Correct-By-Construction Barrier Certificate Synthesis for Safety Verification of Continuous Dynamical Systems

Promit Panja André Platzer

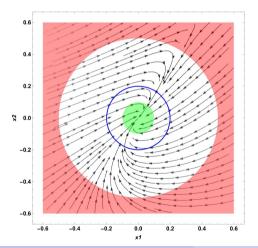
Karlsruhe Institute of Technology {promit.panja, andre.platzer}@kit.edu

12.12.2025

 $Init \rightarrow [(Ctrl; ODEs)^*]Safe$

The key to establishing the safety of a cyber-physical system for an unbounded time horizon are **invariants**.

Barrier Certificates (BCs) are a class of **differential invariants** witnessing the safety of continuous and hybrid dynamical systems.



$$x \in \mathcal{X} \subseteq \mathbb{R}^n$$

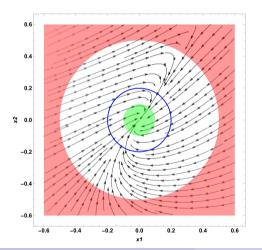
 $f: \mathbb{R}^n \to \mathbb{R}^n$

$$x' = f(x)$$

Set of **initial** states: $\mathcal{X}_I \subseteq \mathcal{X}$

Set of **unsafe** states: $\mathcal{X}_U \subseteq \mathcal{X}$

In this paper we focus on *Barrier Certificates (BCs)* witnessing safety of **continuous** dynamical systems.



$$x \in \mathbb{R}^n, f : \mathbb{R}^n \to \mathbb{R}^n$$

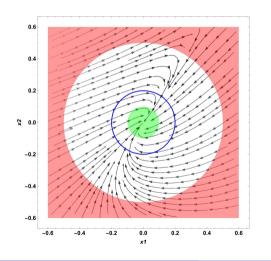
$$x' = f(x)$$

 $B: \mathbb{R}^n \to \mathbb{R}$, for some fixed $\lambda \in \mathbb{R}$

$$B(x) \le 0 \quad \forall x \in \mathcal{X}_I$$

 $B(x) > 0 \quad \forall x \in \mathcal{X}_U$
 $L_f B(x) \le \lambda B(x) \quad \forall x \in \mathcal{X}$

For a template polynomial $B(x, \gamma) = \sum_{i=1}^{n} \gamma_{i} b_{i}(x), \gamma \in \mathbb{Q}$.



- Can be searched efficiently using Sum-of-Squares (SOS) decomposition and Semidefinite Programming (SDP).
- Numerical SDP solvers using interior-point methods have polynomial time worst-case complexity.

Problem: Validity of BCs

Numerical Errors

Small round-off errors in numerical solvers may lead to invalid invariants.

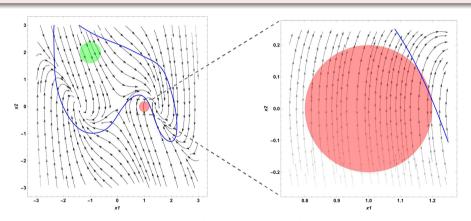


Figure: An invalid BC synthesized using SDP.

Problem: Validity of BCs

- Trusting a BC requires an independent post-synthesis verification using Ouantifier Elimination.
- Of course, the entire the BC synthesis is pointless if the subsequent verification fails or symbolic real arithmetic decision procedures time out.

Possible Solution: Witness Driven Verification

- Find a real arithmetic witness for the synthesized BC.
- The witness proves the validity of the BC witnessing safety.
- In other words, find a "witness of a witness".

Decision Procedure (Real Nullstellensatz)

- The Real Nullstellensatz enables a *complete* proof method for the universal fragment of real arithmetic.
- A given set of **equations** $\{g_1(x) = 0, g_2(x) = 0, \dots, g_i(x) = 0\}$ **do not** have a common solution *iff* there exists a polynomial of the form $1 + \varphi_1^2 + \varphi_2^2 + \dots + \varphi_m^2$ contained in the ideal generated by the set.
- Given a *candidate* witness it is sufficient to prove its membership in the ideal generated by the system of polynomial equations i.e., show $1 + \varphi_1^2 + \varphi_2^2 + \cdots + \varphi_m^2 \in (G)$.

Decision Procedure

Find the witness $1 + \varphi_1^2 + \varphi_2^2 + \cdots + \varphi_m^2$ for Real Nullstellensatz.

Decision Procedure (Gröbner Bases)

- Gröbner bases provide a sound and efficient method for proving ideal membership.
- $1 + \varphi_1^2 + \varphi_2^2 + \cdots + \varphi_m^2 \in (G)$ is equivalent to $\operatorname{red}_G(1 + \varphi_1^2 + \varphi_2^2 + \cdots + \varphi_m^2) = 0$, where G is a Gröbner basis.

•
$$1 + \underbrace{\varphi_1^2 + \varphi_2^2 + \dots + \varphi_m^2}_{SOS} \equiv 1 + p^T Q p$$

• Compute $red_G(1 + p^T Qp) = 0$, for **linear constraints** in Q

Decision Procedure

Find Q by encoding red_G $(1 + p^T Qp) = 0$ in an SDP.

Synthesis and Decision Procedure

- 1 Solve an **SOS program** for BC synthesis.
- 2 Take the synthesized BC then solve another SOS program for finding the real arithmetic witness.

Intuition

Can we exploit the SOS structure of the BC constraints and the real arithmetic witness?

Correct-by-Construction BCs

- We present a new framework for synthesizing a valid BC and its witness of validity.
- Both can be found by solving a **single** SOS optimization program.

Combined Procedure

BC Constraints + Real Arithmetic Witness Constraints.

Symbolic Witness Construction

- For a template polynomial $B(x, \gamma) = \sum_{i=1}^{n} \gamma_{i} b_{i}(x)$.
- We write the negation of the BC conditions and encode them into equations by introducing fresh variables s_1, s_2, s_3

$$(B(x,\gamma) + \sigma_1(x)g_l(x))s_1^2 = 1$$
 (1a)

$$B(x,\gamma) - \sigma_2(x)g_U(x) - \epsilon = s_2^2$$
 (1b)

$$-L_f B(x,\gamma) + \lambda B(x,\gamma) - \sigma_3(x) g_D(x) = s_3^2. \tag{1c}$$

Symbolic Witness Construction

Next we construct the Gröbner basis for the corresponding system of equations

$$f_{1} = (B(x,\gamma) + \sigma_{1}(x)g_{I}(x))s_{1}^{2} - 1 = 0$$

$$f_{2} = B(x,\gamma) - \sigma_{2}(x)g_{U}(x) - \epsilon - s_{2}^{2} = 0$$

$$f_{3} = -L_{f}B(x,\gamma) + \lambda B(x,\gamma) - \sigma_{3}(x)g_{D}(x) - s_{3}^{2} = 0.$$

• For a fixed term ordering $s_1 \succ s_2 \succ s_3 \succ x_1 \succ x_2 \succ \dots$ is already a Gröbner basis.

$$G = \{f_1, f_2, f_3\}. \tag{2}$$

• Compute $red_G(1 + p^T Qp) = 0$, for linear constraints in Q.

Monomial Basis Selection for $p^T Q p$

Take a closer look at the first Gröbner base

$$f_1 = (B(x, \gamma) + \sigma_1(x)g_I(x))s_1^2 - 1,$$

• We can rewrite it in this from

$$1 + s_1^2(\underbrace{-B(x,\gamma) - \sigma_1(x)g_I(x)}_{SOS}).$$

We can exploit this SOS structure

$$1 + s_1^2 P(x, \gamma)$$
, where $P(x, \gamma) = -B(x, \gamma) - \sigma_1(x)g_I(x)$,
$$1 + p^T Qp = 1 + s_1^2 P(x, \gamma)$$

• p must be chosen such that it includes s_1 times all the standard monomials up to a degree d of $P(x,\gamma)$ such that $p^T Qp$ can express every monomial appearing in the expansion of the right-hand side.

Combined Procedure

Combined SOS Program

BC constraints + Witness constraints

find
$$\gamma, Q$$

subject to $-B(x,\gamma) - \sigma_1(x)g_I(x) \ge 0$
 $B(x,\gamma) - \sigma_2(x)g_U(x) - \epsilon \ge 0$
 $-L_fB(x,\gamma) + \lambda B(x,\gamma) - \sigma_3(x)g_D(x) \ge 0$
 $\operatorname{red}_G(1 + p^T Qp) = 0$
 $Q \succeq 0$. (3)

The existence of a solution that *satisfies the constraints* will **guarantee** the existence of a valid BC B(x) and its witness of validity $1 + p^T Qp$.

Handling Floating-Point Inaccuracies

Rationalize the parameters

One important step is rationalizing the values of the parameters because of often occurring floating-point inaccuracies in numerical SDP solvers.

- 1 Rationalize the entries of matrix Q.
- 2 Check for semidefiniteness of the resulting matrix, $Q \succeq 0$.

Experimental Results

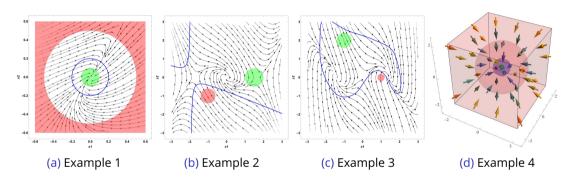


Figure: The region shaded red represents the set of unsafe states \mathcal{X}_U , the region shaded green represents the set of initial states \mathcal{X}_I , and the solid blue line (translucent blue surface in Example 4) represents the zero level set B(x) = 0 of the found valid BC B(x).

Conclusion

- Correctness is extremely important when synthesizing invariants for safety proofs.
- A misleading safety witness that, in fact, does not imply safety is not useful.

- We presented a **combined framework** that unifies the barrier certificate synthesis with the real algebraic witness synthesis.
- Combining Gröbner bases and SDP for the Real Nullstellensatz proving the validity of the resulting barrier certificate makes it correct-by-construction.