def
≡ ((e)′ = (k)′)

8. Conjunctive Differential Invariants

The next case to consider is where the invariant that we want to prove is a conjunction
F ∧G. The crucial question then is again what we a “differential” (F ∧G)′ would be
that measures the rate-of-change in truth-values of the conjunction F ∧ G. Of course,
there aren’t many changes of truth-values to speak of, because there’s only two: true

and false . But, still, no change in truth-value is a good thing for an invariant argument.
An invariant should always stay true if it was true initially.

Before you read on, see if you can find the answer for yourself.
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To show that a conjunction F ∧G is invariant it is perfectly sufficient to prove that
both are invariant. This can be justified separately, but is more obvious when recalling
the following equivalence from Lecture 7:

[]∧ [α](P ∧Q) ↔ [α]P ∧ [α]Q

which is valid for all hybrid programs α, also when α is just a differential equation.
Consequently, the mnemonic “differential” for conjunction is the conjunction of the
differentials:

(F ∧G)′ ≡ (F )′ ∧ (G)′

Again, we will not develop a proper soundness argument, because it will follow from
the general differential invariant proof rule.

A corresponding generalization of the differential invariants proof rule to conjunc-
tions enables us to do the following proof:

∗
R ⊢ 2vw + 2w(−v) ≤ 0 ∧ 2vw + 2w(−v) ≥ 0

[′:=] ⊢ [v′ :=w][w′ :=−v](2vv′ + 2ww′ ≤ 0 ∧ 2vv′ + 2ww′ ≥ 0)
dI v2 + w2 ≤ r2 ∧ v2 + w2 ≥ r2 ⊢ [v′ = w,w′ = −v](v2 + w2 ≤ r2 ∧ v2 + w2 ≥ r2)

Of course, a direct proof with []∧ and two separate proofs that the left conjunct is a dif-
ferential invariant and that, separately, the right conjunct also is a differential invariant
would have worked equally well. Since the invariant v2 + w2 ≤ r2 ∧ v2 + w2 ≥ r2 is
easily proved to be equivalent to v2 + w2 = r2, the above proof gives yet another proof
of (1) when combined with a corresponding use of the generalization rule MR.

9. Disjunctive Differential Invariants

The next case to consider is where the invariant that we want to prove is a disjunction
F ∨G. Our other lemmas take care of how to handle differential effects and differential
weakening, if only we define the correct “differential” (F ∨G)′. How?

Before you read on, see if you can find the answer for yourself.
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The “differential” of a conjunction is the conjunction of the differentials. So, by anal-
ogy, it might stand to reason to define the “differential” of a disjunction as the disjunc-
tion of the differentials.

(F ∨G)′
?
≡ (F )′ ∨ (G)′ ???

Let’s give it a try:

unsound
R ⊢ 2vw + 2w(−v) = 0 ∨ 5v + rw ≥ 0

[′:=] ⊢ [v′ :=w][w′ :=−v]2vv′ + 2ww′ = 0 ∨ r′v + rv′ ≥ 0
 v2 + w2 = r2 ∨ rv ≥ 0 ⊢ [v′ = w,w′ = −v, r′ = 5](v2 + w2 = r2 ∨ rv ≥ 0)

That would be spectacularly wrong, however, because the formula at the bottom is not
actually valid, so it does not deserve a proof. We have no business of proving formulas
that are not valid and if we ever could, we would have found a serious unsoundness in
the proof rules.

For soundness of differential invariants, it is crucial that the “differential” (F ∨G)′ of
a disjunction is defined, e.g., conjunctively as (F )′ ∧ (G)′ instead of as (F )′ ∨ (G)′. From
an initial state ω which satisfies ω |= F , and hence ω |= F ∨G, the formula F ∨G only
is sustained differentially if F itself is a differential invariant, not if G is. For instance,
v2 + w2 = r2 ∨ rd ≥ 0 is no invariant of the above differential equation, because rv ≥ 0
will be invalidated if we just follow the circle dynamics long enough. So if the disjunc-
tion was true because rv ≥ 0 was true in the beginning, it does not stay invariant.

Instead, splitting differential invariant proofs over disjunctions by ∨L is the way to
go, and, in fact, by []∧, also justifies the choice

(F ∨G)′
def
≡ (F )′ ∧ (G)′

→R

∨L

MR

dI
[x′ := f(x)](A)′

A ⊢ [x′ = f(x)]A
∨R

id
∗

A ⊢ A,B

A ⊢ A ∨B

A ⊢ [x′ = f(x)](A ∨B)
MR

dI
[x′ := f(x)](B)′

B ⊢ [x′ = f(x)]B
∨R

id
∗

B ⊢ A,B

B ⊢ A ∨B

B ⊢ [x′ = f(x)](A ∨B)

A ∨B ⊢ [x′ = f(x)](A ∨B)

A ∨B → [x′ = f(x)](A ∨B)

10. Differential Invariants

Differential invariants are a general proof principles for proving invariants of formulas.
Summarizing what this lecture has discovered so far leads to a single proof rule for
differential invariants. That is why all previous proofs just indicated dI when using the
various special cases of the differential invariant proof rule to be developed next.

All previous arguments remain valid when the differential equation has an evolution
domain constraint Q that it cannot leave by definition. In that case, the inductive proof
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step can even assume the evolution domain constraint to hold, because the system, by
definition, is not allowed to leave it.

Definition 12 (Differential). The following definition generalizes the differential
operator (·)′ to real-arithmetic formulas:

(F ∧G)′ ≡ (F )′ ∧ (G)′ (3a)

(F ∨G)′ ≡ (F )′ ∧ (G)′ (3b)

(e ≥ k)′ ≡ (e)′ ≥ (k)′ accordingly for <,>,≤,=, but not 6= (3c)

The operation mapping F to [x′ := f(x)](F )′ is called Lie-derivative of F with re-
spect to x′ = f(x).

By (3c), the “differential” (F )′ on formulas F uses the differential (e)′ of the terms e that
occur within F .

Lemma 13 (Differential invariants). The differential invariant rule is sound:

dI
Q ⊢ [x′ := f(x)](F )′

F ⊢ [x′ = f(x)&Q]F
dI’

Γ ⊢ F,∆ Q ⊢ [x′ := f(x)](F )′ F ⊢ ψ

Γ ⊢ [x′ = f(x)&Q]ψ,∆

The version dI’ can be derived easily from the more fundamental, essential form dI simi-
lar to how the most useful loop induction rule loop derives from the essential form ind.

The basic idea behind rule dI is that the premise of dI shows that the differential (F )′

holds within evolution domainQwhen substituting the differential equations x′ = f(x)
into (F )′. If F holds initially (antecedent of conclusion), then F itself always stays
true (succedent of conclusion). Intuitively, the premise gives a condition showing that,
within Q, the differential (F )′ along the differential constraints is pointing inwards or
transversally to F but never outwards to ¬F ; see Fig. 4 for an illustration. Hence, if we

¬
¬F

F
F

Figure 4: Differential invariant F for safety

start in F and, as indicated by (F )′, the local dynamics never points outside F , then the
system always stays in F when following the dynamics.

Proof sketch. A full proof is located elsewhere [Pla15].

h(t)
def
= [[e]]ϕ(t) is differentiable on [0, r] if r > 0.
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dh(t)

dt
(ζ) =

d[[e]]ϕ(t)

dt
(ζ) = [[(e)′]]ϕ(ζ) ≥ 0 by lemma + premise for all ζ.

h(r)− h(0)
︸︷︷︸

≥0

= (r − 0)
︸ ︷︷ ︸

>0

dh(t)

dt
(ξ)

︸ ︷︷ ︸

≥0

≥ 0 by mean-value theorem for some ξ.

This proof rule enables us to easily prove (2) and all previous proofs as well:

∗
R ⊢ 2vw + 2w(−v) ≤ 0

[′:=] ⊢ [v′ :=w][w′ :=−v]2vv′ + 2ww′ ≤ 0
dI v2 + w2 ≤ r2 ⊢ [v′ = w,w′ = −v]v2 + w2 ≤ r2

→R ⊢ v2 + w2 ≤ r2 → [v′ = w,w′ = −v]v2 + w2 ≤ r2

11. Example Proofs

Example 14 (Quartic dynamics). The following simple dL proof uses dI to prove an
invariant of a quartic dynamics.

∗

R a ≥ 0 ⊢ 3x2((x− 3)4 + a) ≥ 0

[′:=] a ≥ 0 ⊢ [x′ := (x− 3)4 + a]3x2x′ ≥ 0

dI x3 ≥ −1 ⊢ [x′ = (x− 3)4 + a& a ≥ 0]x3 ≥ −1

Observe that rule dI directly makes the evolution domain constraint a ≥ 0 available as
an assumption in the premise, because the continuous evolution is never allowed to
leave it.

Example 15. Consider the dynamics x′ = y, y′ = −ω2x− 2dωy of the damped oscillator
with the undamped angular frequency ω and the damping ratio d. See Fig. 5 for one
example of an evolution along this continuous dynamics. Figure 5 shows a trajectory
in the x, y space on the left, and an evolution of x over time t on the right. General
symbolic solutions of symbolic initial-value problems for this differential equation can
become surprisingly difficult. Mathematica, for instance, produces a long equation of
exponentials that spans 6 lines of terms just for one solution. A differential invariant
proof, instead, is very simple:

∗

R ω ≥ 0 ∧ d ≥ 0 ⊢ 2ω2xy − 2ω2xy − 4dωy2 ≤ 0

[′:=] ω ≥ 0 ∧ d ≥ 0 ⊢ [x′ := y][y′ :=−ω2x− 2dωy]2ω2xx′ + 2yy′ ≤ 0

dI ω2x2 + y2 ≤ c2 ⊢ [x′ = y, y′ = −ω2x− 2dωy&(ω ≥ 0 ∧ d ≥ 0)]ω2x2 + y2 ≤ c2
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y

x

t

x

Figure 5: Trajectory and evolution of a damped oscillator

Observe that rule dI directly makes the evolution domain constraint ω ≥ 0 ∧ d ≥ 0 avail-
able as an assumption in the premise, because the continuous evolution is never al-
lowed to leave it.

12. Assuming Invariants

Let’s make the dynamics more interesting and see what happens. Suppose there is a
robot at a point with coordinates (x, y) that is facing in direction (v, w). Suppose the
robot moves with constant (linear) velocity into direction (v, w), which is rotating as
before. Then the corresponding dynamics is:

x′ = v, y′ = w, v′ = ωw,w′ = −ωv

because the derivative of the x coordinate is the component v of the direction and the
derivative of the y coordinate is the componentw of the direction. And correspondingly
with the angular velocity ω determining how fast the rotation of the direction (v, w) is.
Consider the following conjecture:

(x−1)2+(y−2)2 ≥ p2 → [x′ = v, y′ = w, v′ = ωw,w′ = −ωv](x−1)2+(y−2)2 ≥ p2 (4)

This conjecture expresses that the robot at position (x, y) will always stay at distance p
from the point (1, 2) if it started there. Let’s try to prove conjecture (4):

⊢ 2(x− 1)v + 2(y − 2)w ≥ 0
[′:=] ⊢ [x′ := v][y′ :=w]2(x− 1)x′ + 2(y − 2)y′ ≥ 0

dI (x− 1)2 + (y − 2)2 ≥ p2 ⊢ [x′ = v, y′ = w, v′ = ωw,w′ = −ωv](x− 1)2 + (y − 2)2 ≥ p2

Unfortunately, this differential invariant proof does not work. As a matter of fact, for-
tunately it does not work out, because conjecture (4) is not valid, so we will, fortunately,
not be able to prove it with a sound proof technique. Conjecture (4) is too optimistic.
Starting from some directions far far away, the robot will most certainly get too close to
the point (1,2). Other directions may be fine.
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Inspecting the above failed proof attempt, we could prove (4) if we knew something
about the directions (v, w) that would make the remaining premise prove. What could
that be?

Before you read on, see if you can find the answer for yourself.
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Certainly, if we knew v = w = 0, the resulting premise would prove. Yet, that case
is pretty boring because it corresponds to the point (x, y) being stuck forever. A more
interesting case in which the premise would easily prove is if we knew x− 1 = −w and
y−2 = v. In what sense could we “know” x−1 = −w∧y−2 = v? Certainly, we would
have to assume this compatibility condition for directions versus position is true in the
initial state, otherwise we would not necessarily know the condition holds true where
we need it. So let’s modify (4) to include this assumption:

x− 1 = −w ∧ y − 2 = v ∧ (x− 1)2 + (y − 2)2 ≥ p2 →

[x′ = v, y′ = w, v′ = ωw,w′ = −ωv](x− 1)2 + (y − 2)2 ≥ p2 (5)

Yet, the place in the proof where we need to know x− 1 = −w∧ y− 2 = v for the above
sequent prove to continue is in the middle of the inductive step. How could we make
that happen?

Before you read on, see if you can find the answer for yourself.
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One step in the right direction is to check whether x − 1 = −w ∧ y − 2 = v is a
differential invariant of the dynamics, so it stays true forever if it was true initially:

not valid

⊢ v = −(−ωv) ∧ w = ωw
[′:=] ⊢ [x′ := v][y′ :=w][v′ := ωw][w′ :=−ωv](x′ = −w′ ∧ y′ = v′)

dI x− 1 = −w ∧ y − 2 = v ⊢ [x′ = v, y′ = w, v′ = ωw,w′ = −ωv](x− 1 = −w ∧ y − 2 = v)

This prove does not quite work out, because both sides of the equations are off by
a factor of ω and, indeed, x − 1 = −w ∧ y − 2 = v is not an invariant unless ω = 1.
On second thought, that makes sense, because the angular velocity ω determines how
quickly the robot turns, so if there is any relation between position and direction, it
should somehow depend on the angular velocity ω.

Let’s refine the conjecture to incorporate the angular velocity on the side of the equa-
tion where it was missing in the above proof and consider ω(x−1) = −w∧ω(y−2) = v
instead. That knowledge would still help the proof of (4), just with the same extra factor
on both terms. So let’s modify (5) to use this assumption on the initial state:

ω(x− 1) = −w ∧ ω(y − 2) = v ∧ (x− 1)2 + (y − 2)2 ≥ p2 →

[x′ = v, y′ = w, v′ = ωw,w′ = −ωv](x− 1)2 + (y − 2)2 ≥ p2 (6)

A simple proof shows that the new addition ω(x − 1) = −w ∧ ω(y − 2) = v is a
differential invariant of the dynamics, so it holds always if it holds in the beginning:

∗
R ⊢ ωv = −(−ωv) ∧ ωw = ωw

[′:=] ⊢ [x′ := v][y′ :=w][v′ := ωw][w′ :=−ωv](ωx′ = −w′ ∧ ωy′ = v′)
dI ω(x− 1) = −e ∧ ω(y − 2) = d ⊢ [x′ = v, y′ = w, v′ = ωw,w′ = −ωv](ω(x− 1) = −w ∧ ω(y − 2) = v)

Now, how can this freshly proved invariant ω(x − 1) = −w ∧ ω(y − 2) = v be made
available in the previous proof? Perhaps we could prove (6) using the conjunction of
the invariant we want with the additional invariant we need:

(x− 1)2 + (y − 2)2 ≥ p2 ∧ ω(x− 1) = −w ∧ ω(y − 2) = v

That does not work (eliding the antecedent in the conclusion just for space reasons)

⊢ 2(x− 1)v + 2(y − 2)w ≥ 0 ∧ ωv = −(−ωv) ∧ ωw = ωw
[′:=] ⊢ [x′ := v][y′ :=w][v′ := ωw][w′ :=−ωv](2(x− 1)x′ + 2(y − 2)y′ ≥ 0 ∧ ωx′ = −w′ ∧ ωy′ = v′)

dI (x− 1)2 . . . ⊢ [x′ = v, y′ = w, v′ = ωw,w′ = −ωv]((x− 1)2 + (y − 2)2 ≥ p2 ∧ ω(x− 1) = −w ∧ ω(y − 2) = v)

because the right conjunct in the premise still proves beautifully but the left conjunct in
the premise needs to know the invariant, which the differential invariant proof rule dI
does not make the invariant F available in the antecedent of the premise.
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In the case of loops, the invariant F can be assumed to hold before the loop body in
the induction step (the other form loop of the loop invariant rule):

ind
F ⊢ [α]F

F ⊢ [α∗]F

By analogy, we could augment the differential invariant proof rule dI similarly to
include F in the assumptions. Is that a good idea?

Before you read on, see if you can find the answer for yourself.
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It looks tempting to suspect that rule dI could be improved by assuming the differ-
ential invariant F in the antecedent of the premise:

dI??
Q ∧ F ⊢ [x′ := f(x)](F )′

F ⊢ [x′ = f(x)&Q]F
sound?

After all, we really only care about staying safe when we are still safe. And that would
indeed easily prove the formula (6), which might make us cheer. But implicit properties
of differential equations are a subtle business. Assuming F like in rule dI?? would, in
fact, be unsound, as the following simple counterexample shows, which “proves” an
invalid property using the unsound proof rule dI??:

(unsound)

v2 − 2v + 1 = 0 ⊢ 2vw − 2w = 0

v2 − 2v + 1 = 0 ⊢ [v′ :=w][w′ :=−v](2vv′ − 2v′ = 0)
 v2 − 2v + 1 = 0 ⊢ [v′ = w,w′ = −v]v2 − 2v + 1 = 0

Of course, v2 − 2v + 1 = 0 does not stay true for the rotational dynamics, because v
changes. And there are many other invalid properties that the unsound proof rule dI??
would claim to “prove”, for example:

(unsound)

−(x− y)2 ≥ 0 ⊢ −2(x− y)(1− y) ≥ 0

−(x− y)2 ≥ 0 ⊢ [x′ := 1][y′ := y](−2(x− y)(x′ − y′) ≥ 0)
 −(x− y)2 ≥ 0 ⊢ [x′ = 1, y′ = y](−(x− y)2 ≥ 0)

Assuming an invariant of a differential equation during its own proof is, thus, terribly
incorrect, even though it has been suggested numerous times in the literature. There
are some cases for which rule dI?? or variations of it would be sound, but these are
nontrivial [Pla10a, Pla12d, Pla12b, GP14, GSP14].

The reason why assuming invariants for their own proof is problematic for the case of
differential equations is somewhat subtle [Pla10a, Pla12d]. In a nutshell, the proof rule
dI?? assumes more than it knows, so that the argument becomes cyclic. The antecedent
only provides the invariant in a single point and Lecture 10 already explained that
derivatives are not particularly well-defined in a single point. That is one of the reasons
why we had to exercise extraordinary care in our arguments to define precisely what
derivatives and differentials were to begin with in Lecture 10. Recall that, unlike time-
derivatives, differentials have meaning in isolated states.

13. Differential Cuts

Instead of these ill-guided attempts of assuming invariants for their own proof, there is
a complementary proof rule for differential cuts [Pla10a, Pla08, Pla12d, Pla12b] that can
be used to strengthen assumptions about differential equations in a sound way:
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DC
Γ ⊢ [x′ = f(x)&Q]C,∆ Γ ⊢ [x′ = f(x)& (Q ∧ C)]F ,∆

Γ ⊢ [x′ = f(x)&Q]F,∆

The differential cut rule works like a cut, but for differential equations. Recall the cut
rule from Lecture 6 which can be used to prove a formula C on the left premise and
then assume it on the right premise:

cut
Γ ⊢ C,∆ Γ, C ⊢ ∆

Γ ⊢ ∆

Similarly, differential cut rule DC proves a property C of a differential equation in
the left premise and then assumes C to hold in the right premise, except that it assumes
C to hold during a differential equation by restricting the behavior of the system. In
the right premise, rule DC restricts the system evolution to the subdomain Q ∧ C of
Q, which changes the system dynamics but is a pseudo-restriction, because the left
premise proves that C is an invariant anyhow (e.g. using rule dI). Note that rule DC is
special in that it changes the dynamics of the system (it adds a constraint to the system
evolution domain region), but it is still sound, because this change does not reduce the
reachable set, thanks to the left premise; see Fig. 6

Figure 6: If the solution of the differential equation can never leave region C and enter
the red region ¬C (left), then this unreachable region ¬C can be cut out of the
state space without changing the dynamics of the system (right)

The benefit of rule DC is that C will (soundly) be available as an extra assumption for
all subsequent dI uses on the right premise (see, e.g., the use of the evolution domain
constraint in Example 15). In particular, the differential cut rule DC can be used to
strengthen the right premise with more and more auxiliary differential invariants C
that will be available as extra assumptions on the right premise, once they have been
proven to be differential invariants in the left premise.

Proving the robot formula (6) in a sound way is now easy using a differential cut DC
by ω(x− 1) = −w ∧ ω(y − 2) = v:
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∗

R
⊢ ωv = −(−ωv) ∧ ωw = ωw

⊢ [x′ := v][y′ :=w][v′ := ωw][w′ :=−ωv](ωx′ = −w′
∧ ωy′ = v′)

dI
ω . . ⊢ [x′=v . .](ω(x−1)=−w∧ω(y−2)=v)

∗

R
ω(x−1)=−w∧ω(y−2)=v ⊢ 2(x− 1)v + 2(y − 2)w ≥ 0

ω(x−1)=−w∧ω(y−2)=v ⊢ [x′ := v][y′ :=w](2(x− 1)x′ + 2(y − 2)y′
≥ 0)

dI (x−1)2+(y−2)2≥p2 ⊢ [x′=v, y′=w, v′=ωw,w′=−ωv&ω(x−1)=−w∧ω(
DC (x−1)2+(y−2)2≥p2, ω(x−1)=−w∧ω(y−2)=v ⊢ [x′ = v, y′ = w, v′ = ωw,w′ = −ωv](x− 1)2 + (y − 2)2 ≥ p2

Amazing. Now we have a proper sound proof of the quite nontrivial robot motion
property (6). And it even is a surprisingly short proof.

See ≪Curved motion model≫
It is not always enough to just do a single differential cut. Sometimes, you may

want to do a differential cut with a formula C, then use C on the right premise of
DC to prove a second differential cut with a formula D and then on its right premise
have C ∧ D available to continue the proof; see Fig. 7. For example, we could also
have gotten a proof of (6) by first doing a differential cut with ω(x− 1) = −w, then
continue with a differential cut with ω(y − 2) = v, and then finally use both to prove
the postcondition (Exercise 4). Using this differential cut process repeatedly has turned
out to be extremely useful in practice and even simplifies the invariant search, because
it leads to several simpler properties to find and prove instead of a single complex
property [PC08, PC09, Pla10b].

Figure 7: If the solution of the differential equation can never leave region D and enter
the top red region ¬D (left), then this unreachable region ¬D can also be cut
out of the state space without changing the dynamics of the system (right)

Proof of Soundness of DC. For simplicity, consider only the case where Q ≡ true here.
Rule DC is sound using the fact that the left premise implies that every solution ϕ that
satisfies x′ = f(x) also satisfies C all along the solution. Thus, if solution ϕ satisfies
x′ = f(x), it also satisfies x′ = f(x)&C, so that the right premise entails the conclusion.
The proof is accordingly for the case

See ≪ Tutorial Video on Differential Invariants, Differential Cuts≫
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14. Differential Weakening Again

Observe how differential weakening from Sect. 3 can be useful in combination with
differential cuts. For example, after having performed the differential cut illustrated in
Fig. 6 and, then, subsequently, performing the differential cut illustrated in Fig. 7, all un-
safe blue regions have been cut out of the state space, so that the system in Fig. 7(right) is
trivially safe by differential weakening, because there are no more unsafe blue regions.
That is, the ultimate evolution domain constraint Q ∧ C ∧D after the two differential
cuts with C and with D trivially implies the safety condition F , i.e. Q ∧ C ∧D ⊢ F is
valid. But notice that it took the two differential cuts to make differential weakening
useful. The original evolution domain constraint Q was not strong enough to imply
safety, since there were still unsafe blue regions in the original system in Fig. 6(left) and
even still in the intermediate system in Fig. 7(left) obtained after one differential cut
with C.

15. Summary

This lecture introduced very powerful proof rules for differential invariants, with which
you can prove even complicated properties of differential equations in easy ways. Just
like in the case of loops, where the search for invariants is nontrivial, differential invari-
ants also require some smarts (or good automatic procedures) to be found. Yet, once
differential invariants have been identified, the proof follows easily.

Note 10 (Proof rules for differential equations). The following are sound proof rules
for differential equations:

dI
Q ⊢ F ′f(x)

x′

F ⊢ [x′ = f(x)&Q]F
dW

Q ⊢ F

Γ ⊢ [x′ = f(x)&Q]F,∆

DC
Γ ⊢ [x′ = f(x)&Q]C,∆ Γ ⊢ [x′ = f(x)& (Q ∧ C)]F ,∆

Γ ⊢ [x′ = f(x)&Q]F,∆

A. Proving Aerodynamic Bouncing Balls

This section studies a hybrid system with differential invariants. Remember the bounc-
ing ball that was proved in Lecture 7 on Loops & Invariants?

The little acrophobic bouncing ball graduated from its study of loops and control
and yearningly thinks back of its joyful time when it was studying continuous behav-
ior. Caught up in nostalgia, the bouncing ball suddenly discovers that it unabashedly
neglected the effect that air has on bouncing balls all the time. It sure is fun to fly
through the air, so the little bouncing ball swiftly decides to make up for that oversight
by including a proper aerodynamical model into its favorite differential equation. The
effect that air has on the bouncing ball is air resistance and, it turns out, air resistance
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gets stronger the faster the ball is flying. After a couple of experiments, the little bounc-
ing ball finds out that air resistance is quadratic in the velocity with an aerodynamic
damping factor r > 0.

Now the strange thing with air is that air is always against the flying ball. Air always
provides resistance, no matter which direction the ball is flying. If the ball is hurrying
up, the air holds it back and slows it down by decreasing its positive speed v > 0. If
the ball is rushing back down to the ground, the air still holds the ball back and slows it
down, only then that actually means increasing the negative velocity v < 0, because that
corresponds to decreasing the absolute value |v|. How could that be modeled properly?

One way of modeling this situation would be to use the (discontinuous) sign function
sign v that has value 1 for v > 0, value -1 for v < 0, and value 0 for v = 0:

x′ = v, v′ = −g − (sign v)rv2&x ≥ 0 (7)

That, however, gives a differential equation with a difficult right-hand side. Instead, the
little bouncing ball learned to appreciate the philosophy behind hybrid systems, which
advocates for keeping the continuous dynamics simple and moving discontinuities and
switching aspects to where they belong: the discrete dynamics. After all, switching and
discontinuities is what the discrete dynamics is good at.

Consequently, the little bouncing ball decides to split modes and separate the up-
ward flying part v ≥ 0 from the downward flying part v ≤ 0 and offer the system a
nondeterministic choice between the two:1

x ≤ H ∧ v = 0 ∧ x ≥ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ r ≥ 0 →
[(
if(x = 0) v :=−cv;

(x′ = v, v′ = −g − rv2&x ≥ 0 ∧ v ≥ 0 ∪ x′ = v, v′ = −g + rv2&x ≥ 0 ∧ v ≤ 0)
)∗

]
(0 ≤ x ≤ H)

(8)
In pleasant anticipation of the new behavior that this aerodynamic bouncing ball model
provides, the little bouncing ball is eager to give it a try. Before daring to bounce around
with this model, though, the acrophobic bouncing ball first wants to be convinced that
it would be safe to use, i.e. the model actually satisfies the height limit property in (8).
So the bouncing ball first sets out on a proof adventure. After writing down several
ingenious proof steps, the bouncing ball finds out that its previous proof does not carry
over. For one thing, the nonlinear differential equations can no longer be solved quite
so easily. That makes the solution axiom [′] rather useless. But, fortunately, the little
bouncing ball brightens up again as it remembers that unsolvable differential equations
was what differential invariants were good at. And the ball was rather keen on trying
them in the wild, anyhow.

Yet, first things first. The first step of the proof after →R is the search for an invari-
ant for the loop induction proof rule loop. Yet, since the proof of (8) cannot work by

1Note that the reason for splitting modes and offering a nondeterministic choice in between are not
controller events as they have been in Lecture 8 on Events & Responses, but, rather, come from the
physical model itself. The mechanism is the same, though, whatever the reason for splitting.
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solving the differential equations, we will also need to identify differential invariants
for the differential equations. If we are lucky, maybe the same invariant could even
work for both? Whenever we are in such a situation, we can search from both ends and
either identify an invariant for the loop first and then try to adapt it to the differential
equation, or, instead, look for a differential invariant first.

Since we know the loop invariant for the ordinary bouncing ball from Lecture 7, let’s
look at the loop first. The loop invariant for the ordinary bouncing ball was

2gx = 2gH − v2 ∧ x ≥ 0

We cannot really expect that invariant to work out for the aerodynamic ball (8) as well,
because the whole point of the air resistance is that it slows the ball down. Since air
resistance always works against the ball’s motion, the height is expected to be less:

Ex,v
def
≡ 2gx ≤ 2gH − v2 ∧ x ≥ 0 (9)

In order to check right away whether this invariant that we suspect to be a loop invari-
ant works for the differential equations as well, the bouncing ball checks for differential
invariance:

∗
R g > 0 ∧ r ≥ 0, x ≥ 0 ∧ v ≥ 0 ⊢ 2gv ≤ 2gv + 2rv3

g > 0 ∧ r ≥ 0, x ≥ 0 ∧ v ≥ 0 ⊢ 2gv ≤ −2v(−g − rv2)
[′:=] g > 0 ∧ r ≥ 0, x ≥ 0 ∧ v ≥ 0 ⊢ [x′ := v][v′ :=−g − rv2](2gx′ ≤ −2vv′)

dI g > 0 ∧ r ≥ 0, 2gx ≤ 2gH − v2 ⊢ [x′ = v, v′ = −g − rv2&x ≥ 0 ∧ v ≥ 0] 2gx ≤ 2gH − v2

Note that for this proof to work, it is essential to keep the constants g > 0 ∧ r ≥ 0
around, or at least r ≥ 0. The easiest way of doing that is to perform a differential
cut DC with g > 0 ∧ r ≥ 0 and prove it to be a (trivial) differential invariant, because
both parameters do not change, to make g > 0 ∧ r ≥ 0 available in the evolution do-
main constraint for the rest of the proof.2

The differential invariant proof for the other differential equation in (8) works as well:

∗
R g > 0 ∧ r ≥ 0, x ≥ 0 ∧ v ≤ 0 ⊢ 2gv ≤ 2gv − 2rv3

g > 0 ∧ r ≥ 0, x ≥ 0 ∧ v ≤ 0 ⊢ 2gv ≤ −2v(−g + rv2)
[′:=] g > 0 ∧ r ≥ 0, x ≥ 0 ∧ v ≤ 0 ⊢ [x′ := v][v′ :=−g + rv2]2gx′ ≤ −2vv′

dI g > 0 ∧ r ≥ 0, 2gx ≤ 2gH − v2 ⊢ [x′ = v, v′ = −g + rv2&x ≥ 0 ∧ v ≤ 0] 2gx ≤ 2gH − v2

After this preparation, the rest of the proof of (8) is a matter of checking whether (9) is
also a loop invariant. Except that the above two sequent proofs do not actually quite

2Since this happens so frequently, KeYmaera implements a proof rule that, similar to the local version of
loop invariants, keeps context assumptions around, which is fine as long as they are constant.
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prove that (9) is a differential invariant, but only that its left conjunct 2gx ≤ 2gH − v2 is.
Would it work to add the right conjunct x ≥ 0 and prove it to be a differential invariant?

Not exactly, because dI would lead to (x′ ≥ 0)vx′ ≡ v ≥ 0, which is obviously not al-
ways true for bouncing balls (except in the mode x ≥ 0 ∧ v ≥ 0). However, after prov-
ing the above differential invariants, a differential weakening argument by dW easily
shows that the relevant part x ≥ 0 of the evolution domain constraint always holds
after the differential equation.

∗

. . ⊢ [x′ = v, v′ = −g + rv2 & x ≥ 0 ∧ v ≤ 0] 2gx ≤ 2gH − v2

∗
??

x ≥ 0 ∧ v ≤ 0 ∧ 2gx ≤ 2gH − v2 ⊢ 2gx ≤ 2gH − v2 ∧ x ≥ 0
dW 2gx ≤ 2gH − v2 ⊢ [x′ = v, v′ = −g + rv2 & x ≥ 0 ∧ v ≤ 0 ∧ 2gx ≤ 2gH − v2](2gx ≤ 2gH − v2

DC
. . 2gx ≤ 2gH − v2 ⊢ [x′ = v, v′ = −g + rv2 & x ≥ 0 ∧ v ≤ 0](2gx ≤ 2gH − v2 ∧ x ≥ 0)

Now, what is left to do is a matter of proving (9) to be a loop invariant of (8).
Without the usual abbreviations this proof is hopeless to fit on a page:

Ax,v
def
≡ x ≤ H ∧ v = 0 ∧ x ≥ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ r ≥ 0

Bx,v
def
≡ 0 ≤ x ∧ x ≤ H

(x′′ . . v ≥ 0)
def
≡ (x′ = v, v′ = −g − rv2&x ≥ 0 ∧ v ≥ 0)

(x′′ . . v ≤ 0)
def
≡ (x′ = v, v′ = −g + rv2&x ≥ 0 ∧ v ≤ 0)

Ex,v
def
≡ 2gx ≤ 2gH − v2 ∧ x ≥ 0

loop

Ax,v ⊢ Ex,v [;]

MR

Ex,v ⊢ [if(x = 0) v :=−cv]Ex,v[∪]

∧R
Ex,v ⊢ [x′′ . . v ≥ 0]Ex,v Ex,v ⊢ [x′′ . . v ≤ 0]Ex,v

Ex,v ⊢ [x′′ . . v ≥ 0]Ex,v ∧ [x′′ . . v ≤ 0]Ex,v

Ex,v ⊢ [x′′ . . v ≥ 0 ∪ x′′ . . v ≤ 0]Ex,v

Ex,v ⊢ [if(x = 0) v :=−cv][x′′ . . v ≥ 0 ∪ x′′ . . v ≤ 0]Ex,v

Ex,v ⊢ [if(x = 0) v :=−cv; (x′′ . . v ≥ 0 ∪ x′′ . . v ≤ 0)]Ex,v

Ex,v ⊢ Bx,v

Ax,v ⊢ [(if(x = 0) v :=−cv; (x′′ . . v ≥ 0 ∪ x′′ . . v ≤ 0))∗]Bx,v

The first and last premise prove by simple arithmetic using g > 0 ∧ v2 ≥ 0. The third
and fourth premise have been proved above by a differential cut with a subsequent dif-
ferential invariant and differential weakening. That only leaves the second premise to
worry about, which proves as follows:

Ex,v, x = 0 ⊢ Ex,−cv

[:=]Ex,v, x = 0 ⊢ [v :=−cv]Ex,v

→R Ex,v ⊢ x = 0 → [v :=−cv]Ex,v

[?] Ex,v ⊢ [?x = 0][v :=−cv]Ex,v

[;] Ex,v ⊢ [?x = 0; v :=−cv]Ex,v

∗
id Ex,v, x 6= 0 ⊢ Ex,v

→R Ex,v ⊢ x 6= 0 → Ex,v

[?] Ex,v ⊢ [?x 6= 0]Ex,v

∧R Ex,v ⊢ [?x = 0; v :=−cv]Ex,v ∧ [?x 6= 0]Ex,v

[∪] Ex,v ⊢ [?x = 0; v :=−cv ∪ ?x 6= 0]Ex,v

Ex,v ⊢ [if(x = 0) v :=−cv]Ex,v

This sequent proof first expands the if() , recalling that it is an abbreviation for a choice
with tests. The right resulting premise proves trivially by axiom (there was no state
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change in the corresponding part of the execution), the left premise proves by arith-
metic, because 2gH − v2 ≤ 2gH − (−cv)2 since 1 ≥ c ≥ 0.

This completes the sequent proof for the safety of the aerodynamic bouncing ball
expressed in dL formula (8). That is pretty neat!

See ≪Aerodynamic bouncing ball model≫
It is about time for the newly upgraded aerodynamic acrophobic bouncing ball to no-

tice a subtlety in its (provably safe) model. The bouncing ball had innocently split the
differential equation (7) into two modes, one for v ≥ 0 and one for v ≤ 0 when develop-
ing the model (8). This seemingly innocuous step would have required more thought
than the little bouncing ball had put in at the time. Of course, the single differential
equation (7) could, in principle, switch between velocity v ≥ 0 and v ≤ 0 any arbitrary
number of times during a single continuous evolution. The HP in (8) that split the
mode, however, enforces that the ground controller if(x = 0) v :=−cv will run in be-
tween switching from the mode v ≥ 0 to the mode v ≤ 0 or back. On its way up when
gravity is just about to win over and pull the ball back down again, that is of no con-
sequence, because the trigger condition x = 0 will not be the case then anyhow, unless
the ball really started the day without much energy (x = v = 0). On its way down, the
condition will very well be true, namely when the ball is currently on the ground and
just inverted its velocity. In that case, however, the evolution domain constraint x ≥ 0
would have forced a ground controller action in the original system already anyhow.

So even if, in this particular model, the system could not in fact actually switch back
and forth between the two modes too much in ways that would really matter, it is
important to understand how to properly split modes in general, because that will be
crucial for other systems. What the little bouncing ball should have done to become
aerodynamical in a systematic way is to add an additional mini-loop around just the
two differential equations, so that the system could switch modes without enforcing
a discrete ground controller action to happen. This leads to the following dL formula
with a systematical mode split, which is provably safe just the same (Exercise 5):

x ≤ H ∧ v = 0 ∧ x ≥ 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ∧ r ≥ 0 →
[(
if(x = 0) v :=−cv;

(x′ = v, v′ = −g − rv2&x ≥ 0 ∧ v ≥ 0 ∪ x′ = v, v′ = −g + rv2&x ≥ 0 ∧ v ≤ 0)∗
)∗

]
(0 ≤ x ≤ H)

(10)

Exercises

Exercise 1. Show that the following variation of the differential weakening rule dW
would be unsound:

Γ, Q ⊢ P,∆

Γ ⊢ [x′ = f(x)&Q]P,∆
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Exercise 2. We have chosen to define

(θ < η)′ ≡ ((θ)′ < (η)′)

Prove that the following slightly relaxed definition would also give a sound proof rule
for differential invariants:

(θ < η)′ ≡ ((θ)′ ≤ (η)′)

Exercise 3. We have defined

(θ 6= η)′ ≡ ((θ)′ = (η)′)

Suppose you remove this definition so that you can no longer use the differential in-
variant proof rule for formulas involving 6=. Can you derive a proof rule to prove such
differential invariants regardless? If so, how? If not, why not?

Exercise 4. Prove dL formula(6) by first doing a differential cut with ω(x− 1) = −e, then
continue with a differential cut with ω(y − 2) = d, and then finally use both to prove the
original postcondition. Compare this proof to the proof in Sect. 13.

Exercise 5. The aerodynamic bouncing ball model silently imposed that no mode switch-
ing could happen without ground control being executed first. Even if that is not an
issue for the bouncing ball, prove the more general formula (10) with its extra loop
regardless. Compare the resulting proof to the sequent proof for (8).

Exercise 6. The least that the proof rules for differential equations get to assume is the
evolution domain constraint Q, because the system does not evolve outside it. Prove
the following slightly stronger formulation of dI that assumes Q to hold initially:

dI
Q ⊢ [x′ := f(x)](F )′

[?Q]F ⊢ [x′ = f(x)&Q]F

Exercise 7. Prove the following definitions to be sound for the differential invariant
proof rule:

true ′ ≡ true

false ′ ≡ true

Show how you can use those to prove the formula

A→ [x′ = f(x)&Q]B

in the case where A→ ¬Q is provable, i.e. where the system initially starts outside the
evolution domain constraint Q.
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15-424: Foundations of Cyber-Physical Systems

Lecture Notes on

Ghosts & Differential Ghosts

André Platzer

Carnegie Mellon University
Lecture 12

1. Introduction

Lecture 10 on Differential Equations & Differential Invariants and Lecture 11 on Differ-
ential Equations & Proofs equipped us with powerful tools for proving properties of
differential equations without having to solve them. Differential invariants (dI) [Pla10a,
Pla12] prove properties of differential equations by induction based on the right-hand
side of the differential equation, rather than its much more complicated global solution.
Differential cuts (DC) [Pla10a, Pla12] made it possible to simply prove another property
C of a differential equation and then change the dynamics of the system around so that
it is restricted to never leave region C. It can be shown that differential cuts are a funda-
mental proof principle for differential equations [Pla12], because some properties can
only be proved with differential cuts. That is the No Differential Cut Elimination theorem,
because, unlike cuts in first-order logic, differential cuts cannot generally be eliminated
but are sometimes necessary [Pla12].

Yet, it can also be shown that there are properties for which even differential cuts
are not enough, but differential ghosts become necessary [Pla12]. Differential ghosts
[Pla12], spooky as they may sound, turn out to be a useful proof technique for differ-
ential equations. Differential ghosts or differential auxiliaries are extra variables that
are introduced into the system solely for the purpose of the proof. Differential ghosts
are the differential analogue of ghost variables or auxiliary variables, which sometimes
have to be added into systems for the purpose of the proof. Both ghosts and differ-
ential ghosts serve a similar intuitive purpose: remember intermediate state values so
that the relation of the values at intermediate states to values at final states can be an-
alyzed. And that is also where the somewhat surprising name comes from. Auxiliary
variables are often called ghosts, because they are not really present in the actual sys-
tem, but just invented to make the story more interesting or, rather, the proof more
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L12.2 Ghosts & Differential Ghosts

conclusive. Ghosts give the proof a way of referring to how the state used to be that is
no more. There are many reasons for introducing ghost state into a system, which will
be investigated subsequently.

This lecture is based on [Pla12, Pla10b].
The most important learning goals of this lecture are:

Modeling and Control: This lecture does not have much impact on modeling and con-
trol of CPS, because, after all, the whole point of ghosts and differential ghosts is
that they are only added for the purposes of the proof. However, it can still some-
times be more efficient to add such ghost and differential ghost variables into the
original model right away. It is good style to mark such additional variables in
the model and controller as ghost variables in order to retain the information that
they do not need to be included in the final system executable.

Computational Thinking: This lecture leverages computational thinking principles for
the purposes of rigorous reasoning about CPS models by analyzing how extra
dimensions can simplify or enable reasoning about lower-dimensional systems.
From a state space perspective, extra dimensions are a bad idea, because, e.g.,
the number of points on a gridded space grows exponentially in the number of
dimensions. From a reasoning perspective, the important insight of this lecture
is that extra state variables sometimes help and may even make reasoning pos-
sible that is otherwise impossible. One intuition why extra ghost state may help
reasoning is that it can be used to consume the energy that a given dissipative sys-
tem is leaking (a similar purpose that dark matter had been speculated to exist)
or produce the energy that a given system consumes. The addition of such ex-
tra ghost state then enables invariants of generalized energy constants involving
both original and ghost state that was not possible using only the original state.
That is, ghost state may new cause energy invariants. This lecture continues the
trend of generalizing important logical phenomena from discrete systems to con-
tinuous systems. The verification techniques developed in this lecture are critical
for verifying some CPS models of appropriate scale and technical complexity but
are not necessary for all CPS models. A secondary goal of today’s lecture is to
develop more intuition and deeper understandings of differential invariants and
differential cuts.

CPS Skills: The focus in this lecture is on reasoning about CPS models, but there is an
indirect impact on developing better intuitions for operational effects in CPS by
introducing the concept of relations of state to extra ghost state. A good grasp on
such relations can help with the understanding of CPS dynamics quite substan-
tially. The reason is that ghosts and differential ghosts enable extra invariants,
which enable stronger statements about what we can rely on as a CPS evolves.
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CT

M&C CPS

rigorous reasoning about ODEs
extra dimensions for extra invariants
higher-dimensional retreat
extra state enables reasoning
invent dark energy
intuition for differential invariants
states and proofs

none: ghosts are for proofs
mark ghosts in models
syntax of models
solutions of ODEs

relations of state
extra ghost state
CPS semantics

2. Recap

Recall the following proof rules of differential invariants (dI), differential weakening
(dW) and differential cuts (DC) for differential equations from Lecture 11 on Differential
Equations & Proofs:

Note 1 (Proof rules for differential equations).

dI
Q ⊢ [x′:=f(x)](F )′

F ⊢ [x′ = f(x)&Q]F
dW

Q ⊢ F

Γ ⊢ [x′ = f(x)&Q]F,∆

DC
Γ ⊢ [x′ = f(x)&Q]C,∆ Γ ⊢ [x′ = f(x)& (Q ∧ C)]F ,∆

Γ ⊢ [x′ = f(x)&Q]F,∆

With cuts and generalizations, earlier lectures have also shown that the following can
be proved:

cut,MR
A ⊢ F F ⊢ [x′ = f(x)&Q]F F ⊢ B

A ⊢ [x′ = f(x)&Q]B
(1)

This is useful for replacing a precondition A and postcondition B by another invariant
F that implies postcondition B and is implied by precondition A.

3. Arithmetic Ghosts

The easiest way to see why it sometimes makes sense to add variables into a system
model is to take a look at divisions. Divisions are not officially part of real arithmetic,
because divisions can be defined. For example, when a division b/c is ever mentioned
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in a term such as q = b/c, then we can characterize q to remember the value of b/c by
indirectly characterizing q in terms of b and c without / and then subsequently use q
wherever b/c first occurred:

q :=
b

c
 q := ∗; ?qc = b  q := ∗; ?qc = b ∧ c 6= 0

where q := ∗ is the nondeterministic assignment that assigns an arbitrary real number
to q. The first transformation (simply written  ) characterizes q = b/s indirectly by
multiplying up as qc = b. The second transformation then conscientiously remembers
that divisions only make all the sense in the world when we avoid dividing by zero.
Because divisions by zero only cause a lot of trouble. This transformation can be used
when b/c occurs in the middle of a term too:

x := 2+
b

c
+e  q := ∗; ?qc = b; x := 2+q+e  q := ∗; ?qc = b∧c 6= 0; x := 2+q+e

Here q is called an arithmetic ghost, because q is an auxiliary variable that is only added
to the hybrid program for the sake of defining the arithmetic quotient b

c
. In similar ways

can we define other functions like square roots using an arithmetic ghost:

x := a+
√

4y  q := ∗; ?q2 = 4y; x := a+ q

But we should again scrutinize to make sure we realize that 4y should be nonnegative
for the square root to make sense and could indeed add that into the test. We settle on
not doing so, since non-negativity already follows from q2 = 4y.

4. Nondeterministic Assignments & Ghosts of Choice

The HP statement x := ∗ that has been used in Sect. 3 is a nondeterministic assignment
that assigns an arbitrary real number to x. Comparing with the syntax of hybrid pro-
grams from Lecture 3 on Choice & Control, however, it turns out that such a statement
is not in the official language of hybrid programs.

α, β ::= x := e | x′ := e | ?Q | x′ = f(x)&Q | α ∪ β | α;β | α∗ (2)

What now?
One possible solution, which is the one taken in the implementation of the hybrid

systems theorem prover KeYmaera [PQ08] and its successor KeYmaera X [FMQ+15], is
to simply add the nondeterministic assignment x := ∗ as a statement to the syntax of
hybrid programs.

α, β ::= x := e | x′ := e | ?Q | x′ = f(x)&Q | α ∪ β | α;β | α∗ | x := ∗

Consequently, nondeterministic assignments need a semantics to become meaningful:

7. [[x := ∗]] = {(ω, ν) : ν = ω except for the value of x, which can be any real number}

And nondeterministic assignments need axioms or proof rules so that they can be un-
derstood in proofs:
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Note 2. 〈:∗〉 〈x := ∗〉P ↔ ∃xP

[:∗] [x := ∗]P ↔ ∀xP

Axiom 〈:∗〉 says that there is one way of assigning an arbitrary value to x so that P holds
afterwards (i.e. 〈x := ∗〉P holds) if (and only if) P holds for some value of x (i.e. ∃xP
holds). And axiom [:∗] says that P holds for all ways of assigning an arbitrary value to
x (i.e. [x := ∗]P holds) if (and only if) P holds for all values of x (i.e. ∀xP holds) because
x might have any such value after running x := ∗ and because the [α] means that the
postcondition needs to be true after all ways of running α.

An alternative approach for adding nondeterministic assignments x := ∗ to hybrid
programs is to reconsider whether we even have to do add a new construct for x := ∗
or whether it can already be expressed in other ways. That is, to understand whether
x := ∗ is truly a new program construct or whether it can be defined in terms of the
other hybrid program statements from (2). Is x := ∗ definable by a hybrid program?

Before you read on, see if you can find the answer for yourself.
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According to the proof rules [:∗] and 〈:∗〉, nondeterministic assignments x := ∗ can
be expressed equivalently by suitable quantifiers. But that does not help at all in the
middle of a program, where we can hardly write down a quantifier to express that the
value of x now changes.

There is another way, though. Nondeterministic assignment x := ∗ assigns any real
number to x. One hybrid program that has the same effect of giving x any arbitrary
real value [Pla10b, Chapter 3] is:1

x := ∗
def
≡ x′ = 1 ∪ x′ = −1 (3)

That is not the only definition of x := ∗, though. An equivalent definition is [?]:

x := ∗
def
≡ x′ = 1;x′ = −1

When working through the intended semantics of the left-hand side x := ∗ shown in
case 7 above and the actual semantics of the right-hand side of (3) according to Lecture
3 on Choice & Control, it becomes clear that both sides of (3) mean the same, because
they have the same reachability relation. Hence, the above definition (3) captures the
intended concept of giving x any arbitrary real value, nondeterministically. And, in
particular, just like if-then-else, nondeterministic assignments do not really have to be
added to the language of hybrid programs, because they can already be defined. Like-
wise, no proof rules would have to be added for nondeterministic assignments, because
there are already proof rules for the constructs used in the right-hand side of the defini-
tion of x := ∗ in (3). Since the above proof rules 〈:∗〉,[:∗] for x := ∗ are particularly easy,
though, it is usually more efficient to include them directly, which is what KeYmaera
does.

What may, at first sight, appear slightly spooky about (3), however, is that the left-
hand side x := ∗ is clearly an instant change in time where x changes its value instanta-
neously to some arbitrary new real number. That is not quite the case for the right-hand
side of (3), which involves two differential equations, which take time to follow.

The clue is that this passage of time is not observable in the state of the system. Con-
sequently, the left-hand side of (3) really means the same as the right-hand side of (3).
Remember from earlier lectures that time is not special. If a CPS wants to refer to time,
it would have a clock variable t with the differential equation t′ = 1. With such an addi-
tion, however, the passage of time t becomes observable in the value of variable t and,
hence, a corresponding variation of the right-hand side of (3) would not be equivalent
to x := ∗ at all (indicated by 6≡):

x := ∗ 6≡ x′ = 1, t′ = 1 ∪ x′ = −1, t′ = 1

Both sides differ, because the right side exposes the amount of time t it took to get the
value of x to where it should be, which, secretly, records information about the absolute
value of the change that x underwent from its old to its new value. That change is
something that the left-hand side x := ∗ knows nothing about.

1 Observe a subtlety that, unlike the nondeterministic assignment, the differential equations also have an
impact on the value of x′, which is fine since most programs do not read x′ any further, but needs extra
care with a discrete ghost z otherwise: z := x′; {x′ = 1 ∪ x′ = −1};x′ := z
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5. Differential-algebraic Ghosts

The transformation in Sect. 3 can eliminate all divisions, not just in assignments, but
also in tests and all other hybrid programs, with the notable exception of differential
equations. Eliminating divisions in differential equations turns out to be a little more
involved.

The following elimination using a (discrete) arithmetic ghost q is correct:

x′ =
2x

c
& c 6= 0 ∧

x+ 1

c
> 0  q := ∗; ?qc = 1; {x′ = 2xq& c 6= 0 ∧ (x+ 1)q > 0}

where the extra ghost variable q is supposed to remember the value of 1
c
.

The following attempt with a (discrete) arithmetic ghost q, however, would change
the semantics rather radically:

x′ =
c

2x
&2x 6= 0 ∧

c

2x
> 0  q := ∗; ?q2x = 1; {x′ = cq&2x 6= 0 ∧ cq > 0}

because q then only remembers the inverse of the initial value of 2x, not the inverse
of the value of 2x as x evolves along the differential equation x′ = c

2x . That is q has a
constant value during the differential equation but, of course, the quotient c

2x changes
over time since x does.

One way to proceed is to figure out how the value of the quotient q = 1
2x changes

over time as x changes by x′ = c
2x . By deriving what q stands for, that results in

q′ =

(

1

2x

)

′

=
−2x′

4x2
=

−2 c
2x

4x2
= −

c

4x3

Alas, we go unlucky here, because that gives yet another division to keep track of.
The other and entirely systematic way to proceed is to lift nondeterministic assign-

ments q to differential equations q′ = ∗ with the intended semantics that q changes ar-
bitrarily over time while following that nondeterministic differential equation:2

q′ =
b

c
 q′ = ∗& qc = b  q′ = ∗& qc = b ∧ c 6= 0

While it is slightly more complicated to give a semantics to q′ = ∗, the idea behind the
transformation is completely analogous to the case of discrete arithmetic ghosts:

x′ = 2 +
b

c
+ e  x′ = 2 + q + e, q′ = ∗& qc = b  x′ = 2 + q + e, q′ = ∗& qc = b∧c 6= 0

Variable q is a differential-algebraic ghost in the sense of being an auxiliary variable in the
differential-algebraic equation for the sake of defining the quotient b

c
.

2See [Pla10b, Chapter 3] for the precise meaning of the nondeterministic differential equation q′ = ∗. It
is the same as the differential-algebraic constraint ∃d q′ = d, but differential-algebraic constraints have
not been introduced in this course so far, either. The intuition of allowing arbitrary changes of the
value of q over time is fine, though, for our purposes.
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Together with the reduction of divisions in discrete assignments from Sect. 3, plus the
insight that divisions in tests and evolution domain constraints can always be rewrit-
ten to division-free form, this gives a (rather sketchy) proof showing that hybrid pro-
grams and differential dynamic logic do not need divisions [Pla10b]. The advantage of
eliminating divisions this way is that differential dynamic logic does not need special
precautions for divisions and that the handling of zero divisors is made explicit in the
way the divisions are eliminated from the formulas. In practice, however, it is still use-
ful to use divisions, yet great care has to be exercised to make sure that no inadvertent
divisions by zero could ever cause troublesome singularities.

Note 3 (Divisions).

divide by zero
1

0

Whenever dividing, exercise great care not to accidentally
divide by zero, for that will cause quite some trouble. More
often than not, this trouble corresponds to missing require-

ments in the system. For example v2

2b may be a good stop-
ping distance when braking to a stop from initial velocity v,
except when b = 0, which corresponds to having no brakes
at all.

6. Discrete Ghosts

All the ghost variables so far were introduced to define operators such as divisions or
nondeterministic assignments x := ∗. There are other reasons for using auxiliary alias
ghost variables, though.

The discrete way of adding ghost variables is to introduce a new ghost variable y into
a proof that remembers the value of a term e. This can be useful in a proof in order to
have a name, y, that recalls the value of e later on in the proof, especially when the value
of e changes subsequently during the execution of hybrid programs α in the remaining
modalities, which makes it possible to relate the value of e before and after the run of
that hybrid program α.

Lemma 1 (Discrete ghosts). The following is a sound proof rule for introducing an aux-
iliary variable or (discrete) ghost y:

IA
Γ ⊢ [y := e] p,∆

Γ ⊢ p,∆

where y is a new program variable.

The fact that proof rule IA is sound can be explained easily based on the soundness of
the assignment axiom [:=] from Lecture 5 on Dynamical Systems & Dynamic Axioms,
which directly proves the validity of

p ↔ [y := e] p
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because the fresh variable y does not occur in p (which, formally, can be thought of as
a nullary predicate symbol here). Hence, discrete ghost rule IA directly derives from
the assignment axiom [:=] since it merely applies the substitution axiom backwards to
introduce a ghost variable y that was not there before.

Discrete ghosts can be interesting when p contains modalities that change variables
in e for y can then remember the value that e had before that change. For example:

xy − 1 = 0 ⊢ [c := xy] [x′ = x, y′ = −y]xy = 1
IA xy − 1 = 0 ⊢ [x′ = x, y′ = −y]xy = 1
→R ⊢ xy − 1 = 0 → [x′ = x, y′ = −y]xy = 1

This sequent derivation memorizes the value that the interesting term xy had before
the differential equation started in the ghost variable c. It is a bit hard to complete
the proof, because substituting c away using the assignment rule [:=] would undo the
pleasant effect that the IA rule had, because the whole point of the fresh variable c is
that it does not occur elsewhere.3 So the only way the proof can make progress is by
applying a proof rule to the differential equation. Unfortunately, the sequent calculus
from Lecture 6 on Truth & Proof focuses the application of proof rules to the top-level
of sequents. That is usually an advantage but now a disadvantage. In those cases, we
can turn the assignment into an equation with the derived proof rule

Note 5. [:=]=R
Γ, y = e ⊢ p(y),∆

Γ ⊢ [x := e] p(x),∆

where y is a fresh variable, which is important for soundness.

With that rule we can proceed as if nothing had happened from that point onwards:

∗
R ⊢ 0 = xy + x(−y)

[′:=] ⊢ [x′:=x] [y′:=− y] 0 = x′y + xy′

dI xy − 1 = 0, c = xy ⊢ [x′ = x, y′ = −y] c = xy ⊲
MR xy − 1 = 0, c = xy ⊢ [x′ = x, y′ = −y]xy = 1

[:=]=R xy − 1 = 0 ⊢ [c := xy] [x′ = x, y′ = −y]xy = 1
IA xy − 1 = 0 ⊢ [x′ = x, y′ = −y]xy = 1
→R ⊢ xy − 1 = 0 → [x′ = x, y′ = −y]xy = 1

The generalization step MR leads to a second premise that has been elided (marked
by ⊲) and proves, because c = 1 is an easily provable additional differential invariant,

3 This potentially surprising phenomenon happens in some form or other for other ghosts as well, be-
cause, the whole point of ghosts is to compute something that the original model and property do
not depend on. So, sufficiently sophisticated forms of dead-code elimination would get rid of ghosts,
which would be counterproductive for the proof. In fact, dead-code elimination for compilers and
ghosts for proofs are the same phenomenon. Only backwards, because, applied from bottom to top,
the discrete ghost rule IA introduces a variable that is dead code as opposed to eliminating it.
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http://symbolaris.com/course/fcps16/06-truth.pdf


L12.10 Ghosts & Differential Ghosts

because the discrete ghost c starts out as 1 initially by the antecedent and never changes
its value. This particular property also proves directly quite easily, but the proof tech-
nique of discrete ghosts is of more general interest beyond this demonstration.

See ≪Proof using discrete ghosts≫

7. Proving Bouncing Balls with Sneaky Solutions

Recall a dL formula for the falling ball part of the bouncing ball proof from Lecture 7
on Control Loops & Invariants, which was based on an argument in Lecture 4:

2gx = 2gH − v2 ∧ x ≥ 0 → [x′ = v, v′ = −g&x ≥ 0](2gx = 2gH − v2 ∧ x ≥ 0) (4)

Recall the abbreviation

(x′′ = −g&x ≥ 0) ≡ (x′ = v, v′ = −g&x ≥ 0)

Lecture 7 proved dL formula (4) using the solutions of the differential equation with
the solution proof rule [′]. Yet, dL formula (4) can also be proved with a mix of differen-
tial invariants, differential cuts and differential weakening, instead:

DC

dI

[′:=]

R

∗

x ≥ 0 ⊢ 2gv = −2v(−g)

x ≥ 0 ⊢ [x′:=v] [v′:=− g] 2gx′ = −2vv′

2gx = 2gH − v2 ⊢ [x′′ = −g&x ≥ 0] 2gx = 2gH − v2
dW

id
∗

x ≥ 0 ∧ 2gx = 2gH − v2 ⊢ 2gx = 2gH − v2 ∧ x ≥ 0

2gx = 2gH − v2 ⊢ [x′′ = −g&x ≥ 0 ∧ 2gx = 2gH − v2](2gx = 2gH − v2 ∧ x ≥ 0)

2gx = 2gH − v2 ⊢ [x′′ = −g&x ≥ 0](2gx = 2gH − v2 ∧ x ≥ 0)

Note that differential weakening (dW) works for proving the postcondition x ≥ 0, but
dI would not work for proving x ≥ 0, because its derivative is (x ≥ 0)′ ≡ v ≥ 0, which
is not an invariant of the bouncing ball since its velocity ultimately becomes negative
when it is falling again according to gravity.

The above proof is very elegant and has notably easier arithmetic than the arithmetic
requires when working with solutions of the bouncing ball in earlier lectures.

Note 6 (Differential invariants lower degrees). Differential invariants dI work by dif-
ferentiation, which lowers polynomial degrees. The solution proof rule [′] works with solu-
tions, which ultimately integrate the differential equation and, thus, increase the degrees.
The computational complexity of the resulting arithmetic is, thus, often in favor of differ-
ential invariants even in cases where the differential equations can be solved so that the
solution rule [′] would be applicable.

Since the first conjunct of the postcondition is not needed for the proof of the second
conjunct, a similar differential invariant proof can also be obtained using []∧ to split the
postcondition instead of DC to nest it:

[]∧

dI

[′:=]

R

∗

x ≥ 0 ⊢ 2gv = −2v(−g)

x ≥ 0 ⊢ [x′:=v] [v′:=− g] 2gx′ = −2vv′

2gx = 2gH − v2 ⊢ [x′′ = −g&x ≥ 0] 2gx = 2gH − v2
dW

id
∗

x ≥ 0 ⊢ x ≥ 0
2gx = 2gH − v2 ⊢ [x′′ = −g&x ≥ 0]x ≥ 0

2gx = 2gH − v2 ⊢ [x′′ = −g&x ≥ 0](2gx = 2gH − v2 ∧ x ≥ 0)
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Besides the favorably simple arithmetic coming from differential invariants, the other
reason why the above proofs worked so elegantly is that the invariant 2gx = 2gH−v2∧
x ≥ 0 was a clever choice that we came up with in a creative way in Lecture 4. There is
nothing wrong with being creative. On the contrary!

But it also pays off to be systematic and develop a rich toolbox of techniques for
proving properties of differential equations. Is there a way to prove (4) without such a
distinctively clever invariant that works as a differential invariant right away? Yes, of
course, because (4) can even be proved using solutions [′]. But it turns out that interest-
ing things happen when we systematically try to understand how to make a proof hap-
pen that does not use the solution rule [′] and, yet, still uses solution-based arguments.
Can you conceive a way to use solutions for differential equations without invoking
the actual solution rule [′]?

Before you read on, see if you can find the answer for yourself.
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8. Exploiting Differential Ghosts for Falling Balls

Note 7 (Ghost solutions). Whenever there is a solution of a differential equation that we
would like to make available to a proof without using the solution rule [′], a differential cut
and subsequent differential invariant can be used to cut the solution as an invariant into
the system. The tricky part is that solutions depend on time, and time may not be part of
the differential equation system. If there is no time variable, however, a differential ghost
first needs to be added that pretends to be time.

Consider dL formula (4) again, which turns into

A ⊢ [x′′ = −g&x ≥ 0]B(x,v) (4)

using the abbreviations:

A
def
≡ 2gx = 2gH − v2 ∧ x ≥ 0

B(x,v)
def
≡ 2gx = 2gH − v2 ∧ x ≥ 0

(x′′ = −g)
def
≡ (x′ = v, v′ = −g)

The proof begins by introducing a discrete ghost v0 remembering the initial velocity
of the bouncing ball and proceeds by adding a differential ghost t for the time variable
with derivative t′ = 1 so that the solution v = v0 − tg can be differentially cut into the
system and proved to be differentially invariant:

∗
R x ≥ 0 ⊢ −g = −1g

[′:=]x ≥ 0 ⊢ [v′:=− g] [t′:=1] v′ = −t′g
dI A ⊢ [v0 := v] [x′′ = −g, t′ = 1&x ≥ 0] v = v0 − tg A ⊢ [v0 := v] [x′′ = −g, t′ = 1&x ≥ 0 ∧ v = v0 − tg]B(x,v)

DC A ⊢ [v0 := v] [x′′ = −g, t′ = 1&x ≥ 0]B(x,v)
DA A ⊢ [v0 := v] [x′′ = −g&x ≥ 0]B(x,v)
?? A ⊢ [v0 := v] [x′′ = −g&x ≥ 0]B(x,v)
IA A ⊢ [x′′ = −g&x ≥ 0]B(x,v)

where the proof step marked DA (for differential auxiliaries or differential ghosts) intro-
duces new variable t with derivative 1 as a differential ghost into the system.4 Observe
how the differential invariant step dI made the sequent context as well as the update
[v0 := v] disappear, which is generally important for soundness.

The left premise in the above proof has been closed by arithmetic. The right premise
in the above proof proves as follows by first introducing yet another discrete ghost x0

4 When discussing the differential ghost proof rule DA in a more general form later on, we will see that
DA introduces an extra left premise, which is omitted in this proof (marked by ⊳). That additional
premise, however, proves easily because B(x,v) ↔ ∃tB(x,v) is rather trivially valid in first-order logic,
as the fresh variable t does not even occur in B(x,v) at all here (vacuous quantification).
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with DA that remembers the initial position so that it can be referred to in the solution.
The solution x = x0+ v0t−

g
2 t

2 can then be differentially cut into the system by DC and
proved to be differentially invariant by dI:

∗
id x ≥ 0 ∧ v = v0 − tg ⊢ v = v0 − 2g

2 t
[′:=]x ≥ 0 ∧ v = v0 − tg ⊢ [x′:=v] [t′:=1]x′ = v0t

′ − 2g
2 tt

′

dI A ⊢ [x0 := x, v0 := v] [x′′ = −g, t′ = 1&x ≥ 0 ∧ v = v0 − tg]x = x0 + v0t−
g
2 t

2⊲
DC A ⊢ [x0 := x, v0 := v] [x′′ = −g, t′ = 1&x ≥ 0 ∧ v = v0 − tg]B(x,v)
IA A ⊢ [v0 := v] [x′′ = −g, t′ = 1&x ≥ 0 ∧ v = v0 − tg]B(x,v)

The differential cut proof step marked DC has a second premise using the cut which is
elided above (marked by ⊲) and proves as follows:

dW
x ≥ 0 ∧ v = v0 − tg ∧ x = x0 + v0t−

g
2 t

2 ⊢ B(x,v)

A ⊢ [x0 := x, v0 := v] [x′′ = −g, t′ = 1&x ≥ 0 ∧ v = v0 − tg ∧ x = x0 + v0t−
g
2 t

2]B(x,v)

The resulting arithmetic can be proved by real arithmetic with enough care, but it has
a twist! First of all, the arithmetic can be simplified substantially using the equality
substitution rule =R from Lecture 6 to replace v by v0 − tg and replace x by x0 + v0t −
g
2 t

2 and use subsequent weakening (WL) to get rid of both equations after use. This
simplification reduces the computational complexity of real arithmetic a lot:

⊢ 2g(x0 + v0t−
g
2 t

2) = 2gH − (v0 − tg)2
WLx ≥ 0 ⊢ 2g(x0 + v0t−

g
2 t

2) = 2gH − (v0 − tg)2
∗

idx ≥ 0 ⊢ x ≥ 0
∧R x ≥ 0 ⊢ 2g(x0 + v0t−

g
2 t

2) = 2gH − (v0 − tg)2 ∧ x ≥ 0
WL x ≥ 0, v = v0 − tg, x = x0 + v0t−

g
2 t

2 ⊢ 2g(x0 + v0t−
g
2 t

2) = 2gH − (v0 − tg)2 ∧ x ≥ 0
=R x ≥ 0, v = v0 − tg, x = x0 + v0t−

g
2 t

2 ⊢ 2gx = 2gH − (v0 − tg)2 ∧ x ≥ 0
=R x ≥ 0, v = v0 − tg, x = x0 + v0t−

g
2 t

2 ⊢ 2gx = 2gH − v2 ∧ x ≥ 0
∧L x ≥ 0 ∧ v = v0 − tg ∧ x = x0 + v0t−

g
2 t

2 ⊢ 2gx = 2gH − v2 ∧ x ≥ 0

Observe how this use of equality substitution and weakening helped simplify the arith-
metic complexity of the formula substantially and even helped to eliminate a variable
(v) right away. This can be useful to simplify arithmetic in many other cases as well.
Both eliminating variables as well as applying and hiding equations right away can of-
ten simplify the complexity of handling real arithmetic. The arithmetic in the remaining
left branch

2g
(

x0 + v0t−
g

2
t2
)

= 2gH − (v0 − tg)2

expands by polynomial arithmetic and cancels as follows:

2g
(

x0 + v0t −
g
2 t

2
)

= 2gH − v20 + 2v0tg + t2g2

Those cancellations simplify the arithmetic, leaving the remaining condition:

2gx0 = 2gH − v20 (5)
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http://symbolaris.com/course/fcps16/06-truth.pdf


L12.14 Ghosts & Differential Ghosts

Indeed, this relation characterizes exactly how H , which turns out to have been the
maximal height, relates to the initial height x0 and initial velocity v0. In the case of
initial velocity v0 = 0, for example, the equation (5) collapses to x0 = H , i.e. that H is
the initial height in that case. Consequently, the computationally easiest way of proving
the resulting arithmetic is to first prove by a differential cut DC that (5) is a trivial
differential invariant, resulting in a proof of (4); see Exercise 3.

Yet, as we go through all proof branches again to check that we really have a proof,
however, we notice a subtle but blatant oversight. Can you spot it, too?

The very first left-most branch with the initial condition for the differential invariant
v = v0 = tg does not, actually, prove. The catch is that we silently assumed t = 0 to be
the initial value for the new clock t, but that our proof did not actually say so. Oh my,
what could be done about that now?

Before you read on, see if you can find the answer for yourself.
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Discrete ghosts to the rescue! Even though we do not know the initial value of the
differential ghost t, we can simply use a discrete ghost again to call it t0 and get on with
it. Will that work? Can you find it out? Or should we start a revision of the proof to
find out?

A ⊢ [v0 := v] [t0 := t] [x′′ = −g, t′ = 1&x ≥ 0] v = v0 − (t− t0)g A ⊢ [v0 := v] [t0 := t] [x′′ = −g, t′ = 1&x ≥ 0 ∧ v = v0 − (t− t0)g]B(x,v)

DC
A ⊢ [v0 := v] [t0 := t] [x′′ = −g, t′ = 1&x ≥ 0]B(x,v)

??
A ⊢ [v0 := v] [t0 := t] [x′′ = −g, t′ = 1&x ≥ 0]B(x,v)

IA
A ⊢ [v0 := v] [x′′ = −g, t′ = 1&x ≥ 0]B(x,v)

As this proof shows, everything works as expected as long as we realize that this re-
quires a change of the invariants used for the differential cuts. The solution of the
velocity to differentially cut in will be v = v0 − (t− t0)g and the solution of the position
to differentially cut in subsequently will be x = x0 + v0(t− t0)−

g
2(t− t0)

2. With some
thought you can also make sure to use the discrete ghosts for the initial values cleverly
to initialize it at 0.

See ≪Proof of falling balls≫
For the case of the bouncing ball, this proof was unnecessarily complicated, because

the solution rule [′] could have been used instead right away, instead. Yet, even if this
particular proof was more involved, the arithmetic ended up being nearly trivial in
the end (which Note 5 already observed to hold in general for differential invariant
proofs). But the same proof technique of adding differential ghosts and discrete ghosts
as needed can be pretty useful in more complicated systems.

Note 8 (On the utility of ghosts). Adding differential ghosts and discrete ghosts as
needed can be useful in more complicated systems that do not have computable solutions,
but in which other relations between initial (or intermediate) and final state can be proved.
The same technique can also be useful for cutting in solutions when only part of a differen-
tial equation system admits a polynomial solution.

For example, the differential equation system v′1 = ωv2, v
′

2 = −ωv1, v
′ = a is difficult,

because it has non-polynomial solutions. Still, one part of this differential equation, the
velocity v′ = a, is easily solved. Yet, the solution rule [′] is not applicable, because no
real arithmetic solution of the whole differential equation system exists (except when
ω = 0). Regardless, after suitable discrete ghosts and differential ghosts for adding a
clock t′ = 1, a differential cut with the solution v = v0 + at of v′ = a adds this precise
knowledge about the time-dependent change of the variable v to the evolution domain
for subsequent use in the proof.

9. Differential Ghosts

The proof technique of differential ghosts is not limited to adding the differential equa-
tion t′ = 1 for time, but can add other differential equations y′ = g(x, y) into the differ-
ential equation system as well. Besides, the invariant to prove can very well be mod-
ified to make use of the additional ghost variable y by referring to it, which did not
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L12.16 Ghosts & Differential Ghosts

happen in the above proof, in which the postcondition B(x,v) remained unchanged (see
3).

Lemma 2 (Differential ghosts). The following is a sound proof rule differential auxil-
iaries (DA) for introducing auxiliary differential variables or differential ghosts [Pla12]:

DA
F ↔ ∃y G Γ, G ⊢ [x′ = f(x), y′ = g(x, y)&Q]G,∆

Γ, F ⊢ [x′ = f(x)&Q]F,∆

where y new and y′ = g(x, y), y(0) = y0 has a global solution y on Q for each y0.

Rule DA is applicable if y is a new variable and the new differential equation y′ = g(x, y)
has global solutions on Q (e.g., because term g(x, y) is linear in y so of the form a(x)y+
b(x) or because it satisfies a Lipschitz condition [Wal98, Proposition 10.VII], which is
definable in first-order real arithmetic and thus decidable). Without that condition,
adding y′ = g(x, y) could limit the duration of system evolutions incorrectly. In fact, it
would be sufficient for the domains of definition of the solutions of y′ = g(x, y) to be
no shorter than those of x. Soundness is easy to see, because precondition F implies G
for some choice of y (left premise). Yet, for any y, G is an invariant of the extended dy-
namics (right premise). Thus, G always holds after the evolution for some y (its value
can be different than in the initial state), which still implies F (left premise). Since y is
fresh and its differential equation does not limit the duration of solutions of x on Q, this
implies the conclusion. Since y is fresh, y does not occur in Q, and, thus, its solution
does not leave Q, which would incorrectly restrict the duration of the evolution as well.

Intuitively, rule DA can help proving properties, because it may be easier to char-
acterize how x changes in relation to an auxiliary differential ghost variable y with a
suitable differential equation (y′ = g(x, y)) compared to understanding the change of x
in isolation.

Rule DA is derived from a more fundamental axiom, the axiom of differential ghosts:

DG [x′ = f(x)&Q]P ↔ ∃y [x′ = f(x), y′ = g(x, y)&Q]P

where y′ = g(x, y) has a global solution. Axiom DG can be used to show that a property
P holds after a differential equation if and only if it holds for some initial value y after
an augmented differential equation with an extra y′ = g(x, y) that still has a solution
that exists sufficiently long. DA bundles this axiom DG up with others to a more useful
form that simultaneously replaces the postcondition.

As usual, it would not be sound to keep the context Γ,∆ around on the first premise
of DA, because we have no reason to believe it would still hold after the differential
equation, where we only know G (for some current value of y) according to the second
premise but need to conclude that F also holds.

10. Substitute Ghosts

In fact, differential ghosts even give us a, shockingly spooky, way of generating differ-
ential equations for differential ghosts on the fly as needed for proofs to work out. That
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Ghosts & Differential Ghosts L12.17

might sound scary but is amazingly useful. To see how it works, invent your own dif-
ferential ghost y′ = with a still-unspecified right-hand side , which is nothing
but a substitute ghost or a common spooky cloud, and just keep “proving” as if nothing
had happened:

∗

R ⊢ x > 0 ↔ ∃y xy2 = 1

could prove if = y
2

⊢ −xy2 + 2xy = 0

[′:=] ⊢ [x′:=− x] [y′:= ]x′y2 + x2yy′ = 0

dI xy2 = 1 ⊢ [x′ = −x, y′ = ]xy2 = 1

DA x > 0 ⊢ [x′ = −x]x > 0

The right premise could prove if only were chosen to be y
2 , in which case the

premise −xy2 + 2xy = 0 is quite easily proved. That, of course, was a bit too
spooky for the soundness-loving truth-connoisseur. So let’s instantiate the spooky
cloud with its concrete choice y

2 and start all over with a proper proof:

∗

R ⊢ x > 0 ↔ ∃y xy2 = 1

∗

R ⊢ −xy2 + 2xy y
2 = 0

[′:=] ⊢ [x′:=− x] [y′:=y
2 ]x

′y2 + x2yy′ = 0

dI xy2 = 1 ⊢ [x′ = −x, y′ = y
2 ]xy

2 = 1

DA x > 0 ⊢ [x′ = −x]x > 0

Fortunately, this proper sequent proof confirms the suspicion of a proof that we de-
veloped above. In that sense, all is fair in how we come up with a proof, even if we
use spooky ghost arguments involving .5 But in the end, it is crucial to conduct a
proper proof with sound proof rules to ensure the conclusion is valid.

It can be shown [Pla12] that there are properties such as this one that crucially need
differential ghosts (alias differential auxiliaries) to prove.

11. Summary

The major lesson from today’s lecture is that it can sometimes be easier to relate a vari-
able to its initial value or to other quantities than to understand its value in isolation.
Ghosts, in their various forms, let us achieve that by adding auxiliary variables into the
system dynamics, so that the values of the original variables of interest can be related to
the values of the ghosts. Sometimes such ghosts are even necessary to prove properties.

5Of course, is not quite as spooky as one might suspect. It can be made rigorous with function
symbols that are subsequently substituted uniformly [Pla15].
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L12.18 Ghosts & Differential Ghosts

As a workaround, it might help to rewrite the original model so that it already includes
the ghost variables, preferably marked as ghosts in the model. The phenomenon that
relations between state and ghost variables are sometimes easier to prove than just stan-
dalone properties of state variables applies in either case. This lecture shines a light on
the power of relativity theory in the sense of relating variables to one another.

This lecture also showcased a number of other useful proof techniques and even
showed how properties of differential equations can be proved using solution-like ar-
guments if only part of the differential equation system can be solved.

A. Axiomatic Ghosts

This section is devoted to yet another kind of ghosts: axiomatic ghosts. While less im-
portant for simple systems, axiomatic ghosts are the way to go for systems that involve
special functions such as sin, cos, tan etc.

When neglecting wind, gravitation, and so on, which is argued to be appropriate for
analyzing cooperation in air traffic control [TPS98], the in-flight dynamics of an aircraft
at x can be described by the following differential equation system; see [TPS98] for
details:

x′1 = v cosϑ x′2 = v sinϑ ϑ′ = ω. (6)

That is, the linear velocity v of the aircraft changes both positions x1 and x2 in the
(planar) direction corresponding to the orientation ϑ the aircraft is currently heading
toward. Further, the angular velocity ω of the aircraft changes the orientation ϑ of the
aircraft.

x1

x2

y1

y2

d

ω e

ϑ̄

̟

Figure 1: Aircraft dynamics

Unlike for straight-line flight (ω = 0), the nonlinear dynamics in (6) is difficult to anal-
yse [TPS98] for curved flight (ω 6= 0), especially due to the trigonometric expressions
which are generally undecidable. Solving (6) requires the Floquet theory of differential
equations with periodic coefficients [Wal98, Theorem 18.X] and yields mixed polyno-
mial expressions with multiple trigonometric functions. A true challenge, however,
is the need to verify properties of the states that the aircraft reach by following these
solutions, which requires proving that complicated formulas with mixed polynomial
arithmetic and trigonometric functions hold true for all values of state variables and
all possible evolution durations. However, quantified arithmetic with trigonometric
functions is undecidable by Gödel’s incompleteness theorem [Göd31].
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To obtain polynomial dynamics, we axiomatize the trigonometric functions in the
dynamics differentially and reparametrize the state correspondingly. Instead of angular
orientation ϑ and linear velocity v, we use the linear speed vector

(v1, v2)
def
= (v cosϑ, v sinϑ) ∈ R

2

which describes both the linear speed ‖(v1, v2)‖ :=
√

v21 + v22 = v and the orientation
of the aircraft in space; see Figs. 1 and 2. Substituting this coordinate change into dif-

x1

x2

v sinϑ = v2

v1 = v cosϑ

(v1
, v2

)

Figure 2: Reparametrize for differential axiomatization

ferential equations (6), we immediately have x′1 = v1 and x′2 = v2. With the coordinate
change, we further obtain differential equations for v1, v2 from differential equation
system (6) by simple symbolic differentiation:

v′1= (v cosϑ)′ = v′ cosϑ+ v(− sinϑ)ϑ′ = −(v sinϑ)ω = −ωv2,

v′2= (v sinϑ)′ = v′ sinϑ+ v(cosϑ)ϑ′ = (v cosϑ)ω = ωv1.

The middle equality holds for constant linear velocity (v′ = 0), which we assume, be-
cause only limited variations in linear speed are possible and cost-effective during the
flight [TPS98, LLL00] so that angular velocity ω is the primary control parameter in air
traffic control. Hence, equations (6) can be restated as the following differential equa-
tion F(ω):

x′1 = v1 , x
′

2 = v2 , v′1 = −ωv2 , v
′

2 = ωv1 (F(ω))

y′1 = e1 , y
′

2 = u2 , u
′

1 = −̺u2 , u
′

2 = ̺u1 (G(̺))

Differential equation F(ω) expresses that position x = (x1, x2) changes according to
the linear speed vector (v1, v2), which in turn rotates according to ω. Simultaneous
movement together with a second aircraft at y ∈ R

2 having linear speed (u1, u2) ∈
R
2 (also indicated with angle ϑ̄ in Fig. 1) and angular velocity ̺ corresponds to the

differential equation system F(ω),G(̺). Differential equations capture simultaneous
dynamics of multiple traffic agents succinctly using conjunction.

By this differential axiomatization, we thus obtain polynomial differential equations.
Note, however, that their solutions still involve the same complicated nonlinear trigono-
metric expressions so that solutions still give undecidable arithmetic [Pla10b, Appendix
B]. Note that differential invariant type arguments work with the differential equations
themselves and not with their solutions, so that differential axiomatization actually
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helps proving properties, because the solutions are still as complicated as they have
always been, but the differential equations become easier

The same technique helps when handling other special functions in other cases by
differential axiomatization.

Exercises

Exercise 1. Identify a minimal set of conditions are necessary for proof rule IA to be
sound. Show a counterexample for each of the remaining conditions to illustrate why
it is necessary.

Exercise 2. Augment the discrete ghost proofs in Sect. 6 to a full sequent proof of

xy − 1 = 0 → [x′ = x, y′ = −y]xy = 1

Exercise 3. Augment the proofs in this lecture as described to obtain a full sequent proof
of (4). You are advised to find a pretty big sheet of paper, first.
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15-424: Foundations of Cyber-Physical Systems

Lecture Notes on

Differential Invariants & Proof Theory

André Platzer

Carnegie Mellon University
Lecture 13

1. Introduction

Lecture 10 on Differential Equations & Differential Invariants and Lecture 11 on Differ-
ential Equations & Proofs equipped us with powerful tools for proving properties of
differential equations without having to solve them. Differential invariants (dI) [Pla10a]
prove properties of differential equations by induction based on the right-hand side of
the differential equation, rather than its much more complicated global solution. Differ-
ential cuts (DC) [Pla10a] made it possible to prove another property C of a differential
equation and then change the dynamics of the system around so that it is restricted to
never leave that region C. Differential cuts turned out to be very useful when stack-
ing inductive properties of differential equations on top of each other, so that easier
properties are proved first and then assumed during the proof of the more complicated
properties. In fact, in some cases, differential cuts are crucial for proving properties
in the first place [Pla10a, Pla12c, GSP14]. Differential weakening (dW) [Pla10a] proves
simple properties that are entailed by the evolution domain, which becomes especially
useful after the evolution domain constraint has been augmented sufficiently by way
of a differential cut.

Just like in the case of loops, where the search for invariants is nontrivial, differen-
tial invariants also require some smarts (or good automatic procedures [PC08, Pla12b,
GP14, GSP14]) to be found. Once a differential invariant has been identified, however,
the proof follows easily, which is a computationally attractive property.

Finding invariants of loops is very challenging. It can be shown to be the only
fundamental challenge in proving safety properties of conventional discrete programs
[HMP77]. Likewise, finding invariants and differential invariants is the only funda-
mental challenge in proving safety properties of hybrid systems [Pla08, Pla10b, Pla12a].
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A more careful analysis even shows that just finding differential invariants is the only
fundamental challenge for hybrid systems safety verification [Pla12a].

That is reassuring, because we know that the proofs will work1 as soon as we find
the right differential invariants. But it also tells us that we can expect the search for dif-
ferential invariants (and invariants) to be challenging, because cyber-physical systems
are extremely challenging, albeit very important. Yet, differential equations also enjoy
many pleasant properties that we can exploit to help us find differential invariants.

Since, at the latest after this revelation, we fully realize the importance of studying
and understanding differential invariants, we subscribe to developing a deeper un-
derstanding of differential invariants right away. The part of their understanding that
today’s lecture develops is how various classes of differential invariants relate to each
other in terms of what they can prove. That is, are there properties that only differential
invariants of the form A can prove, because differential invariants of the form B cannot
ever succeed in proving them? Or are all properties provable by differential invariants
of the form A also provable by differential invariants of the form B?

These relations between classes of differential invariants tell us which forms of dif-
ferential invariants we need to search for and which forms of differential invariants
we don’t need to bother considering. A secondary goal of today’s lecture besides this
theoretical understanding is the practical understanding of developing more intuition
about differential invariants and seeing them in action more thoroughly.

This lecture is based on [Pla12c] and strikes a balance between comprehensive han-
dling of the subject matter and core intuition. The lecture mostly focuses on the core
intuition at the heart of the proofs and leaves a more comprehensive argument and fur-
ther study for the literature [Pla12c]. Many proofs in this lecture are simplified and only
prove the core argument, while leaving out other aspects. Those—very important—
further details are beyond the scope of this course, however, and can be found else-
where [Pla12c]. For example, this lecture will not study whether indirect proofs could
conclude the same properties. With a more careful analysis [Pla12c], it turns out that
indirect proofs do not change the results reported in this lecture, but the proofs become
significantly more complicated and require a more precise choice of the sequent calcu-
lus formulation. In this lecture, we will also not always prove all statements conjectured
in a theorem. The remaining proofs can be found in the literature [Pla12c].

Note 1 (Proof theory of differential equations). The results in this lecture are part
of the proof theory of differential equations, i.e. the theory of what can be proved about
differential equations and with what techniques. They are proofs about proofs, because they
prove relations between the provability of logical formulas with different proof calculi. That
is, they relate “formula φ can be proved using A” and “formula φ can be proved using B.”

The most important learning goals of this lecture are:

Modeling and Control: This lecture helps in understanding the core argumentative

1Although it may still be a lot of work in practice to make the proofs work. At least they become possible.
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principles behind CPS and sheds more light on the question how to tame their
analytic complexity.

Computational Thinking: An important part of computer science studies questions
about the limits of computation or, more generally, develops an understanding of
what can be done and what cannot be done. Either in absolute terms (computability
theory studies what is computable and what is not) or in relative terms (complexity
theory studies what is computable in a characteristically quicker way or within
classes of resource bounds on time and space). Often times, the most significant
understanding of a problem space starts with what cannot be done (the theorem
of Rice says that all nontrivial properties of programs are not computable) or what
can be done (every problem that can be solved with a deterministic algorithm in
polynomial time can also be solved with a nondeterministic algorithm in polyno-
mial time, with the converse being the P versus NP problem).

The primary purpose of this lecture is to develop such an understanding of the
limits of what can and what cannot be done in the land of proofs about differential
equations with what techniques. Not all aspects of this deep question will be pos-
sible to answer in one lecture, but it will feature the beginning of the proof theory
of differential equations, i.e. the theory of provability and proofs about differential
equations. Proof theory is, of course, also of interest in other cases, but we will
study it in the case that is most interesting and illuminating: the case of proofs
about differential equations.

The primary, scientific learning goals of this lecture are, thus, to develop a fun-
damental understanding of what can and cannot be proved in which way about
differential equations. This helps us in our search for differential invariants for
applications, because such an understanding prevents us from asking the same
analytic question again in equivalent ways (if two different classes of differential
invariants prove the same properties and one of them already failed) and guides
our search toward the required classes of differential invariants (by next choos-
ing a class that can prove fundamentally more, and of properties of the requisite
form). The secondary, pragmatic learning goals are to practice inductive proofs
about differential equations using differential invariants and to develop an in-
tuition which verification question to best address in which way. In these ways,
both fundamentally and pragmatically, the primary direct impact of this lecture is
on understanding rigorous reasoning about CPS models as well as helping to ver-
ify CPS models of appropriate scale, in which more than one mode of reasoning
is often needed for the various parts and aspects of the system.

Finally this lecture has beneficial side effects informing differential invariant search
and deepening our intuition about differential equations proofs.

CPS Skills: This lecture serves no purpose in CPS Skills that the author could think of,
except indirectly via its impact on their analysis.
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L13.4 Differential Invariants & Proof Theory

CT

M&C CPS

limits of computation
proof theory for differential equations
provability of differential equations
proofs about proofs
relativity theory of proofs
inform differential invariant search
intuition for differential equation proofs

core argumentative principles
tame analytic complexity

none

2. Recap

Recall the following proof rules for differential equations from Lecture 11 on Differen-
tial Equations & Proofs and Lecture 12 on Ghosts & Differential Ghosts:

Note 2 (Proof rules for differential equations).

dI
Q ⊢ [x′:=f(x)](F )′

F ⊢ [x′ = f(x)&Q]F
dW

Q ⊢ F

Γ ⊢ [x′ = f(x)&Q]F,∆

DC
Γ ⊢ [x′ = f(x)&Q]C,∆ Γ ⊢ [x′ = f(x)& (Q ∧ C)]F ,∆

Γ ⊢ [x′ = f(x)&Q]F,∆

DA
F ↔ ∃y G Γ, G ⊢ [x′ = f(x), y′ = g(x, y)&Q]G,∆

Γ, F ⊢ [x′ = f(x)&Q]F,∆

where y is new and y′ = g(x, y), y(0) = y0 has a global solution y on Q for each y0.

With cuts and generalizations, earlier lectures have also shown that the following can
be proved:

cut,MR
A ⊢ F F ⊢ [x′ = f(x)&Q]F F ⊢ B

A ⊢ [x′ = f(x)&Q]B
(1)

This is useful for replacing a precondition A and postcondition B by another invari-
ant F that implies postcondition B and is implied by precondition A, which will be
done frequently in this lecture.
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3. Comparative Deductive Study: Relativity Theory for

Proofs

In order to find out what we can do when we have been unsuccessfully searching for a
differential invariant of one form, we need to understand which other form of differen-
tial invariants could work out better. If we have been looking for differential invariants
of the form p = 0 with a term p without success and then move on to search for dif-
ferential invariants of the form p = q, then we cannot expect to be any more successful
than before, because p = q can be rewritten as p− q = 0, which is of the first form again.
So we should, for example, try finding inequational differential invariants of the form
p ≥ 0, instead. In general, this begs the question which generalizations would be silly
(because differential invariants of the form p = q cannot prove any more than those of
the form p = 0) and when it might be smart (because p ≥ 0 could still succeed even if
everything of the form p = 0 failed).

As a principled answer to questions like these, we study the relations of classes of
differential invariants in terms of their relative deductive power. That is, we study
whether some properties are only provable using differential invariants from the class
A, not using differential invariants from the class B, or whether all properties provable
with differential invariants from class A are also provable with class B.

As a basis, we consider a propositional sequent calculus with logical cuts (which
simplify glueing derivations together) and real-closed field arithmetic (we denote all
uses of real arithmetic by proof rule R) along the lines of what we say in Lecture 6 on
Truth & Proof; see [Pla12c] for precise details. By DI we denote the proof calculus that,
in addition, has general differential invariants (rule dI with arbitrary quantifier-free
first-order formula F ) but no differential cuts (rule DC). For a set Ω ⊆ {≥, >,=,∧,∨}
of operators, we denote by DIΩ the proof calculus where the differential invariant F
in rule dI is further restricted to the set of formulas that uses only the operators in Ω.
For example, DI=,∧,∨ is the proof calculus that allows only and/or-combinations of
equations to be used as differential invariants. Likewise, DI≥ is the proof calculus that
only allows atomic weak inequalities p ≥ q to be used as differential invariants.

We consider classes of differential invariants and study their relations. If A and B are
two classes of differential invariants, we write A ≤ B if all properties provable using
differential invariants from A are also provable using differential invariants from B.
We write A 6≤ B otherwise, i.e., when there is a valid property that can only be proven
using differential invariants of A \ B. We write A ≡ B if A ≤ B and B ≤ A. We write
A < B if A ≤ B and B 6≤ A. Classes A and B are incomparable if A 6≤ B and B 6≤ A.

4. Equivalences of Differential Invariants

Before we go any further, let us study whether there are equivalence transformations on
formulas that preserve differential invariance. Every equivalence transformation that
we have for differential invariant properties helps us with structuring the proof search
space and also helps simplifying the meta-proofs in the proof theory. For example,
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we should not expect F ∧G to be a differential invariant for proving a property when
G ∧ F was not. Neither would F ∨G be any better as a differential invariant than
G ∨ F .

Lemma 1 (Differential invariants and propositional logic). Differential invariants
are invariant under propositional equivalences. That is, if F ↔ G is an instance of a
propositional tautology then F is a differential invariant of x′ = f(x)&Q if and only if G
is.

Proof. In order to prove this, we consider any property that proves with F as a differ-
ential invariant and show that G also works. Let F be a differential invariant of a dif-
ferential equation system x′ = f(x)&Q and let G be a formula such that F ↔ G is an
instance of a propositional tautology. Then G is a differential invariant of x′ = f(x)&Q,
because of the following formal proof:

∗
Q ⊢ [x′:=f(x)](G)′

dI
G ⊢ [x′ = f(x)&Q]G

F ⊢ [x′ = f(x)&Q]F

The bottom proof step is easy to see using (1), because precondition F implies the new
precondition G and postcondition F is implied by the new postcondition G proposi-
tionally. Subgoal Q ⊢ [x′:=f(x)](G)′ is provable, because Q ⊢ [x′:=f(x)](F )′ is prov-
able and (G)′ is ultimately a conjunction over all literals of G. The set of literals of G is
identical to the set of literals of F , because the literals do not change by using propo-
sitional tautologies. Furthermore, dL uses a propositionally complete base calculus
[Pla12c].

In all subsequent proofs, we can use propositional equivalence transformations by
Lemma 1. In the following, we will also implicitly use equivalence reasoning for pre-
and postconditions à la (1) as we have done in Lemma 1. Because of Lemma 1, we can,
without loss of generality, work with arbitrary propositional normal forms for proof
search.

5. Differential Invariants & Arithmetic

Depending on the reader’s exposure to differential structures, it may come as a shock
that not all logical equivalence transformations carry over to differential invariants.
Differential invariance is not necessarily preserved under real arithmetic equivalence
transformations.
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Lemma 2 (Differential invariants and arithmetic). Differential invariants are not in-
variant under equivalences of real arithmetic. That is, if F ↔ G is an instance of a first-
order real arithmetic tautology then F may be a differential invariant of x′ = f(x)&Q yet
G may not.

Proof. There are two formulas that are equivalent over first-order real arithmetic but,
for the same differential equation, one of them is a differential invariant, the other one
is not (because their differential structures differ). Since 5 ≥ 0, the formula x2 ≤ 52 is
equivalent to −5 ≤ x ∧ x ≤ 5 in first-order real arithmetic. Nevertheless, x2 ≤ 52 is a
differential invariant of x′ = −x by the following formal proof:

∗
R ⊢ −2x2 ≤ 0

[′:=] ⊢ [x′:=− x] 2xx′ ≤ 0
dI

x2 ≤ 52 ⊢ [x′ = −x]x2 ≤ 52

but −5 ≤ x ∧ x ≤ 5 is not a differential invariant of x′ = −x:

not valid

⊢ 0 ≤ −x ∧ −x ≤ 0
[′:=] ⊢ [x′:=− x](0 ≤ x′ ∧ x′ ≤ 0)

dI −5 ≤ x ∧ x ≤ 5 ⊢ [x′ = −x](−5 ≤ x ∧ x ≤ 5)

For proving the property in the proof of Lemma 2 we need to use the principle (1) with
the differential invariant F ≡ x2 ≤ 52 and cannot use −5 ≤ x ∧ x ≤ 5 directly.

By Lemma 2, we cannot just use arbitrary equivalences when investigating differen-
tial invariance, but have to be more careful. Not just the elementary real arithmetical equiv-
alence of having the same set of satisfying assignments matters, but also the differential
structures need to be compatible. Some equivalence transformations that preserve the
solutions still destroy the differential structure. It is the equivalence of real differential
structures that matters. Recall that differential structures are defined locally in terms of
the behavior in neighborhoods of a point, not the point itself.

Lemma 2 illustrates a notable point about differential equations. Many different for-
mulas characterize the same set of satisfying assignments. But not all of them have
the same differential structure. Quadratic polynomials have inherently different dif-
ferential structure than linear polynomials even when they have the same set of so-
lutions over the reals. The differential structure is a more fine-grained information.
This is similar to the fact that two elementary equivalent models of first-order logic
can still be non-isomorphic. Both the set of satisfying assignments and the differen-
tial structure matter for differential invariance. In particular, there are many formulas
with the same solutions but different differential structures. The formulas x2 ≥ 0 and
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x6 + x4 − 16x3 + 97x2 − 252x+ 262 ≥ 0 have the same solutions (all of R), but very dif-
ferent differential structure; see Fig. 1.

The first two rows in Fig. 1 correspond to the polynomials from the latter two cases.
The third row is a structurally different degree 6 polynomial with again the same set
of solutions (R) but a rather different differential structure. The differential structure
also depends on what value x′ assumes according to the differential equation. Fig. 1
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Figure 1: Equivalent solutions (p ≥ 0 on the left) with quite different differential struc-
ture ((p)′ plotted on the right)

illustrates that (p)′ alone can already have a very different characteristic even if the
respective sets of satisfying assignments of p ≥ 0 are identical.

We can, however, always normalize all atomic subformulas to have right-hand side
0, that is, of the form p = 0, p ≥ 0, or p > 0. For instance, p ≤ q is a differential invariant
if and only if q − p ≥ 0 is, because p ≤ q is equivalent (in first-order real arithmetic) to
q − p ≥ 0 and, moreover, for any variable x and term e, [x′:=e](p)′ ≤ (q)′ is equivalent
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to [x′:=e](q)′ − (p)′ ≥ 0 in first-order real arithmetic.

6. Differential Invariant Equations

For equational differential invariants p = 0, a.k.a. differential invariant equations, propo-
sitional operators do not add to the deductive power.

Proposition 3 (Equational deductive power [Pla10a, Pla12c]). The deductive power
of differential induction with atomic equations is identical to the deductive power of dif-
ferential induction with propositional combinations of polynomial equations: That is, each
formula is provable with propositional combinations of equations as differential invariants
iff it is provable with only atomic equations as differential invariants:

DI= ≡ DI=,∧,∨

How could we prove that?
Before you read on, see if you can find the answer for yourself.
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One direction is simple. Proving DI= ≤ DI=,∧,∨ is obvious, because every proof us-
ing a differential invariant equation p1 = p2 also is a proof using a propositional com-
bination of differential invariant equations. The propositional combination that just
consists of the only conjunct p1 = p2 without making use of any propositional opera-
tors.

The other way around DI= ≥ DI=,∧,∨ is more difficult. If a formula can be proved
using a differential invariant that is a propositional combination of equations, such
as p1 = p2 ∧ q1 = q2, how could it possibly be proved using just a single equation?

Note 6 (Proofs of equal provability). A proof of Proposition 3 needs to show that every
such provable property is also provable with a structurally simpler differential invariant.
It effectively needs to transform proofs with propositional combinations of equations as
differential invariants into proofs with just differential invariant equations. And, of course,
the proof of Proposition 3 needs to prove that the resulting equations are actually provably
differential invariants and prove the same properties as before. This is a general feature of
proof theory. It often involves proof transformations at the heart of the arguments.

Proof of Proposition 3. Let x′ = f(x) be the (vectorial) differential equation to consider.
We show that every differential invariant that is a propositional combination F of poly-
nomial equations is expressible as a single atomic polynomial equation (the converse
inclusion is obvious). We can assume F to be in negation normal form by Lemma 1 (re-
call that negations are resolved and 6= can be assumed not to appear). Then we reduce F
inductively to a single equation using the following transformations:

• If F is of the form p1 = p2 ∨ q1 = q2, then F is equivalent to the single equation
(p1 − p2)(q1 − q2) = 0. Furthermore, [x′:=f(x)](F )′ ≡ [x′:=f(x)]((p1)

′ = (p2)
′ ∧ (q1)

′ = (q2)
′)

directly implies

[x′:=f(x)]((p1−p2)(q1−q2))
′ = 0 ≡ [x′:=f(x)]

(

((p1)
′−(p2)

′)(q1−q2)+(p1−p2)((q1)
′−(q2)

′) = 0
)

which implies that the differential structure is the same so that the inductive steps
are equivalent (either both succeed or both fail).

• If F is of the form p1 = p2 ∧ q1 = q2, then F is equivalent to the single equation
(p1 − p2)

2 + (q1 − q2)
2 = 0. Also, [x′:=f(x)](F )′ ≡ [x′:=f(x)]

(

(p1)
′ = (p2)

′ ∧ (q1)
′ = (q2)

′)

implies

[x′:=f(x)]
(

((p1−p2)
2+(q1−q2)

2)′=0
)

≡ [x′:=f(x)]
(

2(p1−p2)((p1)
′−(p2)

′)+2(q1−q2)((q1)
′−(q2)

′) = 0
)

Consequently propositional connectives of equations can be replaced by their equiva-
lent arithmetic equations in pre- and postconditions, and the corresponding induction
steps are equivalent.

Note that the polynomial degree increases quadratically by the reduction in Propo-
sition 3, but, as a trade-off, the propositional structure simplifies. Consequently, differ-
ential invariant search for the equational case can either exploit propositional structure
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with lower degree polynomials or suppress the propositional structure at the expense
of higher degrees. This trade-off depends on the real arithmetic decision procedure, but
is often enough in favor of keeping propositional structure, because the proof calculus
can still exploit the logical structure to decompose the verification question before in-
voking real arithmetic. There are cases, however, where such reductions are formidably
insightful [Pla12b].

Equational differential invariants, thus, enjoy a lot of beautiful properties, including
characterizing invariant functions [Pla12b] and generalizing to a decision procedure for
algebraic invariants of algebraic differential equations [GP14].

7. Equational Incompleteness

Focusing exclusively on differential invariants with equations reduces the deductive
power, because sometimes only differential invariant inequalities can prove properties.

Proposition 4 (Equational incompleteness). The deductive power of differential induc-
tion with equational formulas is strictly less than the deductive power of general differential
induction, because some inequalities cannot be proven with equations.

DI= ≡ DI=,∧,∨ < DI
DI≥ 6≤ DI= ≡ DI=,∧,∨

DI> 6≤ DI= ≡ DI=,∧,∨

How could such a proposition be proved?
Before you read on, see if you can find the answer for yourself.
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The proof strategy for the proof of Proposition 3 involved transforming proofs into
proofs to prove the inclusion DI= ≥ DI=,∧,∨. Could the same strategy prove Proposi-
tion 4? No, because we need to show the opposite! Proposition 4 conjectures DI≥ 6≤ DI=,∧,∨,
which means that there are true properties that are only provable using a differential in-
variant inequality p1 ≥ p2 and not using any differential invariant equations or propo-
sitional combinations thereof.

For one thing, this means that we ought to find a property that a differential invariant
inequality can prove. That ought to be easy enough, because Lecture 11 on Differen-
tial Equations & Proofs showed us how useful differential invariants are. But then a
proof of Proposition 4 also requires a proof why that very same formula cannot possi-
bly ever be proved with any way of using only differential invariant equations or their
propositional combinations. That is a proof about nonprovability. Proving provability
in proof theory amounts to producing a proof (in sequent calculus). Proving nonprov-
ability most certainly does not mean it would be enough to write something down that
is not a proof. After all, just because one proof attempt fails does not mean that other at-
tempts would not be successful. You have experienced this while you were working on
proving your labs for this course. The first proof attempt might have failed miserably
and was impossible to ever work out. But, come next day, you had a better idea with
a different proof, and suddenly the same property turned out to be perfectly provable
even if the first proof attempt failed.

How could we prove that all proof attempts do not work?
Before you read on, see if you can find the answer for yourself.
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One way of showing that a logical formula cannot be proved is by giving a counterex-
ample, i.e. a state which assigns values to the variables that falsify the formula. That is,
of course, not what can help us proving Proposition 4, because a proof of Proposition 4
requires us to find a formula that can be proved with DI≥ (so it cannot have any coun-
terexamples, since it is perfectly valid), just cannot be proved with DI=,∧,∨. Proving
that a valid formula cannot be proved with DI=,∧,∨ requires us to show that all proofs
in DI=,∧,∨ do not prove that formula.

Expedition 1 (Proving differences in set theory and linear algebra). Recall sets. The
way to prove that two sets M,N have the same “number” of elements is to come
up with a pair of functions Φ : M → N and Ψ : N → M between the sets and
then prove that Φ,Ψ are inverses of each other, i.e. Φ(Ψ(y)) = y and Ψ(Φ(x)) = x

for all x ∈ M, y ∈ N . Proving that two sets M,N do not have the same “number”
of elements works entirely differently, because that has to prove for all pairs of
functions Φ : M → N and Ψ : N → M that there is is an x ∈ M such that
Ψ(Φ(x)) 6= x or an y ∈ N such that Φ(Ψ(y)) 6= y. Since writing down every such
pair of functions Φ,Ψ is a lot of work (an infinite amount of work of M and N

are infinite), indirect criteria such as cardinality or countability are used instead,
e.g. for proving that the reals R and rationals Q cannot possibly have the same
number of elements, because Q are countable but R are not (by Cantor’s diagonal
argument).

Recall vector spaces from linear algebra. The way to prove that two vector spaces
V,W are isomorphic is to think hard and construct a function Φ : V → W and a
function Ψ : W → V and then prove that Φ,Ψ are linear functions and inverses of
each other. Proving that two vector spaces V,W are not isomorphic works entirely
differently, because that has to prove that all pairs of functions Φ : V → W and Ψ :
W → V are either not linear or not inverses of each other. Proving the latter literally
is again a lot (usually infinite) amount of work. So instead, indirect criteria are
being used. One proof that two vector spaces V,W are not isomorphic could show
that both have different dimensions and then prove that isomorphic vector spaces
always have the same dimension, so V and W cannot possibly be isomorphic.

By analogy, proving non-provability leads to a study of indirect criteria about proofs
of differential equations.

Note 8 (Proofs of different provability). Proving non-reducibility A 6≤ B for classes of
differential invariants requires an example formula φ that is provable in A plus a proof that
no proof using B proves φ. The preferred way of doing that is finding an indirect criterion
that all proofs in B possess but that φ does not have, so that the proofs using B cannot
possibly succeed in proving φ.

Proof of Proposition 4. Consider any positive term a > 0 (e.g., 5 or x2 + 1 or x2 + x4 + 2).
The following proof proves a formula by differential induction with the weak inequal-
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ity x ≥ 0:
∗

R ⊢ a ≥ 0
[′:=] ⊢ [x′:=a]x′ ≥ 0

dI
x ≥ 0 ⊢ [x′ = a]x ≥ 0

The same formula is not provable with an equational differential invariant, however.
Any univariate polynomial p that is zero on all x ≥ 0 is the zero polynomial and, thus,
an equation of the form p = 0 cannot be equivalent to the half space x ≥ 0. By the
equational deductive power theorem 3, the above formula then is not provable with
any Boolean combination of equations as differential invariant either, because proposi-
tional combinations of equational differential invariants prove the same properties that
single equational differential invariants do, and the latter cannot succeed in proving
x ≥ 0 → [x′ = a]x ≥ 0.

The other parts of the theorem that involve generalizations of the non-provability
argument to other indirect proofs using cuts and the like are proved elsewhere [Pla12c].

It might be tempting to think that at least equational postconditions only need equa-
tional differential invariants for proving them. But that is not the case either [Pla12c].
So even if the property you care to prove involves only equations, you may still need
to generalize your proof arguments to consider inequalities instead.

8. Strict Differential Invariant Inequalities

We show that, conversely, focusing on strict inequalities p > 0 also reduces the deduc-
tive power, because equations are obviously missing and there is at least one proof
where this matters. That is, what are called strict barrier certificates do not prove (non-
trivial) closed invariants.

Proposition 5 (Strict barrier incompleteness). The deductive power of differential in-
duction with strict barrier certificates (formulas of the form p > 0) is strictly less than the
deductive power of general differential induction.

DI> < DI
DI= 6≤ DI>

Proof. The following proof proves a formula by equational differential induction:

∗
R ⊢ 2xy + 2y(−x) = 0

[′:=] ⊢ [x′:=y] [y′:=− x] 2xx′ + 2yy′ = 0
dI

x2 + y2 = c2 ⊢ [x′ = y, y′ = −x]x2 + y2 = c2
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But the same formula is not provable with a differential invariant of the form p > 0. An
invariant of the form p > 0 describes an open set and, thus, cannot be equivalent to the
(nontrivial) closed set where x2 + y2 = c2 holds true. The only sets that are both open
and closed in (the Euclidean space) Rn are the empty set ∅ and the full space Rn.

The other parts of the theorem are proved elsewhere [Pla12c].

Expedition 2 (Topology in real analysis). The following proofs distinguish open
sets from closed sets, which are concepts from real analysis (or topology).cd Roughly:
A closed set is one whose boundary belongs to the set. For example the solid unit
disk of radius 1. An open set is one for which no point of the boundary belongs to
the set, for example the unit disk of radius 1 without the outer circle of radius 1.

closed solid disk
x2 + y2 ≤ 1

with boundary

open disk
x2 + y2 < 1

without
boundary

A set O ⊆ Rn is open iff there is a small neighborhood that is contained in O around
every point of O. That is, for all points a ∈ O there is an ε > 0 such that every point
b of distance at most ε from a is still in O. A set C ⊆ Rn is closed iff its complement is
open. Because Rn is what is called a complete metric space, a set C ⊆ Rn is closed
iff every convergent sequence of elements in C converges to a limit in C.

One takeaway message is that it makes sense to check whether the desired invariant
is an open or a closed set and use differential invariants of the suitable type for the job.
Of course, both p = 0 and p ≥ 0 might still work for closed sets.

9. Differential Invariant Equations as Differential Invariant

Inequalities

Weak inequalities p ≥ 0, however, do subsume the deductive power of equational dif-
ferential invariants p = 0. This is obvious on the algebraic level but we will see that it
also does carry over to the differential structure.

Proposition 6 (Equational definability). The deductive power of differential induction
with equations is subsumed by the deductive power of differential induction with weak
inequalities:

DI=,∧,∨ ≤ DI≥
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Proof. By Proposition 3, we only need to show that DI= ≤ DI≥, as DI=,∧,∨ = DI=.
Let e = 0 be an equational differential invariant of a differential equation x′ = f(x)&Q.
Then we can prove the following:

∗
Q ⊢ [x′:=f(x)](e)′ = 0

dI
e = 0 ⊢ [x′ = f(x)&Q] e = 0

Then, the inequality −e2 ≥ 0, which is equivalent to e = 0 in real arithmetic, also is a
differential invariant of the same dynamics by the following formal proof:

∗
Q ⊢ [x′:=f(x)]−2e(e)′ ≥ 0

dI−e2 ≥ 0 ⊢ [x′ = f(x)&Q](−e2 ≥ 0)

The subgoal for the differential induction step is provable: if we can prove that Q im-
plies [x′:=f(x)](e)′ = 0 according to the first sequent proof, then we can also prove that
Q implies [x′:=f(x)]−2e(e)′ ≥ 0 for the sequent sequent proof, because [x′:=f(x)](e)′ = 0
implies [x′:=f(x)]−2e(e)′ ≥ 0 in first-order real arithmetic.

Note that the local state-based view of differential invariants is crucial to make the last
proof work. By Proposition 6, differential invariant search with weak inequalities can
suppress equations. Note, however, that the polynomial degree increases quadratically
with the reduction in Proposition 6. In particular, the polynomial degree increases quar-
tically when using the reductions in Proposition 3 and Proposition 6 one after another
to turn propositional equational formulas into single inequalities. This quartic increase
of the polynomial degree is likely a too serious computational burden for practical pur-
poses even if it is a valid reduction in theory.

10. Differential Invariant Atoms

Next we see that, with the notable exception of pure equations (Proposition 3), propo-
sitional operators increase the deductive power.

Theorem 7 (Atomic incompleteness). The deductive power of differential induction
with propositional combinations of inequalities exceeds the deductive power of differential
induction with atomic inequalities.

DI≥ < DI≥,∧,∨

DI> < DI>,∧,∨

Proof. Consider any term a ≥ 0 (e.g., 1 or x2+1 or x2+x4+1 or (x−y)2+2). Then the for-
mula x ≥ 0 ∧ y ≥ 0 → [x′ = a, y′ = y2](x ≥ 0 ∧ y ≥ 0) is provable using a conjunction in
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the differential invariant:

∗
R ⊢ a ≥ 0 ∧ y2 ≥ 0

[′:=] ⊢ [x′:=a] [y′:=y2](x′ ≥ 0 ∧ y′ ≥ 0)

dI
x ≥ 0 ∧ y ≥ 0 ⊢ [x′ = a, y′ = y2](x ≥ 0 ∧ y ≥ 0)

By a sign argument similar to that in the proof of [Pla10a, Theorem 2] and [Pla10b,
Theorem 3.3], no atomic formula is equivalent to x ≥ 0 ∧ y ≥ 0. Basically, no formula
of the form p(x, y) ≥ 0 for a polynomial p can be equivalent to x ≥ 0 ∧ y ≥ 0, because
that would imply that p(x, 0) ≥ 0 ↔ x ≥ 0 for all x, which, as p(x, 0) is a univariate
polynomial with infinitely many roots (for every x ≥ 0), which implies that p(x, 0) is
the zero polynomial, which is not equivalent to x ≥ 0, because the zero polynomial is
also zero on x < 0. Similar arguments work for p(x, y) > 0 and p(x, y) = 0. Thus, the
above property cannot be proven using a single differential induction. The proof for a
postcondition x > 0 ∧ y > 0 is similar.

The other—quite substantial—parts of the proof are proved elsewhere [Pla12c].

Note that the formula in the proof of Theorem 7 is provable, e.g., using differential
cuts (DC) with two atomic differential induction steps, one for x ≥ 0 and one for y ≥ 0.
Yet, a similar, yet much more involved, argument can be made to show that the deduc-
tive power of differential induction with atomic formulas (even when using differen-
tial cuts) is strictly less than the deductive power of general differential induction; see
[Pla10a, Theorem 2].

Consequently, in the case of inequalities, propositional connectives can be quite cru-
cial when looking for differential invariants.

11. Summary

Fig. 2 summarizes the findings on provability relations of differential equations ex-
plained in this lecture and others reported in the literature [Pla12c]. We have consid-
ered the differential invariance problem, which, by a relative completeness argument
[Pla12a], is at the heart of hybrid systems verification. To better understand structural
properties of hybrid systems, we have identified and analyzed more than a dozen (16)
relations between the deductive power of several (9) classes of differential invariants,
including subclasses that correspond to related approaches. An understanding of these
relations helps guide the search for suitable differential invariants and also provides an
intuition for exploiting indirect criteria such as open/closedness of sets as a guide.

The results require a symbiosis of elements of logic with real arithmetical, differential,
semialgebraic, and geometrical properties. Future work includes investigating this new
field further called real differential semialgebraic geometry, whose development has only
just begun [Pla12c, GSP14, GSP15].
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DI= DI=,∧,∨

DI> DI>,∧,∨

DI≥ DI≥,∧,∨

DI

DI≥,=,∧,∨

DI>,=,∧,∨

A
strict
inclusion

B

A
equivalent

B

A
incomparable

B

DIΩ : properties verifiable using differential invariants built with operators from Ω

Figure 2: Differential invariance chart
(strict inclusions A < B, equivalences A ≡ B, and incomparabilities A 6≤ B,
B 6≤ A for classes of differential invariants are indicated)

A. Curves Playing with Norms and Degrees

The proof of Lemma 2 showed a case where a formula with a higher-degree polynomial
was needed to prove a property that a lower-degree polynomial could not prove. The
conclusion from the proof of Lemma 2 is not that it is always better to use differential
invariants of higher degrees, just because that worked in this particular proof.

For example, the following proof for an upper bound t on the supremum norm
‖(x, y)‖∞ of the vector (x, y) defined as

‖(x, y)‖∞ ≤ t
def≡ −t ≤ x ≤ t ∧ −t ≤ y ≤ t (2)

is significantly easier for the curved dynamics:
∗

R
v2 + w2 ≤ 1 ⊢ −1 ≤ v ≤ 1 ∧ −1 ≤ w ≤ 1

[′:=]
v2 + w2 ≤ 1 ⊢ [x′:=v] [y′:=w] [v′:=ωw] [w′:=− ωv] [t′:=1](−t′ ≤ x′ ≤ t′ ∧ −t′ ≤ y′ ≤ t′)

dI
⊳v2 + w2 ≤ 1 ∧ x = y = t = 0 ⊢ [x′ = v, y′ = w, v′ = ωw,w′ = −ωv, t′ = 1& v2 + w2 ≤ 1] ‖(x, y)‖∞ ≤ t

DC
v2 + w2 ≤ 1 ∧ x = y = t = 0 ⊢ [x′ = v, y′ = w, v′ = ωw,w′ = −ωv, t′ = 1] ‖(x, y)‖∞ ≤ t

where the first premise of the differential cut (DC) above is elided (marked ⊳) and
proves as in Lecture 11 on Differential Invariants & Proofs. This proof shows that a
point (x, y) starting with linear velocity at most 1 and angular velocity ω from the ori-
gin will not move further than the time t in supremum norm.

This simple proof is to be contrasted with the following proof attempt for a corre-
sponding upper bound on the Euclidean norm ‖(x, y)‖2 defined as

‖(x, y)‖2 ≤ t
def≡ x2 + y2 ≤ t2 (3)

for which a direct proof fails:
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not valid
v2 + w2 ≤ 1 ⊢ 2xv + 2yw ≤ 2t

[′:=]
v2 + w2 ≤ 1 ⊢ [x′:=v] [y′:=w] [v′:=ωw] [w′:=− ωv] [t′:=1](2xx′ + 2yy′ ≤ 2tt′)

dI
⊳v2 + w2 ≤ 1 ∧ x = y = t = 0 ⊢ [x′ = v, y′ = w, v′ = ωw,w′ = −ωv, t′ = 1& v2 + w2 ≤ 1] ‖(x, y)‖2 ≤ t

DC
v2 + w2 ≤ 1 ∧ x = y = t = 0 ⊢ [x′ = v, y′ = w, v′ = ωw,w′ = −ωv, t′ = 1] ‖(x, y)‖2 ≤ t

An indirect proof is still possible but much more complicated. But the proof using the
supremum norm (2) is much easier than the proof using the Euclidean norm (3) in this
case. In addition, the arithmetic complexity decreases, because supremum norms are
definable in linear arithmetic (2) unlike the quadratic arithmetic required for Euclidean
norms (3). Finally, the simpler proof is, up to a factor of

√
2 just as good, because

quantifier elimination easily proves that the supremum norm ‖ · ‖∞ and the standard
Euclidean norm ‖·‖2 are equivalent, i.e., their values are identical up to constant factors:

∀x ∀y (‖(x, y)‖∞ ≤ ‖(x, y)‖2 ≤
√
n‖(x, y)‖∞) (4)

∀x ∀y ( 1√
n
‖(x, y)‖2 ≤ ‖(x, y)‖∞ ≤ ‖(x, y)‖2) (5)

where n is the dimension of the vector space, here 2. That makes sense, because if, e.g.,
the coordinate with maximal absolute value is at most 1, then the Euclidean distance
can be at most 1. And the extra factor of

√
2 is easily justified by Pythagoras’ theorem.

‖ · ‖∞ ≤ 1√
2

‖ · ‖2 ≤ 1

‖ · ‖∞ ≤ 1

‖ · ‖2 ≤
√
2

Exercises

Exercise 1. Prove the relation DI> ≤ DI>,∧,∨, i.e., that all properties provable using
differential invariants of the form p > q are also provable using propositional combina-
tions of these formulas as differential invariants.

Exercise 2. Prove the relation DI≥ ≡ DI≤,∧,∨.

Exercise 3. Prove the relation DI≥,∧,∨ ≡ DI≥,=,∧,∨.

Exercise 4. Let DItrue denote the proof calculus in which only the formula true is al-
lowed as a differential invariant. Prove the relation DItrue < DI=.

Exercise 5. Let DI false denote the proof calculus in which only the formula false is al-
lowed as a differential invariant. Prove the relation DI false < DI>.
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Exercise 6. Prove the relation DI=,∧,∨ < DI≥,∧,∨.

Exercise 7. Prove the relation DI>,∧,∨ < DI>,=,∧,∨.

Exercise 8. Prove the norm relations (4) and (5). Use these relations in a sequent proof
to relate the successful proof with a bound on the supremum norm ‖(x, y)‖∞ to a result
about a bound on the Euclidean norm ‖(x, y)‖2.
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proof rules for checking differential invariance of algebraic sets. In
Deepak D’Souza, Akash Lal, and Kim Guldstrand Larsen, editors, VM-
CAI, volume 8931 of LNCS, pages 431–448. Springer, 2015. doi:10.1007/

978-3-662-46081-8_24.

[HMP77] David Harel, Albert R. Meyer, and Vaughan R. Pratt. Computability and
completeness in logics of programs (preliminary report). In STOC, pages
261–268. ACM, 1977.
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15-424: Foundations of Cyber-Physical Systems

Lecture Notes on

Hybrid Systems & Games

André Platzer

Carnegie Mellon University
Lecture 16

1 Introduction

Hybrid systems have so far served us well throughout this course as a model for cyber-
physical systems [Pla08, Pla10b, Pla12c]. Most definitely, hybrid systems can also serve
as models for other systems that are not cyber-physical per se, i.e. they are not built
as a combination of cyber and computing capabilities with physical capabilities. Some
biological systems can be understood as hybrid systems, because they combine discrete
and continuous dynamics. Or physical processes in which things happen at very differ-
ent speeds, so where there is a slow process about which a continuous understanding is
critical as well as a very fast process in which a discrete abstraction might be sufficient.
Neither of those examples are particularly cyber-physical. Yet, nevertheless, they can
have natural models as hybrid systems, because their fundamental characteristics is the
interaction of discrete and continuous dynamics, which is exactly what hybrid systems
are good for. Hence, despite their good match, not all hybrid systems are cyber-physical
systems.

One important point of today’s lecture is that the converse is not true either. Not
all cyber-physical systems are hybrid systems. The reason for that is not that cyber-
physical systems lack discrete and continuous dynamics, but, rather, that they involve
also additional dynamical aspects. It is a common phenomenon in cyber-physical sys-
tems that they involve several dynamical aspects, which is why they are best under-
stood as multi-dynamical systems, i.e. systems with multiple dynamical features [Pla12c,
Pla12b, Pla11, Pla15].

In a certain sense, applications often have a +1 effect on dynamical aspects. Your
analysis might start out focusing on some number of dynamical aspects just to observe
during the elaboration of the analysis that there is a part of the system for which one
more dynamical aspect is relevant than was originally anticipated. The bouncing ball
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is an example where a preliminary analysis might first ascribe an entirely continuous
dynamics to it, just to find out after a while that the singularity of bouncing back from
the ground would be better understood by discrete dynamics. So whenever you are
analyzing a system, be prepared to find one more dynamical aspect around the corner.
That is yet another reason why it is useful to have flexible and general analysis tech-
niques grounded in logic that still work even after a new dynamical aspect has been
found.

Of course, it is not going to be feasible to understand all multi-dynamical system as-
pects at once in today’s lecture. But today’s lecture is going to introduce one very fun-
damental dynamical aspect: adversarial dynamics [Pla15]. Adversarial dynamics comes
from multiple players that, in the context of CPS, interact on a hybrid system and are
allowed to make their respective choices arbitrarily, just in pursuit of their goals. The
combination of discrete, continuous, and adversarial dynamics leads to hybrid games.
Unlike hybrid systems, hybrid games allow choices in the system dynamics to be re-
solved adversarially by different players with different objectives.

Hybrid games are necessary in situations where multiple agents actively compete.
The canonical situation of a hybrid game would, thus, be RoboCup, where two teams
of robots play robot soccer, moving around physically in space, controlled according
to discrete computer decisions, and in active competition for scoring goals in opposite
directions on the field. The robots in a RoboCup match just can’t agree on the direction
into which they try to get the ball rolling. It turns out, however, that hybrid games
also come up for reasons of analytic competition, that is, where possible competition is
assumed only for the sake of a worst-case analysis.

Consider lab 4, the static and dynamic obstacles lab, for example, where your robot
is interacting with a roguebot. You are in control of the robot, but somebody else is
controlling the roguebot. Your objective is to control your robot so that it will not run
into the roguebot no matter what. That means you need to find some way of playing
your control choices for your robot so that it makes progress but will be safe for all
possible control choices that the roguebot might follow. After all you do not exactly
know how the other roguebot is implemented and how it will react to your control
decisions. That makes your robot play a hybrid game with the roguebot in which your
robot is trying to safely avoid collisions. The roguebot might behave sanely and tries
to stay safe as well. But the roguebot’s objectives could differ from yours, because its
objective is not to get you to your goal. The roguebot rather wants to get to its own goal
instead, which might cause unsafe interferences whenever the roguebot takes an action
in pursuit of its goal that is not in your robot’s interest. If your robot causes a collision,
because it chose an action that was incompatible with the roguebot’s action, your robot
would certainly be faulty and sent back to the design table.

Alas, when you try to understand how you need to control your robot to stay safe,
it can be instructive to think about what the worst-case action of a roguebot might
be to make life difficult for you. And when your friendly course instructors try to
demonstrate for you under which circumstance a simulation of your robot controller
exhibits a faulty behavior, so that you can learn from the cases where your control does
not work, they might actually be playing a hybrid game with you. If your robot wins
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and stays safe, that is an indication of a strong robot design. But if your course TAs
win and show an unsafe trace, you still win even if you lose this particular simulation,
because you learn more about the corner cases in your robot control design than when
staring at simulation movies where everything is just fair-weather control.

If you think carefully again about lab 2, where your robot was put on a highway and
had to find some way of being controlled to stay safe for all possible choices of the robot
in front of it, then you will find that a hybrid game interpretation might be in order for
that lab as well.

These lecture notes are based on [Pla15], where more information can be found on
logic and hybrid games. The most important learning goals of this lecture are:

Modeling and Control: We identify an important additional dynamical aspect, the
aspect of adversarial dynamics, which adds an adversarial way of resolving the
choices in the system dynamics. This dynamical aspect is important for under-
standing the core principles behind CPS, because multiple agents with possibly
conflicting actions are featured frequently in CPS applications. It is helpful to
learn under which circumstance adversarial dynamics is important for under-
standing a CPS and when in can be neglected without loss. CPS in which all
choices are resolved against you or all choices are resolved for you can already
be described and analyzed in differential dynamic logic. Adversarial dynamics is
interesting in mixed cases, where some choices fall in your favor and others turn
out against you. Another important goal of this lecture is how to develop models
and controls of CPS with adversarial dynamics corresponding to multiple agents.

Computational Thinking: This lecture follows fundamental principles from computa-
tional thinking to capture the new phenomenon of adversarial dynamics in CPS
models. We leverage core ideas from programming languages by extending syn-
tax and semantics of program models and specification and verification logics
with the complementary operator of duality to incorporate adversariality in a
modular way into the realm of hybrid systems models. This leads to a composi-
tional model of hybrid games with compositional operators. Modularity makes it
possible to generalize our rigorous reasoning principles for CPS to hybrid games
while simultaneously taming their complexity. This lecture introduces differential
game logic dGL [Pla15] extending by adversarial dynamics the familiar differential
dynamic logic, which has been used as the specification and verification language
for CPS in the other parts of this course. Computer science ultimately is about
analysis like worst-case analysis or expected-case analysis or correctness analy-
sis. Hybrid games enable analysis of CPS at a more fine-grained level in between
worst-case analysis and best-case analysis. In the dL formula [α]φ all choices are
resolved against us in the sense that [α]φ is only true if φ holds after all runs of α.
In the dL formula 〈α〉φ all choices are resolved in favor in the sense that 〈α〉φ is
true if φ holds after at least one run of α. Hybrid games can be used to attribute
some but not all of the choices in a system to an opponent while leaving the others
to be resolved favorably. Finally, this lecture provides a perspective on advanced
models of computation with alternating choices.
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CPS Skills: We add a new dimension into our understanding of the semantics of a CPS
model: the adversarial dimension corresponding to how a system changes state
over time as multiple agents react to each other. This understanding is crucial
for developing an intuition for the operational effects of multi-agent CPS. The
presence of adversarial dynamics will cause us to reconsider the semantics of CPS
models to incorporate the effects of multiple agents and their mutual reactions.
This generalization, while crucial for understanding adversarial dynamics in CPS,
also shines a helpful complementary light on the semantics of hybrid systems
without adversariality by causing us to reflect on choices.

CT

M&C CPS

fundamental principles of computational thinking
logical extensions
PL modularity principles
compositional extensions
differential game logic
best-worst-case analysis
models of alternating computation

adversarial dynamics
conflicting actions
multi-agent systems
angelic/demonic choice

multi-agent state change
CPS semantics
reflections on choices

2 Choices & Nondeterminism

Note 1 (Choices in hybrid systems). Hybrid systems involve choices. They manifest
evidently in hybrid programs as nondeterministic choices α ∪ β whether to run HP α or
HPβ, in nondeterministic repetitions α∗ where the choice is how often to repeat α, and in
differential equations x′ = f(x)&Qwhere the choice is how long to follow that differential
equation. All those choices, however, have still been resolved in one way, i.e. by the same
entity or player.

In which way the various choices are resolved depends on the context. In the box
modality [α] of differential dynamic logic [Pla08, Pla10b, Pla12c], the choices are re-
solved in all possible ways so that the modal formula [α]φ expresses that formula φ holds
for all ways how the choices in HP α could resolve. In the diamond modality 〈α〉, in-
stead, the choices are resolved in some way so that formula 〈α〉φ expresses that formula
φ holds for one way of resolving the choices in HP α. That is how [α]φ expresses that φ
holds necessarily after α while 〈α〉φ expresses that φ is possible after α.
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In particular, choices in α help〈α〉φ, because what this formulas calls for is some way
of making φ happen after α. If α has many possible behaviors, this is easier to satisfy.
Choices in α hurt [α]φ, however, because this formula requires φ to hold for all those
choices. The more choices there are, the more difficult it is to make sure that φ holds
after every single combination of those choices.

Note 2. In differential dynamic logic, choices in α either help uniformly (when they occur
in 〈α〉φ) or make things more difficult uniformly (when they occur in [α]φ).

That is why these various forms of choices in hybrid programs have been called non-
deterministic. They are “unbiased”. All possible resolutions of the choices in α could
happen nondeterministically when running α. Which possibilities we care about (all or
some) just depends on the modal formula around it.

3 Control & Dual Control

Another way of looking at the choices that are to be resolved during the runs of a hybrid
program α is that they can be resolved by one player. Let’s call her Angel, because she
helps us so much in making 〈α〉φ formulas true. Whenever a choice is about to happen
(by running the program statements α ∪ β, α∗, or x′ = f(x)&Q), Angel is called upon
to see how the choice is supposed to be resolved this time.

From that perspective, it sounds easy enough to add a second player. Let’s call him
Demon as Angel’s perpetual opponent.1 Only so far, Demon will probably be rather
bored after a while, when he realizes that he never actually gets to decide anything,
because Angel has all the fun in choosing how the hybrid program world unfolds and
Demon just sits around idly. So to keep Demon entertained, we need to introduce some
choices that fall under Demon’s control.

One thing, we could do to keep Demon interested in playing along is to add a pair of
shiny new controls especially for him. They might be called α ∩ β for Demon’s choice
between α or β as well as α× for repetition of α under Demon’s control as well as an
operation, say x′ = f(x)&Qd, for continuous evolution under Demon’s reign. But that
would cause a lot of attention to Demon’s control, which might make him feel overly
majestic. Let’s not do that, because we don’t want Demon to get any ideas.

Instead, we will find it sufficient to add just a single operator to hybrid programs:
the dual operator d. What αd does is to give all control that Angel had in α to Demon,
and, vice versa, all control that Demon had in α to Angel. The dual operator, thus,
is a little bit like what happens when you turn a chessboard around by 180◦ in the
middle of the game. Whoever played the choices of player White before suddenly
controls Black, and whoever played Black now controls White. With just this single
duality operator it turns out that Demon still gets his own set of controls (α ∩ β, α×,
x′ = f(x)&Qd) by suitably nesting the operators, but we did not have to give him those

1The responsibilities of such ontologically loaded names are easier to remember than those of neutral
player names I and II.
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controls specifically. Yet, now those extra controls are not special but simply an aspect
of a more fundamental principle: duality.

4 Hybrid Games

Differential game logic (dGL) is a logic for studying properties of hybrid games. The
idea is to describe the game form, i.e. rules, dynamics, and choices of the particular
hybrid game of interest, using a program notation and to then study its properties by
proving the validity of logical formulas that refer to the existence of winning strategies
for objectives of those hybrid games. Even though hybrid game forms only describe
the game form with its dynamics and rules and choices, not the actual objective, they
are still simply called hybrid games. The objective for a hybrid game is defined in the
modal logical formula that refers to that hybrid game form.

Definition 1 (Hybrid games). The hybrid games of differential game logic dGL are
defined by the following grammar (α, β are hybrid games, x a vector of variables,
f(x) a vector of (polynomial) terms of the same dimension, Q is a dGL formula or
just a formula of first-order real arithmetic):

α, β ::= x := e | x′ = f(x)&Q | ?Q | α ∪ β | α;β | α∗ | αd

The only syntactical difference of hybrid games compared to hybrid programs for
hybrid systems from Lecture 3 on Choice & Control is that, unlike hybrid programs,
hybrid games allow the dual operator αd. This minor syntactic change also requires us
to reinterpret the meaning of the other operators in a much more flexible way to make
sense of the presence of subgames within the games in which the players already inter-
act. The basic principle is that whenever there used to be nondeterminism in the hybrid
program semantics, there will now be a choice of Angel in the hybrid game semantics.
But don’t be fooled. The parts of such a hybrid game may still be hybrid games, in
which players interact, rather than just a single system running. So all operators of hy-
brid games still need a careful understanding as games, not just ·d, because all operators
can be applied to subgames that mention ·d or be part of a context that mentions ·d.

The atomic games of dGL are assignments, continuous evolutions, and tests. In the
deterministic assignment game (or discrete assignment game) x := θ, the value of variable
x changes instantly and deterministically to that of θ by a discrete jump without any
choices to resolve. In the continuous evolution game (or continuous game) x′ = f(x)&Q,
the system follows the differential equation x′ = f(x) where the duration is Angel’s
choice, but Angel is not allowed to choose a duration that would, at any time, take
the state outside the region where formula Q holds. In particular, Angel is deadlocked
and loses immediately if Q does not hold in the current state, because she cannot even
evolve for duration 0 then without being outside Q.2 The test game or challenge ?Q has

2 Note that the most common case for Q is a formula of first-order real arithmetic, but any dGL formula
will work. Evolution domain constraints Q turn out to be unnecessary, because they can be defined
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no effect on the state, except that Angel loses the game immediately if dGL formula Q
does not hold in the current state, because she failed the test she was supposed to pass.
The test game ?Q challenges Angel and she loses immediately if she fails. Angel does
not win just because she passed the challenge ?Q, but at least the game continues. So
passing challenges is a necessary condition to win games. Failing challenges, instead,
immediately makes Angel lose.

The compound games of dGL are sequential, choice, repetition, and duals. The sequen-
tial game α;β is the hybrid game that first plays hybrid game α and, when hybrid game
α terminates without a player having won already (so no challenge in α failed), con-
tinues by playing game β. When playing the choice game α ∪ β, Angel chooses whether
to play hybrid game α or play hybrid game β. Like all the other choices, this choice is
dynamic, i.e. every time α ∪ β is played, Angel gets to choose again whether she wants
to play α or β this time. The repeated game α∗ plays hybrid game α repeatedly and An-
gel chooses, after each play of α that terminates without a player having won already,
whether to play the game again or not, albeit she cannot choose to play indefinitely but
has to stop repeating ultimately. Angel is also allowed to stop α∗ right away after zero
iterations of α. Most importantly, the dual game αd is the same as playing the hybrid
game α with the roles of the players swapped. That is Demon decides all choices in αd

that Angel has in α, and Angel decides all choices in αd that Demon has in α. Players
who are supposed to move but deadlock lose. Thus, while the test game ?Q causes An-
gel to lose if formula Q does not hold, the dual test game (or dual challenge) (?Q)d instead
causes Demon to lose if Q does not hold.

For example, if α describes the game of chess, then αd is chess where the players
switch sides. If α, instead, describes the hybrid game corresponding to your lab 5 robot
model where you are controlling a robot and your course instructors are controlling the
roguebot, then αd describes the dual game where you take control of the roguebot and
the course instructors are stuck with your robot controls.

The dual operator d is the only syntactic difference of dGL for hybrid games com-
pared to dL for hybrid systems [Pla08, Pla12a], but a fundamental one [Pla15], because
it is the only operator where control passes from Angel to Demon or back. Without d all
choices are resolved uniformly by Angel without interaction. The presence of d requires
a thorough semantic generalization throughout the logic to cope with such flexibility.

5 Differential Game Logic

Hybrid games describe how the world can unfold when Angel and Demon interact
according to their respective control choices. They explain the rules of the game how
Angel and Demon interact, but not who wins the game, nor what the respective objec-

using hybrid games [Pla15]. In the ordinary differential equation x′ = f(x), the term x′ denotes the
time-derivative of x and f(x) is a polynomial term that is allowed to mention x and other variables.
More general forms of differential equations are possible [Pla10a, Pla10b], but will not be considered
explicitly.
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tives of the players are.3 The winning conditions are specified by logical formulas of
differential game logic. Modal formulas 〈α〉φ and [α]φ refer to hybrid games and the
existence of winning strategies for Angel and Demon, respectively, in a hybrid game α
with a winning condition specified by a logical formula φ.

Definition 2 (dGL formulas). The formulas of differential game logic dGL are defined
by the following grammar (φ, ψ are dGL formulas, p is a predicate symbol of arity
k, θi are (polynomial) terms, x a variable, and α is a hybrid game):

φ, ψ ::= p(θ1, . . . , θk) | θ1 ≥ θ2 | ¬φ | φ ∧ ψ | ∃xφ | 〈α〉φ | [α]φ

Other operators >,=,≤, <,∨,→,↔, ∀x can be defined as usual, e.g., ∀xφ ≡ ¬∃x¬φ.
The modal formula 〈α〉φ expresses that Angel has a winning strategy to achieve φ in hy-
brid game α, i.e. Angel has a strategy to reach any of the states satisfying dGL formula
φ when playing hybrid game α, no matter what strategy Demon chooses. The modal
formula [α]φ expresses that Demon has a winning strategy to achieve φ in hybrid game
α, i.e. a strategy to reach any of the states satisfying φ, no matter what strategy Angel
chooses.4 Note that the same game is played in [α]φ as in 〈α〉φ with the same choices
resolved by the same players. The difference between both dGL formulas is the player
whose winning strategy they refer to. Both use the set of states where dGL formula
φ is true as the winning states for that player. The winning condition is defined by
the modal formula, α only defines the hybrid game form, not when the game is won,
which is what φ does. Hybrid game α defines the rules of the game, including condi-
tions on state variables that, if violated, cause the present player to lose for violation
of the rules of the game. The dGL formulas 〈α〉φ and [α]¬φ consider complementary
winning conditions for Angel and Demon.

6 Demon’s Controls

Angel has full control over all choices in each of the operators of hybrid games except
when the operator d comes into play. All choices within the scope of (an odd number
of) d belong to Demon, because d makes the players switch sides. Demon’s controls,
i.e. direct controls for Demon, can be defined using the duality operator d on Angel’s
controls.

Demonic choice between hybrid game α and β is α ∩ β, defined by (αd ∪ βd)d, in which
either the hybrid game α or the hybrid game β is played, by Demon’s choice. The choice
for the ∪ operator belongs to Angel, yet since it is nested within d, that choice goes to
Demon, except that the d operators around α and β restore the original ownership of
controls. Demonic repetition of hybrid game α is α×, defined by ((αd)

∗

)d, in which α is
repeated as often as Demon chooses to. Again, the choice in the ∗ operator belongs to

3Except that players lose if they disobey the rules of the game by failing their respective challenges.
4It is easy to remember which modal operator is which. The formula 〈α〉φ clearly refers to Angel’s

winning strategies because the diamond operator 〈·〉 has wings.
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Angel, but in a d context goes to Demon, while the choices in the α, β subgames under-
neath stay as they were originally thanks to the additional d operators. In α×, Demon
chooses after each play of α whether to repeat the game, but cannot play indefinitely
so he has to stop repeating ultimately. The dual differential equation (x′ = θ&Q)d fol-
lows the same dynamics as x′ = θ&Q except that Demon chooses the duration, so he
cannot choose a duration during which Q stops to hold at any time. Hence he loses
when Q does not hold in the current state. Dual assignment (x := θ)d is equivalent to
x := θ, because it never involved any choices to begin with. Angel’s control operators
and Demon’s control operators correspond to each other by duality:

⋄ Angel Ops

∪ choice
∗ repeat
x′ = f(x) evolve
?Q challenge

⋄ Demon Ops

∩ choice
× repeat
x′ = f(x)d evolve
?Qd challenge

d

d

7 Operational Game Semantics (informally)

Treatment of a proper semantics for differential game logic will be deferred to the next
lecture. A graphical illustration of the choices when playing hybrid games is depicted
in Fig. 1. The nodes where Angel gets to decide are shown as diamonds ⋄, the nodes
where Demon decides are shown as boxes ⋄. Circle nodes are shown when it depends
on the remaining hybrid game which player it is that gets to decide. Dashed edges in-
dicate Angel’s actions, solid edges would indicate Demon’s actions, while zigzag edges
indicate that a hybrid game is played and the respective players move as specified by
that game. The actions are the choice of time for x′ = f(x)&Q, the choice of playing
the left or the right game for a choice game α ∪ β, and the choice of whether to stop or
repeat in a repeated game α∗. This principle can be made rigorous in an operational
game semantics [Pla15], which conveys the intuition of interactive game play for hy-
brid games, relates to game theory and descriptive set theory, but is also beyond the
scope of these lecture notes. Observe how all choices involve at most two possibilities
except differential equations, which have an uncountably infinite branching factor, one
option for each duration r ∈ R.

As an example, consider the filibuster formula:

〈(x := 0 ∩ x := 1)∗〉x = 0 (1)

It is Angel’s choice whether to repeat (∗), but every time Angel repeats, it is Demon’s
choice (∩) whether to play x := 0 or x := 1. What is the truth-value of the dGL formula
(1)?

The game in this formula never deadlocks, because every player always has a re-
maining move (here even two). But it may appear as if the game had perpetual checks,
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Figure 1: Operational game semantics for hybrid games of dGL
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Hybrid Systems & Games L16.11

because no strategy helps either player win the game; see Fig. 2. How could that hap-
pen and what can be done about it?

X
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Figure 2: The filibuster game formula 〈(x := 0 ∩ x := 1)∗〉x = 0 looks like it might be
non-determined and not have a truth-value (unless x = 0 initially) when the
strategies follow the thick actions. Angel’s action choices are illustrated by
dashed edges from dashed diamonds, Demon’s action choices by solid edges
from solid squares, and double lines indicate identical states with the same
continuous state and a subgame of the same structure of subsequent choices.
States where Angel wins are marked ⋄ and states where Demon wins by ⋄.

Before you read on, see if you can find the answer for yourself.
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The mystery of the filibuster game can be solved when we remember that the game
still ultimately ought to stop in order to be able to inspect who won the game. Angel is
in charge of the ∗ repetition and she can decide whether to stop or repeat. The filibuster
game has no tests, so the winner only depends on the final state of the game, because
both players are allowed to play arbitrarily without having to pass tests in between.
Angel wins a game play if x = 0 holds in the final state and Demon wins if x 6= 0 holds
in the final state. What do the strategies indicated in Fig. 2 do? They postpone the
end of the game forever, hence there would never be a final state in which it could be
evaluated who won. That is, indeed, not a way for anybody to win anything. Yet, Angel
was in charge of the repetition ∗, so it is really her fault if the game never comes to a
stop to evaluate who won, because she has to call it quits at some point. Consequently,
the semantics of hybrid games requires players to repeat as often as they want but
they cannot repeat indefinitely. This will be apparent in the actual semantics of hybrid
games, which is defined as a denotational semantics corresponding to winning regions.
Thus, (1) is false unless x = 0 already holds initially.

The same phenomenon happens in

〈(x := 0;x′ = 1d)
∗

〉x = 0 (2)

in which both players can let the other one win. Demon can let Angel win by choosing
to evolve for duration 0. And Angel can let Demon win by choosing to stop even if
x 6= 0. Only because Angel will ultimately have to stop repeating does the formula in
(2) have a truth-value and the formula is false unless x = 0 already holds initially.

It is of similar importance that the players cannot decide to follow a differential equa-
tion forever (duration ∞), because that would make

〈(x′ = 1d;x := 0)
∗

〉x = 0 (3)

non-determined. If players were allowed to evolve along a differential equation forever
(duration ∞), then Demon would have an incentive to evolve along x′ = 1d forever in
the continuous filibuster (3), because as soon as he stops, Angel would would win
because of the subsequent X := 0. But Angel cannot win without Demon stopping.
Since Demon can evolve along x′ = 1d for any finite amount of time he wants, he will
ultimately have to stop so that Angel wins and (3) is valid.

8 Summary

This lecture saw the introduction of differential game logic, which extends the famil-
iar differential dynamic logic with capabilities of modeling and understanding hybrid
games. Hybrid games combine discrete dynamics, continuous dynamics, and adversar-
ial dynamics. Compared to hybrid systems, the new dynamical aspect of adversarial
dynamics is captured entirely by the duality operator d. Without it, hybrid games are
single-player hybrid games, which are equivalent to hybrid systems.

After this lecture showed an informal and intuitive discussion of the actions that
hybrid games allow, the next lecture gives a proper semantics to differential game logic
and their hybrid games.
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Exercises

Exercise 1. Single player hybrid games, i.e. d-free hybrid games, are just hybrid pro-
grams. For each of the following formulas, convince yourself that it has the same mean-
ing, whether you understand it as a differential dynamic logic formula with a hybrid
systems or as a differential game logic formula with a hybrid game (that happens to
have only a single player):

〈x := 0 ∪ x := 1〉x = 0

[x := 0 ∪ x := 1]x = 0

〈(x := 0 ∪ x := 1); ?x = 1〉x = 0

[(x := 0 ∪ x := 1); ?x = 1]x = 0

〈(x := 0 ∪ x := 1); ?x = 0〉x = 0

[(x := 0 ∪ x := 1); ?x = 0]x = 0

〈(x := 0 ∪ x := 1)∗〉x = 0

[(x := 0 ∪ x := 1)∗]x = 0

〈(x := 0 ∪ x := x+ 1)∗〉x = 0

[(x := 0 ∪ x := x+ 1)∗]x = 0

Exercise 2. Consider the following dGL formulas and identify under which circum-
stance they are true?

〈(x := x+ 1; (x′ = x2)d ∪ x := x− 1)
∗

〉 (0 ≤ x < 1)

〈(x := x+ 1; (x′ = x2)d ∪ (x := x− 1 ∩ x := x− 2))
∗

〉(0 ≤ x < 1)

〈(x := x+ 1; (x′ = x2)d ∪ (x := x− 1 ∩ x := x− 2))
∗

〉(0 < x ≤ 1)

Exercise 3. The following dGL formula characterizes a one-dimensional game of chase of
a robot at position x and a robot at position y, each with instant control of the velocity
v among a,−a, 0 for x (Angel’s choice) and velocity w among b,−b, 0 for y (Demon’s
subsequent choice). The game repeats any number of control rounds following Angel’s
choice (∗). Angel is trying for her robot x to be close to Demon’s robot y. Under which
circumstance is the formula true?

〈(

(v := a ∪ v :=−a ∪ v := 0);

(w := b ∩ w :=−b ∩ w := 0);

x′ = v, y′ = w
)

∗
〉

(x− y)2 ≤ 1

Exercise 4 (*). The following dGL formula characterizes a two-dimensional game of
chase of a robot at position (x1, x2) facing in direction (d1, d2) and a robot at position
(y1, y2) facing in direction (e1, e2). Angel has direct control over the angular velocity ω
among 1,−1, 0 for robot (x1, x2) and, subsequently, Demon has direct control over the
angular velocity ̺ among 1,−1, 0 for robot (y1, y2). The game repeats any number of
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control rounds following Angel’s choice (∗). Angel is trying for her robot to be close
to Demon’s robot. Is the following dGL formula valid? Can you identify some circum-
stances under which it is true? Or some circumstances under which it is false? How
does this formula relate to lab 4?
〈(

(ω := 1 ∪ ω :=−1 ∪ ω := 0);

(̺ := 1 ∩ ̺ :=−1 ∩ ̺ := 0);

(x′1 = d1, x
′

2 = d2, d
′

1 = −ωd2, d
′

2 = ωd1, y
′

1 = e1, y
′

2 = e2, e
′

1 = −̺e2, e
′

2 = ̺e1)
d
)

∗
〉

(x1 − y1)
2 + (x2 − y2)

2 ≤ 1
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[Pla08] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.,
41(2):143–189, 2008. doi:10.1007/s10817-008-9103-8.
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15-424: Foundations of Cyber-Physical Systems

Lecture Notes on

Winning Strategies & Regions

André Platzer

Carnegie Mellon University
Lecture 17

1 Introduction

This lecture continues the study of hybrid games and their logic, differential game logic
[Pla15], that Lecture 20 on Hybrid Systems & Games started. Lecture 20 saw the intro-
duction of differential game logic with a focus on identifying and highlighting the new
dynamical aspect of adversarial dynamics. The meaning of hybrid games in differen-
tial game logic had been left informal, based on the intuition one relates to interactive
gameplay and decisions in trees. While it is possible to turn such a tree-type semantics
into an operational semantics for hybrid games [Pla15], the resulting development is
technically rather involved. Even if such an operational semantics is interesting and
touches on interesting concepts from descriptive set theory, it is unnecessarily compli-
cated compared.

This lecture will, thus, be devoted to developing a much simpler yet rigorous seman-
tics, a denotational semantics of hybrid games. Lecture 20 already highlighted sub-
tleties how never-ending game play ruins determinacy, simply because there never is
a state in which the winner would be declared. Especially the aspect of repetition and
its interplay with differential equations will need careful attention. The denotational
semantics will make this subtle aspect crystal clear.

These lecture notes are based on [Pla15], where more information can be found on
logic and hybrid games. The most important learning goals of this lecture are:

Modeling and Control: We further our understanding of the core principles behind
CPS for the adversarial dynamics resulting from multiple agents with possibly
conflicting actions that occur in many CPS applications. This time, we devote
attention to the nuances of their semantics.

Computational Thinking: This lecture follows fundamental principles from compu-
tational thinking to capture the semantics of the new phenomenon of adversarial
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dynamics in CPS models. We leverage core ideas from programming languages
by extending syntax and semantics of program models and specification and ver-
ification logics with the complementary operator of duality to incorporate adver-
sariality in a modular way into the realm of hybrid systems models. This leads
to a compositional model of hybrid games with compositional operators. Mod-
ularity makes it possible to generalize our rigorous reasoning principles for CPS
to hybrid games while simultaneously taming their complexity. This lecture in-
troduces the semantics of differential game logic dGL [Pla15], which adds adver-
sarial dynamics to differential dynamic logic, which has been used as the speci-
fication and verification language for CPS in the other parts of this course. This
lecture provides a perspective on advanced models of computation with alternat-
ing choices. The lecture will also encourage us to reflect on the relationship of
denotational and operational semantics.

CPS Skills: This lecture focuses on developing and understanding the semantics of
CPS models with adversarial dynamics corresponding to how a system changes
state over time as multiple agents react to each other. This understanding is cru-
cial for developing an intuition for the operational effects of multi-agent CPS.
The presence of adversarial dynamics will cause us to reconsider the semantics of
CPS models to incorporate the effects of multiple agents and their mutual reac-
tions. This generalization, while crucial for understanding adversarial dynamics
in CPS, also shines a helpful complementary light on the semantics of hybrid sys-
tems without adversariality by causing us to reflect on choices. The semantics of
hybrid games properly generalizes the semantics of hybrid systems from earlier
lectures.

CT

M&C CPS

fundamental principles of computational thinking
logical extensions
PL modularity principles
compositional extensions
differential game logic
denotational vs. operational semantics

adversarial dynamics
adversarial semantics

CPS semantics
multi-agent operational-effects
mutual reactions
complementary hybrid systems
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2 Semantics

What is the most elegant way of defining a semantics for differential game logic? How
could a semantics be defined at all? First of all, the dGL formulas φ that are used in the
postconditions of dGL modal formulas 〈α〉φ and [α]φ define the winning conditions for
the hybrid game α. Thus, when playing the hybrid game α, we need to know the set of
states in which the winning condition φ is satisfied. That set of states in which φ is true
is denoted [[φ]], which defines the semantics of φ. The I in that notation is a reminder
that the semantics depends on the interpretation of predicate symbols as defined in
interpretation I . Thus, when we used to write ω ∈ [[φ]] to indicate that dL formula φ is
true in state ω, we will now write ω ∈ [[φ]], instead, to say that state ω is among the set
of states in which φ is true. Working with the set of states [[φ]] in which a formula φ is
true will come in handy for defining a semantics of hybrid games.

The logic dGL has a denotational semantics. The dGL semantics defines, for each
formula φ, the set [[φ]] of states in which φ is true. For each hybrid game α and each
set of winning states X , the dGL semantics defines the set ςα(X) of states from which
Angel has a winning strategy to achieve X in hybrid game α, as well as the set δα(X)
of states from which Demon has a winning strategy to achieve X in α.

A state ω is a mapping from variables to R. An interpretation I assigns a relation
I(p) ⊆ R

k to each predicate symbol p of arity k. The interpretation further determines
the set of states S, which is isomorphic to a Euclidean space R

n when n is the number

of relevant variables. For a subset X ⊆ S the complement S \X is denoted X∁. Let
ωd
x denote the state that agrees with state ω except for the interpretation of variable x,

which is changed to d ∈ R. The value of term θ in state ω is denoted by [[θ]]ω. The deno-
tational semantics of dGL formulas will be defined in Def. 1 by simultaneous induction
along with the denotational semantics, ςα(·) and δα(·), of hybrid games, defined later,
because dGL formulas are defined by simultaneous induction with hybrid games. The
(denotational) semantics of a hybrid game α defines for each interpretation I and each set of
Angel’s winning states X ⊆ S the winning region, i.e. the set of states ςα(X) from which
Angel has a winning strategy to achieve X (whatever strategy Demon chooses). The
winning regions for Angel are illustrated in Fig. 1. The winning region of Demon, i.e. the
set of states δα(X) from which Demon has a winning strategy to achieve X (whatever
strategy Angel chooses) is defined later as well.
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Definition 1 (dGL semantics). The semantics of a dGL formula φ for each interpreta-
tion I with a corresponding set of states S is the subset [[φ]] ⊆ S of states in which
φ is true. It is defined inductively as follows

1. [[p(θ1, . . . , θk)]] = {ω ∈ S : ([[θ1]]ω, . . . , [[θk]]ω) ∈ I(p)}
That is, the set of states in which a predicate p(θ1, . . . , θk) is true is the set of
states ω in which the tuple ([[θ1]]ω, . . . , [[θk]]ω) of values of the terms θi in ω is
in the relation I(p) associated to predicate symbol p.

2. [[θ1 ≥ θ2]] = {ω ∈ S : [[θ1]]ω ≥ [[θ2]]ω}
That is, the set of states in which θ1 ≥ θ2 is true is the set in which the value
of θ1 is greater than or equal to the value θ2.

3. [[¬φ]] = ([[φ]])∁

That is, the set of states in which ¬φ is true is the complement of the set of
states in which φ is true.

4. [[φ ∧ ψ]] = [[φ]] ∩ [[ψ]]
That is, the set of states in which φ ∧ ψ is true is the intersection of the states
in which φ is true with the set of states in which ψ is true.

5. [[∃xφ]] = {ω ∈ S : ωr
x ∈ [[φ]] for some r ∈ R}

That is, the states in which ∃xφ is true are those which only differ in the value
of x from a state in which φ is true.

6. [[〈α〉φ]] = ςα([[φ]])
That is, the set of states in which 〈α〉φ is true is Angel’s winning region to
achieve [[φ]] in hybrid game α, i.e. the set of states from which Angel has a
winning strategy in hybrid game α to reach a state where φ holds.

7. [[[α]φ]] = δα([[φ]])
That is, the set of states in which [α]φ is true is Demon’s winning region to
achieve [[φ]] in hybrid game α, i.e. the set of states from which Demon has a
winning strategy in hybrid game α to reach a state where φ holds.

A dGL formula φ is valid in I , written I |= φ, iff [[φ]] = S. Formula φ is valid, � φ, iff
I |= φ for all interpretations I .

The semantics ςα(X) and δα(X) of Angel’s and Demon’s winning regions still needs
to be defined, which is the next goal.

Note that the semantics of 〈α〉φ cannot be defined as it would in dL via

[[〈α〉φ]] = {ω ∈ S : ν ∈ [[φ]] for some ν with (ω, ν) ∈ [[α]]}

First of all, the reachability relation (ω, ν) ∈ [[α]] is only defined when α is a hybrid
program, not when it is a hybrid game. But the deeper reason is that the above shape is
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too harsh. Criteria of this shape would require Angel to single out a single state ω that
satisfies the winning condition ν ∈ [[φ]] and then get to that state ν by playing α from
ω. Yet all that Demon then has to do to spoil that plan is lead the play into a different
state (e.g., one in which Angel would also have won) but which is different from the
projected ν. More generally, winning into a single state is really difficult. Winning by
leading the play into one of several states that satisfy the winning condition is more
feasible. This is what the winning region ςα([[φ]]) is supposed to capture. It captures the
set of states from which Angel has a winning strategy in hybrid game α to achieve one
of the states in which φ holds true. What a beneficial coincidence that the semantics of
dGL formulas was already defined in terms of the set of states in which they are true.

3 Winning Regions

Def. 1 needs a definition of the winning regions ςα(·) and δα(·) for Angel and Demon,
respectively, in the hybrid game α. Rather than taking a detour for understanding those
by operational game semantics (as in Lecture 20), the winning regions of hybrid games
can be defined directly, giving a denotational semantics to hybrid games.1

1The semantics of a hybrid game is not merely a reachability relation between states as for hybrid systems
[Pla12], because the adversarial dynamic interactions and nested choices of the players have to be taken
into account. For brevity, the following informal explanations sometimes say “win the game” when
really they mean “have a winning strategy to win the game”.
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Definition 2 (Semantics of hybrid games). The semantics of a hybrid game α is a
function ςα(·) that, for each interpretation I and each set of Angel’s winning states
X ⊆ S, gives the winning region, i.e. the set of states ςα(X) from which Angel has
a winning strategy to achieve X (whatever strategy Demon chooses). It is defined
inductively as follows

1. ςx:=θ(X) = {ω ∈ S : ω
[[θ]]ω
x ∈ X}

That is, an assignment x := θ wins a game into X from any state whose mod-

ification ω
[[θ]]ω
x after the change x := θ is in X .

2. ςx′=f(x)&Q(X) = {ϕ(0) ∈ S : ϕ(r) ∈ X for some r ∈ R≥0 and (differentiable)

ϕ : [0, r] → S such that ϕ(ζ) ∈ [[Q]] and dϕ(t)(x)
dt

(ζ) = [[θ]]ϕ(ζ) for all 0≤ζ≤r}
That is, Angel wins the differential equation game x′ = f(x)&Q intoX from
any state ϕ(0) from which there is a solution ϕ of x′ = f(x) of any duration r
that remains within Q all the time and leads to a state ϕ(r) ∈ X in the end.

3. ς?Q(X) = [[Q]] ∩X
That is, Angel wins into X for a challenge ?Q from the states which satisfy
Q to pass the challenge and are already in X , because challenges ?Q do not
change the state.

4. ςα∪β(X) = ςα(X) ∪ ςβ(X)
That is, Angel wins a game of choice α ∪ β into X whenever she wins α into
X or wins β into X (by choosing a subgame she has a winning strategy for).

5. ςα;β(X) = ςα(ςβ(X))
That is Angel wins a sequential game α;β into X whenever she has a win-
ning strategy in game α to achieve ςβ(X), i.e. to make it to one of the states
from which she has a winning strategy in game β to achieve X .

6. ςα∗(X) will be defined later.

7. ςαd(X) = (ςα(X
∁))∁

That is, Angel wins αd to achieve X in exactly the states in which she does

not have a winning strategy in game α to achieve the opposite X∁.

Demon’s winning regions are defined accordingly (Def. 3).
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Definition 3 (Semantics of hybrid games, continued). The winning region of De-
mon, i.e. the set of states δα(X) from which Demon has a winning strategy to
achieve X (whatever strategy Angel chooses) is defined inductively as follows

1. δx:=θ(X) = {ω ∈ S : ω
[[θ]]ω
x ∈ X}

That is, an assignment x := θ wins a game into X from any state whose mod-

ification ω
[[θ]]ω
x after the change x := θ is in X .

2. δx′=f(x)&Q(X) = {ϕ(0) ∈ S : ϕ(r) ∈ X for all r ∈ R≥0 and (differentiable)

ϕ : [0, r] → S such that ϕ(ζ) ∈ [[Q]] and dϕ(t)(x)
dt

(ζ) = [[θ]]ϕ(ζ) for all 0≤ζ≤r}
That is, Demon wins the differential equation game x′ = f(x)&Q into X

from any state ϕ(0) from which all solutions ϕ of x′ = f(x) of any duration r
that remain within Q all the time lead to states ϕ(r) ∈ X in the end.

3. δ?Q(X) = ([[Q]])∁ ∪X
That is, Demon wins into X for a challenge ?Q from the states which vio-
late Q so that Angel fails her challenge ?Q or that are already in X , because
challenges ?Q do not change the state.

4. δα∪β(X) = δα(X) ∩ δβ(X)
That is, Demon wins a game of choice α ∪ β into X whenever he wins α into
X and also wins β into X (because Angel might choose either subgame).

5. δα;β(X) = δα(δβ(X))
That is Demon wins a sequential game α;β into X whenever he has a win-
ning strategy in game α to achieve δβ(X), i.e. to make it to one of the states
from which he has a winning strategy in game β to achieve X .

6. δα∗(X) will be defined later.

7. δαd(X) = (δα(X
∁))∁

That is, Demon wins αd to achieve X in exactly the states in which he does

not have a winning strategy in game α to achieve the opposite X∁.

This notation uses ςα(X) instead of ςIα(X) and δα(X) instead of δIα(X), because the
interpretation I that gives a semantics to predicate symbols in tests and evolution do-
mains is clear from the context. Strategies do not occur explicitly in the dGL semantics,
because it is based on the existence of winning strategies, not on the strategies them-
selves. The winning regions for Angel are illustrated in Fig. 1.

Just as the semantics dL, the semantics of dGL is compositional, i.e. the semantics of
a compound dGL formula is a simple function of the semantics of its pieces, and the
semantics of a compound hybrid game is a function of the semantics of its pieces. Fur-
thermore, existence of a strategy in hybrid game α to achieve X is independent of any
game and dGL formula surrounding α, but just depends on the remaining game α it-
self and the goal X . By a simple inductive argument, this shows that one can focus
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L17.8 Winning Strategies & Regions

X

ςx:=e(X)

Xx
′ =

f(
x)

ςx′=f(x)(X)

X

[[Q]]

ς?Q(X)

ςα (X)

ςβ(
X)

Xςα∪β(X) ςα(ςβ(X)) ςβ(X) X

ςα;β(X)

X∁

X

ςα(X
∁)

ςα(X
∁)∁

ςαd(X)

Figure 1: Illustration of denotational semantics of hybrid games as winning regions

on memoryless strategies, because the existence of strategies does not depend on the
context, hence, by working bottom up, the strategy itself cannot depend on past states
and choices, only the current state, remaining game, and goal. This also follows from
a generalization of a classical result by Zermelo. Furthermore, the semantics is mono-
tone, i.e. larger sets of winning states induce larger winning regions, because it is easier
to win into larger sets of winning states.

Lemma 4 (Monotonicity [Pla15]). The semantics is monotone, i.e. ςα(X) ⊆ ςα(Y ) and
δα(X) ⊆ δα(Y ) for all X ⊆ Y .

Proof. A simple check based on the observation that X only occurs with an even num-

ber of negations in the semantics. For example, X ⊆ Y implies X∁ ⊇ Y ∁, hence

ςα(X
∁) ⊇ ςα(Y

∁), so ςαd(X) = (ςα(X
∁))∁ ⊆ (ςα(Y

∁))∁ = ςαd(Y ).

Before going any further, however, we need to define a semantics for repetition,
which will turn out to be surprisingly difficult.
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4 Advance Notice Repetitions

Def. 2 is still missing a definition for the semantics of repetition in hybrid games. The
semantics of repetition in hybrid systems was

[[α∗]] =
⋃

n∈N

[[αn]]

with αn+1 ≡ αn;α and α0 ≡ ?true .
The obvious counterpart for the semantics of repetition in hybrid games would, thus,

be
ςα∗(X)

?
=

⋃

n<ω

ςαn(X) (1)

where ω is the first infinite ordinal (if you have never seen ordinals before, just read
n < ω as n in natural numbers, i.e. as n ∈ N). Would that give the intended meaning
to repetition? Is Angel forced to stop in order to win if the game of repetition would
be played this way? Yes, she would, because, even though there is no bound on the
number of repetitions that she can choose, for each natural number n, the resulting
game ςαn(X) is finite.

Would this definition capture the intended meaning of repeated game play?
Before you read on, see if you can find the answer for yourself.
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The issue is that each way of playing a repetition according to (1) would require
Angel to choose a natural number n ∈ N of repetitions and expose this number to Demon
when playing αn so that he would know how often Angel decided to repeat.

That would lead to what is called the advance notice semantics for α∗, which requires
the players to announce the number of times that game α will be repeated when the
loop begins. The advance notice semantics defines ςα∗(X) as

⋃

n<ω ςαn(X) whereαn+1 ≡
αn;α and α0 ≡ ?true and defines δα∗(X) as

⋂

n<ω δαn(X). When playing α∗, Angel,
thus, announces to Demon how many repetitions n are going to be played when the
game α∗ begins and Demon announces how often to repeat α×. This advance notice
makes it easier for Demon to win loops α∗ and easier for Angel to win loops α×, be-
cause the opponent announces an important feature of their strategy immediately as
opposed to revealing whether or not to repeat the game once more one iteration at a
time as in Def. 2. Angel announces the number n < ω of repetitions when α∗ starts.

The following formula, for example, turns out to be valid in dGL (see Fig. 2), but
would not be valid in the advance notice semantics:

x = 1 ∧ a = 1 → 〈((x := a; a := 0) ∩ x := 0)∗〉x 6= 1 (2)

If, in the advance notice semantics, Angel announces that she has chosen n repetitions
of the game, then Demon wins (for a 6= 0) by choosing the x := 0 option n − 1 times
followed by one choice of x := a; a := 0 in the last repetition. This strategy would not
work in the dGL semantics, because Angel is free to decide whether to repeat α∗ after
each repetition based on the resulting state of the game. The winning strategy for (2)
indicated in Fig. 2(left) shows that this dGL formula is valid.

Since the advance notice semantics misses out on the existence of perfectly reasonable
winning strategies, dGL does not choose this semantics. Nevertheless, the advance
notice semantics can be a useful semantics to consider for other purposes [QP12]. But
it is not interactive enough for proper hybrid game play.

5 ω-Strategic Semantics

The trouble with the semantics in Sect. 4 is that Angel’s move for the repetition reveals
too much to Demon, because Demon can inspect the remaining game αn to find out
once and for all how long the game will be played before he has to do his first move.

Let’s try to undo this. Another alternative choice for the semantics would have been
to allow only arbitrary finite iterations of the strategy function for computing the win-
ning region by using the ω-strategic semantics, which defines

ςα∗(X)
?
= ςωα (X) =

⋃

n<ω

ςnα(X)

along with a corresponding definition for δα∗(X). All we need to do for this is define
what it means to nest the winning region construction. For any winning condition
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Figure 2: Game trees for x = 1 ∧ a = 1 → 〈α∗〉x 6= 1 with game
α ≡ (x := a; a := 0) ∩ x := 0 (notation: x, a). (left) valid in dGL by strategy
“repeat once and repeat once more if x = 1, then stop” (right) false in ad-
vance notice semantics by the strategy “n − 1 choices of x := 0 followed by
x := a; a := 0 once”, where n is the number of repetitions Angel announced
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X ⊆ S the iterated winning region of α is defined inductively as:

ς0α(X)
def
= X

ςκ+1
α (X)

def
= X ∪ ςα(ς

κ
α(X))

The only states from which a repetition can win without actually repeating are the ones
that start at the goal X already (ς0α(X) = X). And the states from which a repetition
can win into X with κ + 1 repetitions are those that start in X as well as all the states
for which there is a winning strategy in the hybrid game α to achieve a state in ςκα(X).

Does this give the right semantics for repetition of hybrid games? Does it match
the existence of winning strategies that we were hoping to define? See Fig. 3 for an
illustration.

ςnα(X) · · · ς3α(X) ς2α(X) ςα(X) X

Figure 3: Iteration ςnα(X) of ςα(·) from winning condition X .

Before you read on, see if you can find the answer for yourself.
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The surprising answer is no for a very subtle but also very fundamental reason. The
existence of winning strategies for α∗ does not coincide with the ωth iteration of α.

Would the following dGL formula be valid in the ω-strategic semantics?

〈(x := 1;x′ = 1d ∪ x := x− 1)
∗
〉 (0 ≤ x < 1) (3)

Before you read on, see if you can find the answer for yourself.
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Abbreviate
〈(x := 1;x′ = 1d
︸ ︷︷ ︸

β

∪ x := x− 1
︸ ︷︷ ︸

γ

)

︸ ︷︷ ︸

α

∗
〉 (0 ≤ x < 1)

It is easy to see that ςωα ([0, 1)) = [0,∞), because ςnα([0, 1)) = [0, n+ 1) for all n ∈ N by a
simple inductive proof (recall α ≡ β ∪ γ):

ς0β∪γ([0, 1)) = [0, 1)

ςn+1
β∪γ ([0, 1)) = [0, 1) ∪ ςβ∪γ(ς

n
β∪γ([0, 1)))

IH
= [0, 1) ∪ ςβ∪γ([0, n+ 1))

= [0, 1) ∪ ςβ([0, n+ 1)) ∪ ςγ([0, n)) = [0, 1) ∪ ∅ ∪ [1, n+ 2) = [0, n+ 1 + 1)

Consequently,

ςωα ([0, 1)) =
⋃

n<ω

ςnα([0, 1)) =
⋃

n<ω

[0, n+ 1) = [0,∞)

Hence, the ω−semantics would indicate that the hybrid game (3) can exactly be won
from all initial states in [0,∞), that is, for all initial states that satisfy 0 ≤ x.

Unfortunately, this is quite some nonsense. Indeed, the hybrid game in dGL formula
(3) can be won from all initial states that satisfy 0 ≤ x. But it can also be won from
other initial states! So the ω-strategic semantics ςωα ([0, 1)) misses out on winning states.
It is way too small for a winning region. There are cases, where the ω-semantics is
minuscule compared to the true winning region and arbitrarily far away from the truth
[Pla15].

In (3), this ω-level of iteration of the strategy function for winning regions misses out
on Angel’s perfectly reasonable winning strategy “first choose x := 1;x′ = 1d and then
always choose x := x− 1 until stopping at 0 ≤ x < 1”. This winning strategy wins from
every initial state in R, which is a much bigger set than ςωα ([0, 1)) = [0,∞).

Now this is the final answer for the winning region of (3). In particular, the dGL
formula (3) is valid. Yet, is there a direct way to see that ςωα ([0, 1)) = [0,∞) is not the
final answer for (3) without having to put the winning region computations aside and
constructing a separate ingenious winning strategy?

Before you read on, see if you can find the answer for yourself.
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The crucial observation is the following. The fact ςωα ([0, 1)) = [0,∞) shows that the
hybrid game in (3) can be won from all nonnegative initial values with at most ω (“first
countably infinitely many”) steps. Let’s recall how the proof worked, which showed
ςnα([0, 1)) = [0, n) for all n ∈ N. Its inductive step basically showed that if, for whatever
reason (by inductive hypothesis really), [0, n) is in the winning region, then [0, n + 1)
also is in the winning region by simply applying ςα(·) to [0, n).

How about doing exactly that again? For whatever reason (i.e. by the above argu-
ment), [0,∞) is in the winning region. Doesn’t that mean that ςα([0,∞)) should again
be in the winning region by exactly the same inductive argument above?

Before you read on, see if you can find the answer for yourself.
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Note 5 (+1 argument). Whenever a set Y is in the winning region ςα∗(X) of repetition,
then ςα(Y ) also should be in the winning region ςα∗(X), because it is just one step away
from Y and α∗ could simply repeat once more. That is

Y ⊆ ςα∗(X) then ςα(Y ) ⊆ ςα∗(X)

Applying Note 5 to the situation at hand works as follows. The above inductive proof
showed ςωα ([0, 1)) = [0,∞), which explains that at least [0,∞) ⊆ ς(β∪γ)∗([0, 1)) is in
the winning region of repetition. By Note 5, the winning region ς(β∪γ)∗([0, 1)) should,
thus, also contain the one-step winning region ςβ∪γ([0,∞)) ⊆ ς(β∪γ)∗([0, 1)) of [0,∞).
Computing what that is gives

ςβ∪γ([0,∞)) = ςβ([0,∞)) ∪ ςγ([0,∞)) = R ∪ [0,∞) = R

Beyond that, the winning region cannot contain anything else, because R is the whole
state space already and it is kind of hard to add anything to that. And, indeed, trying
to use the winning region construction once more on R does not change the result:

ςβ∪γ(R) = ςβ(R) ∪ ςγ(R) = R ∪ [0,∞) = R

This result, then coincides with what the ingenious winning strategy above told us as
well: formula (3) is valid, because there is a winning strategy for Angel from every
initial state. Except that the repeated ςβ∪γ(·) winning region construction seems more
systematic than an ingenious guess of a smart winning strategy. So it gives a more
constructive and explicit semantics.

Let’s recap. In order to find the winning region of the hybrid game described in (3),
it took us not just infinitely many steps, but more than that. After ω many iterations to
arrive at ςωα ([0, 1)) = [0,∞), it took us one more step to arrive at

ς(β∪γ)∗([0, 1)) = ςω+1
α ([0, 1)) = R

where we denote the number of steps we took overall by ω + 1, since it was one more
step than (first countable) infinitely many (i.e. ω many); see Fig. 4 for an illustration.
More than infinitely many steps to get somewhere are plenty. Even worse: there are
cases where even ω + 1 has not been enough of iteration to get to the repetition. The
number of iterations needed to find ςα∗(X) could in general by much larger [Pla15].

The existence of the above winning strategy is only found at the level ςω+1
α ([0, 1)) =

ςα([0,∞)) = R. Even though any particular use of the winning strategy in any game
play uses only some finite number of repetitions of the loop, the argument why it will
always work requires > ω many iterations of ςα(·), because Demon can change x to
an arbitrarily big value, so that ω many iterations of ςα(·) are needed to conclude that
Angel has a winning strategy for any positive value of x. There is no smaller upper
bound on the number of iterations it takes Angel to win, in particular Angel cannot
promise ω as a bound on the repetition count, which is what the ω-semantics would
effectively require her to do. But strategies do converge after ω + 1 iterations.
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ςω+1
α (X) ςωα (X) · · · ς3α(X) ς2α(X) ςα(X) X

Figure 4: Iteration ςω+1
α (X) of ςα(·) from winning condition X = [0, 1) stops when ap-

plying ςα(·) to the ωth infinite iteration ςωα (X).

Note 6. The ω-semantics is inappropriate, because it can be arbitrarily far away from
characterizing the winning region of hybrid games.

6 Inflationary Semantics

More generally, the semantics of repetition could be defined using

ς0α(X)
def
= X

ςκ+1
α (X)

def
= X ∪ ςα(ς

κ
α(X))

ςλα(X)
def
=

⋃

κ<λ

ςκα(X) λ 6= 0 a limit ordinal

where we keep on computing winning regions at limit ordinals λ such as ω as the union
of all previous winning regions. The semantics of repetition could then be defined as
the union of all winning regions for all ordinals:

ςα∗(X) = ς∞(α)X =
⋃

κ ordinal

ςκα(X)

Note 7. Unfortunately, hybrid games might require rather big infinite ordinals until this
inflationary style of computing their winning regions stops [Pla15]. That translates into
an infinite amount of work and then some more, infinitely often, to compute the winning
region starting from ∅. Hardly the sort of thing we would like to wait for until we finally
know who wins the game.

Finally look back at dGL formula (3) and observe what the above argument about the
winning region computation terminating at ω+1 implies about bounds on how long it
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takes Angel to win the game in (3). Since the winning region only terminates at ω + 1,
she could not win with any finite bound n ∈ N on the number of repetitions it takes her
to win. Even though she will surely win in the end according to her winning strategy,
she has no way of saying how long that would take.

Not that Angels would ever do that. But suppose she were to brag to impress Demon
by saying she could win within n ∈ N repetitions, then it would be hard for her to keep
that promise. No matter how big a bound n ∈ N she chose, Demon could always spoil
it from any negative initial state by evolving his differential equation x′ = 1d for longer
than n time units so that it takes Angel more than n rounds to decrease the resulting
value down to [0, 1) again.

This illustrates the dual of the discussion on the advance notice semantics in Sect. 4,
which showed that Demon could make Angel win faster than she announced just to
make her lose in the final round. In (3), Demon can always make Angel win later than
she promised even if she ultimately will still win. This is the sense in which ω+1 is the
only bound on the number of rounds it takes Angel to win the hybrid game in (3). This
shows that a variation of the advance notice semantics based on Angel announcing to
repeat at most n ∈ N times (as opposed to exactly n ∈ N times) would not capture the
semantics of repetition appropriately.

Expedition 1 (Ordinal arithmetic). Ordinals extend natural numbers. Natural num-
bers are inductively defined as the (smallest) set N containing 0 and the successor
n+1 of every number n ∈ N that is in the set. Natural numbers are totally ordered.
Given any two different natural numbers, one number is going to be strictly smaller
than the other one. For every finite set of natural numbers there is a smallest nat-
ural number that’s bigger than all of them. Ordinals extend this beyond infinity.
They just refuse to stop after all natural numbers have been written down:

0 < 1 < 2 < 3 < . . .

Taking all those (countably infinitely many) natural numbers {0, 1, 2, 3, . . . }, there
is a smallest ordinal that’s bigger than all of them. This ordinal is ω, the first infinite
ordinal.a

0 < 1 < 2 < 3 < · · · < ω

Unlike the ordinals 1, 2, 3, . . . from the natural numbers, the ordinal ω is a limit
ordinal, because it is not the successor of any other ordinal. The ordinals 1, 2, 3, . . .
are successor ordinals, because each of them is the successor n+1 of another ordinal
n. The ordinal 0 is special, because it is not a successor ordinal of any ordinal or
natural number.

Now, since ordinals are keen on satisfying that every ordinal has a successor, or
that every set of ordinals has an ordinal that is bigger, ω must have a successor as
well. Its successor is the successor ordinal ω + 1, the successor of which is ω + 2
and so on:

0 < 1 < 2 < · · · < ω < ω + 1 < ω + 2 < . . .
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Winning Strategies & Regions L17.19

Of course, in ordinal land, there ought to be an ordinal that’s bigger than even all
of those ordinals as well. It’s the limit ordinal ω + ω = ω · 2, at which point we
have counted to countable infinity twice already and will keep on finding bigger
ordinals, because even ω · 2 will have a successor, namely ω · 2 + 1:

0 < 1 < 2 < · · · < ω < ω + 1 < ω + 2 < . . . ω · 2 < ω · 2 + 1 < ω · 2 + 2 < . . .

Now the set of all these will have a bigger ordinal ω · 2+ω = ω · 3, which again has
successors and so on. That happens infinitely often so that ω · n will be an ordinal
for any natural number n ∈ N. All those infinitely many ordinals will also have a
limit ordinal that’s bigger than all of them, which is ω · ω = ω2. That one again has
a successor ω2 + 1 and so on, also see Fig. 5:

0 < 1 < 2 < . . . ω < ω+1 < ω+2 < . . . ω · 2 < ω · 2+1 < . . . ω · 3 < ω · 3+1 < . . .

ω2 < ω2+1 < . . . ω2+ω < ω2+ω+1 < . . . ωω < . . . ωωω

< . . . ωCK
1 < . . . ω1 < . . .

The first infinite ordinal is ω, the Church-Kleene ordinal ωCK
1 , i.e. the first nonre-

cursive ordinal, and ω1 is the first uncountable ordinal. Every ordinal κ is either a
successor ordinal, i.e. the smallest ordinal κ = ι+1 greater than some ordinal ι, or a
limit ordinal, i.e. the supremum of all smaller ordinals. Depending on the context,
0 is considered a limit ordinal or separate.

Ordinals support (non-commutative) addition, multiplication, and exponentia-
tion, which can be defined by induction on its second argument:

ι+ 0 = ι

ι+ (κ+ 1) = (ι+ κ) + 1 for successor ordinals κ+ 1

ι+ λ =
⊔

κ<λ

ι+ κ for limit ordinals λ

ι · 0 = 0

ι · (κ+ 1) = (ι · κ) + ι for successor ordinals κ+ 1

ι · λ =
⊔

κ<λ

ι · κ for limit ordinals λ

ι0 = 1

ικ+1 = ικ · ι for successor ordinals κ+ 1

ιλ =
⊔

κ<λ

ικ for limit ordinals λ

where
⊔

denotes the supremum or least-upper bound. Carefully note ordinal odd-
ities like the noncommutativity coming from 2 · ω = 4 · ω and ω · 2 < ω · 4.

aFor a moment read “ω = ∞” as infinity, but you will realize in an instant that this view does not
go far enough, because there will be reason to distinguish different infinities.
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Figure 5: Illustration of infinitely many ordinals up to ωω
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7 There and Back Again Game

Quite unlike in hybrid systems and (poor test) differential dynamic logic [Pla08, Pla12],
every hybrid game containing a differential equation x′ = f(x)&Q with evolution do-
main constraints Q can be replaced equivalently by a hybrid game without evolution
domain constrains (even using poor tests, i.e. each test ?Q uses only first-order formu-
las Q). Evolution domains are definable in hybrid games and can, thus, be removed
equivalently.

Lemma 5 (Domain reduction [Pla15]). Evolution domains of differential equations are
definable as hybrid games: For every hybrid game there is an equivalent hybrid game
that has no evolution domain constraints, i.e. all continuous evolutions are of the form
x′ = f(x).

Proof. For notational convenience, assume the (vectorial) differential equation x′ = θ(x)
to contain a clock x′0 = 1 and that t0 and z are fresh variables. Then x′ = θ(x)&Q(x) is
equivalent to the hybrid game:

t0 := x0;x
′ = θ(x); (z := x; z′ = −θ(z))d; ?(z0 ≥ t0 → Q(z)) (4)

See Fig. 6 for an illustration. Suppose the current player is Angel. The idea behind

t

x, z

Q

z := x

Angel plays forward game, reverts flow and time
x0;

Demon checks Q in backwards game until initial

t0

x′ = θ(x)

t0 := x0 r

z′ = −θ(z)

Figure 6: “There and back again game”: Angel evolves x forwards in time along
x′ = θ(x), Demon checks evolution domain backwards in time along
z′ = −θ(z) on a copy z of the state vector x

game equivalence (4) is that the fresh variable t0 remembers the initial time x0, and
Angel then evolves forward along x′ = θ(x) for any amount of time (Angel’s choice).
Afterwards, the opponent Demon copies the state x into a fresh variable (vector) z that
he can evolve backwards along (z′ = −θ(z))d for any amount of time (Demon’s choice).
The original player Angel must then pass the challenge ?(z0 ≥ t0 → Q(z)), i.e. Angel
loses immediately if Demon was able to evolve backwards and leave region Q(z) while
satisfying z0 ≥ t0, which checks that Demon did not evolve backward for longer than
Angel evolved forward. Otherwise, when Angel passes the test, the extra variables t0, z
become irrelevant (they are fresh) and the game continues from the current state x that
Angel chose in the first place (by selecting a duration for the evolution that Demon
could not invalidate).
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Lemma 5 can eliminate all evolution domain constraints equivalently in hybrid games
from now on. While evolution domain constraints are fundamental parts of standard
hybrid systems [Hen96, HKPV95, ACHH92, Pla08], they turn out to be mere conve-
nience notation for hybrid games. In that sense, hybrid games are more fundamental
than hybrid systems, because they feature elementary operators.

8 Summary

This lecture saw the introduction of a proper formal semantics for differential game
logic and hybrid games. This resulted in a simple denotational semantics, where the
meaning of all formulas and hybrid games is a simple function of the meaning of its
pieces. The only possible outlier was the semantics of repetition, which turned out to
be rather subtle and ultimately defined by higher-ordinal iterations of winning region
constructions. This led to an insightful appreciation for the complexities, challenges,
and flexibilities of hybrid games.

The next lecture will revisit the semantics of repetition to find a simpler implicit char-
acterization and leverage the semantic basis for the next leg in the logical trinity: ax-
iomatics.

Exercises

Exercise 1. The formula (3) was shown to need ω + 1 iterations of the winning region
construction to terminate with the following answer justifying the validity of (3).

ςα∗([0, 1)) = ςω+1
α ([0, 1)) = ςα([0,∞)) = R

What happens if the winning region construction is used again to compute ςω+2
α ([0, 1))?

How often does the winning region construction need to be iterated to justify validity
of

〈(x := x+ 1;x′ = 1d ∪ x := x− 1)
∗
〉(0 ≤ x < 1)

Exercise 2. How often does the winning region construction need to be iterated to justify
validity of

〈(x := x− 1; y′ = 1d ∪ y := y − 1; z′ = 1d ∪ z := z − 1)
∗
〉(x < 0 ∧ y < 0 ∧ z < 0)

Exercise 3 (* Clockwork ω). How often does the winning region construction need to be
iterated to justify validity of

〈(?y < 0;x := x− 1; y′ = 1d ∪ ?z < 0; y := y − 1; z′ = 1d ∪ z := z − 1)
∗
〉(x < 0∧y < 0∧z < 0)
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15-424: Foundations of Cyber-Physical Systems

Lecture Notes on

Winning & Proving Hybrid Games

André Platzer

Carnegie Mellon University
Lecture 18

1 Introduction

This lecture continues the study of hybrid games and their logic, differential game logic
[Pla15], whose syntax was introduced in Lecture 20 on Hybrid Systems & Games and
whose semantics was developed in Lecture 21 on Winning Strategies & Regions. To-
day’s lecture furthers the development of differential game logic to the third leg of the
logical trinity: its axiomatics. This lecture will focus on the development of rigorous
reasoning techniques for hybrid games as models for CPS with adversarial dynamics.
Without such analysis and reasoning techniques, a logic that only comes with syntax
and semantics can be used as a specification language with a precise meaning, but
would not be very helpful for actually analyzing and verifying hybrid games. It is the
logical trinity of syntax, semantics, and axiomatics that gives logics the power of serv-
ing as well-founded specification and verification languages with a (preferably concise)
syntax, an unambiguous semantics, and actionable analytic reasoning principles. Thus,
today’s lecture is the hybrid games analogue of Lecture 5 on Dynamical Systems and
Dynamic Axioms. Indeed, after the logical sophistication we reached throughout the
semester, this lecture will settle for a Hilbert-type calculus as in Lecture 5 on Dynamical
Systems and Dynamic Axioms as opposed to the more refined and more automatable
sequent calculus from Lecture 6 on Truth and Proof and subsequent lectures.

Before submerging completely into the development of rigorous reasoning techniques
for hybrid games as models for CPS with adversarial dynamics, however, it will be wise
to take a short detour by investigating a semantical simplification of the meaning of
repetition by an implicit characterization of its winning region rather than the explicit
construction by iteration from Lecture 21.

These lecture notes are based on [Pla15], where more information can be found on
logic and hybrid games. The most important learning goals of this lecture are:
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Modeling and Control: We advance our understanding of the core principles behind
CPS with hybrid games by understanding analytically and semantically how dis-
crete, continuous, and the adversarial dynamics resulting, e.g., from multiple
agents are integrated and interact in CPS. This lecture also uncovers nuances
in the semantics of adversarial repetitions that makes them conceptually better
behaved than the highly transfinite iterated winning region construction from
Lecture 21. A byproduct of this development shows fixpoints in actions, which
play a prominent role in the understanding of other classes of models as well
and provides one important aspect for the subsequent development of reasoning
techniques.

Computational Thinking: This lecture is devoted to the development of rigorous rea-
soning techniques for CPS models involving adversarial dynamics, which is criti-
cal to getting CPS with such interactions right. Hybrid games provide even more
subtle interactions than hybrid systems did, which make it even more challenging
to say for sure whether and why a design is correct without sufficient rigor in their
analysis. After Lecture 21 captured the semantics of differential game logic and
hybrid games compositionally, this lecture exploits the compositional meaning to
develop compositional reasoning principles for hybrid games. This lecture sys-
tematically develops one reasoning principle for each of the operators of hybrid
programs, resulting in a compositional verification approach. A compositional
semantics is de facto a necessary but not a sufficient condition for the existence of
compositional reasoning principles. Despite the widely generalized semantics of
hybrid games compared to hybrid systems, this lecture will strive to generalize
reasoning techniques for hybrid systems to hybrid games as smoothly as possible.
This leads to a modular way of integrating adversariality into the realm of hybrid
systems models also in terms of their analysis while simultaneously taming their
complexity. This lecture provides an axiomatization of differential game logic dGL
[Pla15] to lift dGL from a specification language to a verification language for CPS
with adversarial dynamics.

CPS Skills: We will develop a deep understanding of the semantics of CPS models
with adversariality by carefully relating their semantics to their reasoning princi-
ples and aligning them in perfect unison. This understanding will also enable us
to develop a better intuition for the operational effects involved in CPS. This lec-
ture also shows insightful and influential nuances on the semantics of repetitions
in CPS models with adversarial dynamics.
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CT

M&C CPS

rigorous reasoning for adversarial dynamics
compositional reasoning from compositional semantics
modular addition of adversarial dynamics
axiomatization of dGL

analytical & semantical interaction
of discrete+continuous+adversarial
adversarial repetitions
fixpoints

CPS semantics
align semantics and reasoning
operational CPS effects

In our quest to develop rigorous reasoning principles for hybrid games, we will strive
to identify compositional reasoning principles that align in perfect unison with the com-
positional semantics of hybrid games developed in Lecture 21 on Winning Strategies &
Regions. This enterprise will be enlightening and, for the most part, quite successful.
And, in fact, the reader is encouraged to start right away with the development of a
proof calculus for differential game logic and later compare it with the one that these
lecture notes develop. The part, where this will turn out to be rather difficult is repe-
tition, which is why the lecture notes take a scenic detour through characterizing their
semantics.

2 Characterizing Winning Repetitions Implicitly

Lecture 21 on Winning Strategies & Regions culminated in a semantics of repetition
defined as the union of all winning regions for all ordinals by an explicit (albeit wildly
infinite) construction:

ςα∗(X) = ς∞(α)X =
⋃

κ ordinal

ςκα(X) where

ς0α(X)
def
= X

ςκ+1
α (X)

def
= X ∪ ςα(ςκα(X))

ςλα(X)
def
=

⋃

κ<λ

ςκα(X) λ 6= 0 a limit ordinal

Is there a more immediate way of characterizing the winning region ςα∗(X) of repeti-
tion implicitly rather than by explicit construction? This thought will lead to a beautiful
illustration of Bertrand Russell’s enlightening bonmot:

The advantages of implicit definition over construction are roughly those of
theft over honest toil. — Bertrand Russell (slightly paraphrased)
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The above iterated winning region construction describes the semantics of repetition
by iterating from below, i.e. starting from ς0α(X) = X and adding states. Maybe the
semantics of repetition could be characterized more indirectly but more concisely from
above? With an implicit characterization.

Note 1 (+1 argument). Whenever a set Z is in the winning region ςα∗(X) of repetition,
then ςα(Z) also should be in the winning region ςα∗(X), because it is just one step away
from Z and α∗ could simply repeat once more. That is

Z ⊆ ςα∗(X) then ςα(Z) ⊆ ςα∗(X)

This holds for any set Z ⊆ ςα∗(X). In particular, the set Z
def
= ςα∗(X) itself satisfies

ςα(ςα∗(X)) ⊆ ςα∗(X) (1)

by Note 1. After all, repeating α once more from the winning region ςα∗(X) of repe-
tition of α cannot give us any states that did not already have a winning strategy in
α∗, because α∗ could have been repeated one more time. Consequently, if a set Z ⊆ S
claims to be the winning region ςα∗(X) of repetition, it at least has to satisfy

ςα(Z) ⊆ Z (2)

because, by (1), the true winning region ςα∗(X) does satisfy (2). Thus, strategizing along
α from Z does not give anything that Z would not already know about.

Is there anything else that such a set Z needs to satisfy to be the winning region
ςα∗(X) of repetition? Is there only one choice? Or multiple? If there are multiple
choices, which Z is it? Does such a Z always exist, even?

Before you read on, see if you can find the answer for yourself.
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One such Z always exists, even though it may be rather boring. The empty set Z
def
= ∅

looks like it would satisfy (2) because it is rather hard to win a game that requires Angel
to enter the empty set of states to win.

On second thought, ςα(∅) ⊆ ∅ does not actually always hold for all hybrid games α.
It is violated for states from which Angel can make sure Demon violates the rules of the
game α by losing a challenge or failing to comply with evolution domain constraints.
For example, when Q is a nontrivial test like x > 0:

ς?Qd(∅) = ς?Q(∅
∁))∁ = ([[Q]] ∩ S)∁ = ([[Q]])∁ = [[¬Q]] 6⊆ ∅

Yet, then the set of states that make Demon violate the rules satisfies (2):

ς?Qd([[¬Q]]) = (ς?Q([[¬Q]]∁))∁ = (ς?Q([[Q]]))∁ = ([[Q]] ∩ [[Q]])∁ = [[¬Q]] ⊆ [[¬Q]]

But even if the empty set ∅ satisfies (2), it may be a bit small. Likewise, even if [[¬Q]]
satisfies (2) for α ≡ (?Qd), the set [[¬Q]] may still be a bit small. Angel is still in charge
of repetition and can decide how often to repeat and whether to repeat at all. The
winning region ςα∗(X) of repetition of α should at least contain the winning condition
X , because the winning condition X is particularly easy to reach when already starting
in X by simply suggesting Angel should repeat zero times. Angel would certainly love
to do that, because it does not sound like a lot of work to repeat something zero times.
Consequently, if a set Z ⊆ S claims to be the winning region ςα∗(X), then it has to
satisfy (2) and

X ⊆ Z (3)

Both conditions (2) and (3) together can be summarized in a single condition as fol-
lows:

Note 2 (Pre-fixpoint). Every candidate Z for the winning region ςα∗(X) satisfies:

X ∪ ςα(Z) ⊆ Z (4)

A set Z satisfying condition (4) is called a pre-fixpoint.
Again: what is this set Z that satisfies (4)? Is there only one choice? Or multiple?

If there are multiple choices, which Z is the right one for the semantics of repetition?
Does such a Z always exist, even?

Before you read on, see if you can find the answer for yourself.
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One such Z certainly exists. The empty set does not qualify unless X = ∅ (and
even then ∅ actually only works if Demon cannot be tricked into violating the rules of
the game). The set X itself is too small as well unless the game has no incentive to

start repeating, because ςα(X) ⊆ X . But the full state space Z
def
= S always satisfies (4)

trivially so (4) has a solution. Now, the whole space is a little too big to call it Angel’s
winning region independently of the hybrid game α. Even if the full space may very
well be the winning region for some particularly Demonophobic Angel-friendly hybrid
games like

〈(x := 1;x′ = 1d ∪ x := x− 1)
∗
〉 (0 ≤ x < 1) (5)

the full state space is hardly the right winning region for any arbitrary α∗. It definitely
depends on the hybrid game α and the winning condition φ whether Angel has a win-
ning strategy for 〈α〉φ or not. For example for Demon’s favorite game where he always
wins, ςα∗(X) had better be ∅, not S. Thus, the largest solution Z of (4) hardly qualifies.

So which solution Z of (4) do we define to be ςα∗(X) now?
Before you read on, see if you can find the answer for yourself.
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Among the many Z that solve (4), the largest one is not informative, because the
largest Z simply degrades to S. So smaller solutions Z are preferable. Which one?
How do multiple solutions even relate to each other? Suppose Y, Z are both solutions
of (4). That is

X ∪ ςα(Y ) ⊆ Y (6)

X ∪ ςα(Z) ⊆ Z (7)

Then, by the monotonicity lemma from Lecture 21 (repeated in Lemma 3 below):

X ∪ ςα(Y ∩ Z)
mon
⊆ X ∪ (ςα(Y ) ∩ ςα(Z))

(6),(7)
⊆ Y ∩ Z (8)

Hence, by (8), the intersection Y ∩ Z of solutions Y and Z of (4) also is a solution of
(4):

Lemma 1 (Intersection closure). For any two solutions Y, Z of the prefix condition (4),
a smaller solution of (4) can be obtained by intersection Y ∩ Z.

Whenever there are two solutions Z1, Z2 of (4), their intersection Y1 ∩ Z2 solves (4)
as well. When there’s yet another solution Z3 of (4), their intersection Y1 ∩ Y2 ∩ Y3 also
solves (4). Similarly for any larger family of solutions whose intersection will solve (4).
If we keep on intersecting solutions, we will arrive at smaller and smaller solutions
until, some fine day, there’s not going to be a smaller one. This yields the smallest
solution Z of (4) which can be characterized directly.

Note 4 (Semantics of repetitions). Among the many Z that solve (4), ςα∗(X) is defined
to be the smallest Z that solves (4):

ςα∗(X) =
⋂

{Z ⊆ S : X ∪ ςα(Z) ⊆ Z} (9)

The characterization in terms of iterated winning regions from Lecture 21 leads to the
same set ςα∗(X), but the (least pre-fixpoint or) fixpoint characterization (9) is easier.

The set on the right-hand side of (9) is an intersection of solutions, thus, a solution by
Lemma 1 (or its counterpart for families of solutions). Hence ςα∗(X) itself satisfies (4):

X ∪ ςα(ςα∗(X)) ⊆ ςα∗(X) (10)

Also compare this with where we came from when we argued for (1). Could it be the
case that the inclusion in (10) is strict, i.e. not equals? No this cannot happen, because

ςα∗(X) is the smallest such set. That is, by (10), the set Z
def
= X ∪ ςα(ςα∗(X)) satisfies

Z ⊆ ςα∗(X) and, thus, by Lemma 3:

X ∪ ςα(Z)
mon
⊆ X ∪ ςα(ςα∗(X)) = Z
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Thus, the set Z
def
= X ∪ ςα(ςα∗(X)) satisfies the condition X ∪ ςα(Z) ⊆ Z from (9) and,

since ςα∗(X) is the smallest such set by (9), so smaller or equal Z:

ςα∗(X) ⊆ Z = X ∪ ςα(ςα∗(X))

Consequently, with (10), this implies that both inclusions hold, so ςα∗(X) actually satis-
fies not just the inclusion (4) but even the fixpoint equation:

X ∪ ςα(ςα∗(X)) = ςα∗(X) (11)

Note 5 (Semantics of repetitions, fixpoint formulation). That is, ςα∗(X) is a fixpoint
solving the equation

X ∪ ςα(Z) = Z (12)

and it is the least fixpoint, i.e. the smallest Z solving the equation (12), i.e. it satisfies

ςα∗(X) =
⋂

{Z ⊆ S : X ∪ ςα(Z) = Z}

The fact that ςα∗(X) is defined as the least of all the fixpoints makes sure that Angel
only wins games by a well-founded number of repetitions. That is, she only wins a
repetition if she ultimately stops repeating, not by postponing termination forever. See
[Pla15] for more details.

It is also worth noting that it would still have been possible to make the iteration of
winning region constructions work out using the seminal fixpoint theorem of Knaster-
Tarski. Yet, this requires the iterated winning region constructions to go significantly
transfinite [Pla15], way beyond the first infinite ordinal ω.

3 Semantics of Hybrid Games

The semantics of differential game logic from Lecture 21 was still pending a defini-
tion of the winning regions ςα(·) and δα(·) for Angel and Demon, respectively, in the
hybrid game α. Rather than taking a detour for understanding those by operational
game semantics (as in Lecture 20), or in terms of transfinitely iterated winning region
constructions, the winning regions of hybrid games can be defined directly, giving a
denotational semantics to hybrid games.

The only difference of the following semantics compared to the definition in Lecture
21 is the new case of repetition α∗.
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Definition 2 (Semantics of hybrid games). The semantics of a hybrid game α is a
function ςα(·) that, for each interpretation I and each set of Angel’s winning states
X ⊆ S, gives the winning region, i.e. the set of states ςα(X) from which Angel has
a winning strategy to achieve X (whatever strategy Demon chooses). It is defined
inductively as follows

1. ςx:=θ(X) = {ω ∈ S : ω
[[θ]]ω
x ∈ X}

2. ςx′=f(x)&Q(X) = {ϕ(0) ∈ S : ϕ(r) ∈ X for some r ∈ R≥0 and (differentiable)

ϕ : [0, r] → S such that ϕ(ζ) ∈ [[Q]] and dϕ(t)(x)
dt

(ζ) = [[θ]]ϕ(ζ) for all 0 ≤ ζ ≤ r}

3. ς?Q(X) = [[Q]] ∩X

4. ςα∪β(X) = ςα(X) ∪ ςβ(X)

5. ςα;β(X) = ςα(ςβ(X))

6. ςα∗(X) =
⋂
{Z ⊆ S : X ∪ ςα(Z) ⊆ Z}

7. ςαd(X) = (ςα(X
∁))∁

The winning region of Demon, i.e. the set of states δα(X) from which Demon has
a winning strategy to achieve X (whatever strategy Angel chooses) is defined in-
ductively as follows

1. δx:=θ(X) = {ω ∈ S : ω
[[θ]]ω
x ∈ X}

2. δx′=f(x)&Q(X) = {ϕ(0) ∈ S : ϕ(r) ∈ X for all r ∈ R≥0 and (differentiable)

ϕ : [0, r] → S such that ϕ(ζ) ∈ [[Q]] and dϕ(t)(x)
dt

(ζ) = [[θ]]ϕ(ζ) for all 0 ≤ ζ ≤ r}

3. δ?Q(X) = ([[Q]])∁ ∪X

4. δα∪β(X) = δα(X) ∩ δβ(X)

5. δα;β(X) = δα(δβ(X))

6. δα∗(X) =
⋃
{Z ⊆ S : Z ⊆ X ∩ δα(Z)}

7. δαd(X) = (δα(X
∁))∁

This notation uses ςα(X) instead of ςIα(X) and δα(X) instead of δIα(X), because the inter-
pretation I that gives a semantics to predicate symbols in tests and evolution domains is
clear from the context. Strategies do not occur explicitly in the dGL semantics, because
it is based on the existence of winning strategies, not on the strategies themselves.

Just as the semantics dL, the semantics of dGL is compositional, i.e. the semantics of
a compound dGL formula is a simple function of the semantics of its pieces, and the
semantics of a compound hybrid game is a function of the semantics of its pieces. Fur-
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L18.10 Winning & Proving Hybrid Games

thermore, existence of a strategy in hybrid game α to achieve X is independent of any
game and dGL formula surrounding α, but just depends on the remaining game α it-
self and the goal X . By a simple inductive argument, this shows that one can focus on
memoryless strategies, because the existence of strategies does not depend on the con-
text, hence, by working bottom up, the strategy itself cannot depend on past states and
choices, only the current state, remaining game, and goal. This also follows from a gen-
eralization of a classical result by Zermelo. Furthermore, the semantics is monotone,
i.e. larger sets of winning states induce larger winning regions.

Monotonicity is what Lecture 21 looked into for the case of hybrid games without
repetition. But it continues to hold for general hybrid games.

Lemma 3 (Monotonicity [Pla15]). The semantics is monotone, i.e. ςα(X) ⊆ ςα(Y ) and
δα(X) ⊆ δα(Y ) for all X ⊆ Y .

Proof. A simple check based on the observation that X only occurs with an even num-
ber of negations in the semantics. For example, ςα∗(X) =

⋂
{Z ⊆ S : X ∪ ςα(Z) ⊆

Z} ⊆
⋂
{Z ⊆ S : Y ∪ ςα(Z) ⊆ Z} = ςα∗(Y ) if X ⊆ Y . Likewise, X ⊆ Y implies

X∁ ⊇ Y ∁, hence ςα(X
∁) ⊇ ςα(Y

∁), so ςαd(X) = (ςα(X
∁))∁ ⊆ (ςα(Y

∁))∁ = ςαd(Y ).

Monotonicity implies that the least fixpoint in ςα∗(X) and the greatest fixpoint in δα∗(X)
are well-defined [HKT00, Lemma 1.7]. The semantics of ςα∗(X) is a least fixpoint, which
results in a well-founded repetition of α, i.e. Angel can repeat any number of times but
she ultimately needs to stop at a state in X in order to win. The semantics of δα∗(X) is
a greatest fixpoint, instead, for which Demon needs to achieve a state in X after every
number of repetitions, because Angel could choose to stop at any time, but Demon still

wins if he only postpones X∁ forever, because Angel ultimately has to stop repeating.
Thus, for the formula 〈α∗〉φ, Demon already has a winning strategy if he only has a
strategy that is not losing by preventing φ indefinitely, because Angel eventually has to
stop repeating anyhow and will then end up in a state not satisfying φ, which makes
her lose. The situation for [α∗]φ is dual.

4 Determinacy

Every particular game play in a hybrid game is won by exactly one player, because
hybrid games are zero-sum and there are no draws. Hybrid games actually satisfy a
much stronger property: determinacy, i.e. that, from any initial situation, either one of
the players always has a winning strategy to force a win, regardless of how the other
player chooses to play.

If, from the same initial state, both Angel and Demon had a winning strategy for op-
posing winning conditions, then something would be terribly inconsistent. It cannot
happen that Angel has a winning strategy in hybrid game α to get to a state where ¬φ
and, from the same initial state, Demon supposedly also has a winning strategy in the
same hybrid game α to get to a state where φ holds. After all, a winning strategy is
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a strategy that makes that player win no matter what strategy the opponent follows.
Hence, for any initial state, at most one player can have a winning strategy for comple-
mentary winning conditions. This argues for the validity of � ¬([α]φ ∧ 〈α〉¬φ), which
can also be proved (Theorem 4).

So it cannot happen that both players have a winning strategy for complementary
winning conditions. But it might still happen that no one has a winning strategy, i.e.
both players can let the other player win, but cannot win strategically themselves (re-
call, e.g., the filibuster example from Lecture 20, which first appeared as if no player
might have a winning strategy but then turned out to make Demon win). This does not
happen for hybrid games, though, because at least one (hence exactly one) player has a
winning strategy for complementary winning conditions from any initial state.

Theorem 4 (Consistency & determinacy [Pla15]). Hybrid games are consistent and
determined, i.e. � ¬〈α〉¬φ↔ [α]φ.

Proof. The proof shows by induction on the structure of α that ςα(X
∁)∁ = δα(X) for all

X ⊆ S and all I with some set of states S, which implies the validity of ¬〈α〉¬φ↔ [α]φ

using X
def
= [[φ]].

1. ςx:=θ(X
∁)∁ = {ω ∈ S : ω

[[θ]]ω
x 6∈ X}∁ = ςx:=θ(X) = δx:=θ(X)

2. ςx′=f(x)&Q(X
∁)∁ = {ϕ(0) ∈ S : ϕ(r) 6∈ X for some 0 ≤ r ∈ R and some

(differentiable) ϕ : [0, r] → S such that dϕ(t)(x)
dt

(ζ) = [[θ]]ϕ(ζ) and ϕ(ζ) ∈ [[Q]] for

all 0 ≤ ζ ≤ r}∁ = δx′=f(x)&Q(X), because the set of states from which there is

no winning strategy for Angel to reach a state in X∁ prior to leaving [[Q]] along
x′ = f(x)&Q is exactly the set of states from which x′ = f(x)&Q always stays in
X (until leaving [[Q]] in case that ever happens).

3. ς?Q(X
∁)∁ = ([[Q]] ∩X∁)∁ = ([[Q]])∁ ∪ (X∁)∁ = δ?Q(X)

4. ςα∪β(X
∁)∁ = (ςα(X

∁)∪ ςβ(X
∁))∁ = ςα(X

∁)∁ ∩ ςβ(X
∁)∁ = δα(X)∩ δβ(X) = δα∪β(X)

5. ςα;β(X
∁)∁ = ςα(ςβ(X

∁))∁ = ςα(δβ(X)∁)∁ = δα(δβ(X)) = δα;β(X)

6. ςα∗(X∁)∁ =
(
⋂
{Z ⊆ S : X∁ ∪ ςα(Z) ⊆ Z}

)∁

=
(
⋂
{Z ⊆ S : (X ∩ ςα(Z)

∁)∁ ⊆ Z}
)∁

=
(
⋂
{Z ⊆ S : (X ∩ δα(Z

∁))∁ ⊆ Z}
)∁

=
⋃
{Z ⊆ S : Z ⊆ X ∩ δα(Z)} = δα∗(X). 1

7. ςαd(X∁)∁ = (ςα((X
∁)∁)∁)∁ = δα(X

∁)∁ = δαd(X)

1The penultimate equation follows from the µ-calculus equivalence νZ.Υ(Z) ≡ ¬µZ.¬Υ(¬Z) and the
fact that least pre-fixpoints are fixpoints and that greatest post-fixpoints are fixpoints for monotone
functions.
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5 Hybrid Game Axioms

An axiomatization for differential game logic has been found in [Pla15], where we refer
to for more details.

Note 9 (Differential game logic axiomatization [Pla15]).
[·] [α]φ↔ ¬〈α〉¬φ

〈:=〉 〈x := θ〉φ(x) ↔ φ(θ)

〈′〉 〈x′ = f(x)〉φ↔ ∃t≥0 〈x := y(t)〉φ (y′(t) = f(y))

〈?〉 〈?Q〉φ↔ (Q ∧ φ)

〈∪〉 〈α ∪ β〉φ↔ 〈α〉φ ∨ 〈β〉φ

〈;〉 〈α;β〉φ↔ 〈α〉〈β〉φ

〈∗〉 φ ∨ 〈α〉〈α∗〉φ→ 〈α∗〉φ

〈d〉 〈αd〉φ↔ ¬〈α〉¬φ

M
φ→ ψ

〈α〉φ→ 〈α〉ψ

FP
φ ∨ 〈α〉ψ → ψ

〈α∗〉φ→ ψ

ind
φ→ [α]φ

φ→ [α∗]φ

The determinacy axiom [·] describes the duality of winning strategies for complemen-
tary winning conditions of Angel and Demon, i.e. that Demon has a winning strategy
to achieve φ in hybrid game α if and only if Angel does not have a counter strategy, i.e.
winning strategy to achieve ¬φ in the same game α. The determinacy axiom [·] internal-
izes Theorem 4. Axiom 〈:=〉 is Hoare’s assignment rule. Formula φ(θ) is obtained from
φ(x) by substituting θ for x at all occurrences of x, provided x does not occur in the scope
of a quantifier or modality binding x or a variable of θ. A modality containing x := or
x′ outside the scope of tests ?Q or evolution domain constraints binds x, because it may
change the value of x. In the differential equation axiom 〈′〉, y(·) is the unique [Wal98,
Theorem 10.VI] solution of the symbolic initial value problem y′(t) = f(y), y(0) = x.
The duration t how long to follow solution y is for Angel to decide, hence existentially
quantified. It goes without saying that variables like t are fresh in Fig. 9.

Axioms 〈?〉, 〈∪〉, and 〈;〉 are as in differential dynamic logic [Pla12] except that their
meaning is quite different, because they refer to winning strategies of hybrid games in-
stead of reachability relations of systems. The challenge axiom 〈?〉 expresses that Angel
has a winning strategy to achieve φ in the test game ?Q exactly from those positions
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that are already in φ (because ?Q does not change the state) and that satisfy Q for oth-
erwise she would fail the test and lose the game immediately. The axiom of choice 〈∪〉
expresses that Angel has a winning strategy in a game of choice α ∪ β to achieve φ iff
she has a winning strategy in either hybrid game α or in β, because she can choose
which one to play. The sequential game axiom 〈;〉 expresses that Angel has a winning
strategy in a sequential game α;β to achieve φ iff she has a winning strategy in game α
to achieve 〈β〉φ, i.e. to get to a position from which she has a winning strategy in game
β to achieve φ. The iteration axiom 〈∗〉 characterizes 〈α∗〉φ as a pre-fixpoint. It expresses
that, if the game is already in a state satisfying φ or if Angel has a winning strategy for
game α to achieve 〈α∗〉φ, i.e. to get to a position from which she has a winning strategy
for game α∗ to achieve φ, then, either way, Angel has a winning strategy to achieve φ in
game α∗. The converse of 〈∗〉 can be derived2 and is also denoted by 〈∗〉. The dual ax-
iom 〈d〉 characterizes dual games. It says that Angel has a winning strategy to achieve
φ in dual game αd iff Angel does not have a winning strategy to achieve ¬φ in game α.
Combining dual game axiom 〈d〉 with the determinacy axiom [·] yields〈αd〉φ↔ [α]φ, i.e.
that Angel has a winning strategy to achieve φ in αd iff Demon has a winning strategy
to achieve φ in α. Similar reasoning derives [αd]φ↔ 〈α〉φ.

Monotonicity rule M is the generalization rule of monotonic modal logic C [Che80]
and internalizes Lemma 3. It expresses that, if the implication φ→ ψ is valid, then, from
wherever Angel has a winning strategy in a hybrid game α to achieve φ, she also has a
winning strategy to achieve ψ, because ψ holds wherever φ does. So rule M expresses
that easier objectives are easier to win. Fixpoint rule FP characterizes 〈α∗〉φ as a least
pre-fixpoint. It says that, if ψ is another formula that is a pre-fixpoint, i.e. that holds in
all states that satisfy φ or from which Angel has a winning strategy in game α to achieve
that condition ψ, then ψ also holds whereever 〈α∗〉φ does, i.e. in all states from which
Angel has a winning strategy in game α∗ to achieve φ.

The proof rules FP and the induction rule ind are equivalent in the sense that one can
be derived from the other in the dGL calculus [Pla15].

Example 5. The dual filibuster game formula from Lecture 20 proves easily in the dGL
calculus by going back and forth between players [Pla15] using the abbreviations ∩,×:

∗
??
x = 0 ⊢ 0 = 0 ∨ 1 = 0

〈:=〉
x = 0 ⊢ 〈x := 0〉x = 0 ∨ 〈x := 1〉x = 0

〈∪〉
x = 0 ⊢ 〈x := 0 ∪ x := 1〉x = 0

〈d〉
x = 0 ⊢ ¬〈x := 0 ∩ x := 1〉¬x = 0

[·]
x = 0 ⊢ [x := 0 ∩ x := 1]x = 0

ind
x = 0 ⊢ [(x := 0 ∩ x := 1)∗]x = 0

〈d〉
x = 0 ⊢ 〈(x := 0 ∪ x := 1)×〉x = 0

2 φ ∨ 〈α〉〈α∗〉φ → 〈α∗〉φ derives by 〈∗〉. Thus, 〈α〉(φ ∨ 〈α〉〈α∗〉φ) → 〈α〉〈α∗〉φ by M. Hence, φ ∨ 〈α〉(φ ∨
〈α〉〈α∗〉φ) → φ ∨ 〈α〉〈α∗〉φ by propositional congruence. Consequently, 〈α∗〉φ → φ ∨ 〈α〉〈α∗〉φ by FP.
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6 Relating Differential Game Logic and Differential Dynamic

Logic

Now that we have come to appreciate the value of soundness, couldn’t we have known
about that, for the most part, before Theorem ??? Most dGL axioms look rather familiar,
except for 〈·〉 versus [·] dualities, when we compare them to the dL axioms from Lecture
5 on Dynamical Systems and Dynamic Axioms. Does that not mean that these same
axioms are already trivially sound? Why did we go through the (rather minor) trouble
of proving Theorem ???

Before you read on, see if you can find the answer for yourself.
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It is not quite so easy. After all, we could have given the same syntactical operator ∪
an entirely different meaning for hybrid games than before for hybrid systems. Maybe
we could have been silly and flipped the meaning of ; and ∪ around The fact of the
matter is, of course, that we did not. The operator ∪ still means choice, just for hy-
brid games rather than hybrid systems. So could we deduce the soundness of the dGL
axioms in Fig. 9 from the soundness of the corresponding dL axioms from Lecture 5 on
Dynamical Systems and Dynamic Axioms and focus on the new axioms, only?

Before we do anything of the kind, we first need to convince ourselves that the dL
semantics really coincides with the more general dGL semantics in case there are no
games involved. How could that be done? Maybe by proving validity of all formulas
of the following form

〈α〉φ
︸︷︷︸

in dL

↔ 〈α〉φ
︸︷︷︸

in dGL

(13)

for dual-free hybrid games α, i.e. those that do not mention d (not even indirectly hid-
den in the abbreviation ∩,×).

Before you read on, see if you can find the answer for yourself.
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The problem with (13) is that it is not directly a formula in any logic, because the ↔
operator could hardly be applied meaningfully to two formulas from different logics.
Well, of course, every dL formula is a dGL formula, so the left-hand side of (13) could
be embedded into dGL, but then (13) becomes well-defined but is only stating a mere
triviality.

Instead, a proper approach would be to rephrase the well-intended (13) semantically:

ω ∈ [[〈α〉φ]]
︸ ︷︷ ︸

in dL

iff ω ∈ [[〈α〉φ]]
︸ ︷︷ ︸

in dGL

(14)

which is equivalent to

(
ν ∈ [[φ]] for some ν with (ω, ν) ∈ [[α]]
︸ ︷︷ ︸

statement about reachability in dL

)
iff ω ∈ ςα([[φ]])

︸ ︷︷ ︸

winning in dGL

Equivalence (14) can be shown. In fact, an exercise in Lecture 3 on Choice & Con-
trol already developed an understanding of the dL semantics based on sets of states,
preparing for(14).

The trouble is that, besides requiring a proof itself, the equivalence (14) will still not
quite justify soundness of the dGL axioms in Fig. 9 that look innocuously like dL axioms.
Equivalence (14) is for dual-free hybrid games α. But even if the top-level operator in
axiom 〈∪〉 is not d, that dual operator could still occur within α or β, which requires a
game semantics to make sense of.

Consequently, we are better off proving soundness for the dGL axioms according to
their actual semantics, like in Theorem ??, as opposed to trying half-witted ways out
that only make soundness matters worse.

Exercises

Exercise 1. Explain how often you will have to repeat the winning region construction
to show that the following dGL formula is valid:

〈(x := x+ 1;x′ = 1d ∪ x := x− 1)
∗
〉 (0 ≤ x < 1)

Exercise 2. Can you find dGL formulas for which the winning region construction takes
even longer to terminate? How far can you push this?

Exercise 3. Carefully identify how determinacy relates to the two possible understand-
ings of the filibuster example discussed in an earlier lecture.

Exercise 4. Prove the elided cases of Lemma 3.

Exercise 5. Find the appropriate soundness notion for the axioms of dGL and prove that
the axioms are sound.

Exercise 6. Write down a valid formula that characterizes an interesting game between
two robots.
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15-424: Foundations of Cyber-Physical Systems

Lecture Notes on

Game Proofs & Separations

André Platzer

Carnegie Mellon University
Lecture 19

1 Introduction

This lecture continues the study of hybrid games and their logic, differential game logic
[Pla15]. Lecture 20 on Hybrid Systems & Games introduced hybrid games, Lecture 21
on Winning Strategies & Regions studied the winning region semantics, and Lecture
22 on Winning & Proving Hybrid Games identified the winning region semantics for
loops in hybrid games as well as a study of the axioms of hybrid games.

These lecture notes are based on [Pla15], where more information can be found on
logic and hybrid games.

2 Recap: Semantics of Hybrid Games

Recall the semantics of hybrid games and two results from Lecture 22 on Winning &
Proving Hybrid Games.
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Definition 1 (Semantics of hybrid games). The semantics of a hybrid game α is a
function ςα(·) that, for each interpretation I and each set of Angel’s winning states
X ⊆ S, gives the winning region, i.e. the set of states ςα(X) from which Angel has
a winning strategy to achieve X (whatever strategy Demon chooses). It is defined
inductively as followsa

1. ςx:=θ(X) = {ω ∈ S : ω
[[θ]]ω
x ∈ X}

2. ςx′=f(x)&Q(X) = {ϕ(0) ∈ S : ϕ(r) ∈ X for some r ∈ R≥0 and (differentiable)

ϕ : [0, r]→ S such that ϕ(ζ) ∈ [[Q]] and dϕ(t)(x)
dt

(ζ) = [[θ]]ϕ(ζ) for all 0 ≤ ζ ≤ r}

3. ς?Q(X) = [[Q]] ∩X

4. ςα∪β(X) = ςα(X) ∪ ςβ(X)

5. ςα;β(X) = ςα(ςβ(X))

6. ςα∗(X) =
⋂
{Z ⊆ S : X ∪ ςα(Z) ⊆ Z}

7. ςαd(X) = (ςα(X
∁))∁

The winning region of Demon, i.e. the set of states δα(X) from which Demon has
a winning strategy to achieve X (whatever strategy Angel chooses) is defined in-
ductively as follows

1. δx:=θ(X) = {ω ∈ S : ω
[[θ]]ω
x ∈ X}

2. δx′=f(x)&Q(X) = {ϕ(0) ∈ S : ϕ(r) ∈ X for all r ∈ R≥0 and (differentiable)

ϕ : [0, r]→ S such that ϕ(ζ) ∈ [[Q]] and dϕ(t)(x)
dt

(ζ) = [[θ]]ϕ(ζ) for all 0 ≤ ζ ≤ r}

3. δ?Q(X) = ([[Q]])∁ ∪X

4. δα∪β(X) = δα(X) ∩ δβ(X)

5. δα;β(X) = δα(δβ(X))

6. δα∗(X) =
⋃
{Z ⊆ S : Z ⊆ X ∩ δα(Z)}

7. δαd(X) = (δα(X
∁))∁

a The semantics of a hybrid game is not merely a reachability relation between states as for hybrid
systems [Pla12], because the adversarial dynamic interactions and nested choices of the players
have to be taken into account.

Lemma 2 (Monotonicity [Pla15]). The semantics is monotone, i.e. ςα(X) ⊆ ςα(Y ) and
δα(X) ⊆ δα(Y ) for all X ⊆ Y .
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Theorem 3 (Consistency & determinacy [Pla15]). Hybrid games are consistent and
determined, i.e. � ¬〈α〉¬φ↔ [α]φ.

3 Hybrid Game Proofs

An axiomatization for differential game logic has been found in previous work [Pla15],
where we refer to for more details.

Note 4 (Differential game logic axiomatization [Pla15]).
[·] [α]φ↔ ¬〈α〉¬φ

〈:=〉 〈x := θ〉φ(x)↔ φ(θ)

〈′〉 〈x′ = f(x)〉φ↔ ∃t≥0 〈x := y(t)〉φ (y′(t) = f(y))

〈?〉 〈?Q〉φ↔ (Q ∧ φ)

〈∪〉 〈α ∪ β〉φ↔ 〈α〉φ ∨ 〈β〉φ

〈;〉 〈α;β〉φ↔ 〈α〉〈β〉φ

〈∗〉 φ ∨ 〈α〉〈α∗〉φ→ 〈α∗〉φ

〈d〉 〈αd〉φ↔ ¬〈α〉¬φ

M
φ→ ψ

〈α〉φ→ 〈α〉ψ

FP
φ ∨ 〈α〉ψ → ψ

〈α∗〉φ→ ψ

ind
φ→ [α]φ

φ→ [α∗]φ

The proof rules FP and ind are equivalent in the sense that one can be derived from
the other in the dGL calculus [Pla15].

Example 4. The dual filibuster game formula from Lecture 20 proves easily in the dGL
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calculus by going back and forth between players [Pla15]:

∗
R
x = 0→0 = 0 ∨ 1 = 0

〈:=〉
x = 0→〈x := 0〉x = 0 ∨ 〈x := 1〉x = 0

〈∪〉
x = 0→〈x := 0 ∪ x := 1〉x = 0

〈d〉
x = 0→¬〈x := 0 ∩ x := 1〉¬x = 0

[·]
x = 0→[x := 0 ∩ x := 1]x = 0

ind
x = 0→[(x := 0 ∩ x := 1)∗]x = 0

〈d〉
x = 0→〈(x := 0 ∪ x := 1)×〉x = 0

4 Soundness

Theorem 5 (Soundness [Pla15]). The dGL proof calculus in Fig. 4 is sound, i.e. all prov-
able formulas are valid.

Proof. The full proof can be found in [Pla15]. We just consider a few cases to exemplify
the fundamentally more general semantics of hybrid games arguments compared to
hybrid systems arguments. To prove soundness of an equivalence axiom φ↔ ψ, show
[[φ]] = [[ψ]] for all interpretations I with any set of states S.

〈∪〉 [[〈α ∪ β〉φ]] = ςα∪β([[φ]]) = ςα([[φ]]) ∪ ςβ([[φ]]) = [[〈α〉φ]] ∪ [[〈β〉φ]] = [[〈α〉φ ∨ 〈β〉φ]]

〈;〉 [[〈α;β〉φ]] = ςα;β([[φ]]) = ςα(ςβ([[φ]])) = ςα([[〈β〉φ]]) = [[〈α〉〈β〉φ]].

〈?〉 [[〈?Q〉φ]] = ς?Q([[φ]]) = [[Q]] ∩ [[φ]] = [[Q ∧ φ]]

[·] is sound by Theorem 3.

M Assume the premise φ→ ψ is valid in interpretation I , i.e. [[φ]] ⊆ [[ψ]]. Then the
conclusion 〈α〉φ→ 〈α〉ψ is valid in I , i.e. [[〈α〉φ]] = ςα([[φ]]) ⊆ ςα([[ψ]]) = [[〈α〉ψ]] by
monotonicity (Lemma 2).

5 Separating Axioms

The axioms of differential game logic in Fig. 4 are sound for hybrid systems as well,
because every hybrid system is a (single player) hybrid game. With a few exceptions,
they look surprisingly close to the axioms for hybrid systems from Lecture 5. In order
to understand the fundamental difference between hybrid systems and hybrid games,
it is instructive to also investigate separating axioms, i.e. axioms of hybrid systems that
are not sound for hybrid games. Some of these are summarized in Fig. 1, referring to
[Pla15] for details.
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http://symbolaris.com/course/fcps16/05-dynax.pdf


Game Proofs & Separations L19.5

K [α](P → Q)→ ([α]P → [α]Q) M[·]

P → Q

[α]P → [α]Q
←−
M 〈α〉(P ∨Q)→ 〈α〉P ∨ 〈α〉Q M 〈α〉P ∨ 〈α〉Q→ 〈α〉(P ∨Q)

I [α∗](P → [α]P )→ (P → [α∗]P ) ∀I Cl∀ (P→[α]P )→ (P→[α∗]P )

B 〈α〉∃xP → ∃x 〈α〉P (x 6∈α)
←−
B ∃x 〈α〉P → 〈α〉∃xP

V p→ [α]p (FV(p) ∩ BV(α) = ∅) VK p→ ([α]true→[α]p)

G
P

[α]P
M[·]

P → Q

[α]P → [α]Q

R
P1 ∧ P2 → Q

[α]P1 ∧ [α]P2 → [α]Q
M[·]

P1 ∧ P2 → Q

[α](P1 ∧ P2)→ [α]Q

FA 〈α∗〉P → P ∨ 〈α∗〉(¬P ∧ 〈α〉P )

Figure 1: Separating axioms: The axioms and rules on the left are sound for hybrid
systems but not for hybrid games. The related axioms or rules on the right are
sound for hybrid games.

6 Repetitive Diamonds – Convergence vs. Iteration

More fundamental differences between hybrid systems and hybrid games also exist
in terms of convergence rules, even if these have played a less prominent role in this
course so far. These differences are discussed in detail elsewhere [Pla15]. In a nutshell,
Harel’s convergence rule [HMP77] is not a separating axiom, because it is sound for
dGL, just unnecessary, and, furthermore, not even particularly useful for hybrid games
[Pla15]. The hybrid version of Harel’s convergence rule [Pla08] for dL reads as follows
(it assumes that v does not occur in α):

con
p(v + 1) ∧ v + 1 > 0 ⊢ 〈α〉p(v)

Γ, ∃v p(v) ⊢ 〈α∗〉∃v≤0 p(v),∆

The dL proof rule con expresses that the variant p(v) holds for some real number v ≤ 0
after repeating α sufficiently often if p(v) holds for some real number at all in the begin-
ning (antecedent) and, by premise, p(v) can decrease after some execution of α by 1 (or
another positive real constant) if v > 0. This rule can be used to show positive progress
(by 1) with respect to p(v) by executing α. Just like the induction rule ind is often used
with a separate premiss for the initial and postcondition check (loop from Lecture 7
on Loops & Invariants), rule con is often used in the following derived form that we
simply call con:

con
Γ ⊢ ∃v p(v),∆ ∀v>0 (p(v)→ 〈α〉p(v − 1)) ∃v≤0 p(v) ⊢ Q

Γ ⊢ 〈α∗〉Q,∆
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L19.6 Game Proofs & Separations

The following sequent proof shows how convergence rule con can be used to prove a
simple dL liveness property of a hybrid program:

→R

con

R

∗

x ≥ 0 ⊢ ∃nx < n+ 1
〈:=〉

R

∗

x < n+ 2 ∧ n+ 1 > 0 ⊢ x− 1 < n+ 1
x < n+ 2 ∧ n+ 1 > 0 ⊢ 〈x := x− 1〉x < n+ 1

R

∗

∃n≤0x < n+ 1 ⊢ x < 1

x ≥ 0 ⊢ 〈(x := x− 1)∗〉x < 1

x ≥ 0→ 〈(x := x− 1)∗〉x < 1

Let’s compare how dGL proves diamond properties of repetitions based on the itera-
tion axiom 〈∗〉.

Example 6 (Non-game system). The same simple non-game dGL formula

x ≥ 0→ 〈(x := x− 1)∗〉0 ≤ x < 1

as above is provable without con, as shown in Fig. 2, where 〈α∗〉0 ≤ x < 1 is short
for 〈(x := x− 1)∗〉(0 ≤ x < 1). Note that, as in many subsequent proofs, the extra

∗
R ∀x (0 ≤ x < 1 ∨ p(x− 1)→ p(x))→ (x ≥ 0→ p(x))

〈:=〉 ∀x (0 ≤ x < 1 ∨ 〈x := x− 1〉p(x)→ p(x))→ (x ≥ 0→ p(x))
US ∀x (0 ≤ x < 1 ∨ 〈x := x− 1〉〈α∗〉0 ≤ x < 1→ 〈α∗〉0 ≤ x < 1)→ (x ≥ 0→ 〈α∗〉0 ≤ x < 1)

〈∗〉,??,??
x ≥ 0→ 〈α∗〉0 ≤ x < 1

Figure 2: dGL Angel proof for non-game system Example 6
x ≥ 0→ 〈(x := x− 1)∗〉0 ≤ x < 1

assumption for ?? near the bottom of the proof inFig. 2 is provable easily using 〈∗〉,??:

∗
〈∗〉 0 ≤ x < 1 ∨ 〈x := x− 1〉〈α∗〉0 ≤ x < 1→ 〈α∗〉0 ≤ x < 1
∀R ∀x (0 ≤ x < 1 ∨ 〈x := x− 1〉〈α∗〉0 ≤ x < 1→ 〈α∗〉0 ≤ x < 1)

Example 7 (Choice game). The dGL formula

x = 1 ∧ a = 1→ 〈(x := a; a := 0 ∩ x := 0)∗〉x 6= 1

is provable as shown in Fig. 3, where β ∩ γ is short for x := a; a := 0 ∩ x := 0 and
〈(β ∩ γ)∗〉x 6= 1 short for 〈(x := a; a := 0 ∩ x := 0)∗〉x 6= 1:

Example 8 (2-Nim-type game). The dGL formula

x ≥ 0→ 〈(x := x− 1 ∩ x := x− 2)∗〉0 ≤ x < 2

is provable as shown in Fig. 3, where β ∩ γ is short for x := x − 1 ∩ x := x − 2 and
〈(β ∩ γ)∗〉0≤x<2 short for 〈(x := x− 1 ∩ x := x− 2)∗〉0 ≤ x < 2:
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∗
R ∀x (x 6= 1 ∨ p(a, 0) ∧ p(0, a)→ p(x, a))→ (true → p(x, a))

〈;〉,〈:=〉 ∀x (x 6= 1 ∨ 〈β〉p(x, a) ∧ 〈γ〉p(x, a)→ p(x, a))→ (true → p(x, a))
〈∪〉,〈d〉 ∀x (x 6= 1 ∨ 〈β ∩ γ〉p(x, a)→ p(x, a))→ (true → p(x, a))

US ∀x (x 6= 1 ∨ 〈β ∩ γ〉〈(β ∩ γ)∗〉x 6= 1→ 〈(β ∩ γ)∗〉x 6= 1)→ (true → 〈(β ∩ γ)∗〉x 6= 1)
〈∗〉,??,??

true → 〈(β ∩ γ)∗〉x 6= 1
R

x = 1 ∧ a = 1→ 〈(β ∩ γ)∗〉x 6= 1

Figure 3: dGL Angel proof for choice game Example 7
x = 1 ∧ a = 1→ 〈(x := a; a := 0 ∩ x := 0)∗〉x 6= 1

∗
R ∀x (0≤x<2 ∨ p(x− 1) ∧ p(x− 2)→ p(x))→ (true → p(x))

〈:=〉 ∀x (0≤x<2 ∨ 〈β〉p(x) ∧ 〈γ〉p(x)→ p(x))→ (true → p(x))
〈∪〉,〈d〉 ∀x (0≤x<2 ∨ 〈β ∩ γ〉p(x)→ p(x))→ (true → p(x))

US ∀x (0≤x<2 ∨ 〈β ∩ γ〉〈(β ∩ γ)∗〉0≤x<2→ 〈(β ∩ γ)∗〉0≤x<2)→ (true → 〈(β ∩ γ)∗〉0≤x<2)
〈∗〉,??,??

true → 〈(β ∩ γ)∗〉0≤x<2
R

x ≥ 0→ 〈(β ∩ γ)∗〉0≤x<2

Figure 4: dGL Angel proof for 2-Nim-type game Example 8
x ≥ 0→ 〈(x := x− 1 ∩ x := x− 2)∗〉0 ≤ x < 2
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Example 9 (Hybrid game). The dGL formula

〈(x := 1;x′ = 1d ∪ x := x− 1)
∗
〉0 ≤ x < 1

is provable as shown in Fig. 5, where the notation 〈(β ∪ γ)∗〉0 ≤ x < 1 is short for
〈(x := 1;x′ = 1d ∪ x := x− 1)

∗
〉(0 ≤ x < 1): The proof steps for β use in 〈′〉 that t 7→ x+ t

∗
R ∀x (0 ≤ x < 1 ∨ ∀t≥0 p(1 + t) ∨ p(x− 1)→ p(x))→ (true → p(x))

〈:=〉 ∀x (0 ≤ x < 1 ∨ 〈x := 1〉¬∃t≥0 〈x := x+ t〉¬p(x) ∨ p(x− 1)→ p(x))→ (true → p(x))
〈′〉 ∀x (0 ≤ x < 1 ∨ 〈x := 1〉¬〈x′ = 1〉¬p(x) ∨ p(x− 1)→ p(x))→ (true → p(x))

〈;〉,〈d〉 ∀x (0 ≤ x < 1 ∨ 〈β〉p(x) ∨ 〈γ〉p(x)→ p(x))→ (true → p(x))
〈∪〉 ∀x (0 ≤ x < 1 ∨ 〈β ∪ γ〉p(x)→ p(x))→ (true → p(x))
US ∀x (0≤x<1 ∨ 〈β ∪ γ〉〈(β ∪ γ)∗〉0 ≤ x < 1→ 〈(β ∪ γ)∗〉0 ≤ x < 1)→ (true → 〈(β ∪ γ)∗〉0 ≤ x < 1)

〈∗〉,??,??
true → 〈(β ∪ γ)∗〉0 ≤ x < 1

Figure 5: dGL Angel proof for hybrid game Example 9
〈(x := 1;x′ = 1d ∪ x := x− 1)

∗
〉0 ≤ x < 1

is the solution of the differential equation, so the subsequent use of 〈:=〉 substitutes 1
in for x to obtain t 7→ 1 + t. Recall from Lecture 22 that the winning regions for this
formula need >ω iterations to converge. It is still provable easily.

Exercises

Exercise 1 (***). The following formula was proved using dGL’s hybrid games type
proof rules in Fig. 2

x ≥ 0→ 〈(x := x− 1)∗〉0 ≤ x < 1

Try to prove it using the convergence rule con instead.
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[Pla15] André Platzer. Differential game logic. ACM Trans. Comput. Log., 17(1):1:1–
1:51, 2015. doi:10.1145/2817824.

15-424 LECTURE NOTES ANDRÉ PLATZER
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15-424: Foundations of Cyber-Physical Systems

Lecture Notes on

Virtual Substitution & Real Equations

André Platzer

Carnegie Mellon University
Lecture 20

1. Introduction

Cyber-physical systems are important technical concepts for building better systems
around us. Their safe design requires careful specification and verification, which this
course provides using differential dynamic logic and its proof calculus [Pla08, Pla10,
Pla12b]. The proof calculus for differential dynamic logic has a number of powerful
axioms and proof rules (especially in Lecture 5, Lecture 6, Lecture 11, and Lecture 12).
In theory, the only difficult problem in proving hybrid systems safety is finding their
invariants or differential invariants [Pla08, Pla12a] (Lecture 13 on Differential Invari-
ants & Proof Theory). In practice, however, the handling of real arithmetic is another
challenge that you have faced in your labs, even though the problem is easier in theory.
How arithmetic interfaces with proofs by way of the proof rules i∀,i∃ has already been
discussed in Lecture 6 on Truth & Proof. But how does the handling of real arithmetic
by quantifier elimination really work?

Today’s lecture shows one technique for deciding interesting formulas of first-order
real arithmetic. Understanding how such techniques for real arithmetic work is inter-
esting for at least two reasons. First of all, it is important to understand why this miracle
happens at all that something as complicated and expressive as first-order logic of real
arithmetic is decidable. But this lecture is also helpful to get an intuition about how
real arithmetic decision procedures work. With such an understanding, you are better
prepared to identify the limitations of these techniques, learn when they are likely not
to work out in due time, and get a sense of what you can do to help arithmetic prove
more complicated properties. For complex proofs, it is often very important to use your
insights and intuitions about the system to help the prover along to scale your verifica-
tion results to more challenging systems in feasible amounts of time. An understanding
how arithmetic decision procedures work helps to focus such insights on the parts of
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the arithmetic analysis that has a big computational impact. Quite substantial impact
has been observed for handling the challenges of real arithmetic [Pla07, dMP13].

There are a number of different approaches to understanding real arithmetic and its
decision procedures besides Tarski’s original seminal breakthrough [Tar51]. There is
an algebraic approach using cylindrical algebraic decompositions [Col75], which leads
to practical procedures, but is highly nontrivial. There are simple and elegant model-
theoretic approaches using semantic properties of logic and algebra [Rob77], which are
easy to understand, but do not lead to any particularly useful algorithms. There is a rea-
sonably simple Cohen-Hörmander algorithm [Coh69, Hör83] that, unfortunately, does
not generalize well into a practical algorithm. Other simple but inefficient decision pro-
cedures are also described elsewhere [KK71, Eng93]. And there is virtual substitution
[Wei97], a syntactical approach that fits well to the understanding of logic that we have
developed in this course and leads to highly efficient algorithms (although not in the
most general cases). As a good compromise of accessibility and practicality, this lecture
focuses on virtual substitution [Wei97].

These lecture notes are loosely based on [Wei97, Pla10, Appendix D]. They add sub-
stantial intuition and motivation that is helpful for following the technical develop-
ment. More information about virtual substitution can be found in the literature [Wei97].
See, e.g., [BPR06, BCR98, PQR09, Pas11] for an overview of other techniques for real
arithmetic.

The most important learning goals of this lecture are:

Modeling and Control: This lecture has an indirect impact on CPS models and con-
trols by informing the reader about the consequences of the analytic complexity
resulting from different arithmetical modeling tradeoffs. There is always more
than one way of writing down a model. It becomes easier to find the right trade-
offs for expressing a CPS model with some knowledge of and intuition for the
working principles of the workhorse of quantifier elimination that will handle
the resulting arithmetic.

Computational Thinking: The primary purpose of today’s lecture is to understand
how arithmetical reasoning, which is crucial for CPS, can be done rigorously and
automatically. Developing an intuition for the working principles of real arith-
metic decision procedures can be very helpful for developing strategies to verify
CPS models at scale. The lecture also serves the purpose of learning to appreciate
the miracle that quantifier elimination in real arithmetic provides by contrasting
it with closely related problems that have fundamentally different challenges. We
will also see a conceptually very important device in the logical trinity: the flex-
ibility of moving back and forth between syntax and semantics at will. We have
seen this principle in action already in the case of differential invariants in Lec-
ture 10 on Differential Equations & Differential Invariants, where we moved back
and forth between analytic differentiation d

dt and syntactic derivations (·)′ by way
of the derivation lemma and the differential substitution lemma as we saw fit.
This time, we leverage the same conceptual device for real arithmetic (rather than
differential arithmetic) by working with virtual substitutions to bridge the gap
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between semantic operations that are inexpressible otherwise in first-order logic
of real arithmetic. Virtual substitutions will again allow us to move back and forth
at will between syntax and semantics.

CPS Skills: This lecture has an indirect impact on CPS skills, because it discusses use-
ful pragmatics of CPS analysis for modeling and analysis tradeoffs that enable
CPS verification at scale.

CT

M&C CPS

rigorous arithmetical reasoning
miracle of quantifier elimination
logical trinity for reals
switch between syntax & semantics at will
virtual substitution lemma
bridge gap between semantics and inexpressibles

analytic complexity
modeling tradeoffs

verifying CPS at scale

2. Framing the Miracle

First-order logic is an expressive logic in which many interesting properties and con-
cepts can be expressed, analyzed, and proven. It is certainly significantly more expres-
sive than propositional logic, which is decidable by NP-complete SAT solving.

In classical (uninterpreted) first-order logic (FOL), no symbol (except possibly equal-
ity) has a special meaning. There are only predicate symbols p, q, r, . . . and function
symbols f, g, h, . . . whose meaning is subject to interpretation. And the domain that
quantifiers range over is subject to interpretation. In particular, a formula of first-order
logic is only valid if it holds true for all interpretations of all predicate and function
symbols and all domains.

In contrast, first-order logic of real arithmetic (FOLR or the theory of real-closed field
arithmetic FOLRCF [Pla10, Appendix D]) is interpreted, because its symbols have a spe-
cial fixed interpretation. The only predicate symbols are =,≥, >,≤, <, 6= and they mean
exactly equality, greater-or-equals, greater-than, etc., and the only function symbols are
+,−, ·, which mean exactly addition, subtraction, and multiplication of real numbers.
Furthermore, the quantifiers quantify over the set R of all real numbers.1

The first special interpretation for symbols that comes to mind may not necessarily
by the real numbers but maybe the natural numbers N with + for addition and · for

1Respectively over another real-closed field, but that has been shown not to change validity [Tar51].
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multiplication on natural numbers and where quantifiers range over the natural num-
bers. That gives the first-order logic of natural numbers (FOLN). Is FOLN easier or harder
than FOL? How do both compare to FOLR? What would happen compared to FOLQ,
the first-order logic of rational numbers? FOLQ is like FOLR and FOLN, except that the
rational numbers Q are used as the domain of quantification and interpretation of vari-
ables, rather than R and N, respectively. How do those different flavors of first-order
logic compare? How difficult is it to prove validity of logical formulas in each case?

Before you read on, see if you can find the answer for yourself.
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Uninterpreted first-order logic FOL is semidecidable, because there is a (sound and
complete [Göd30]) proof procedure that is algorithmic and able to prove all true sen-
tences of first-order logic [Her30]. The natural numbers are more difficult. Actually
much more difficult! By Gödel’s incompleteness theorem [Göd31], first-order logic
FOLN of natural numbers does not have a sound and complete effective axiomatiza-
tion. FOLN is neither semidecidable nor cosemidecidable [Chu36]. There is neither an
algorithm that can prove all valid formulas of FOLN nor one that can disprove all for-
mulas of FOLN that are not valid. One way of realizing the inherent challenge of the
logic of natural numbers in retrospect is to use that not all questions about programs
can be answered effectively (for example the halting problem of Turing machines is un-
decidable) [Chu36, Tur37], in fact “none” can [Ric53], and then encode questions about
classical programs into the logic of natural numbers.

Yet, a miracle happened. Alfred Tarski proved in 1930 [Tar31, Tar51] that reals are
much better behaved and that FOLR is decidable, even though this seminal result re-
mained unpublished for many years and only appeared in full in 1951 [Tar51].

The first-order logic FOLQ of rational numbers, however, was shown to be undecid-
able [Rob49], even though rational numbers may appear to be so close to real numbers.
Rationals are lacking something important: completeness (in the topological sense).
The square root

√
2 of 2 is a perfectly good witness for ∃xx2 = 2 but only a real num-

ber, not a rational one.
The first-order logic FOLC of complex numbers, though, is again perfectly decidable

[Tar51, CC56].

Note 1 (The miracle of reals. Overview of validity problems of first-order logics).

Logic Validity

FOL semidecidable
FOLN not semidecidable nor cosemidecidable
FOLQ not semidecidable nor cosemidecidable
FOLR decidable
FOLC decidable

3. Quantifier Elimination

Alfred Tarski’s seminal insight for deciding real arithmetic is based on quantifier elimi-
nation, i.e. the successive elimination of quantifiers from formulas so that the remaining
formula is equivalent but structurally significantly easier, because it has less quantifiers.
Why does eliminating quantifiers help? When evaluating a logical formula for whether
it is true or false in a given state (i.e. an assignment of real numbers to all its free vari-
ables), arithmetic comparisons and polynomial terms are easy, because all we need to
do is plug the numbers in and compute according to their semantics (recall Lecture 2
on Differential Equations & Domains). For example, for a state ω with ω(x) = 2, we can
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easily evaluate the logical formula

x2 > 2 ∧ 2x < 3 ∨ x3 < x2

to false by following the semantics, which ultimately just plugs in 2 for x:

[[x2 > 2 ∧ 2x < 3 ∨ x3 < x2]]ω = 22 > 2 ∧ 2 · 2 < 3 ∨ 23 < 22 = false

Similarly, in a state ν with ν(x) = −1, the same formula evaluates to true :

[[x2 > 2 ∧ 2x < 3 ∨ x3 < x2]]ν = (−1)2 > 2 ∧ 2 · (−1) < 3 ∨ (−1)3 < (−1)2 = true

But quantifiers are a difficult matter, because they require us to check for all possible
values of a variable (in the case ∀xF ) or to find exactly the right value for a variable that
makes the formula true (in the case of ∃xF ). The easiest formulas to evaluate are the
ones that have no free variables (because then their value does not depend on the state
ω) and that also have no quantifiers (because then there are no choices for the values
of the quantified variables during the evaluation). Quantifier elimination can take a
logical formula that is closed, i.e. has no free variables, and equivalently remove its
quantifiers, so that it becomes easy to evaluate the formula to true or false. Quantifier
elimination also works for formulas that still have free variables. Then it will eliminate
all quantifiers in the formula but the original free variables will remain in the resulting
formula, unless it simplifies in the quantifier elimination process.

Definition 1 (Quantifier elimination). A first-order theory admits quantifier elimi-
nation if, with each formula φ, a quantifier-free formula QE(φ) can be associated
effectively that is equivalent, i.e. φ ↔ QE(φ) is valid (in that theory).

That is, a first-order theory that admits quantifier elimination if there is a computer
program that outputs a quantifier-free formula QE(φ) for any input formula φ in that
theory such that the input and output are equivalent (φ ↔ QE(φ) is valid) and such
that the output QE(φ) is quantifier-free.

Theorem 2 (Tarski [Tar51]). The first-order logic of real arithmetic admits quantifier
elimination and is, thus, decidable.

The operation QE is further assumed to evaluate ground formulas (i.e., without vari-
ables), yielding a decision procedure for closed formulas of this theory (i.e., formulas
without free variables). For a closed formula φ, all it takes is to compute its quantifier-
free equivalent QE(φ) by quantifier elimination. The closed formula φ is closed, so has
no free variables or other free symbols, and neither will QE(φ). Hence, φ as well as its
equivalent QE(φ) are either equivalent to true or to false . Yet, QE(φ) is quantifier-free,
so which one it is can be found out simply by evaluating the (variable-free) concrete
arithmetic in QE(φ) as in the above examples.
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Example 3. Quantifier elimination uses the special structure of real arithmetic to ex-
press quantified arithmetic formulas equivalently without quantifiers and without us-
ing more free variables. For instance, QE yields the following equivalence:

QE(∃x (2x2 + c ≤ 5)) ≡ c ≤ 5.

In particular, the formula ∃x (2x2 + c ≤ 5) is not valid, but only true if c ≤ 5 holds, as
has been so aptly described by the outcome of the above quantifier elimination result.

Example 4. Quantifier elimination can be used to find out whether a first-order formula
of real arithmetic is valid. Take ∃x (2x2 + c ≤ 5), for example. A formula is valid
iff its universal closure is, i.e. the formula obtained by universally quantifying all free
variables. After all, valid means that a formula is true for all interpretations. Hence,
consider the universal closure ∀c ∃x (2x2 + c ≤ 5), which is a closed formula, because it
has no free variables. Quantifier elimination could, for example, lead to

QE(∀c ∃x (2x2+c ≤ 5)) ≡ QE(∀c QE(∃x (2x2+c ≤ 5))) ≡ QE(∀c (c ≤ 5)) ≡ −100 ≤ 5∧5 ≤ 5∧100 ≤ 5

The resulting formula still has no free variables but is now quantifier-free, so it can
simply be evaluated arithmetically. Since the conjunct 100 ≤ 5 evaluates to false , the
universal closure ∀c ∃x (2x2 + c ≤ 5) is equivalent to false and, hence, the original for-
mula ∃x (2x2 + c ≤ 5) is not valid (although still satisfiable for c = 1).

Geometrically, quantifier elimination corresponds to projection, see Fig. 1.

x

y F ≡ ∃y (y ≥ 0 ∧ 1− x− 1.83x2 + 1.66x3 > y)

QE(F ) ≡ 0.75 < x ∧ x < 0.68 ∨ x > 1.17

QE

Figure 1: The geometric counterpart of quantifier elimination for ∃y is projection onto
the x axis

Note that, when using QE, we usually assume it would already evaluate ground
arithmetic, so that the only two possible outcomes of applying QE to a closed formula
are true and false .
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L20.8 Virtual Substitution & Real Equations

Alfred Tarski’s result that quantifier elimination over the reals is possible and that
real arithmetic is decidable was groundbreaking. The only issue is that the complexity
of Tarski’s decision procedure is non-elementary, i.e. cannot be bounded by any tower

of exponentials 22
2
...

n

, which made it quite impractical. Still, it was a seminal break-
through because it showed reals to be decidable at all. It was not until another seminal
result in 1949 by Julia Robinson, who proved the rationals to be undecidable [Rob49].
It took many further advances [Sei54, Coh69, KK71, Hör83, Eng93] and a major break-
through by George Collins in 1975 [Col75] until more practical procedures had been
found [Col75, CH91, Wei97]. The virtual substitution technique shown in this lecture
has been implemented in Redlog [DS97], which has an interface for KeYmaera [PQ08].
There is also a recent approach of combining ideas from SMT solving with nonlinear
real arithmetic [JdM12] implemented in the SMT solver Z3, which has an interface for
KeYmaera.

4. Homomorphic Normalization for Quantifier Elimination

The first insight for defining quantifier elimination is to understand that the quantifier
elimination operation commutes with almost all logical connectives, so that QE only
needs to be defined for existential quantifiers. Consequently, as soon as we understand
how to eliminate existential quantifiers, universal quantifiers can be eliminated as well
just by double negation.

QE(A ∧B) ≡ QE(A) ∧QE(B)

QE(A ∨B) ≡ QE(A) ∨QE(B)

QE(¬A) ≡ ¬QE(A)

QE(∀xA) ≡ QE(¬∃x¬A)

These transformations isolate existential quantifiers for quantifier elimination. In par-
ticular, it is sufficient if quantifier elimination focuses on existentially quantified vari-
ables. When using the QE operation inside out, i.e. when using it repeatedly to elim-
inate the inner-most quantifier to a quantifier-free equivalent and then again eliminat-
ing the inner-most quantifier, the quantifier elimination is solved if only we manage to
solve it for ∃xA with a quantifier-free formula A. If A is not quantifier-free, its quanti-
fiers can be eliminated from inside out:

QE(∃xA) ≡ QE(∃x QE(A)) if A not quantifier-free
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It is possible, although not necessary and not even necessarily helpful, to simplify the
form of A as well. The following transformations transform the kernel of a quantifier
into negation normal form using deMorgan’s equivalences.

QE(∃x (A ∨B)) ≡ QE(∃xA) ∨QE(∃xB)

QE(∃x¬(A ∧B)) ≡ QE(∃x (¬A ∨ ¬B))

QE(∃x¬(A ∨B)) ≡ QE(∃x (¬A ∧ ¬B))

QE(∃x¬¬A) ≡ QE(∃xA)

Distributivity can be used to simplify the form of the quantifier-free kernel A to disjunc-
tive normal form and split existential quantifiers over disjuncts:

QE(∃x (A ∧ (B ∨ C))) ≡ QE(∃x ((A ∧B) ∨ (A ∧ C)))

QE(∃x ((A ∨B) ∧ C)) ≡ QE(∃x ((A ∧ C) ∨ (B ∧ C)))

QE(∃x (A ∨B)) ≡ QE((∃xA) ∨ (∃xB))

The only remaining case to address is the case QE(∃x (A ∧B)) where A∧B is a purely
conjunctive formula (yet it can actually have any number of conjuncts, not just two).
Using the following normalizing equivalences,

p = q ≡ p− q = 0

p ≥ q ≡ p− q ≥ 0

p > q ≡ p− q > 0

p 6= q ≡ p− q 6= 0

p ≤ q ≡ q − p ≥ 0

p < q ≡ q − p > 0

¬(p ≥ q) ≡ p < q

¬(p > q) ≡ p ≤ q

¬(p = q) ≡ p 6= q

¬(p 6= q) ≡ p = q

it is further possible to normalize all atomic formulas equivalently to one of the forms
p = 0, p > 0, p ≥ 0, p 6= 0. Since p 6= 0 ≡ p > 0 ∨ p < 0, disequations 6= are unnecessary
in theory as well (although they are quite useful in practice).

5. Substitution Base

Virtual substitution is a quantifier elimination technique that is based on substituting
extended terms into formulas virtually, i.e. without the extended terms2 actually occur-
ring in the resulting constraints.

2Being an extended real term really means it is not a real term, but somehow closely related. We will see
more concrete extended real terms and how to get rid of them again later.
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Note 4. Virtual substitution in FOLR essentially leads to an equivalence of the form

∃xF ↔
∨

t∈T
At ∧ F t

x (1)

for a suitable finite set T of extended terms that depends on the formula F and that gets
substituted into F virtually, i.e. in a way that results in standard real arithmetic terms,
not extended terms. The additional formulas At are compatibility conditions that may be
necessary.

Such an equivalence is how quantifier elimination can work. Certainly if the right-hand
side of (1) is true, then t is a witness for ∃xF . The key to establishing an equivalence of
the form (1) is to ensure that if F has a solution at all (in the sense of ∃xF being true),
then F must already hold for one of the cases in T . That is, T must cover all repre-
sentative cases. There might be many more solutions, but if there is one at all, one of
the possibilities in T must be a solution as well. If we were to choose all real numbers

T
def
= R, then (1) would be trivially valid, but then the right-hand side is not a formula

because it is uncountably infinitely long, which is even worse than the quantified form
on the left-hand side. But if a finite set T is sufficient for the equivalence (1) and the ex-
tra formulas At are quantifier-free, then the right-hand side of (1) is structurally simpler
than the left-hand side, even if it may be (sometimes significantly) less compact.

The various ways of virtually substituting various forms of extended reals e into
logical formulas equivalently without having to mention the actual extended reals is
the secret of virtual substitution. The first step is to see that it is enough to define
substitutions only on atomic formulas of the form p = 0, p < 0, p ≤ 0 (or, just as well,
on p = 0, p > 0, p ≥ 0). If σ denotes such an extended substitution of θ for x, then σ lifts
to arbitrary first-order formulas homomorphically3 as follows

σ(A ∧B) ≡ σA ∧ σB

σ(A ∨B) ≡ σA ∨ σB

σ(¬A) ≡ ¬σA
σ(∀y A) ≡ ∀y σA if x 6= y and y 6∈ θ

σ(∃y A) ≡ ∃y σA if x 6= y and y 6∈ θ

σ(p = q) ≡ σ(p− q = 0)

σ(p < q) ≡ σ(p− q < 0)

σ(p ≤ q) ≡ σ(p− q ≤ 0)

σ(p > q) ≡ σ(q − p < 0)

σ(p ≥ q) ≡ σ(q − p ≤ 0)

σ(p 6= q) ≡ σ(¬(p− q = 0))

3With a caveat on admissibility for quantifiers to avoid capture of variables.
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This lifting applies the substitution σ to all subformulas, with minor twists on quanti-
fiers for admissibility and normalization of atomic formulas into the canonical forms
p = 0, p < 0, p ≤ 0 for which σ has been assumed to already have been defined.

From now on, all that remains to be done for defining a substitution or virtual sub-
stitution is to define it on atomic formulas of the remaining forms p = 0, p < 0, p ≤ 0
and the above construction will take care of substituting in any first-order formulas. Of
course, the above construction is only helpful for normalizing atomic formulas that are
not already of one of those forms, so the term q above can be assumed not to be the
term 0.

6. Term Substitutions

Consider a formula of the form

∃x (bx+ c = 0 ∧ F ) (x 6∈ b, c) (2)

where x does not occur in the terms b, c. Let’s consider how a first mathematical solu-
tion to this formula might look like. The only solution that the conjunct bx+ c = 0 has
is x = −c/b. Hence, the left conjunct in (2) only holds for x = −c/b, so formula (2) can
only be true if F also holds for that single solution −c/b in place of x. That is, formula

(2) holds only if F
−c/b
x does. Hence, (2) is equivalent to the formula F

−c/b
x , which is

quantifier-free.
So, how can we eliminate the quantifier in (2) equivalently?
Before you read on, see if you can find the answer for yourself.
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Most certainly, F
−c/b
x is quantifier-free. But it is not exactly always equivalent to (2)

and, thus, does not necessarily qualify as its quantifier eliminate form. Oh no! What
we wrote down is a good intuitive start, but does not make any sense at all if b = 0,
for then −c/b would have been a rather ill-devised division by zero. Performing such
divisions by zero sounds like a fairly shaky start for an equivalence transformation such
as quantifier elimination. And certainly sounds like a shaky start for anything that is
supposed to ultimately turn into a proof.

Let’s start over. The first conjunct in (2) has the only solution x = −c/b if b 6= 0. In

that case, indeed, (2) is equivalent to F
−c/b
x , because the only way for (2) to be true

then is exactly when the second conjunct F holds for the solution of the first conjunct,

i.e. when F
−c/b
x holds. But there is, in general, no way of knowing whether evaluation

could yield b 6= 0 or not, because b might be a complicated polynomial term that is only
zero under some interpretations, not under all. Certainly if b is the zero polynomial, we
know for sure. Or if b is a polynomial that is never zero, such as a sum of squares plus
a positive constant. In general, if b = 0, then, the first conjunct in (2) has all numbers
for x as solutions if c = 0 and, otherwise, has no solution at all if c 6= 0. In the latter
case, b = 0, c 6= 0, (2) is false, because its first conjunct is already false. In the former
case, b = c = 0, however, the first conjunct bx+ c = 0 is trivial and does not impose any
constraints on x, nor does it help for finding out a quantifier-free equivalent of (2). In
that case b = c = 0, the trivial constraint will be dropped and the remaining formula
will be considered recursively instead.

Note 5. In the non-degenerate case b 6= 0 with x 6∈ b, c, (2) can be rephrased into a
quantifier-free equivalent over R as follows:

b 6= 0 →
(

∃x (bx+ c = 0 ∧ F ) ↔ b 6= 0 ∧ F−c/b
x

)

(3)

All it takes is, thus, the ability to substitute the term −c/b for x in the formula F . The di-

vision −c/b that will occur in F
−c/b
x for ordinary term substitutions can cause technical

annoyances but at least it is well-defined, because b 6= 0 holds in that context. Instead of

pursuing the looming question how exactly this substitution in F
−c/b
x works, we make

the question more general by moving the quadratic case already.

7. Square Root
√· Substitutions for Quadratics

Consider a formula of the form

∃x (ax2 + bx+ c = 0 ∧ F ) (x 6∈ a, b, c) (4)

where x does not occur in the terms a, b, c. The generic solution of its first conjunct
is x = (−b±

√
b2 − 4ac)/(2a), but that, of course, again depends on whether a could

evaluate to zero, in which case linear solutions may be possible and the division by
2a is most certainly not well-defined; see Fig. 2. Whether a could be zero may again
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x

−x2 + x+ 1
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2 + x− 1
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x

0x2 + x+ 1
2

Figure 2: Roots of quadratic functions p

sometimes be hard to say when a is a polynomial term that has roots, but does not
always evaluate to 0 either (which only the zero polynomial would). So let’s be more
careful this time to find an equivalent formulation right away for all possible cases of
a, b, c. The cases to consider are where the first conjunct is either a constant equation (in
which case the equation imposes no interesting constraint on x) or a linear equation (in
which case x = −c/b is the solution Sect. 6) or a proper quadratic equation with a 6= 0
(in which case x = (−b±

√
b2 − 4ac)/(2a) is the solution). The trivial equation 0 = 0

when a = b = c = 0 is again useless, so another part of F would have to be considered
in that case, and the equation c = 0 for a = b = 0, c 6= 0 is again false .

When ax2 + bx = 0 is either a proper linear or a proper quadratic equation, its respec-
tive solutions single out the only points that can solve (4), so the only points in which
it remains to be checked whether the second conjunct F also holds.

Theorem 5 (Virtual substitution of quadratic equations). For a quantifier-free formula
F with x 6∈ a, b, c, the following equivalence is valid over R:

a 6= 0 ∨ b 6= 0 ∨ c 6= 0 →
(

∃x (ax2 + bx+ c = 0 ∧ F ) ↔

a = 0 ∧ b 6= 0 ∧ F−c/b
x

∨ a 6= 0 ∧ b2 − 4ac ≥ 0 ∧
(

F (−b+
√
b2−4ac)/(2a)

x ∨ F (−b−
√
b2−4ac)/(2a)

x

)

)

(5)

Hold on, we fortunately noticed just in time for writing down the formula (5) that
(−b+

√
b2 − 4ac)/(2a) only ever makes actual sense in the reals if b2 − 4ac ≥ 0, because

the square root is otherwise imaginary, which is hard to find in FOLR.
The resulting formula on the right-hand side of the biimplication is quantifier-free

and, thus, sounds like it could be chosen for QE(∃x (ax2 + bx+ c = 0 ∧ F )) as long as
it is not the case that a = b = c = 0.

15-424 LECTURE NOTES ANDRÉ PLATZER
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Note 7. The important thing to notice, though, is that (−b±
√
b2 − 4ac)/(2a) is not a

polynomial term, nor even a rational term, because it involves a square root
√·. Hence, (5)

is not generally a formula of first-order real arithmetic! Unless we do something about its
square roots and divisions.

Recall from Lecture 2 on Differential Equations & Domains that the terms of FOLR are
polynomials with rational coefficients in Q. So 4x2 + 1

7x− 1.41 is a polynomial term of
FOLR. But 4x2 + 1

yx− 1.41 is not, because of the division by variable y, which should

make us panic about y possibly being zero in any case. And 4x2 + 1
7x−

√
2 is not either,

because of the square root
√
2.

Note 8 (Semantic domains versus syntactic expressions). While the domains that the
quantifiers ∀ and ∃ of first-order logic FOLR of real arithmetic quantify over includes reals
like

√
2, the terms and logical formulas themselves are syntactically restricted to be built

from polynomials with rational coefficients. Square roots (and all higher roots) are already
part of the semantic domain R, but not allowed in the syntax of FOLR.

Of course, it is still easy to write down a formula such as ∃xx2 = 2 which indirectly
makes sure that x will have to assume the value

√
2, but that formula mentions a quan-

tifier again.
Square roots are really not part of real arithmetic. But they can be defined, still,

by appropriate quadratures. For example, the positive root x =
√
y can be defined as

x2 = y ∧ y ≥ 0. Let’s find out how square roots such as (−b±
√
b2 − 4ac)/(2a) can be

substituted into first-order formulas systematically without the need for involving any
square roots in the resulting formula.

A square root expression is an expression of the form

(a+ b
√
c)/d

with polynomials a, b, c, d ∈ Q[x1, . . . , xn] of rational coefficients in the variables x1, . . . , xn
and, for well-definedness, d 6= 0 ∧ c ≥ 0. Square root expressions with the same

√
c can

be added and multiplied symbolically by considering them as algebraic objects:4

((a+ b
√
c)/d) + ((a′ + b′

√
c)/d′) = ((ad′ + da′) + (bd′ + db′)

√
c)/(dd′)

((a+ b
√
c)/d) · ((a′ + b′

√
c)/d′) = ((aa′ + bb′c) + (ab′ + ba′)

√
c)/(dd′)

(6)

Another way of saying that is that square root expressions with the same
√
c provide an

addition and a multiplication operation that leads to square root expressions. Substi-
tuting (a+ b

√
c)/d for a variable x in a polynomial term p, thus, leads to a square root

4Despite the poor notation, please don’t mistake the primes for derivatives here. The name a
′ is not

the derivative of a here but just meant as a name for a polynomial term that happens to go by the
misleading name a

′.
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expression p
(a+b

√
c)/d

x = (ã+ b̃
√
c)/d̃ with the same

√
c, because the arithmetic resulting

from evaluating the polynomial only requires addition and multiplication using (6).5

Note 9. Subsequent symbolic addition and multiplication makes it possible to substitute a

square root expression in for a variable in a polynomial to form. Yet, the result p
(a+b

√
c)/d

x

is still a square root expression, which still cannot be written down directly in first-order
real arithmetic. Yet, as soon as a square root expression appears in an atomic formula of
first-order real arithmetic, that square root can be rephrased equivalently to disappear.

The substitution of a square root expression (a′ + b′
√
c)/d′ into a polynomial p for x

to form p
(a+b

√
c)/d

x by polynomial evaluation leads to a square root expression, say the

square root expression p
(a′+b′

√
c)/d′

x = (a+ b
√
c)/d.

The next step is to handle the comparison of the resulting square root expression to 0
in atomic formulas p ∼ 0 for some ∼ ∈ {=,≤, <}. That works by characterizing it using

the square root expression p
(a′+b′

√
c)/d′

x :

(p ∼ 0)
(a′+b′

√
c)/d′

x̄ ≡ (p(a
′+b′

√
c)/d′

x ∼ 0)

Suppose the square root expression p
(a′+b′

√
c)/d′

x from the polynomial evaluation is (a+ b
√
c)/d.

All that remains to be done is to rewrite (a+ b
√
c)/d ∼ 0 equivalently in FOLR.

Assume d 6= 0 ∧ c ≥ 0 for well-definedness. For square-root-free expressions (b = 0)
with just divisions, i.e. those of the form (a+ 0

√
c)/d, the following equivalences hold:

(a+ 0
√
c)/d = 0 ≡ a = 0

(a+ 0
√
c)/d ≤ 0 ≡ ad ≤ 0

(a+ 0
√
c)/d < 0 ≡ ad < 0

Assume d 6= 0 ∧ c ≥ 0 for well-definedness. For square root expressions (a+ b
√
c)/d

with arbitrary b, the following equivalences hold:

(a+ b
√
c)/d = 0 ≡ ab ≤ 0 ∧ a2 − b2c = 0

(a+ b
√
c)/d ≤ 0 ≡ ad ≤ 0 ∧ a2 − b2c ≥ 0 ∨ bd ≤ 0 ∧ a2 − b2c ≤ 0

(a+ b
√
c)/d < 0 ≡ ad < 0 ∧ a2 − b2c > 0 ∨ bd ≤ 0 ∧ (ad < 0 ∨ a2 − b2c < 0)

The first line characterizes that = 0 holds iff a, b have different signs (possibly 0) and
their squares cancel, because a2 = b2c. The second line characterizes that ≤ 0 holds
iff a2 ≥ b2c so that a will dominate, which has a different sign than d, or if a2 ≤ b2c
so that b

√
c will dominate, which has a different sign than d (possibly 0). The squares

a2 − b2c = a2 − b2
√
c
2

is the square of the absolute value of the involved terms, which
uniquely identifies the truth-values along with the accompanying sign conditions. The

5In practice, the polynomial addition and multiplication operations for a polynomial η are performed by
Horner’s scheme for dense polynomials η and by repeated squaring for sparse polynomials η.
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third line characterizes that < 0 holds iff a strictly dominates, because a2 > b2c and
the dominant a, d have different signs or if b, d have different signs and either a, d have
different signs as well (so a, b have the same sign or 0 and different than d) or b strictly
dominates because a2 < b2c. The last case involves a little extra care for the required
sign conditions to avoid the = 0 case. Essentially, the condition holds for opposing
sign of a whose square dominates b

√
c or for compatible sign of b that either also has a

compatible sign of a (not 0) or whose square dominates b
√
c.

This defines the substitution of a square root (a+ b
√
c)/d for x into atomic formulas

and can be lifted to all first-order logic formulas as explained in Sect. 5. The important
thing to observe is that the result of this substitution does not introduce square root
expressions nor divisions even though the square root expression (a+ b

√
c)/d had the

square root
√
c and the division /d. Substitution of a square root (a+ b

√
c)/d for x into a

(quantifier-free) first-order formula F then works as usual by substitution in all atomic
formulas (as defined in Sect. 5). The result of such a virtual substitution is denoted by

F
(a+b

√
c)/d

x̄ .
It is crucial to note that the virtual substitution of square root expression (a+ b

√
c)/d

for x in F giving F
(a+b

√
c)/d

x̄ is semantically equivalent to the result F
(a+b

√
c)/d

x of the
literal substitution replacing x with (a+ b

√
c)/d, but operationally quite different, be-

cause the virtual substitution never introduces square roots or divisions. Because of
their semantical equivalence, we use the same notation by abuse of notation.

Lemma 6 (Virtual substitution lemma for square roots). The result F
(a+b

√
c)/d

x̄ of

the virtual substitution is semantically equivalent to the the result F
(a+b

√
c)/d

x of the lit-
eral substitution, but better behaved, because it stays within FOLR proper. Essentially,
the following equivalence of virtual substitution and literal substitution for square root
expressions is valid:

F (a+b
√
c)/d

x ↔ F
(a+b

√
c)/d

x̄

Keep in mind, though, that the result F
(a+b

√
c)/d

x̄ of virtual substitution is a proper formula

of FOLR, while the literal substitution F
(a+b

√
c)/d

x could actually only even be considered
to be a formula in an extended logic that allows for a syntactic representation of divisions
and square root expressions within a context in which they are meaningful (no divisions
by zero, no imaginary roots).

A more precise rendition of the virtual substitution lemma, thus, shows the equivalence

ωr
x ∈ [[F ]] iff ω ∈ [[F

(a+b
√
c)/d

x̄ ]] where r = ([[a]]ω + [[b]]ω
√

[[c]]ω)/[[d]]ω ∈ R

which is an equivalence of the value of the result of a virtual substitution in any state ω
with the value of F in the semantic modification of the state ω with the value of the variable
x changed around to the (real) value that the expression (a+ b

√
c)/d would have if only it

were allowed in FOLR.

Using Lemma 6, Theorem 5 continues to hold when using the so-defined square root
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virtual substitutions F
(−b±

√
b2−4ac)/(2a)

x̄ that turn (5) into a valid formula of first-order real
arithmetic, without scary square root expressions. In particular, since the fraction −c/b
also is a (somewhat impoverished) square root expression (−c+ 0

√
0 )/b, the FOLR

formula F
−c/b
x̄ in (5) can be formed and rephrased equivalently using the square root

virtual substitution as well. Hence, the quantifier-free right-hand side of (5) neither
introduces square roots nor divisions but happily remains a proper formula in FOLR.

With this virtual substitution, the right-hand side of the biimplication (5) can be cho-
sen as QE(∃x (ax2 + bx+ c = 0 ∧ F )) if it is not the case that a = b = c = 0.

When using square root substitutions, divisions could, thus, also have been avoided
in the quantifier elimination (3) for the linear case. Thus, the right-hand side of (3) can
be chosen as QE(∃x (bx+ c = 0 ∧ F )) if it is not the case that b = c = 0.

8. Optimizations

Before going any further, it is helpful to notice that virtual substitutions admit a num-
ber of useful optimizations that make it more practical. When substituting a square
root expression (a+ b

√
c)/d for a variable x in a polynomial p, the resulting square root

expression p
(a+b

√
c)/d

x̄ = (ã+ b̃
√
c)/d̃ will end up occurring with a higher power of the

form d̃ = dk where k is the degree of p in variable x. This is easy to see just by in-
specting the definitions of addition and multiplication from (6). Such larger powers of
d can be avoided using the equivalences (pq3 ∼ 0) ≡ (pq ∼ 0) and, if q 6= 0, using also
(pq2 ∼ 0) ≡ (p ∼ 0) for arithmetic relations ∼ ∈ {=, >,≥, 6=, <,≤}. Since d 6= 0 needs to
be assumed for well-definedness of a square root expression (a+ b

√
c)/d, the degree of

d in the result F
(a+b

√
c)/d

x̄ of the virtual substitution can, thus, be lowered to either 0 or 1
depending on whether it ultimately occurs as an even or as an odd power (Exercise 7).
If d occurs as an odd power, its occurrence can be lowered to degree 1. If d occurs as
an even power, its occurrence can be reduced to degree 0, which makes it disappear
entirely.

The significance of lowering degrees does not just come from the conceptual and
computational impact that large degrees have on the problem of quantifier elimination,
but, for the case of virtual substitution, also from the fact that virtual substitution only
works for certain bounded but common degrees.

Example 7 (Curiosity). Using this principle to check under which circumstance the
quadratic equality from (4) evaluates to true requires a nontrivial number of algebraic
and logical computations to handle the virtual substitution of the respective roots of
ax2 + bx+ c = 0 into F .

Just out of curiosity: What would happen if we tried to apply the same virtual sub-
stitution coming from this equation to ax2 + bx+ c = 0 itself instead of to F ? Imagine,
for example, that ax2 + bx+ c = 0 shows up a second time in F . Let’s only consider
the case of quadratic solutions, i.e. where a 6= 0. And let’s only consider the root
(−b+

√
b2 − 4ac)/(2a). The other cases are left as an exercise. First virtually substitute

(−b+
√
b2 − 4ac)/(2a) into the polynomial ax2 + bx+ c leading to symbolic square root
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expression arithmetic:

(ax2 + bx+ c)
(−b+

√
b2−4ac)/(2a)

x̄

= a((−b+
√

b2 − 4ac)/(2a))2 + b((−b+
√

b2 − 4ac)/(2a)) + c

= a((b2 + b2 − 4ac+ (−b− b)
√

b2 − 4ac)/(4a2)) + (−b2 + b
√

b2 − 4ac)/(2a) + c

= (ab2 + ab2 − 4a2c+ (−ab− ab)
√

b2 − 4ac)/(4a2) + (−b2 + 2ac+ b
√

b2 − 4ac)/(2a)

= ((ab2 + ab2 − 4a2c)2a+ (−b2 + 2ac)4a2 + ((−ab− ab)2a+ b4a2)
√

b2 − 4ac)/(4a2)

= (2a2b2 + 2a2b2 − 8a3c +−4a2b2 + 8a3c + (−2a2b − 2a2b + 4a2b)
√

b2 − 4ac)/(4a2)

= (0 + 0
√

b2 − 4ac)/1 = 0

So (ax2 + bx+ c)
(−b+

√
b2−4ac)/(2a)

x̄ is the zero square root expression? That is actually ex-
actly as expected by construction, because (−b±

√
b2 − 4ac)/(2a) is supposed to be the

root of ax2 + bx+ c in the case where a 6= 0 ∧ b2 − 4ac ≥ 0. In particular, if ax2 + bx+ c
occurs again in F as either an equation or inequality, its virtual substitute in the various
cases just ends up being:

(ax2 + bx+ c = 0)
(−b+

√
b2−4ac)/(2a)

x̄ ≡ ((0 + 0
√

b2 − 4ac)/1 = 0) ≡ (0 · 1 = 0) ≡ true

(ax2 + bx+ c ≤ 0)
(−b+

√
b2−4ac)/(2a)

x̄ ≡ ((0 + 0
√

b2 − 4ac)/1 ≤ 0) ≡ (0 · 1 ≤ 0) ≡ true

(ax2 + bx+ c < 0)
(−b+

√
b2−4ac)/(2a)

x̄ ≡ ((0 + 0
√

b2 − 4ac)/1 < 0) ≡ (0 · 1 < 0) ≡ false

(ax2 + bx+ c 6= 0)
(−b+

√
b2−4ac)/(2a)

x̄ ≡ ((0 + 0
√

b2 − 4ac)/1 6= 0) ≡ (0 · 1 6= 0) ≡ false

And that makes sense as well. After all, the roots of ax2 + bx+ c = 0 satisfy the weak
inequality ax2 + bx+ c ≤ 0 but not the strict inequality ax2 + bx+ c < 0. In particu-
lar, Theorem 5 could substitute the roots of ax2 + bx+ c = 0 also into the full formula
ax2 + bx+ c = 0 ∧ F under the quantifier, but the formula resulting from the left con-
junct ax2 + bc+ c = 0 will always simplify to true so that only the virtual substitution
into F will remain, where actual logic with real arithmetic happens.

The above computations are all that is needed for Theorem 5 to show the following
quantifier elimination equivalences:

a 6= 0 → (∃x (ax2 + bx+ c = 0 ∧ ax2 + bx+ c = 0) ↔ b2 − 4ac ≥ 0 ∧ true)

a 6= 0 → (∃x (ax2 + bx+ c = 0 ∧ ax2 + bx+ c ≤ 0) ↔ b2 − 4ac ≥ 0 ∧ true)

With analog computations for the case (−b−
√
b2 − 4ac)/(2a), this also justifies:

a 6= 0 → (∃x (ax2 + bx+ c = 0 ∧ ax2 + bx+ c < 0) ↔ b2 − 4ac ≥ 0 ∧ false)

a 6= 0 → (∃x (ax2 + bx+ c = 0 ∧ ax2 + bx+ c 6= 0) ↔ b2 − 4ac ≥ 0 ∧ false)
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Consequently, in a context where a 6= 0 is known, for example because it is a term such
as 5 or y2 + 1, Theorem 5 and simplification yields the following quantifier elimination
results:

QE(∃x (ax2 + bx+ c = 0 ∧ ax2 + bx+ c = 0)) ≡ b2 − 4ac ≥ 0

QE(∃x (ax2 + bx+ c = 0 ∧ ax2 + bx+ c ≤ 0)) ≡ b2 − 4ac ≥ 0

QE(∃x (ax2 + bx+ c = 0 ∧ ax2 + bx+ c < 0)) ≡ false

QE(∃x (ax2 + bx+ c = 0 ∧ ax2 + bx+ c 6= 0)) ≡ false

In a context where a 6= 0 is not known, more cases become possible and the disjunctive
structure in Theorem 5 remains, leading to a case distinction on whether a = 0 or a 6= 0.

Example 8 (Nonnegative roots of quadratic polynomials). Consider the formula

∃x (ax2 + bx+ c = 0 ∧ x ≥ 0) (7)

for the purpose of eliminating quantifiers using Theorem 5. For simplicity, again as-
sume a 6= 0 is known, e.g., because a = 5. Since a 6= 0, Theorem 5 will only consider the
two square root expressions (−b+

√
b2 − 4ac)/(2a) and (−b−

√
b2 − 4ac)/(2a) and no

linear roots. The first thing that happens during the virtual substitution of those roots
into the remaining formula F ≡ (x ≥ 0) is that the construction in Sect. 5 will flip x ≥ 0
around to a base case −x ≤ 0. On that base case, the substitution of the square root
expression (−b+

√
b2 − 4ac)/(2a) into the polynomial −x leads to the following square

root computations following (6):

−(−b+
√

b2 − 4ac)/(2a) = ((−1+0
√

b2 − 4ac)/1)·((−b+
√

b2 − 4ac)/(2a) = (b−
√

b2 − 4ac)/(2a)

Observe how the unary minus operator expands to multiplication by -1, whose repre-
sentation as a square root expression with square root

√
b2 − 4ac is (−1 + 0

√
b2 − 4ac)/1.

The virtual square root substitution of this square root expression, thus, yields

(−x ≤ 0)
(b−

√
b2−4ac)/(2a)

x̄

≡ b2a ≤ 0 ∧ b2 − (−1)2(b2 − 4ac) ≥ 0 ∨ −1 · 2a ≤ 0 ∧ b2 − (−1)2(b2 − 4ac) ≤ 0

≡ 2ba ≤ 0 ∧ 4ac ≥ 0 ∨ −2a ≤ 0 ∧ 4ac ≤ 0

For the second square root expression (−b−
√
b2 − 4ac)/(2a), the corresponding poly-

nomial evaluation leads to

−(−b−
√

b2 − 4ac)/(2a) = ((−1+0
√

b2 − 4ac)/1)·((−b−
√

b2 − 4ac)/(2a) = (b+
√

b2 − 4ac)/(2a)

The virtual square root substitution of this square root expression, thus, yields

(−x ≤ 0)
(b+

√
b2−4ac)/(2a)

x̄

≡ b2a ≤ 0 ∧ b2 − 12(b2 − 4ac) ≥ 0 ∨ 1 · 2a ≤ 0 ∧ b2 − 12(b2 − 4ac) ≤ 0

≡ 2ba ≤ 0 ∧ 4ac ≥ 0 ∨ 2a ≤ 0 ∧ 4ac ≤ 0
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Consequently, since a 6= 0, Theorem 5 implies the quantifier elimination equivalence:

a 6= 0 →
(

∃x (ax2 + bx+ c = 0 ∧ x ≥ 0)

↔ b2 − 4ac ≥ 0 ∧ (2ba ≤ 0 ∧ 4ac ≥ 0 ∨ −2a ≤ 0 ∧ 4ac ≤ 0 ∨ 2ba ≤ 0 ∧ 4ac ≥ 0 ∨ 2a ≤ 0 ∧ 4ac ≤ 0)
)

Consequently, in a context where a 6= 0 is known, 5 yields the following quantifier
elimination results:

QE(∃x (ax2 + bx+ c = 0 ∧ x ≥ 0))

≡ b2 − 4ac ≥ 0 ∧ (2ba ≤ 0 ∧ 4ac ≥ 0 ∨ −2a ≤ 0 ∧ 4ac ≤ 0 ∨ 2ba ≤ 0 ∧ 4ac ≥ 0 ∨ 2a ≤ 0 ∧ 4ac ≤ 0)

≡ b2 − 4ac ≥ 0 ∧ (ba ≤ 0 ∧ ac ≥ 0 ∨ a ≥ 0 ∧ ac ≤ 0 ∨ a ≤ 0 ∧ ac ≤ 0)

The sign conditions that this formula expresses make sense when you consider that the
original quantified formula (7) expresses that the quadratic equation has a nonnegative
root.

9. Summary

This lecture showed part of the miracle of quantifier elimination and quantifier elimi-
nation is possible in first-order real arithmetic. Today’s technique works for formulas
that normalize into an appropriate form as long as the technique can latch on to a linear
or quadratic equation for all quantified variables. Note that there can be higher-degree
or inequality occurrences of the variables as well within the formula F of Theorem 5,
but there has to be at least one linear or quadratic equation. Commuting the formula so
that it has the required form is easily done if such an equation is anywhere at all. What
is to be done if there is no quadratic equation but only other quadratic inequalities is
the topic of the next lecture.

It is also foreseeable that the virtual substitution approach will ultimately run into
difficulties for pure high-degree polynomials, because those generally have no radi-
cals to solve the equations. That is where other more algebraic quantifier elimination
techniques come into play that are beyond the scope of this lecture.

Virtual substitution of square root expressions uses simple symbolic computations:

(α+ β
√
γ)/δ + (α′ + β′√γ)/δ′ = ((αδ′ + δα′) + (βδ′ + δβ′)

√
γ)/(δδ′)

((α+ β
√
γ)/δ) · ((α′ + β′√γ)/δ′) = ((αα′ + ββ′γ) + (αβ′ + βα′)

√
γ)/(δδ′)

The following expansions were the core of eliminating square root expressions by vir-
tual substitutions. For square root expressions (α+ β

√
γ)/δ with δ 6= 0 ∧ γ ≥ 0 for well-

definedness, the following equivalences hold:

(α+ β
√
γ)/δ = 0 ≡ αβ ≤ 0 ∧ α2 − β2γ = 0

(α+ β
√
γ)/δ ≤ 0 ≡ αδ ≤ 0 ∧ α2 − β2γ ≥ 0 ∨ βδ ≤ 0 ∧ α2 − β2γ ≤ 0

(α+ β
√
γ)/δ < 0 ≡ αδ < 0 ∧ α2 − β2γ > 0 ∨ βδ ≤ 0 ∧ (αδ < 0 ∨ α2 − β2γ < 0)

15-424 LECTURE NOTES ANDRÉ PLATZER
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A. Real Algebraic Geometry

This course follows a logical view on cyber-physical systems. It is helpful to develop an
intuition to what geometric objects the various logical concepts correspond. The part
that is most interesting in this context is real algebraic geometry [BCR98] as it relates to
real arithmetic [BPR06]. General algebraic geometry is also very elegant and beautiful,
especially over algebraically closed fields [Har95, CLO92].

The geometric counterpart of polynomial equations are real affine algebraic varieties.
Every set F of polynomials defines a geometric object, its variety, i.e. the set of points
on which all those polynomials are zero.

Definition 9 (Real Affine Algebraic Variety). V ⊆ Rn is an affine variety iff, for some
set F ⊆ R[X1, . . . , Xn] of polynomials over R:

V = V (F ) := {x ∈ Rn : f(x) = 0 for all f ∈ F}

i.e., affine varieties are subsets of Rn that are definable by a set of polynomial equations.

The converse construction is that of the vanishing ideal, which describes the set of all
polynomials that are zero on a given set V .

Definition 10 (Vanishing Ideal). I ⊆ R[X1, . . . , Xn] is the vanishing ideal of V ⊆ Rn:

I(V ) := {f ∈ R[X1, . . . , Xn] : f(x) = 0 for all f ∈ V }

i.e., all polynomials that are zero on all of V .

Affine varieties and vanishing ideals are related by

S ⊆ V (I(S)) for any set S ⊆ Rn

V = V (I(V )) if V an affine variety

F ⊆ G ⇒ V (F ) ⊇ V (G)

Affine varieties and vanishing ideals are intimately related by Hilbert’s Nullstellensatz
over algebraically closed fields such as C and by Stengle’s Nullstellensatz over real-
closed fields such as R.

The affine varieties corresponding to a number of interesting polynomials are illus-
trated in Fig. 3.

Exercises

Exercise 1. Example 7 showed that ax2 + bx+ c = 0 simplifies to true for the virtual
substitution of the root (−b+

√
b2 − 4ac)/(2a). Show that the same thing happens for

the root (−b−
√
b2 − 4ac)/(2a) and the root (−c+ 0

√
0)/b.
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x

y

x3 = y
x

y

x2 + y2 = 1

x

y

y2 = x2(x+ 1)

4x3 + 4x2y + 9xy2 − 9y3 − 36x+ 36y = 0

z = x2 − y2

Figure 3: Polynomial equations describe (real) affine (algebraic) varieties

Exercise 2. Example 7 argued that the simplification of ax2 + bx+ c = 0 to true for the
virtual substitution of the root (−b+

√
b2 − 4ac)/(2a) is to be expected, because the

real number to which (−b+
√
b2 − 4ac)/(2a) evaluates is a root of ax2 + bx+ c = 0 in

the case where a 6= 0 ∧ b2 − 4ac ≥ 0. Yet, what happens in the case where the extra
assumption a 6= 0 ∧ b2 − 4ac ≥ 0 does not hold? What is the value of the virtual
substitution in that case? Is that a problem? Discuss carefully!

Exercise 3. Use Theorem 5 to eliminate quantifiers in the following formula, assuming
a 6= 0 is known:

∃x (ax2 + bx+ c = 0 ∧ x < 1)

Exercise 4. Use Theorem 5 to eliminate quantifiers in the following formula, assuming
a 6= 0 is known:

∃x (ax2 + bx+ c = 0 ∧ x3 + x ≤ 0)

Exercise 5. How does Example 8 change when removing the assumption that a 6= 0?

Exercise 6. Would first-order logic of real arithmetic miss the presence of π? That is, if
we delete π from the domain and make all quantifiers range only over R \ {π}, would
there be any formula that notices by having a different truth-value? If we delete 3

√
5

from the domain, would FOLR notice?

Exercise 7. Consider the process of substituting a square root expression (a+ b
√
c)/d for

a variable x in a polynomial p. Let k be the degree of p in variable x, so that d occurs

as dk with power k in the result p
(a+b

√
c)/d

x̄ = (ã+ b̃
√
c)/d̃. Let δ = 1 when k is odd

and δ = 0 when k is even. Show that the following optimization can be used for the
virtual substitution. Assume d 6= 0 ∧ c ≥ 0 for well-definedness. For square-root-free
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expressions (b = 0) with just divisions, i.e. those of the form (a+ 0
√
c)/d, the following

equivalences hold:

(a+ 0
√
c)/d = 0 ≡ a = 0

(a+ 0
√
c)/d ≤ 0 ≡ adδ ≤ 0

(a+ 0
√
c)/d < 0 ≡ adδ < 0

(a+ 0
√
c)/d 6= 0 ≡ a 6= 0

Assume d 6= 0 ∧ c ≥ 0 for well-definedness. For square root expressions (a+ b
√
c)/d

with arbitrary b, the following equivalences hold:

(a+ b
√
c)/d = 0 ≡ ab ≤ 0 ∧ a2 − b2c = 0

(a+ b
√
c)/d ≤ 0 ≡ adδ ≤ 0 ∧ a2 − b2c ≥ 0 ∨ bdδ ≤ 0 ∧ a2 − b2c ≤ 0

(a+ b
√
c)/d < 0 ≡ adδ < 0 ∧ a2 − b2c > 0 ∨ bdδ ≤ 0 ∧ (adδ < 0 ∨ a2 − b2c < 0)

(a+ b
√
c)/d 6= 0 ≡ ab > 0 ∨ a2 − b2c 6= 0
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[PQR09] André Platzer, Jan-David Quesel, and Philipp Rümmer. Real world verifi-
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15-424: Foundations of Cyber-Physical Systems

Lecture Notes on

Virtual Substitution & Real Arithmetic

André Platzer

Carnegie Mellon University
Lecture 21

1. Introduction

Reasoning about cyber-physical systems and hybrid systems requires understanding
and handling their real arithmetic, which can be challenging, because cyber-physical
systems can have complex behavior. Differential dynamic logic and its proof calculus
[Pla08, Pla10, Pla12] reduce the verification of hybrid systems to real arithmetic. How
arithmetic interfaces with proofs has already been discussed in Lecture 6 on Truth &
Proof. How real arithmetic with linear and quadratic equations can be handled by
virtual substitution has been shown in Lecture 20 on Virtual Substitution & Real Equa-
tions. Today’s lecture shows how virtual substitution for quantifier elimination in real
arithmetic extends to the case of linear and quadratic inequalities.

These lecture notes are loosely based on [Wei97, Pla10, Appendix D]. They add sub-
stantial intuition and motivation that is helpful for following the technical develop-
ment. More information about virtual substitution can be found in the literature [Wei97].
See, e.g., [BPR06, BCR98, PQR09, Pas11] for an overview of other techniques for real
arithmetic.

The most important learning goals of this lecture are:

Modeling and Control: This lecture refines the indirect impact that the previous lec-
ture had on CPS models and controls by informing the reader about the conse-
quences of the analytic complexity resulting from different arithmetical modeling
tradeoffs. There are subtle analytic consequences from different arithmetic formu-
lations of similar questions that can have an impact on finding the right tradeoffs
for expressing a CPS model. A safe distance of car x to a stopping light m could
equally well be captured as x ≤ m or as x < m, for example.

Computational Thinking: The primary purpose of today’s lecture is to understand
how arithmetical reasoning, which is crucial for CPS, can be done rigorously and
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L21.2 Virtual Substitution & Real Arithmetic

automatically not just for the equations considered in Lecture 20 on Virtual Sub-
stitution & Real Equations but also for inequalities. While formulas involving
sufficiently many quadratic equations among other inequalities could already be
handled using the techniques from Lecture 20, such extensions are crucial for
proving arithmetic formulas that involve only inequalities, which happens rather
frequently in a world of CPS where many questions concern inequality bounds on
distances. Developing an intuition for the working principles of real arithmetic
decision procedures can be very helpful for developing strategies to verify CPS
models at scale. We will again see the conceptually very important device in the
logical trinity: the flexibility of moving back and forth between syntax and se-
mantics at will. Virtual substitutions will again allow us to move back and forth
at will between syntax and semantics. This time, square roots will not be all there
is to it, but the logical trinity will lead us to ideas from nonstandard analysis to
bridge the gap between semantic operations that are inexpressible otherwise in
first-order logic of real arithmetic.

CPS Skills: This lecture has an indirect impact on CPS skills, because it discusses use-
ful pragmatics of CPS analysis for modeling and analysis tradeoffs that enable
CPS verification at scale.

CT

M&C CPS

rigorous arithmetical reasoning
miracle of quantifier elimination
logical trinity for reals
switch between syntax & semantics at will
virtual substitution lemma
bridge gap between semantics and inexpressibles

analytic complexity
modeling tradeoffs

verifying CPS at scale

2. Recap: Square Root
√· Substitutions for Quadratics

Recall the way to handle quantifier elimination for linear or quadratic equations from
Lecture 20 on Virtual Substitution & Real Equations by virtually substituting in its sym-
bolic solutions x = −c/b or x = (−b±

√
b2 − 4ac)/(2a), respectively:
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Virtual Substitution & Real Arithmetic L21.3

Theorem 1 (Virtual substitution of quadratic equations). For a quantifier-free formula
F with x 6∈ a, b, c, the following equivalence is valid over R:

a 6= 0 ∨ b 6= 0 ∨ c 6= 0 →
(

∃x (ax2 + bx+ c = 0 ∧ F ) ↔

a = 0 ∧ b 6= 0 ∧ F
−c/b
x̄

∨ a 6= 0 ∧ b2 − 4ac ≥ 0 ∧
(
F

(−b+
√
b2−4ac)/(2a)

x̄ ∨ F
(−b−

√
b2−4ac)/(2a)

x̄

))

(1)

When using virtual substitutions of square roots from Lecture 20, the resulting for-
mula on the right-hand side of the biimplication is quantifier-free and can be chosen
for QE(∃x (ax2 + bx+ c = 0 ∧ F )) as long as it is not the case that a = b = c = 0. In
case a = b = c = 0, another formula in F needs to be considered for directing quantifier
elimination by commuting and reassociating ∧, because the equation ax2 + bx+ c = 0
is noninformative if a = b = c = 0, e.g. when a, b, c are the zero polynomials or even if
they just have a common root.

The equivalent formula on the right-hand side of the biimplication in (1) is a formula
in the first-order logic of real arithmetic when using the virtual substitution of square
root expressions defined in Lecture 20.

3. Infinity ∞ Substitution

Theorem 1 addresses the case where the quantified variable occurs in a linear or quadratic
equation, in which case it is efficient to use Theorem 1, because there are at most 3 sym-
bolic points to consider corresponding to the respective solutions of the equation. The
quantified variable might only occur in inequalities, however. Consider a formula of
the form

∃x (ax2 + bx+ c ≤ 0 ∧ F ) (x 6∈ a, b, c) (2)

where x does not occur in a, b, c. Under the respective conditions from Theorem 1, the
possible solutions −c/b, (−b+

√
d)/(2a), (−b−

√
d)/(2a) from (1) continue to be options

for solutions of (2), because one way of satisfying the weak inequality ax2 + bx+ c ≤ 0
is by satisfying the equation ax2 + bx+ c = 0. So if F is true for any of those solutions
of the quadratic equation (under the auspices of the additional constraints on a, b, c),
then (2) holds as well.

Yet, if those points do not work out, the weak inequality in (2) allows for more possi-
ble solutions than the equation does. For example, if a = 0, b > 0, then sufficiently small
values of x would satisfy 0x2 + bx+ c ≤ 0. Also, if a < 0, then sufficiently small values
of x would satisfy ax2 + bx+ c ≤ 0, because x2 grows faster than x and, thus the nega-
tive ax2 ultimately overcomes any contribution of bx and c to the value of ax2 + bx+ c.
But if we literally substituted each such smaller value of x into F , that would quickly
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L21.4 Virtual Substitution & Real Arithmetic

diverge into the full substitution
∨

t∈T F t
x for the uninsightful case of T

def
= R from Lec-

ture 20.
Now, one possibility of pursuing this line of thought may be to substitute smaller

and smaller values for x into (2) and see if one of those happens to work. There is a
much better way though. The only really small value that would have to be substituted
into (2) for x to see if it happens to work is one that is so negative that it is smaller than
all others: −∞, which is the lower limit of all negative real numbers. Alternatively,
−∞ can be understood as being “always as negative as needed, i.e. more negative than
anything else”. Think of −∞ as being built out of elastic rubber so that it always ends
up being smaller when being compared to any actual real number, because the elas-
tic number −∞ simply shrinks every time it is being compared to any other number.
Analogously, ∞ is the upper limit of all real numbers or “always as positive as needed,
i.e. more positive than anything else”. The elastic rubber version of understanding ∞
is such that ∞ always grows as needed every time it is being compared to any other
number.

Let ∞,−∞ be positive and negative infinities, respectively, i.e. choose extra elements
∞,−∞ 6∈ R with −∞ < r < ∞ for all r ∈ R. Formulas of real arithmetic can be sub-
stituted with ±∞ for a variable x in the compactified reals R ∪ {∞,−∞}. Yet, just like
with square root expressions, ±∞ do not actually need to ever occur in the resulting
formula, because substitution of infinities into formulas can be defined differently. For
example, (x+ 5 > 0)∞x simplifies to false , while (x+ 5 < 0)∞x simplifies to true .

Note 2. Substitution of the infinity −∞ for x into an atomic formula for a polynomial

p
def
=
∑n

i=0 aix
i with polynomials ai that do not contain x is defined by the following

equivalences (accordingly for substituting ∞ for x).

(p = 0)−∞
x̄ ≡

n∧

i=0

ai = 0 (3)

(p ≤ 0)−∞
x̄ ≡ (p < 0)−∞

x̄ ∨ (p = 0)−∞
x̄ (4)

(p < 0)−∞
x̄ ≡ p(−∞) < 0 (5)

(p 6= 0)−∞
x̄ ≡

n∨

i=0

ai 6= 0 (6)

Lines (3) and its dual (6) use that the only equation of real arithmetic that infinities ±∞
satisfy is the trivial equation 0 = 0. Line (4) uses the equivalence p ≤ 0 ≡ p < 0 ∨ p = 0
and is equal to (p < 0 ∨ p = 0)−∞

x̄ by the substitution base from Lecture 20. Line (5)
uses a simple inductive definition based on the degree, deg(p), in the variable x of the
polynomial p to characterize whether p is ultimately negative at −∞ (or for sufficiently
negative numbers):
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Virtual Substitution & Real Arithmetic L21.5

Note 3. Let p
def
=
∑n

i=0 aix
i with polynomials ai that do not contain x. Whether p is

ultimately negative at −∞, suggestively written p(−∞) < 0, is easy to characterize by
induction on the degree of the polynomial:

p(−∞) < 0
def≡
{

p < 0 if deg(p) ≤ 0

(−1)nan < 0 ∨ (an = 0 ∧ (
∑n−1

i=0 aix
i)(−∞) < 0) if deg(p) > 0

p(−∞) < 0 is true in a state in which limx→−∞ p(x) < 0.

The first line captures that the sign of polynomials of degree 0 in the variable x does
not depend on x, so p(−∞) < 0 iff the polynomial that has degree 0 in x and, thus, only
consists of a term p = a0 that is constant in x, is negative (which may still depend on the
value of other variables in a0 but not on x). The second line captures that the sign at −∞
of a polynomial of degree n = deg(p) > 0 is determined by the degree-modulated sign
of its leading coefficient an, because for x of sufficiently big value, the value of anx

n will
dominate all lower-degree values, whatever their coefficients are. For even n > 0, xn <
0 while xn < 0 for odd n at −∞. In case the leading coefficient an evaluates to zero, the
value of p at −∞ depends on the value at −∞ of the remaining polynomial

∑n−1
i=0 aix

i

of lower degree, which can be determined recursively as (
∑n−1

i=0 aix
i)(−∞) < 0. Note

that the degree of the 0 polynomial is sometimes considered to be −∞, which explains
deg(p) ≤ 0 instead of deg(p) = 0.

Substitution of ∞ for x into an atomic formula is defined similarly, except that the
sign factor (−1)n disappears, because xn > 0 at ∞ whatever value n > 0 has. Substitu-
tion of ∞ or of −∞ for x into other first-order formulas is then defined on this basis as
in Lecture 20.

Example 2 (Sign of quadratic polynomials at −∞). Using this principle to check under
which circumstance the quadratic inequality from (2) evaluates to true yields the an-
swer from our earlier ad-hoc analysis of what happens for sufficiently small values of
x:

(ax2 + bx+ c < 0)
−∞
x̄ ≡ (−1)2a < 0 ∨ a = 0 ∧ ((−1)b < 0 ∨ b = 0 ∧ c < 0)

≡ a < 0 ∨ a = 0 ∧ (b > 0 ∨ b = 0 ∧ c < 0)

(ax2 + bx+ c ≤ 0)
−∞
x̄ ≡ (ax2 + bx+ c < 0)

−∞
x̄ ∨ a = b = c = 0

≡ a < 0 ∨ a = 0 ∧ (b > 0 ∨ b = 0 ∧ c < 0) ∨ a = b = c = 0

One representative example for each of those cases is illustrated in Fig. 1. In the same
way, the virtual substitution can be used to see under which circumstance the remain-
der formula F from (2) also evaluates to true for sufficiently small values of x, exactly
when F−∞

x̄ holds. In contrast, note that (at least for a 6= 0), the virtual substitution
of ∞ for x would not make sense to check (2) at, because in that case, the inequality
ax2 + bx+ c ≤ 0 is violated, as could be confirmed by checking an analogously defined
(ax2 + bx+ c ≤ 0)

∞
x̄ . That would be different if the inequality were ax2 + bx+ c ≥ 0.
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L21.6 Virtual Substitution & Real Arithmetic

x

case a < 0

−x2 + x+ 1

−∞
x

case a = 0 ∧ b > 0

x+ 1
2

−∞ x

case a = b = 0 > c

−1

−∞

Figure 1: Illustration of the value of different quadratic functions p where p−∞
x̄ ≡ true

The crucial thing to note is again that the virtual substitution of infinities ±∞ for x
in F giving F±∞

x̄ is semantically equivalent to the result F±∞
x of the literal substitution

replacing x with ±∞, but operationally different, because the virtual substitution never
introduces actual infinities. Because of their semantical equivalence, we use the same
notation by abuse of notation.

Lemma 3 (Virtual substitution lemma for infinities). The result F−∞
x̄ of the virtual

substitution is semantically equivalent to the the result F−∞
x of the literal substitution, but

better behaved, because it stays within FOLR proper. Essentially, the following equivalence
of virtual substitution and literal substitution for infinites is valid:

F−∞
x ↔ F−∞

x̄

Keep in mind that the result F−∞
x̄ of virtual substitution is a proper formula of FOLR,

while the literal substitution F−∞
x could only be considered a formula in an extended logic

such as FOLR∪{−∞,∞} that allows for infinite quantities. The same property holds for F∞
x̄ .

Note that the situation is, in a sense, the converse of Lecture 20, where the square root
expressions were already in the semantic domain R, and just had to be made accessible
in the syntactic formulas via virtual substitutions. In Lemma 3, instead, virtual substitu-
tions already know more about infinities ±∞ than the semantic domain R does, which
is why the semantic domain needs an extension to R ∪ {−∞,∞} for the alignment in
Lemma 3.

Expedition 1 (Infinite challenges with infinities in extended reals R ∪ {−∞,∞}).
The set R ∪ {−∞,∞} is seemingly easily written down as a semantic domain of
extended reals. What exactly do we mean by it? The set of reals to which we adjoin
two new elements, denoted −∞ and ∞ which are the minimum and maximum
element of the ordering ≤:

∀x (−∞ ≤ x ≤ ∞) (7)
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This turns R ∪ {−∞,∞} into a complete lattice, because every subset has a supre-
mum and an infimum. The extended reals are a compactification of R. But where
does that leave the other arithmetic properties of R? What is ∞+ 1 or ∞+ x when
∞ is already infinitely big? The compatibility of ≤ with + expects ∞ ≤ ∞ + x at
least for all x ≥ 0. By (7) also ∞+ x ≤ ∞. Because ∞ is so infinitely big, the same
∞ + x = ∞ is expected even for all x, except −∞. The compatibility of ≤ with ·
expects ∞ ≤ ∞ · x at least for all x ≥ 1. By (7) also ∞ · x ≤ ∞. Since ∞ is infinitely
big, the same ∞ · x = ∞ is expected even for all x > 0.

∞+ x = ∞ for all x 6= −∞
−∞+ x = −∞ for all x 6= ∞

∞ · x = ∞ for all x > 0

∞ · x = −∞ for all x < 0

−∞ · x = −∞ for all x > 0

−∞ · x = ∞ for all x < 0

This extension sounds reasonable. But the resulting set R∪{−∞,∞} is not a field.
Otherwise ∞ would have an additive inverse. But what x would satisfy ∞+x = 0?
One might guess x = −∞, but then one would also expect 0 = ∞ + (−∞) =
∞+ (−∞+ 1) = ((∞+ (−∞)) + 1 = 0 + 1 = 1, which is not a good idea to adopt
for proving anything in a sound way. Instead, problematic terms remain explicitly
undefined.

∞−∞ = undefined

0 · ∞ = undefined

±∞/±∞ = undefined

1/0 = undefined

Since these conventions make infinities somewhat subtle, we happily remember
that the only thing we need them for is to make sense of inserting sufficiently neg-
ative (or sufficiently positive) numbers into inequalities to satisfy them. That is still
mostly harmless.

4. Infinitesimal ε Substitutions

Theorem 1 addresses the case where the quantified variable occurs in a linear or quadratic
equation and the virtual substitution in Sect. 3 adds the case of sufficiently small values
for x to handle ax2 + bx+ c ≤ 0. Consider a formula of the form

∃x (ax2 + bx+ c < 0 ∧ F ) (x 6∈ a, b, c) (8)

In this case, the roots from Theorem 1 will not help, because they satisfy the equation
ax2 + bx+ c = 0 but not the strict inequality ax2 + bx+ c < 0. The virtual substitution
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of −∞ for x from Sect. 3 still makes sense to consider, because the arbitrarily small neg-
ative numbers that it corresponds to might satisfy F and ax2 + bx+ c < 0. If −∞ does
not work, however, the solution of (8) could be near one of the roots of ax2 + bx+ c = 0,
just slightly off so that ax2 + bx+ c < 0 is actually satisfied rather than ax2 + bx+ c = 0.
How far off? Well, saying that exactly by any real number is again difficult, because any
particular real number might already have been too large in absolute value, depending
on the constraints in the remainder of F . Again, this calls for quantities that are always
as small as we need them to be.

Sect. 3 used a negative quantity that is so small that it is smaller than all negative
numbers and hence infinitely small (but infinitely large in absolute value). The neg-
ative infinity −∞ that is smaller no matter what other number we compare it with.
Analyzing (8) needs positive quantities that are infinitely small and hence also infinitely
small in absolute value. Infinitesimals are positive quantities that are always smaller
than all positive real numbers, i.e. “always as small as needed”. Think of them as built
out of elastic rubber so that they always shrink as needed when compared with any
actual positive real number so that the infinitesimals end up being smaller than posi-
tive reals. Another way of looking at infinitesimals is that they are the multiplicative
inverses of ±∞.

A positive infinitesimal ∞ > ε > 0 is positive and an extended real that is infinites-
imal, i.e. positive but smaller than all positive real numbers (ε < r for all r ∈ R with
r > 0). For all non-zero polynomials p ∈ R[x] \ {0}, ζ ∈ R, the Taylor series

p(ζ + ε) =
∞∑

n=0

p(n)(ζ)

n!
(ζ + ε− ζ)n =

∞∑

n=0

p(n)(ζ)

n!
εn =

deg(p)
∑

n=0

p(n)(ζ)

n!
εn

of p around ζ evaluated at ζ + ε (note that ε is small enough to be in the domain of
convergence of the Taylor series) can be used to show:

1. p(ζ + ε) 6= 0
that is, infinitesimals ε are always so small that they never yield roots of any equa-
tion, except the trivial zero polynomial. Whenever it looks like there might be a
root, the infinitesimal just became a bit smaller to avoid satisfying the equation.
And nonzero univariate polynomials p(x) only have finitely many roots, so the
infinitesimals will take care to avoid all of them by becoming just a little smaller.

2. p(ζ) 6= 0 ⇒ p(ζ)p(ζ + ε) > 0,
that is, p has constant sign on infinitesimal neighborhoods of nonroots ζ. If the
neighborhood around ζ is small enough (and for an infinitesimal it will be), then
the polynomial will not yet have changed sign on that interval, because the sign
will only change after passing one of the roots.

3. 0 = p(ζ) = p′(ζ) = p′′(ζ) = · · · = p(k−1)(ζ) 6= p(k)(ζ) ⇒ p(k)(ζ)p(ζ + ε) > 0,
that is the first nonzero derivative of p at ζ determines the sign of p in a small
enough neighborhoods of ζ (infinitesimal neighborhoods will be small enough),
because the sign will only change after passing one of the roots.
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Note 5. Substitution of an infinitesimal expression e + ε with a square root expression
e = (a + b

√
c)/d and a positive infinitesimal ε for x into a polynomial p =

∑n
i=0 aix

i

with polynomials ai that do not contain x is defined by the following equivalences.

(p = 0)e+ε
x̄ ≡

n∧

i=0

ai = 0 (9)

(p ≤ 0)e+ε
x̄ ≡ (p < 0)e+ε

x̄ ∨ (p = 0)e+ε
x̄ (10)

(p < 0)e+ε
x̄ ≡ (p+ < 0)

e
x̄ (11)

(p 6= 0)e+ε
x̄ ≡

n∨

i=0

ai 6= 0 (12)

Lines (9) and its dual (12) use that infinitesimals offsets satisfy no equation except the
trivial equation 0=0 (case 1), which makes infinitesimals and infinities behave the same
as far as equations go. Line (10) again uses the equivalence p ≤ 0 ≡ p < 0 ∨ p = 0. Line
(11) checks whether the sign of p at the square root expression e is already negative
(which will make p inherit the same negative sign after an infinitesimal offset at e + ε
by case 2) or will immediately become negative right away using a recursive formu-
lation of immediately becoming negative that uses higher derivatives (which deter-
mine the sign by case 3). The lifting to arbitrary quantifier-free formulas of real arith-
metic is again by substitution into all atomic subformulas and equivalences such as
(p > q) ≡ (p− q > 0) as defined in Lecture 20. Note that, for the case (p < 0)e+ε

x̄ , the
(non-infinitesimal) square root expression e gets virtually substituted in for x into a
formula p+ < 0, which characterizes whether p becomes negative immediately at or
after x (which will be virtually substituted by the intended square root expression e
momentarily).

Note 6. Whether p is immediately negative at x, i.e. negative itself or of a derivative p′

that makes it negative on an infinitesimal interval [x, x+ ε], suggestively written p+ < 0,
can be characterized recursively:

p+ < 0
def≡
{

p < 0 if deg(p) ≤ 0

p < 0 ∨ (p = 0 ∧ (p′)+ < 0) if deg(p) > 0

p+ < 0 is true in a state in which limy→x+ p(x) = limyցx p(x) = lim y>x
y→x

p(x) < 0 holds

for the limit of p at x from the right.

The first line captures that the sign of polynomials of degree 0 in the variable x does not
depend on x, so they are negative at x iff the polynomial p = a0 that has degree 0 in x
is negative (which may still depend on the value of other variables in a0). The second
line captures that the sign at x + ε of a non-constant polynomial is still negative if it
is negative at x (because x + ε is not far enough away from x for any sign changes by
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case 2) or if x is a root of p but its derivative p′ at x is immediately negative, since the
first nonzero derivative at x determines the sign near x by case 3.

Example 4 (Sign of quadratic polynomials after second root). Using this principle to
check under which circumstance the quadratic strict inequality from (8) evaluates to
true at (−b+

√
b2 − 4ac)/(2a) + ε, i.e. right after its root (−b+

√
b2 − 4ac)/(2a), leads

to the following computation.

(ax2 + bx+ c)
+
< 0 ≡ ax2+bx+c < 0∨ax2+bx+c = 0∧(2ax+b < 0∨2ax+b = 0∧2a < 0)

with successive derivatives to break ties (i.e. zero signs in previous derivatives). Hence,

(ax2 + bx+ c < 0)
(−b+

√
b2−4ac)/(2a)+ε

x̄ ≡ ((ax2 + bx+ c)
+
< 0)

(−b+
√
b2−4ac)/(2a)

x̄ ≡

(ax2 + bx+ c < 0 ∨ ax2 + bx+ c = 0 ∧ (2ax+ b < 0 ∨ 2ax+ b = 0 ∧ 2a < 0))
(−b+

√
b2−4ac)/(2a)

x̄

≡ 0·1 < 0∨0 = 0∧((0 < 0 ∨ 4a2 ≤ 0 ∧ (0 < 0 ∨ −4a2(b2 − 4ac) < 0)
︸ ︷︷ ︸

(2ax+b<0)
(−b+

√
b2−4ac)/(2a)

x̄

)∨ 0 = 0
︸ ︷︷ ︸

(2ax+b=0)...x̄

∧ 2a1 < 0
︸ ︷︷ ︸

(2a<0)...x̄

)

≡ 4a2 ≤ 0 ∧ −4a2(b2 − 4ac) < 0 ∨ 2a < 0

because the square root virtual substitution of its own root (−b+
√
b2 − 4ac)/(2a) into

ax2 + bx+ c gives (ax2 + bx+ c)
(−b+

√
b2−4ac)/(2a)

x̄ = 0 by construction (compare exam-
ple from Lecture 20). The virtual substitution into the other polynomial 2ax+ b in this
formula computes as follows:

(2ax+ b)
(−b±

√
b2−4ac)/(2a)

x̄ ≡ 2a · (−b±
√

b2 − 4ac)/(2a) + b

= (−2ab+±2a
√

b2 − 4ac)/(2a) + b

= (−2ab + 2ab +±2a
√

b2 − 4ac)/(2a)

= (0 +±2a
√

b2 − 4ac)/(2a)

The resulting formula can be further simplified internally to

(ax2 + bx+ c < 0)
(−b+

√
b2−4ac)/(2a)+ε

x̄ ≡ 4a2 ≤ 0∧−4a2(b2 − 4ac) < 0∨ 2a < 0 ≡ 2a < 0

because the first conjunct 4a2 ≤ 0 ≡ a = 0 and, with a = 0, the second conjunct sim-

plifies to −4a2(b2 − 4ac)
0
a = −0(b2) < 0, which is impossible in the reals. This answer

makes sense. Because, indeed, exactly if 2a < 0 will a quadratic polynomial still eval-
uate to ax2 + bx+ c < 0 right after its second root (−b+

√
b2 − 4ac)/(2a). Fig. 2 illus-

trates to how this relates to the parabola point downwards, because of 2a < 0.
Formulas such as this one (2a > 0) are the result of a quantifier elimination procedure.

If the formula after quantifier elimination is either true or false , then you know for sure
that the formula is valid (true) or unsatisfiable (false), respectively. If the result of quan-
tifier elimination is true , for example, KeYmaera can close proof branches (marked by
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x

case a < 0

−x2 + x+ 1

x

case a > 0

x2 − x− 1

x

case a < 0

−1
2x

2 + x− 1
10

Figure 2: Illustration of the sign after the second root for quadratic functions p

proof rule R in our sequent proofs). Yet, quantifier elimination can also return other
formulas, such as 2a > 0, which are equivalent to the formula where quantifier elimi-
nation has been applied. In particular, they identify exactly under which circumstance
that respective quantified formula is true. This can be very useful for identifying the
missing assumptions to make a proof work and the corresponding statement true.

Note 7 (Quantifier elimination identifies requirements). If the result of quantifier
elimination is true, the corresponding formula is valid. If it is false , the corresponding
formula is not valid (and even unsatisfiable). In between, i.e. when quantifier elimination
results in a logical formula that is sometimes false and sometimes true, then this formula
identifies exactly the missing requirements that are needed to make the desired formula
true. This can be useful to synthesize missing requirements. Take care, however, not to
work with universal closures, in which case true and false are the only possible outcomes.

The crucial thing to note about the process is again that the virtual substitution of
infinitesimal expressions e + ε for x in F giving F e+ε

x̄ is semantically equivalent to the
result F e+ε

x of the literal substitution replacing x with e+ ε, but operationally different,
because the virtual substitution never introduces actual infinitesimals. Because of their
semantical equivalence, we use the same notation by abuse of notation.

Lemma 5 (Virtual substitution lemma for infinitesimals). The result F e+ε
x̄ of the vir-

tual substitution is semantically equivalent to the the result F e+ε
x of the literal substitu-

tion, but better behaved, because it stays within FOLR proper. Essentially, the following
equivalence of virtual substitution and literal substitution for infinitesimals is valid:

F e+ε
x ↔ F e+ε

x̄

Keep in mind that the result F e+ε
x̄ of virtual substitution is a proper formula of FOLR,

while the literal substitution F e+ε
x could only be considered a formula in an extended logic

such as FOLR[ε] that allows for infinitesimal quantities from nonstandard analysis.
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Computationally more efficient substitutions of infinitesimals have been reported
elsewhere [BD07].

Expedition 2 (Nonstandard analysis: infinite challenges with infinitesimal ε). Infi-
nite quantities in the extended reals R ∪ {−∞,∞} already needed some attention
to stay away from undefined expressions. Infinitesimals are infinitely more subtle
than infinities. Real numbers are Archimedean, i.e. for every non-zero x ∈ R, there
is an n ∈ N such that

|x+ x+ · · ·+ x
︸ ︷︷ ︸

n times

| > 1

Infinitesimals are non-Archimedean, because it does not matter how often you add
ε, it still won’t sum to one. There is a myriad of ways of making sense of infinitesi-
mal quantities in nonstandard analysis, including surreal numbers, superreal num-
bers, and hyperreals. In a sense, infinitesimal quantities can be considered as mul-
tiplicative inverses of infinities but bring up many subtleties. For example, if an
infinitesimal ε is added to R, then the following terms need to denote values and
satisfy ordering relations:

ε2 ε x2 + ε (x+ ε)2 x2 + 2εx+ 5ε+ ε2

Fortunately, a rather tame version of infinitesimals is enough for the context of
virtual substitution. The crucial properties of infinitesimals we need are [dMP13]:

ε > 0

∀x ∈ R (x > 0 → ε < x)

That is, the infinitesimal ε is positive and smaller than all positive reals.

5. Quantifier Elimination by Virtual Substitution

The following quantifier elimination technique due to Weispfenning [Wei97] works for
formulas with a quantified variable that occurs at most quadratically.
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Theorem 6 (Virtual substitution of quadratic constraints [Wei97]). Let F be a quantifier-
free formula in which all atomic formulas are of the form ax2 + bx+ c ∼ 0 for x-free poly-
nomials a, b, c (i.e. x 6∈ a, b, c) and ∼ ∈ {=,≤, <, 6=}, with corresponding discriminant

d
def
= b2 − 4ac. Then ∃xF is equivalent over R to the following quantifier-free formula:

F
−∞
x̄

∨
∨

(

ax2+bx+c
{

=

≤

}

0
)

∈F

(

a = 0 ∧ b 6= 0 ∧ F
−c/b
x̄ ∨ a 6= 0 ∧ d ≥ 0 ∧ (F

(−b+
√
d)/(2a)

x̄ ∨ F
(−b−

√
d)/(2a)

x̄ )
)

∨
∨

(ax2+bx+c{ 6=
<
}0)∈F

(

a = 0 ∧ b 6= 0 ∧ F
−c/b+ε
x̄ ∨ a 6= 0 ∧ d ≥ 0 ∧ (F

(−b+
√
d)/(2a)+ε

x̄ ∨ F
(−b−

√
d)/(2a)+ε

x̄ )
)

Proof. The proof is an extended form of the proof reported in the literature [Wei97].
The proof first considers the literal substitution of square root expressions, infinities,
and infinitesimals and then, as a second step, uses that the virtual substitutions that
avoid square root expressions, infinities, and infinitesimals are equivalent (Lecture 20,
Lemma 3 and 5). Let G denote the quantifier-free right-hand side so that the validity of
the following formula needs to be shown:

∃xF ↔ G (13)

The implication from the quantifier-free formula G to ∃xF in (13) is obvious, because
each disjunct of the quantifier-free formula has a conjunct of the form F t

x for some (ex-
tended) term t even if it may be a square root expression or infinity or term involving
infinitesimals. Whenever a formula of the form F t

x is true, ∃xF holds with that t as a
witness, even when t is a square root expression, infinity, or infinitesimal.

The converse implication from ∃xF to the quantifier-free formula G in (13) depends
on showing that the quantifier-free formula G covers all possible representative cases
and that the accompanying constraints on a, b, c, d are necessary so that they do not
constrain solutions in unjustified ways.

One key insight is that it is enough to prove (13) for the case where all variables in
F except x have concrete numeric real values, because the equivalence (13) is valid
iff it true in all states. So considering one concrete state at a time is enough. By a
fundamental property of real arithmetic called o-minimality, the set

S(F ) = {ω(x) ∈ R : ω ∈ [[F ]]}

of all real values for x that satisfy F forms a finite union of (pairwise disjoint) intervals,
because the polynomials in F only change signs at their roots. There are only finitely
many roots now that the polynomials have become univariate, i.e. with the only vari-
able x, since all free variables are evaluated to concrete real numbers in ω. Without
loss of generality (by merging overlapping or adjacent intervals), all those intervals are
assume to be maximal, i.e. no bigger interval would satisfy F . So F actually changes
its truth-value at the lower and upper endpoints of these intervals (unless the interval
is unbounded).
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The endpoints of these intervals are of the form −c/b, (−b+
√
d)/(2a), (−b−

√
d)/(2a)

or ∞,−∞ for any of the polynomials ax2 + bx+ c in F , because all polynomials in F are
at most quadratic and all roots of those polynomials are of one of the above forms. In
particular, if −c/b is an endpoint of the intervals of S(F ) for a polynomial ax2 + bx+ c
in F , then a = 0, b 6= 0, because that is the only case where −c/b satisfies F , which has
only at most quadratic polynomials. Likewise, if (−b +

√
d)/(2a) or (−b −

√
d)/(2a)

are endpoints of intervals of S(F ) for a polynomial ax2 + bx+ c in F , then both imply
that a 6= 0 and discriminant d ≥ 0, otherwise there is no such solution in the reals.
Consequently, all the side conditions for the roots in the quantifier-free formula G are
necessary.

Now consider one interval I ⊆ S(F ) (if there is none, ∃xF is false and so will G be).
If I has no lower bound in R, then F−∞

x̄ is true by construction (by Lemma 3, the vir-
tual substitution F−∞

x̄ is equivalent to the literal substitution F−∞
x in ±∞-extended real

arithmetic). Otherwise, let α ∈ R be the lower bound of I . If α ∈ I (i.e. I is closed at the
lower bound), then α is of the form −c/b, (−b+

√
d)/(2a), (−b−

√
d)/(2a) for some equa-

tion (ax2 + bx+ c = 0) ∈ F or some weak inequality (ax2 + bx+ c ≤ 0) ∈ F from F .
Since the respective extra conditions on a, b, c, d hold, the quantifier-free formula G eval-
uates to true. If, otherwise, α 6∈ I (i.e. I is open at the lower bound α), then α is of the
form −c/b, (−b+

√
d)/(2a), (−b−

√
d)/(2a) for some disequation (ax2 + bx+ c 6= 0) ∈ F

or some strict inequality (ax2 + bx+ c < 0) ∈ F . Hence, the interval I cannot be a sin-
gle point. Thus, one of the infinitesimal increments −c/b+ ε, (−b+

√
d)/(2a) + ε, (−b−√

d)/(2a) + ε is in I ⊆ S(F ), because infinitesimals are smaller than all positive real
numbers. Since the respective conditions a, b, c, d hold, the quantifier-free formula G is
again true. Hence, in either case, the quantifier-free formula is equivalent to ∃xF in
state ω. Since the state ω giving concrete real numbers to all free variables of ∃xF was
arbitrary, the same equivalence holds for all ω, which means that the quantifier-free
formula G is equivalent to ∃xF . That is G ↔ ∃xF is valid, i.e. � G ↔ ∃xF .

Figure 3: (left) Illustration of roots e and infinitesimal offsets e + ε checked by virtual
substitution along with −∞ (right) Illustration of roots e and infinitesimal
offsets e− ε that could be checked along with +∞ instead
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The order of the interval endpoints that the proof of Theorem 6 uses in addition to
−∞ are illustrated in Fig. 3(left). Observe that exactly one representative point is placed
in each of the regions of interest, −∞, each of the roots r, and just infinitesimally after
the roots at e+ ε. Alternatively, Theorem 6 could be rephrased to work with ∞, at each
root e, and always before the roots at e− ε; see Fig. 3(right) and Exercise 3. The illustra-
tions in Fig. 3 show the ordering situation for a higher-degree polynomial p even if The-
orem 6 only makes use of the argument for p = ax2 + bx+ c up to degree 2. Quantifier
elimination procedures for higher degrees are still based on this fundamental principle,
but require more algebraic computations.

Finally note that it is quite possible that the considered polynomial p does not single
out the appropriate root e or off-root e + ε that satisfies F to witness ∃xF . So none of
the points illustrated in Fig. 3 will satisfy F , because only a point other than e+ ε in the
open interval between two roots will work.

Note 10 (No rejection without mention). The key argument underlying all quantifier
elimination procedures in some way or another is that all parts of F that are not satisfied for
any of the points in Fig. 3 that p brings about would have to mention another polynomial
q with different roots ẽ and different off-roots ẽ+ ε that will then enter the big disjunction
in Theorem 6.

Example 7. The example of nonnegative roots of quadratic polynomials from Lecture 20
on Virtual Substitutions & Real Equations used Theorem 1 to construct and justify the
quantifier elimination equivalence:

QE(∃x (ax2 + bx+ c = 0 ∧ x ≥ 0))

≡ b2 − 4ac ≥ 0 ∧ (ba ≤ 0 ∧ ac ≥ 0 ∨ a ≥ 0 ∧ ac ≤ 0 ∨ a ≤ 0 ∧ ac ≤ 0)

under the assumption a 6= 0. Specializing to a case shown in Fig. 2 gives:

QE(∃x (x2 − x+ c = 0 ∧ x ≥ 0)) ≡ (−1)2 − 4c ≥ 0 ∧ (c ≥ 0 ∨ c ≤ 0) ≡ 1− 4c ≥ 0 ≡ c ≤ 1

4

By Theorem 6, the same square root expression substitution as in Lecture 20 on Virtual
Substitutions & Real Equations will happen for the atomic formula x2 − x+ c ≤ 0 ex-
cept that the case of −∞ will be added as well as the root 0 that results from considering
the linear atomic formula −x ≥ 0:

QE(∃x (x2 − x+ c ≤ 0 ∧ x ≥ 0)) ≡
(x2 − x+ c ≤ 0 ∧ . . . )

−∞
x̄

︸ ︷︷ ︸

false

∨1− 4c ≥ 0 ∨ (x2 − x+ c ≤ 0 ∧ x ≥ 0)
0
x̄

︸ ︷︷ ︸

c≤0∧0≥0

≡ 1− 4c ≥ 0

Note that the additional disjunction x ≤ 0 coming from the root 0 of −x is in this case
subsumed by the previous disjunct 1− 4c ≥ 0. Hence, adding the roots of −x did not
modify the answer in this case. When adding a third conjunct −x+ 2 = 0, this becomes
critical:

QE(∃x (x2 − x+ c ≤ 0 ∧ x ≥ 0 ∧ −x+ 2 = 0))
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L21.16 Virtual Substitution & Real Arithmetic

Since the first two polynomials x2 − x+ c and −x are still the same, the same vir-
tual substitutions will happen as before. Except that they fail on the new conjunct
−x+ 2 = 0, because the root 0 of the polynomial −x from the second conjunct does not
satisfy −x+ 2 = 0 and because the virtual substitution of the roots (−1±

√
1− 4c)/2 of

the first polynomial x2 − x+ c fail:

(−x+ 2 = 0)
(−1±

√
1−4c)/2

x̄ ≡ ((1 +∓1
√
1− 4c)/2 + 2 = 0) ≡ ((3 +∓1

√
1− 4c)/2 = 0)

≡ ∓3 ≤ 0 ∧ 32 − (∓1)2(1− 4c) = 0 ≡ −3 ≤ 0 ∧ 32 − (−1)2(1− 4c) = 0 ≡ 8− 4c = 0

The latter is only possible for c = 2, which is ruled out by the discriminant condition
1− 4c ≥ 0 that precedes it. And, indeed, neither the roots of the quadratic polynomial
illustrated in Fig. 2 nor the roots of −x nor −∞ are the right points to consider to satisfy
the last conjunct. Of course, the last conjunct expresses that by saying −x+ 2 = 0 quite
explicitly. Never mind that this is an equation for now. Either way, the atomic formula
clearly exposes that −x+ 2 is the polynomial that it cares about. So its roots might be
of interest and will, indeed, by considered in the big disjunction of Theorem 6 as well.
Since −x+ 2 is a visibly linear polynomial, its solution is x = −2/− 1 = 2 which is even
kind enough to be a standard real number so that literal substitution is sufficient and
no virtual substitution is needed. Consequently, the substitution of this root x = 2 of
the last conjunct into the full formula quickly yields:

(x2 − x+ c ≤ 0 ∧ x ≥ 0 ∧ −x+ 2 = 0)
2
x ≡ 22 − 2 + c ≤ 0 ∧ 2 ≥ 0 ∧ 0 = 0 ≡ 2 + c ≤ 0

This provides an answer that the quadratic polynomial x2 − x+ c itself could not fore-
see because it depends on the polynomial −x+ 2 to even take this root into considera-
tion. By Theorem 6, the overall result of quantifier elimination, thus, is the combination
of the cases considered separately above:

QE(∃x (x2 − x+ c ≤ 0 ∧ x ≥ 0 ∧ −x+ 2 = 0))

≡ (x2 − x+ c ≤ 0 ∧ . . . )
−∞
x̄

︸ ︷︷ ︸

false

∨ 1− 4c ≥ 0 ∧ (· · · ∧ −x+ 2 = 0)
(−1±

√
1−4c)/2

x̄
︸ ︷︷ ︸

8−4c=0

∨ −1 6= 0 ∧ (x2 − x+ c ≤ 0 ∧ x ≥ 0)
0
x

︸ ︷︷ ︸

c≤0∧0≥0

∧ (−x+ 2 = 0)0x
︸ ︷︷ ︸

2=0

∨ −1 6= 0 ∧ (x2 − x+ c ≤ 0 ∧ x ≥ 0 ∧ −x+ 2 = 0)
2
x

︸ ︷︷ ︸

2+c≤0

≡ 2 + c ≤ 0 ≡ c ≤ −2

In this particular case, observe that Theorem 1 using −x+ 2 = 0 as the key formula
would have been most efficient, because that would have gotten the answer right away
without fruitless disjunctions. This illustrates that it pays off to pay attention with

15-424 LECTURE NOTES ANDRÉ PLATZER
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real arithmetic and always choose the computationally most parsimonious approach.
But the example also illustrates that the same computation would happen if the third
conjunct would have been −x+ 2 ≤ 0, in which case Theorem 1 would not have helped.

Optimizations are possible for virtual substitution [Wei97] if there is only one quadratic
occurrence of x, and that occurrence is not in an equation. If that occurrence is an
equation, Theorem 1 already showed what to do. If there is only one occurrence of
a quadratic inequality, the following variation of Theorem 6 works, which uses exclu-
sively linear fractions.

Note 11 ([Wei97]). Let

(

Ax2 +Bx+ C

{
≤
<
6=

}

0

)

∈ F be the only quadratic occurrence

of x. In that case, ∃xF is equivalent over R to the following quantifier-free formula:

A = 0 ∧B 6= 0 ∧ F
−C/B
x̄ ∨A 6= 0 ∧ F

−B/(2A)
x̄

∨ F−∞
x̄ ∨ F∞

x̄

∨
∨

(

0x2+bx+c
{

=
≤

}

0
)

∈F

(
b 6= 0 ∧ F

−c/b
x̄

)

∨
∨

(0x2+bx+c{ 6=
<}0)∈F

(
b 6= 0 ∧ (F

−c/b+ε
x̄ ∨ F

−c/b−ε
x̄ )

)

The clou in this case is that the extremal values of Ax2 +Bx+ C are at the roots of the
derivative

(Ax2 +Bx+ C)′ = 2AX +B
!
= 0 i.e. x = − B

2A

Since the only quadratic occurrence in Note 11 is not an equation, this extremal value

is the only point of the quadratic polynomial that matters. In this case, F
−B/(2A)
x̄ will

substitute −B/(2A) for x in the only quadratic polynomial as follows:

(

Ax2 +Bx+ C

{
≤
<

6=

}

0

)−B/(2A)

x̄

≡
(

A
(−B)2

4A2
+

−B2

2A
+ C

{
≤
<

6=

}

0

)

≡
(

−B2

4A
+ C

{
≤
<

6=

}

0

)

The formula resulting from Note 11 might be bigger than that of Theorem 6 but it does
not increase the polynomial degrees.

Further optimizations are possible if some signs of a, b are known, because several
cases in the quantifier-free expansion then become impossible and can be simplified to
true or false immediately. This helps simplify the formula in Theorem 6, because one of
the cases a = 0 versus a 6= 0 might drop. But it also reduces the number of disjuncts in
F−∞
x̄ , see Example 2, and in the virtual substitutions of square roots (Lecture 20) and of

infinitesimals (Sect. 4), which can lead to significant simplifications.
Theorem 6 also applies for polynomials of higher degrees in x if all those factor to

polynomials of at most quadratic degree in x [Wei97]. Degree reduction is also possible
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by renaming based on the greatest common divisor of all powers of x that occur in F .
If a quantified variable x occurs only with degrees that are multiples of an odd number
d then virtual substitution can use ∃xF (xd) ≡ ∃y F (y). If x only occurs with degrees
that are multiples of an even number d then ∃xF (xd) ≡ ∃y (y ≥ 0 ∧ F (y)). Finally, the
cases in Theorem 6 with infinitesimals +ε are only needed if x occurs in strict inequal-

ities in F . The cases F
(−b+±

√
d)/(2a)

x̄ are only needed if x occurs in equations or weak
inequalities.

6. Summary

Virtual substitution is one technique for eliminating quantifiers in real arithmetic. It
works for linear and quadratic constraints and can be extended to some cubic cases
[Wei94]. Virtual substitution can be applied repeatedly from inside out to eliminate
quantifiers. In each case, however, virtual substitution requires the eliminated vari-
able to occur with small enough degrees only. Even if that was the case initially, it
may stop to be the case after eliminating the innermost quantifier, because the degrees
of the formulas resulting from virtual substitution may increase. In that case, degree
optimizations and simplifications may sometimes work. If not, then other quantifier
elimination techniques need to be used, which are based on semialgebraic geometry or
model theory. Virtual substitution alone always works for mixed quadratic-linear for-
mulas, i.e. those in which all quantified variables occur linearly except for one variable
that occurs quadratically. In practice, however, many other cases turn out to work well
with virtual substitution.

By inspecting Theorem 6 and its optimizations, we also observe that it is interesting
to look at only closed sets or only open sets, corresponding to formulas with only ≤ and
= or sets with only < and 6= conditions, because half of the cases then drop out of the
expansion in Theorem 6. Furthermore, if the formula ∃xF only mentions strict inequal-
ities < and disequations 6=, then all virtual substitutions will involve infinitesimals or
infinities. While both are conceptually more demanding than virtual substitutions with
mere square root expressions, the advantage is that both infinitesimals and infinities
rarely satisfy any equations (except when they are trivial because all coefficients are
zero). In that case, most formulas simplify tremendously. That is an indication in the
virtual substitution method for a more general phenomenon: existential arithmetic with
strict inequalities or, dually, validity of universal arithmetic with weak inequalities, is
computationally easier.

A. Semialgebraic Geometry

The geometric counterpart of polynomial equations or quantifier-free first-order for-
mulas with polynomial equations are affine varieties. The geometric counterpart of
first-order formulas of real arithmetic that may mention inequalities are called semi-
algebraic sets in real algebraic geometry [BCR98, BPR06]. By quantifier elimination,
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the sets definable with quantifiers is the same as the sets definable without quantifiers.
Hence, the formulas of first-order real arithmetic exactly define semialgebraic sets:

Definition 8 (Semialgebraic Set). S ⊆ R
n is an semialgebraic set iff it is defined by a finite

intersection of polynomial equations and inequalities or any finite union of such sets.

S =

t⋃

i=1

s⋂

j=1

{x ∈ R
n : p(x) ∼ 0} where ∼ ∈ {=,≥, >}

The geometric counterpart of the quantifier elimination result is that semialgebraic
sets are closed under projection (the other closure properties are obvious in logic).

Theorem 9 (Tarski Seidenberg [Tar51, Sei54]). Semialgebraic sets are closed under finite
unions, finite intersections, complements and projection to linear subspaces.

The semialgebraic sets corresponding to a number of interesting systems of polyno-
mial inequalities are illustrated in Fig. 4.

x

y

|y| ≤ x3
x

y

x2 + y2 ≤ 1

x

y

y2 = x2(x+ 1)
∧ x ≤ 0.44

x

y

|y| ≥ x3

∧ |y| ≤ 1.7x z ≤ x2 − y2

∧z ≥ x2 − y2

Figure 4: Systems of polynomial inequalities describe semialgebraic sets

Exercises

Exercise 1. Consider
∃x (ax2 + bx+ c ≤ 0 ∧ F ) (14)
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The virtual substitution of the roots of ax2 + bx+ c = 0 according to Sect. 2 as well as
of −∞ according to Sect. 3 will lead to

F−∞
x̄ ∨a = 0∧b 6= 0∧F−c/b

x̄ ∨a 6= 0∧b2−4ac ≥ 0∧
(
F

(−b+
√
b2−4ac)/(2a)

x̄ ∨F (−b−
√
b2−4ac)/(2a)

x̄

)

But when F is −ax2 + bx+ e < 0, then none of those cases necessarily works. Does that
mean the result of virtual substitution is not equivalent to (14)? Where is the catch in
this argument?

Exercise 2. Perform quantifier elimination by virtual substitution to compute

QE(∃x (x2 − x+ c ≤ 0 ∧ x ≥ 0 ∧ −x+ 2 ≤ 0))

Exercise 3. Develop and prove a virtual substitution formula for quadratic polynomials
analog to Theorem 6 that uses the points illustrated in Fig. 3(right) instead of Fig. 3(left).
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