
Pegasus: A Framework for Sound
Continuous Invariant Generation?

Andrew Sogokon1,2 , Stefan Mitsch1 , Yong Kiam Tan1 , Katherine
Cordwell1 , and André Platzer1,3

1 Computer Science Department, Carnegie Mellon University
{asogokon|smitsch|yongkiat|kcordwel|aplatzer}@cs.cmu.edu

2 School of Informatics, University of Edinburgh
3 Fakultät für Informatik, Technische Universität München

Abstract. Continuous invariants are an important component in de-
ductive verification of hybrid and continuous systems. Just like discrete
invariants are used to reason about correctness in discrete systems with-
out unrolling their loops forever, continuous invariants are used to rea-
son about differential equations without having to solve them. Automatic
generation of continuous invariants remains one of the biggest practical
challenges to automation of formal proofs of safety in hybrid systems.
There are at present many disparate methods available for generating
continuous invariants; however, this wealth of diverse techniques presents
a number of challenges, with different methods having different strengths
and weaknesses. To address some of these challenges, we develop Pegasus:
an automatic continuous invariant generator which allows for combina-
tions of various methods, and integrate it with the KeYmaera X theorem
prover for hybrid systems. We describe some of the architectural aspects
of this integration, comment on its methods and challenges, and present
an experimental evaluation on a suite of benchmarks.

Keywords: invariant generation, continuous invariants, ordinary differ-
ential equations, theorem proving.

1 Introduction

Safety verification problems for ordinary differential equations (ODEs) are con-
tinuous analogues to Hoare triples: the objective is to show that an ODE cannot
evolve into a designated set of unsafe states from any of its designated initial
states. The role of continuous invariants is therefore analogous to that of induc-
tive invariants for discrete program verification. The problem of automatically

? This material is based upon work supported by the National Science Foundation un-
der Award CNS-1739629 and under Graduate Research Fellowship Grant No. DGE-
1252522, by AFOSR under grant number FA9550-16-1-0288, and by the Alexander
von Humboldt Foundation. The third author was supported by A∗STAR, Singa-
pore. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of any
sponsoring institution, the U.S. government or any other entity.

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 138-157, 2019.
DOI: 10.1007/978-3-030-30942-8 10

https://orcid.org/0000-0002-5849-7991
https://orcid.org/0000-0002-3194-9759
https://orcid.org/0000-0001-7033-2463
https://orcid.org/0000-0002-9336-6006
https://orcid.org/0000-0001-7238-5710
https://doi.org/10.1007/978-3-030-30942-8_10

Pegasus: A Framework for Sound Continuous Invariant Generation 139

generating invariants (also known as invariant synthesis) is one of the great-
est practical challenges in deductive verification of both continuous and discrete
systems. In theory, it is even the only challenge for hybrid systems safety [35,39].

The proliferation of published techniques [4,24,29,36,42,44,51,58,60] for con-
tinuous invariant generation – targeting various classes of systems, and having
different strengths and weaknesses – presents a challenge: ideally, one does not
want to be restricted by the limitations of one particular generation technique (or
a small family of techniques). Instead, it is far more desirable to have a framework
that accommodates existing generation methods, allows for their combination,
and is extensible with new methods as they become available. In this paper we
(partially) meet the above challenge by developing a single framework which al-
lows us to combine invariant generation methods into novel invariant generation
strategies. In our work, we are guided by the following considerations:

1. Specialized invariant generation methods are effective only when the problem
falls within their domain; their use must therefore be targeted.

2. A combination of invariant generation methods can be more practical than
any of the methods considered in isolation. A flexible mechanism for com-
bining these methods is thus highly desirable.

3. Reasoning with automatically generated invariants needs to be done in a
sound fashion: any deficiencies in the generation procedure must not com-
promise the final verification result.

Our interest in automatic invariant generation is motivated by the pressing need
to enhance the level of proof automation in deductive verification tools for hybrid
systems. In this work we target the KeYmaera X theorem prover [15].

Contributions. In this paper we describe the design and implementation of a con-
tinuous invariant generator4 – Pegasus – and its integration into KeYmaera X.
We outline some of the basic principles in this coupling, the techniques used
to generate invariants, and the mechanism used for combining them into more
powerful invariant generation strategies. We evaluate this integration on a set of
verification benchmarks – with very promising results.

2 Preliminaries

Ordinary Differential Equations. An n-dimensional autonomous system of first-
order ODEs has the form: x′ = f(x), where x = (x1, . . . , xn) ∈ Rn is a vector of
state variables, x′ = (x′1, . . . , x

′
n) denotes their time-derivatives, i.e. dxi

dt for each

4 An etymological note on naming conventions. The KeY [3] prover provided
the foundation for developing KeYmaera [37], an interactive theorem prover for
hybrid systems. The name KeYmaera was a pun on Chimera, a hybrid monster from
Classical Greek mythology. The tactic language of the new KeYmaera X prover [15]
is called Bellerophon [14] after the hero who defeats the Chimera in the myth. In
keeping with an established tradition, the invariant generation framework is called
Pegasus because the aid of this winged horse was crucial to Bellerophon in his feat.

140 A. Sogokon et al.

i = 1, . . . , n, and f(x) = (f1(x), . . . , fn(x)) specify the RHS of the equations that
these time-derivatives must obey along solutions to the ODEs. Geometrically,
such a system of ODEs defines a vector field f : Rn → Rn, associating to each
point x ∈ Rn the vector f(x) = (f1(x), . . . , fn(x)) ∈ Rn. Whenever the state of
the system is required to be confined within some prescribed set of statesQ ⊆ Rn,
which is known as the evolution constraint5, we will write x′ = f(x) & Q.
If no evolution constraint is specified, Q is assumed to be Rn. A solution to
the initial value problem for the system of ODEs x′ = f(x) with initial value
x0 ∈ Rn is a differentiable function x(x0, t) : (a, b) → Rn defined for all times
t ∈ (a, b) ⊆ R ∪ {∞,−∞} where a < 0 < b, and such that x(x0, 0) = x0 and
d
dtx(x0, t) = f(x(x0, t)) for all t ∈ (a, b). Given a continuously differentiable
function p : Rn → R, the Lie derivative of p with respect to vector field f equals
the time-derivative of p evaluated along the solutions to the system x′ = f(x);
this Lie derivative is denoted by p′ and formally defined as p′ ≡

∑n
i=1

∂p
∂xi

fi.

Semi-algebraic Sets. A set S ⊆ Rn is semi-algebraic iff it is characterized by a
finite Boolean combination of polynomial equations and inequalities:

l∨
i=1

mi∧
j=1

pij < 0 ∧
Mi∧

j=mi+1

pij = 0

 (1)

where pij ∈ R[x1, . . . , xn] are polynomials. By quantifier elimination, every first-
order formula of real arithmetic characterizes a semi-algebraic set and can be
put into standard form (1) (see e.g. Mishra [32, §8.6]). With a slight abuse of
notation, this paper uses formulas and the sets they characterize interchangeably.

Continuous Invariants in Verification. Safety specifications for ODEs and hybrid
dynamical systems can be rigorously verified in formal logics, such as differen-
tial dynamic logic (dL) [34,35] as implemented in the KeYmaera X proof assis-
tant [15] and hybrid Hoare logic [28] as implemented in the HHL prover [61]. The
use of appropriate continuous invariants is key to these verification approaches
as they allow the complexities of the continuous dynamics to be handled rigor-
ously even for ODEs without closed-form solutions. For example, the dL formula
Init → [x′ = f(x) & Q] Safe states that the safety property Safe is satisfied
throughout the continuous evolution of the system x′ = f(x) & Q whenever the
system begins its evolution from a state satisfying Init . The main dL reasoning
principle for verifying such a safety property is given by the following sound rule
of inference, with three premisses above the bar and the conclusion below:

(Safety)
Init → I I → [x′ = f(x) & Q] I I → Safe

Init → [x′ = f(x) & Q] Safe
.

In this rule, the first and third premiss respectively state that the initial set
Init is contained within the set I, and that I lies entirely inside the safe set of

5 Evolution domain constraints are also called mode invariants in the context of hybrid
automata. We avoid this name to prevent confusion with generated invariants.

Pegasus: A Framework for Sound Continuous Invariant Generation 141

states Safe. The second premiss states that I is a continuous invariant, i.e. I
is maintained throughout the continuous evolution of the system whenever it
starts inside I, that is, the following dL formula is true in all states:

I → [x′ = f(x) & Q] I . (2)

Thus, the problem of verifying safety properties of ODEs reduces to finding
an invariant I that can be proved to satisfy all three premisses. Semantically, a
continuous invariant can also be defined as follows:

Definition 1 (Continuous invariant). Given a system x′ = f(x) & Q, the
set I ⊆ Rn is a continuous invariant iff the following statement holds:

∀x0 ∈ I ∀ t ≥ 0 :
(
(∀ τ ∈ [0, t] : x(x0, τ) ∈ Q) =⇒ x(x0, t) ∈ I

)
.

For any given set of initial states Init ⊆ Rn, a continuous invariant I such
that Init ⊆ I provides a sound over-approximation of the states reachable by the
system from Init by following the solutions to the ODEs within the domain con-
straint Q. Indeed, the exact set of states reachable by a continuous system from
Init provides the smallest such invariant.6 While the definition above features
the solution x(x0, t), which may not be available explicitly, a crucial advantage
afforded by continuous invariants is the possibility of checking whether a given
set is a continuous invariant without computing the solution, i.e. by working
directly with the ODEs.

3 Sound Invariant Checking and Generation

The problem of checking whether a semi-algebraic set I ⊆ Rn is a continuous in-
variant of a polynomial system of ODEs x′ = f(x) &Q was shown to be decidable
by Liu, Zhan, and Zhao [29]. This decision procedure, henceforth referred to as
LZZ, provides a way of automatically checking continuous invariants (2) by ex-
ploiting facts about higher-order Lie derivatives of multivariate polynomials ap-
pearing in the syntactic description of I and the Noetherian property of the ring
R[x] [18,29]; its implementation requires an algorithm for constructing Gröbner
bases [9], as well as a decision procedure for the universal fragment of real arith-
metic [47]. A logical alternative for invariant checking is provided by the com-
plete dL axiomatization for differential equation invariants [39]. Whereas using
LZZ results in a yes/no answer to an invariance question (2), dLmakes it possible
to construct a formal proof of invariance from a small set of ODE axioms [39]
whenever the property holds (or a refutation when it does not).

3.1 Invariant Generation with Template Enumeration

Given a means to perform invariant checking with real arithmetic, an obvi-
ous solution to the invariant generation problem (which has been suggested by

6 Unfortunately, reachable sets rarely have a simple description as semi-algebraic sets.

142 A. Sogokon et al.

numerous authors [29,36,55]) involves the so-called method of template enumer-
ation, which yields a theoretically complete semi-algorithm (in the sense that
it terminates with a positive answer iff that is possible). All it takes in the-
ory is to exhaustively enumerate parametric templates for all real arithmetic
formulas describing all semi-algebraic sets, and use a quantifier elimination algo-
rithm (such as CAD [8]) to identify whether choices for the template parameters
exist that meet the required arithmetic constraints. While templates make this
British Museum Algorithm-like approach more successful than, e.g. exhaustively
enumerating all proofs [21], the method is nevertheless quite impractical when
used with real quantifier elimination.7 In practice, invariant generation is usually
achieved by using incomplete – but more efficient – generation methods. These
methods are numerous and vary considerably in their strengths and limitations,
creating a wide spectrum of possible trade-offs in performance, the quality, and
the form of invariants that one can generate. Effectively navigating this spectrum
is an important practical challenge that we seek to address.

3.2 Soundness: Proof Assistants and Invariant Generation

There are a number of design decisions that can be exercised in how reasoning
with continuous invariants is performed within a deductive verification frame-
work. A fundamental design decision is how tightly (i) continuous invariance
checking and (ii) continuous invariant generation are to be coupled with the im-
plementation of a proof assistant. This space of design choices is exemplified by
the HHL prover and KeYmaera X.

The HHL prover [7,61] implements (i) the LZZ decision procedure for in-
variant checking and (ii) the method of template enumeration for invariant gen-
eration based on real quantifier elimination. From the perspective of the HHL
prover, these are trusted external oracles for checking the validity of statements
about continuous invariance; trusting the output of the HHL prover includes
trusting the implementation of its LZZ procedure and the invariant generator.

In contrast, KeYmaera X [15] pursues an LCF-style approach, seeking to
minimize the soundness-critical code that needs to be trusted in its output.
For continuous invariants, it achieves this by (i) checking invariance within the
axiomatic framework of dL (rather than trusting external checking procedures)
and (ii) accepting conjectured invariants generated from a variety of sources but
separately checking the result. Invariant checking in KeYmaera X is automatic,
which is made possible by the use of specialized proof tactics [14]; these ad-
ditionally allow it to use a variety of other (incomplete, but computationally
inexpensive) methods for proving continuous invariance [18].

Remark 1. The difference between these two approaches is broadly analogous to
the use of trusted decision procedures in PVS [12] and oracles in HOL [5,63] on
the one hand, and proof reconstruction (e.g. in Isabelle [62]) on the other.

7 Quantifier elimination algorithms used in practice have doubly-exponential time
complexity in the number of variables [43]. Template enumeration introduces a fresh
variable per monomial coefficient, so the approach quickly hits scalability barriers.

Pegasus: A Framework for Sound Continuous Invariant Generation 143

4 Invariant Generation Methods in Pegasus

Pegasus is a continuous invariant generator implemented in the Wolfram Lan-
guage with an interface accessible through both Mathematica and KeYmaera X.8

When KeYmaera X is faced with a continuous safety verification problem that it
is unable to prove directly, it automatically invokes Pegasus to help find an appro-
priate invariant (if possible). As mentioned earlier, KeYmaera X checks all the
invariants it is supplied with – including those provided by Pegasus (see Fig. 1).

KeYmaera X

Tactics
(non-soundness-critical)

dL core
(checks all proof steps)

guide the core

Pegasus

Classifier

Generation Strategy

Qualitative Analysis

First Integrals

Darboux Polynomials

Barrier Certificates

safety problem

+ proof hints

invariant

Fig. 1: Sound invariant generation: invariant generator analyses safety problem to
provide invariants and proof hints to tactics; the invariants are formally verified
to be correct within the soundness-critical dL core

This design ensures that correctness of Pegasus is not integral to the sound-
ness of KeYmaera X. It also presents implementation opportunities for Pegasus:

1. It can freely integrate numerical procedures and heuristic methods while
providing best-effort guarantees of correctness. Final correctness checks for
the generated invariants are left to the purview of KeYmaera X.9

2. It records proof hints corresponding to various methods that were used to
generate continuous invariants. These hints enable KeYmaera X to build
more efficient shortcut proofs of continuous invariance [18].

Pegasus currently implements an array of powerful invariant generation meth-
ods, which we describe below, beginning with a large family of related methods
that are based on qualitative analysis, which can be best explained using the
machinery of discrete abstraction of continuous systems. We first briefly recall
the main idea behind this approach.

8 Pegasus (http://pegasus.keymaeraX.org/) is linked to KeYmaera X through the
Mathematica interface of KeYmaera X, which translates between the internal data
structures of the prover core and the Mathematica data structures.

9 Naturally, the output from Pegasus can also be checked using a trusted implemen-
tation of the LZZ decision procedure before anything is returned. When used with
KeYmaera X, though, this additional (soundness-critical) check is unnecessary.

http://pegasus.keymaeraX.org/

144 A. Sogokon et al.

4.1 Exact Discrete Abstraction

Discrete abstraction has been the subject of numerous works [1,57,59]. Briefly,
the steps are: (i) discretize the continuous state space of a system by defining
predicates that correspond to discrete states, (ii) compute a (local) transition
relation between the discrete states obtained from the previous step, yielding a
discrete transition system which abstracts the behaviour of the original contin-
uous system, and finally (iii) compute reachable sets in the discrete abstraction
to obtain an over-approximation of the reachable sets of the original system.

The discrete abstraction is sound iff the relation computed in step (ii) has
a transition between two discrete states whenever there is a corresponding con-
tinuous trajectory of the original system between the two sets corresponding to
those discrete states. The abstraction is exact iff these are the only transitions
computed in step (ii). Soundness of the discrete abstraction guarantees that any
invariant extracted from the discretization corresponds to an invariant for the
original system. Fig. 2 illustrates a discretization of a system of ODEs (Fig. 2a),
which results in 9 discrete states in a sound and exact abstraction (Fig. 2b). The
state space is discretized using predicates built from sign conditions on poly-
nomials, p1, p2 ∈ R[x1, x2]. The discrete states of the abstraction are given by
formulas such as S1 ≡ p1 < 0 ∧ p2 = 0, S2 ≡ p1 < 0 ∧ p2 > 0, and so on.

x1

x
2

S5

S1
S3

S2

S4

S6

S7

S8

S9

p 1
=

0

p
2 =

0

(a) Discretization with p1, p2 ∼ 0

S1 S2 S3

S4 S5 S6

S7 S8 S9

(b) Sound discrete abstraction

Fig. 2: Discrete abstraction of a two-dimensional system

The ability to construct sound and exact discrete abstractions [51] has an
important consequence: if an appropriate semi-algebraic continuous invariant I
exists at all, it can always be extracted from a discrete abstraction built from
discretizing the state space using sign conditions on the polynomials describ-
ing I. The problem of (semi-algebraic) invariant generation therefore reduces to
finding appropriate polynomials whose sign conditions can yield suitable discrete
abstractions and computing reachable states in these abstractions.

Remark 2. Reachable sets (from the initial states) in discrete abstractions are
the smallest invariants with respect to ⊆ (set inclusion) that one can extract.
The smallest invariant is the most informative because it allows one to prove the
most safety properties, but it may not be the most useful invariant in practice.

Pegasus: A Framework for Sound Continuous Invariant Generation 145

In particular, one often wants to work with invariants that have low descriptive
complexity and are easy to prove in the formal proof calculus. This leads nat-
urally to consider alternative ways of extracting invariants. Pegasus is able to
extract reachable sets of discrete abstractions, but favours less costly techniques,
such as differential saturation [36], which often succeed in quickly extracting
more conservative invariants.

Finding “good” polynomials that can abstract the system in useful ways
and allow proving properties of interest is generally difficult. While abstraction
using predicates that are extracted from the verification problem itself can be
surprisingly effective, in certain cases useful predicates may not be syntactically
extracted from the problem statement. In order to improve the quality of discrete
abstractions, Pegasus employs a separate classifier, which extracts features from
the verification problem which can then be used to suggest polynomials that are
more tailored to the problem at hand. Certain systems have structure that, to a
human expert, might suggest an “obvious” choice of good predicates. Below we
sketch some basic examples of what is currently possible.

4.2 Targeted Qualitative Analysis

x

x′ f(x)

Fig. 3: Qualitative analysis of
one-dimensional ODEs x′ = f(x)

As a motivating example, consider the class
of one-dimensional ODEs x′ = f(x), where
f ∈ R[x]. A standard way of studying quali-
tative behaviour in these systems is to inspect
the graph of the function f(x) [54]. Fig. 3 il-
lustrates such a graph of f(x), along with a
vector field induced by such a system on the
real line. By computing the real roots of the
polynomial in the right-hand side, i.e the real
roots r1, . . . , rk ∈ R of f(x), we may form a list of polynomials x− r1, . . . , x− rk
that can be used for an algebraic decomposition of R into invariant cells corre-
sponding to real intervals from which an over-approximation of the reachable set
can be constructed. Such an algebraic decomposition can be further refined by
augmenting the list of polynomials with x−bi1, . . . , x−bil, where bi1, . . . , bil ∈ R
are the boundary points of the initial set in the safety specification. From this
augmented list, one can exactly construct the reachable set of the system by
computing the reachable set of the corresponding exact abstraction.

Remark 3. Knowledge of the fact that x′ = f(x) is one-dimensional allows one
to exploit another useful fact: every one-dimensional system is a gradient system,
i.e. its motion is generated by a potential function F (x) which can be computed
directly by integrating −f(x) with respect to x, i.e. F (x) = −

∫
f(x) dx. For any

k ∈ R, F (x) ≤ k defines a continuous invariant of the system x′ = f(x).

In higher dimensions, the behaviour of linear systems x′ = Ax can be studied
qualitatively by examining the stability of the fixed point at the origin [2]. The
strongest algebraic invariants for such systems can be computed for algebraic

146 A. Sogokon et al.

initial conditions [44]. Pegasus implements methods targeted at linear systems
that takes advantage of facts such as these to suggest useful abstractions from
which invariants (not necessarily algebraic) can be extracted. This strategy is
similar in spirit to the abstraction methods proposed in the work of Tiwari [56].

Example 1. The linear systems in Fig. 4 exhibit different qualitative behaviours.
The invariants (shown in blue), demonstrate unreachability of the unsafe states
(shown in red) from the initial states (shown as green discs in Fig. 4).

x′1 = −4x2, x′1 = 2x1 − x2, x′1 = −2x1 + x2,

x′2 = x1, x′2 = −3x1 + x2, x′2 = x1 − 3x2.

-4 -2 0 2 4 x1

-4

-2

0

2

4

x2

-4 -2 0 2 4 x1

-4

-2

0

2

4

x2

-4 -2 0 2 4 x1

-4

-2

0

2

4

x2

Fig. 4: Automatically generated invariants for linear systems

In the leftmost system, all eigenvalues of the system matrix A are purely
imaginary. Pegasus generates annular invariants containing the green discs be-
cause trajectories of such systems are always elliptical. For the middle system,
the (asymptotic) behaviour of its trajectories is determined by the eigenvectors
of its system matrix (eigenvalues are real and of opposite sign [2]). Pegasus uses
these eigenvectors to generate two invariant half-planes, one for each green disc.
Invariant half-planes are also generated for the rightmost system which is asymp-
totically stable (all real parts of eigenvalues are negative [2]). Pegasus further
refines these half-planes with elliptical regions containing the green discs because
elliptical regions are invariants for such systems.

4.3 Qualitative Analysis for Non-Linear Systems

General non-linear polynomial systems present a hard class of problems for in-
variant generation. A number of useful heuristics can be applied to partition the
continuous state space, in hopes that the resulting abstraction exhibits a suit-
able invariant. For example, by factorizing to find polynomials p such that p = 0
implies x′i = 0 for some xi, the flow along the level curve p = 0 vanishes in the xi
direction. This information can be used to cheaply approximate the transition
relation in the discrete abstraction and to efficiently extract invariant candi-
dates. For the non-linear ODE in Fig. 2, the discretization polynomials p1, p2 are
chosen such that x′2 = 0 and x′1 = 0 on their respective level curves. This yields
a useful discrete abstraction e.g. S4 is an invariant for the resulting abstraction
(Fig. 2b). Other useful sources of polynomials for qualitative analysis of non-
linear systems are found in e.g. the summands and irreducible factors of the

Pegasus: A Framework for Sound Continuous Invariant Generation 147

right-hand sides of the ODEs, the Lie derivatives of the factors, and physically
meaningful quantities such as the divergence of the system’s vector field.

4.4 General-Purpose Methods

Beyond qualitative analysis, Pegasus implements several general-purpose invari-
ant generation techniques which represent restricted, but tractable fragments of
the general method of template enumeration. The search for symbolic param-
eters in these methods is not performed using real quantifier elimination, but
instead takes place in more tractable theories. We recall these techniques briefly.

p < k p = k p > k

Fig. 5: Discrete abstraction with
first integrals p− k (k ∈ R)

First Integrals. The polynomial p ∈ R[x]
is a first integral [19, 2.4.1] of the system
x′ = f(x) iff its Lie derivative p′ with re-
spect to the vector field f is the zero poly-
nomial. First integrals are also known as con-
served quantities because they have the important property that for any k ∈ R,
p = k defines an invariant of the system. For a single first integral p, if one were
to use the polynomial p − k to build an abstraction, the abstract state space
would not feature any transitions between its states (illustrated in Fig. 5). Thus,
one has the freedom to choose value(s) k for which the resulting discrete ab-
straction suitably partitions the state space. For example, if the initial states lie
entirely within p < k and the unsafe ones within p > k, then p < k is an invari-
ant separating those sets. Pegasus can search for all polynomial first integrals
up to a configurable degree bound by solving a system of linear equations whose
solutions provide the coefficients of the bounded degree polynomial template for
the first integral; the solutions are efficiently found using linear algebra [19,49].

Darboux Polynomials. Darboux polynomials were first introduced in 1878 [11]
to study integrability of polynomial ODEs. Polynomial p ∈ R[x] is a Darboux
polynomial for the system x′ = f(x) iff p′ = αp for some cofactor polynomial
α ∈ R[x]. Like first integrals, discrete abstractions produced with Darboux poly-
nomials result in three states with no transitions between them (as illustrated
in Fig. 5, but with k = 0). Unlike first integrals, only p = 0 is guaranteed to be
an invariant of the system. Darboux polynomials have been used for predicate
abstraction of continuous systems by Zaki et al. [65], who successfully applied
them to verify electrical circuit designs. Automatic generation of Darboux poly-
nomials is an active area of research, with several algorithms proposed within the
verification community [24,42,49]. Owing to the importance of Darboux poly-
nomials in the Prelle-Singer method [41] for computing elementary closed-form
solutions to ODEs, sophisticated algorithms for Darboux polynomial generation
were developed earlier in the computer algebra community, e.g. two algorithms
were reported by Man [31]. Indeed, we have found these algorithms to be the
most practical and implement them in Pegasus.

148 A. Sogokon et al.

Barrier Certificates. The method of barrier certificates is a popular technique
for safety verification of continuous and hybrid systems [40]. Barrier certificates
p define an invariant region p ≤ 0 which separates the initial states (wholly
contained within p ≤ 0) from the unsafe states (wholly contained within p > 0)
when the Lie derivative p′ satisfies certain criteria (e.g. p′ ≤ 0). Generating bar-
rier certificates using the method of template enumeration is possible using both
sum-of-squares (SOS) [40] and linear programming (LP) [64] techniques. A num-
ber of generalizations of the barrier certificate approach have been developed,
which differ in the kinds of conditions that ensure the invariance of p ≤ 0, e.g.
exponential-type [25] and general barrier certificates [10]. A unified understand-
ing of these generalizations [53] based on classical comparison systems [45, Ch
II, §3, Ch. IX] leads to a yet more general notion of vector barrier certificates.
Pegasus is able to search for convex [40], exponential-type [25], and vector bar-
rier certificates [53] using both SOS and LP techniques. However, the resulting
barrier certificates often suffer from numerical inaccuracies arising from the use
of semi-definite solvers and interior point methods [46]. Pegasus currently uses
a simple rounding heuristic on the numerical result and explicitly checks invari-
ance for the resulting (exact) barrier certificate candidates using real quantifier
elimination.

5 Strategies for Invariant Generation

The implementation of all the aforementioned invariant generation methods in
a single framework is a significant undertaking in itself. The overall goal behind
Pegasus, however, is to enable these heterogeneous methods to be effectively
deployed and fruitfully combined into strategies for invariant generation that
are tailored to specific classes of verification problems. Different invariant gen-
eration strategies are invoked in Pegasus, depending on the classification of the
input problem it receives from the problem classifier. In this section, and for
the evaluation, we focus on the most challenging and general class of non-linear
systems in which no further structure is known or assumed beyond the fact that
the right-hand sides of the ODEs are polynomials.

The main invariant generation strategy Pegasus uses for general non-linear
systems is based on a differential saturation procedure [36]. Briefly, the procedure
loops through a prescribed sequence of invariant generation methods and succes-
sively attempts to strengthen the domain constraint using invariants found by
those methods until the desired safety condition is proved.10 Notably, this loop
allows Pegasus to exploit the strengths of different invariant generation methods,
even if it is a priori unclear whether one is better than the other. The precise
sequencing of invariant generation methods is also important in this strategy
to avoid redundancy. In particular, Pegasus currently orders the methods by

10 Pegasus analyses problems according to variable dependencies present in their differ-
ential equations [36]. For x′1 = x1, x

′
2 = x1 + x2, for example, Pegasus first searches

for invariants involving only x1, before searching for those involving both x1 and x2.

Pegasus: A Framework for Sound Continuous Invariant Generation 149

computational efficiency, e.g. it first searches for first integrals, followed by Dar-
boux polynomials and barrier certificates. This sequencing allows later (slower)
methods to exploit invariants that are quickly generated by earlier methods.

Example 2. The synergy between individual methods exploited by differential
saturation is illustrated in Fig. 6 for an example from our benchmarks.

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

Fig. 6: Invariant synthesis using the differential saturation loop in Pegasus

Initially (leftmost plot), the entire plane (in blue) is under consideration and
Pegasus wants to show the safety property that trajectories from the initial states
(in green) never reach the unsafe states (in red). In the second plot, Pegasus
confines its search to the domain x1 > 0 using the generated Darboux polynomial
x1. In the third plot, using x1 > 0, qualitative analysis finds the invariant x2 > 0
which further confines the evolution domain. Finally (rightmost plot), Pegasus
finds a barrier certificate (of polynomial degree 2) that suffices to show the safety
property within the strengthened domain (which, by construction, is invariant).
The final invariant region cannot be directly obtained from a polynomial barrier
certificate, but incorporates invariants discovered earlier by other means.

6 Evaluation

We tested Pegasus and its interaction with the ODE proving tactics of KeY-
maera X on a benchmark suite of 90 non-linear continuous safety verification
problems drawn from the literature [4,10,17,20,22,23,24,29,48,52,64,65]. The suite
consists of 53 two-dimensional systems, 11 three-dimensional systems, 12 higher-
dimensional (≥4) systems, and 14 product systems that were formed by randomly
combining pairs of two- and three-dimensional systems. The benchmark was run
on commodity hardware: 2.4GHz Intel Core i7 with 16GB memory. We com-
pare the differential saturation strategy to the performance of each invariant
generation method in isolation, measuring the duration of generating invariants,
duration of checking the generated invariants, and the total proof duration.

Benchmark results for each of the problems are in Fig. 7. Several experimental
insights can be drawn from these results: (i) different invariant generation meth-
ods generally solve different subsets of the problems, (ii) invariant generation
generally dominates overall proof duration although invariant checking becomes
more expensive as problem dimension increases, (iii) when multiple methods

150 A. Sogokon et al.

BC (T)
BC (G)
BC (C)
DP (T)
DP (G)
DP (C)
FI (T)
FI (G)
FI (C)

QA (T)
QA (G)
QA (C)
DS (T)
DS (G)
DS (C)

2D 3D 4D 7 8D 9 P4D P5D

Non-linear problems (dimension: 2D-9D, followed by 4D and 5D product systems)

0

10

100

Duration (sec)

Fig. 7: Comparison of invariant generation methods. Each column represents one
benchmark problem and the colour encodes duration (lighter is faster). Empty
columns are unsolved. Legend: the combined Differential Saturation (DS) strat-
egy against Qualitative Analysis (QA), First Integrals (FI), Darboux Polynomi-
als (DP), and Barrier Certificates (BC), on total proof duration (T), generation
duration (G), and checking duration (C).

solve a problem, qualitative analysis and first integrals are often quickest, fol-
lowed by Darboux polynomials and then barrier certificates, (iv) the differential
saturation strategy effectively combines invariant generation methods; it solves
all but one11 problem that can be solved by individual methods. It additionally
solves 8 problems (of which 5 are product systems) that no individual method
solves by itself. Differential saturation is especially effective on product systems
because each part of the product may be only solvable using a specific method.

To further evaluate the effectiveness of combining methods by differential sat-
uration, Fig. 8 plots the accumulated duration for solving the fastest n problems.
The main insights here are: (i) differential saturation solves the largest number
of problems per accumulated time, which means that, despite sequential exe-
cution, it often succeeds in trying out the most efficient method first and fails
fast when earlier methods fail to apply, (ii) the performance of generating versus
checking first integrals is inconclusive and depends on the specific example (see
also Fig. 7), (iii) checking barrier certificates and Darboux polynomials is much
faster than generating them, and (iv) qualitative analysis is less expensive for
generation than other methods.

7 Related Work

Techniques developed for qualitative simulation have been applied to prove tem-
poral properties of continuous systems in the work of Shults and Kuipers [50],
as well as Loeser, Iwasaki and Fikes [30]. Zhao [66] developed a tool, MAPS, to
automatically identify significant features of dynamical systems, such as stability
regions, equilibria, and limit cycles. Since our ultimate goal is sound invariant

11 For this high-dimensional (9D) problem, differential saturation runs out of time
trying qualitative analysis methods before attempting to find first integrals.

Pegasus: A Framework for Sound Continuous Invariant Generation 151

0 20 40 60
0.1

1

10

100

103

Problems

C
u

m
u

la
ti

ve
ti

m
e

(s
ec

)

Diff. Sat. Barrier Darboux First Integrals Qualitative

(a) Total duration

0 20 40 60

(b) Generation

0 20 40 60

(c) Checking

Fig. 8: Cumulative logarithmic time (in seconds) taken to solve the fastest n
problems (more problems solved and flatter is better)

generation, we are less interested in a full qualitative analysis of the state space.
In the verification community, discrete abstraction of hybrid systems was studied
by Alur et al. [1]. The case of systems whose continuous motion is governed by
non-linear ODEs was studied in the work of Tiwari and Khanna [57,59]. Tiwari
further studied reachability of linear systems [56], using information from real
eigenvectors and ideas from qualitative abstraction to generate invariants. Zaki et
al. [65] were the first to apply Darboux polynomials to verification of continuous
systems using discrete abstraction. Numerous works employ barrier certificates
for verification [10,25,40,53,64]. Since we implement many of the above tech-
niques as methods for invariant generation in our framework, our work draws
heavily upon ideas developed previously in the verification and hybrid systems
communities. Previously [51], we introduced a construction of exact abstractions
and applied rudimentary methods from qualitative analysis to compute invari-
ants; in certain ways, our present work also builds on this experience, incorpo-
rating some of the techniques as special methods in a more general framework.
The coupling between KeYmaera X and Pegasus that we pursue in our work is
quite distinct from the use of trusted oracles in the work of Wang et al. [61] (for
the HHL prover) and provides a sound framework for reasoning with continuous
invariants that is significantly less exposed to soundness issues in external tools.

8 Outlook and Challenges

The improvements in continuous invariant generation have a significant impact
on the overall proof automation capabilities of KeYmaera X and serve to in-
crease overall system usability and user experience. Improved proof automation
will certainly also be useful in future applications of provably correct runtime
monitoring frameworks, such as ModelPlex [33], as well as frameworks for gen-
erating verified controller executables, such as VeriPhy [6].

Some interesting directions for extending our work include implementation
of reachable set computation algorithms for all classes of problems where this is

152 A. Sogokon et al.

possible. For instance, semi-algebraic reachable sets may be computed for diago-
nalizable classes of linear systems with tame eigenvalues [16,26]. The complexity
of invariants obtained using these methods may not always make them practi-
cal, but they would provide a valuable fallback in cases where simpler invariants
cannot be obtained using our currently implemented methods.

A more pressing challenge lies in expanding the collection of safety verifica-
tion problems for continuous systems. While we have done our best to find com-
pelling examples from the literature, a larger corpus of problems would allow for
a more comprehensive empirical evaluation of invariant generation strategies and
could reveal interesting new insights that can suggest more effective strategies.

Correctness of decision procedures for real arithmetic is another important
challenge. KeYmaera X currently uses Mathematica’s implementation of real
quantifier elimination to close first-order real arithmetic goals, primarily due
to the impressive performance afforded by this implementation (compared to
currently existing alternatives). Removing this reliance by efficiently building
fully formal proofs of real arithmetic formulas within dL (e.g. through exhibiting
appropriate witnesses [27,38]) is an important task for the future.

9 Conclusion

Among verification practitioners, the amount of manual effort required for formal
verification of hybrid systems is one of the chief criticisms leveled against the
use of deductive verification tools. Manually crafting continuous invariants often
requires expertise and ingenuity, just like manually selecting support function
templates for reachability tools [13], and presents the major practical hurdle
in the way of wider industrial adoption of this technology. In this paper, we
describe our development of a system designed to help overcome this hurdle
by automating the discovery of continuous invariants. To our knowledge, this
work represents the first large-scale effort at combining continuous invariant
generation methods into a single invariant generation framework and making it
possible to create more powerful invariant generation strategies. The approach
we pursue is unique in its integration with a theorem prover, which provides
formal guarantees that the generated invariants are indeed correct (in the form
of dL proofs, automatically). The results we observe in our evaluation are highly
encouraging and suggest that invariant discovery can be improved considerably,
opening many exciting avenues for applications and extensions.

Acknowledgements. The authors would like to thank the anonymous reviewers
for their feedback.

References

1. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstrac-
tions of hybrid systems. Proceedings of the IEEE 88(7), 971–984 (2000).
https://doi.org/10.1109/5.871304

https://doi.org/10.1109/5.871304

Pegasus: A Framework for Sound Continuous Invariant Generation 153

2. Arrowsmith, D., Place, C.M.: Dynamical Systems: Differential Equations, Maps,
and Chaotic Behaviour, vol. 5. CRC Press (1992)

3. Beckert, B., Giese, M., Hähnle, R., Klebanov, V., Rümmer, P., Schlager,
S., Schmitt, P.H.: The KeY system 1.0 (deduction component). In: Pfen-
ning, F. (ed.) CADE. LNCS, vol. 4603, pp. 379–384. Springer (2007).
https://doi.org/10.1007/978-3-540-73595-3 26

4. Ben Sassi, M.A., Girard, A., Sankaranarayanan, S.: Iterative computation of poly-
hedral invariants sets for polynomial dynamical systems. In: CDC. pp. 6348–6353.
IEEE (2014). https://doi.org/10.1109/CDC.2014.7040384

5. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann,
M., Paulson, L.C. (eds.) ITP. LNCS, vol. 6172, pp. 179–194. Springer (2010).
https://doi.org/10.1007/978-3-642-14052-5 14

6. Bohrer, B., Tan, Y.K., Mitsch, S., Myreen, M.O., Platzer, A.: VeriPhy:
verified controller executables from verified cyber-physical system models.
In: Foster, J.S., Grossman, D. (eds.) PLDI. pp. 617–630. ACM (2018).
https://doi.org/10.1145/3192366.3192406

7. Chen, M., Han, X., Tang, T., Wang, S., Yang, M., Zhan, N., Zhao, H., Zou, L.:
MARS: A toolchain for modelling, analysis and verification of hybrid systems.
In: Hinchey, M.G., Bowen, J.P., Olderog, E. (eds.) Provably Correct Systems, pp.
39–58. NASA Monographs in Systems and Software Engineering, Springer (2017).
https://doi.org/10.1007/978-3-319-48628-4 3

8. Collins, G.E.: Quantifier elimination for real closed fields by cylindri-
cal algebraic decompostion, LNCS, vol. 33, pp. 134–183. Springer (1975).
https://doi.org/10.1007/3-540-07407-4 17

9. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer, fourth
edn. (2015). https://doi.org/10.1007/978-3-319-16721-3

10. Dai, L., Gan, T., Xia, B., Zhan, N.: Barrier certificates revisited. J. Symb. Comput.
80, 62–86 (2017). https://doi.org/10.1016/j.jsc.2016.07.010

11. Darboux, J.G.: Mémoire sur les équations différentielles algébriques du premier
ordre et du premier degré. Bull. Sci. Math. 2(1), 151–200 (1878)

12. Denman, W., Muñoz, C.A.: Automated real proving in PVS via MetiTarski. In:
Jones, C.B., Pihlajasaari, P., Sun, J. (eds.) FM. LNCS, vol. 8442, pp. 194–199.
Springer (2014). https://doi.org/10.1007/978-3-319-06410-9 14

13. Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV. LNCS, vol. 6806, pp. 379–395.
Springer (2011). https://doi.org/10.1007/978-3-642-22110-1 30

14. Fulton, N., Mitsch, S., Bohrer, B., Platzer, A.: Bellerophon: Tactical theorem prov-
ing for hybrid systems. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP. LNCS,
vol. 10499, pp. 207–224. Springer (2017). https://doi.org/10.1007/978-3-319-66107-
0 14

15. Fulton, N., Mitsch, S., Quesel, J., Völp, M., Platzer, A.: KeYmaera X: An
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Mid-
deldorp, A. (eds.) CADE. LNCS, vol. 9195, pp. 527–538. Springer (2015).
https://doi.org/10.1007/978-3-319-21401-6 36

16. Gan, T., Chen, M., Li, Y., Xia, B., Zhan, N.: Reachability analysis for solv-
able dynamical systems. IEEE Trans. Automat. Contr. 63(7), 2003–2018 (2018).
https://doi.org/10.1109/TAC.2017.2763785

17. Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential radical
invariants. In: Ábrahám, E., Havelund, K. (eds.) TACAS. LNCS, vol. 8413, pp.
279–294. Springer (2014). https://doi.org/10.1007/978-3-642-54862-8 19

https://doi.org/10.1007/978-3-540-73595-3_26
https://doi.org/10.1109/CDC.2014.7040384
https://doi.org/10.1007/978-3-642-14052-5_14
https://doi.org/10.1145/3192366.3192406
https://doi.org/10.1007/978-3-319-48628-4_3
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1016/j.jsc.2016.07.010
https://doi.org/10.1007/978-3-319-06410-9_14
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-319-66107-0_14
https://doi.org/10.1007/978-3-319-66107-0_14
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1109/TAC.2017.2763785
https://doi.org/10.1007/978-3-642-54862-8_19

154 A. Sogokon et al.

18. Ghorbal, K., Sogokon, A., Platzer, A.: A hierarchy of proof rules for checking
positive invariance of algebraic and semi-algebraic sets. Comput. Lang. Syst. Str.
47, 19–43 (2017). https://doi.org/10.1016/j.cl.2015.11.003

19. Goriely, A.: Integrability and Nonintegrability of Dynamical Systems. World Sci-
entific (2001). https://doi.org/10.1142/3846

20. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems.
In: Gupta, A., Malik, S. (eds.) CAV. LNCS, vol. 5123, pp. 190–203. Springer (2008).
https://doi.org/10.1007/978-3-540-70545-1 18

21. Herbrand, J.: Recherches sur la théorie de la démonstration. Ph.D. thesis, Univer-
sité de Paris, Faculté des Sciences (1930)

22. Immler, F., Althoff, M., Chen, X., Fan, C., Frehse, G., Kochdumper, N., Li, Y.,
Mitra, S., Tomar, M.S., Zamani, M.: ARCH-COMP18 category report: Continuous
and hybrid systems with nonlinear dynamics. In: Frehse, G., Althoff, M., Bogo-
molov, S., Johnson, T.T. (eds.) ARCH. EPiC Series in Computing, vol. 54, pp.
53–70. EasyChair (2018)

23. Kapinski, J., Deshmukh, J.V., Sankaranarayanan, S., Arechiga, N.:
Simulation-guided Lyapunov analysis for hybrid dynamical systems.
In: Fränzle, M., Lygeros, J. (eds.) HSCC. pp. 133–142. ACM (2014).
https://doi.org/10.1145/2562059.2562139

24. Kong, H., Bogomolov, S., Schilling, C., Jiang, Y., Henzinger, T.A.:
Safety verification of nonlinear hybrid systems based on invariant clus-
ters. In: Frehse, G., Mitra, S. (eds.) HSCC. pp. 163–172. ACM (2017).
https://doi.org/10.1145/3049797.3049814

25. Kong, H., He, F., Song, X., Hung, W.N.N., Gu, M.: Exponential-condition-based
barrier certificate generation for safety verification of hybrid systems. In: Shary-
gina, N., Veith, H. (eds.) CAV. LNCS, vol. 8044, pp. 242–257. Springer (2013).
https://doi.org/10.1007/978-3-642-39799-8 17

26. Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computation
for families of linear vector fields. J. Symb. Comput. 32(3), 231–253 (2001).
https://doi.org/10.1006/jsco.2001.0472

27. Li, W., Passmore, G.O., Paulson, L.C.: Deciding univariate polynomial problems
using untrusted certificates in Isabelle/HOL. J. Autom. Reas. 62(1), 69–91 (2019).
https://doi.org/10.1007/s10817-017-9424-6

28. Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A calculus for
hybrid CSP. In: Ueda, K. (ed.) APLAS. LNCS, vol. 6461, pp. 1–15. Springer (2010).
https://doi.org/10.1007/978-3-642-17164-2 1

29. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for poly-
nomial dynamical systems. In: Chakraborty, S., Jerraya, A., Baruah,
S.K., Fischmeister, S. (eds.) EMSOFT. pp. 97–106. ACM (2011).
https://doi.org/10.1145/2038642.2038659

30. Loeser, T., Iwasaki, Y., Fikes, R.: Safety verification proofs for physical systems.
In: Proc. of the 12th Intl. Workshop on Qualitative Reasoning. pp. 88–95 (1998)

31. Man, Y.: Computing closed form solutions of first order ODEs using
the Prelle-Singer procedure. J. Symb. Comput. 16(5), 423–443 (1993).
https://doi.org/10.1006/jsco.1993.1057

32. Mishra, B.: Algorithmic Algebra. Springer (1993). https://doi.org/10.1007/978-1-
4612-4344-1

33. Mitsch, S., Platzer, A.: ModelPlex: Verified runtime validation of verified cyber-
physical system models. Form. Methods Syst. Des. 49(1-2), 33–74 (2016).
https://doi.org/10.1007/s10703-016-0241-z

https://doi.org/10.1016/j.cl.2015.11.003
https://doi.org/10.1142/3846
https://doi.org/10.1007/978-3-540-70545-1_18
https://doi.org/10.1145/2562059.2562139
https://doi.org/10.1145/3049797.3049814
https://doi.org/10.1007/978-3-642-39799-8_17
https://doi.org/10.1006/jsco.2001.0472
https://doi.org/10.1007/s10817-017-9424-6
https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1145/2038642.2038659
https://doi.org/10.1006/jsco.1993.1057
https://doi.org/10.1007/978-1-4612-4344-1
https://doi.org/10.1007/978-1-4612-4344-1
https://doi.org/10.1007/s10703-016-0241-z

Pegasus: A Framework for Sound Continuous Invariant Generation 155

34. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2),
143–189 (2008)

35. Platzer, A.: The complete proof theory of hybrid systems. In: LICS. pp. 541–550.
IEEE (2012). https://doi.org/10.1109/LICS.2012.64

36. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid sys-
tems as fixedpoints. Form. Methods Syst. Des. 35(1), 98–120 (2009).
https://doi.org/10.1007/s10703-009-0079-8

37. Platzer, A., Quesel, J.: KeYmaera: A hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR.
LNCS, vol. 5195, pp. 171–178. Springer (2008). https://doi.org/10.1007/978-3-540-
71070-7 15

38. Platzer, A., Quesel, J., Rümmer, P.: Real world verification. In: CADE. LNCS,
vol. 5663, pp. 485–501. Springer (2009). https://doi.org/10.1007/978-3-642-02959-
2 35

39. Platzer, A., Tan, Y.K.: Differential equation axiomatization: The impressive power
of differential ghosts. In: Dawar, A., Grädel, E. (eds.) LICS. pp. 819–828. ACM
(2018). https://doi.org/10.1145/3209108.3209147

40. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier cer-
tificates. In: Alur, R., Pappas, G.J. (eds.) HSCC. LNCS, vol. 2993, pp. 477–492.
Springer (2004). https://doi.org/10.1007/978-3-540-24743-2 32

41. Prelle, M.J., Singer, M.F.: Elementary first integrals of differential equations.
Transactions of the American Mathematical Society 279(1), 215–229 (1983)

42. Rebiha, R., Moura, A.V., Matringe, N.: Generating invariants for
non-linear hybrid systems. Theor. Comput. Sci. 594, 180–200 (2015).
https://doi.org/10.1016/j.tcs.2015.06.018

43. Renegar, J.: Recent progress on the complexity of the decision problem for the
reals. In: Goodman, J.E., Pollack, R., Steiger, W. (eds.) Discrete and Compu-
tational Geometry: Papers from the DIMACS Special Year. vol. 6, pp. 287–308.
DIMACS/AMS (1990)

44. Rodŕıguez-Carbonell, E., Tiwari, A.: Generating polynomial invariants for hybrid
systems. In: Morari, M., Thiele, L. (eds.) HSCC. LNCS, vol. 3414, pp. 590–605.
Springer (2005). https://doi.org/10.1007/978-3-540-31954-2 38

45. Rouche, N., Habets, P., Laloy, M.: Stability Theory by Liapunov’s Direct Method,
Appl. Math. Sci., vol. 22. Springer (1977). https://doi.org/10.1007/978-1-4684-
9362-7

46. Roux, P., Voronin, Y., Sankaranarayanan, S.: Validating numerical semidefinite
programming solvers for polynomial invariants. Form. Methods Syst. Des. 53(2),
286–312 (2018). https://doi.org/10.1007/s10703-017-0302-y

47. Roy, M.F.: Basic algorithms in real algebraic geometry and their complexity: from
Sturm’s theorem to the existential theory of reals. De Gruyter Expositions in Math-
ematics 23, 1–67 (1996)

48. Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using
ideal fixed points. In: Johansson, K.H., Yi, W. (eds.) HSCC. pp. 221–230. ACM
(2010). https://doi.org/10.1145/1755952.1755984

49. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants
for hybrid systems. Form. Methods Syst. Des. 32(1), 25–55 (2008).
https://doi.org/10.1007/s10703-007-0046-1

50. Shults, B., Kuipers, B.: Proving properties of continuous systems: Quali-
tative simulation and temporal logic. Artif. Intell. 92(1-2), 91–129 (1997).
https://doi.org/10.1016/S0004-3702(96)00050-1

https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1007/s10703-009-0079-8
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-642-02959-2_35
https://doi.org/10.1007/978-3-642-02959-2_35
https://doi.org/10.1145/3209108.3209147
https://doi.org/10.1007/978-3-540-24743-2_32
https://doi.org/10.1016/j.tcs.2015.06.018
https://doi.org/10.1007/978-3-540-31954-2_38
https://doi.org/10.1007/978-1-4684-9362-7
https://doi.org/10.1007/978-1-4684-9362-7
https://doi.org/10.1007/s10703-017-0302-y
https://doi.org/10.1145/1755952.1755984
https://doi.org/10.1007/s10703-007-0046-1
https://doi.org/10.1016/S0004-3702(96)00050-1

156 A. Sogokon et al.

51. Sogokon, A., Ghorbal, K., Jackson, P.B., Platzer, A.: A method for in-
variant generation for polynomial continuous systems. In: Jobstmann, B.,
Leino, K.R.M. (eds.) VMCAI. LNCS, vol. 9583, pp. 268–288. Springer (2016).
https://doi.org/10.1007/978-3-662-49122-5 13

52. Sogokon, A., Ghorbal, K., Johnson, T.T.: Non-linear continuous systems for safety
verification. In: Frehse, G., Althoff, M. (eds.) ARCH. EPiC Series in Computing,
vol. 43, pp. 42–51. EasyChair (2016)

53. Sogokon, A., Ghorbal, K., Tan, Y.K., Platzer, A.: Vector barrier certificates and
comparison systems. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E.P. (eds.)
FM. LNCS, vol. 10951, pp. 418–437. Springer (2018). https://doi.org/10.1007/978-
3-319-95582-7 25

54. Strogatz, S.H.: Nonlinear Dynamics And Chaos. Studies in Nonlinearity, Westview
Press (2001)

55. Sturm, T., Tiwari, A.: Verification and synthesis using real quantifier elimi-
nation. In: Schost, É., Emiris, I.Z. (eds.) ISSAC. pp. 329–336. ACM (2011).
https://doi.org/10.1145/1993886.1993935

56. Tiwari, A.: Approximate reachability for linear systems. In: Maler, O.,
Pnueli, A. (eds.) HSCC. LNCS, vol. 2623, pp. 514–525. Springer (2003).
https://doi.org/10.1007/3-540-36580-X 37

57. Tiwari, A.: Abstractions for hybrid systems. Form. Methods Syst. Des. 32(1), 57–
83 (2008). https://doi.org/10.1007/s10703-007-0044-3

58. Tiwari, A.: Generating box invariants. In: Egerstedt, M., Mishra, B. (eds.) HSCC.
LNCS, vol. 4981, pp. 658–661. Springer (2008). https://doi.org/10.1007/978-3-540-
78929-1 58

59. Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin, C.,
Greenstreet, M.R. (eds.) HSCC. LNCS, vol. 2289, pp. 465–478. Springer (2002).
https://doi.org/10.1007/3-540-45873-5 36

60. Tiwari, A., Khanna, G.: Nonlinear systems: Approximating reach sets. In: Alur,
R., Pappas, G.J. (eds.) HSCC. LNCS, vol. 2993, pp. 600–614. Springer (2004).
https://doi.org/10.1007/978-3-540-24743-2 40

61. Wang, S., Zhan, N., Zou, L.: An improved HHL prover: An interactive theorem
prover for hybrid systems. In: Butler, M.J., Conchon, S., Zäıdi, F. (eds.) ICFEM.
LNCS, vol. 9407, pp. 382–399. Springer (2015). https://doi.org/10.1007/978-3-319-
25423-4 25

62. Weber, T.: Integrating a SAT solver with an LCF-style theorem
prover. Electr. Notes Theor. Comput. Sci. 144(2), 67–78 (2006).
https://doi.org/10.1016/j.entcs.2005.12.007

63. Weber, T.: SMT solvers: new oracles for the HOL theorem prover. STTT 13(5),
419–429 (2011). https://doi.org/10.1007/s10009-011-0188-8

64. Yang, Z., Huang, C., Chen, X., Lin, W., Liu, Z.: A linear programming relaxation
based approach for generating barrier certificates of hybrid systems. In: Fitzgerald,
J.S., Heitmeyer, C.L., Gnesi, S., Philippou, A. (eds.) FM. LNCS, vol. 9995, pp.
721–738 (2016). https://doi.org/10.1007/978-3-319-48989-6 44

65. Zaki, M.H., Denman, W., Tahar, S., Bois, G.: Integrating abstraction techniques
for formal verification of analog designs. J. Aeros. Comp. Inf. Com. 6(5), 373–392
(2009). https://doi.org/10.2514/1.44289

66. Zhao, F.: Extracting and representing qualitative behaviors of complex systems
in phase space. Artif. Intell. 69(1-2), 51–92 (1994). https://doi.org/10.1016/0004-
3702(94)90078-7

https://doi.org/10.1007/978-3-662-49122-5_13
https://doi.org/10.1007/978-3-319-95582-7_25
https://doi.org/10.1007/978-3-319-95582-7_25
https://doi.org/10.1145/1993886.1993935
https://doi.org/10.1007/3-540-36580-X_37
https://doi.org/10.1007/s10703-007-0044-3
https://doi.org/10.1007/978-3-540-78929-1_58
https://doi.org/10.1007/978-3-540-78929-1_58
https://doi.org/10.1007/3-540-45873-5_36
https://doi.org/10.1007/978-3-540-24743-2_40
https://doi.org/10.1007/978-3-319-25423-4_25
https://doi.org/10.1007/978-3-319-25423-4_25
https://doi.org/10.1016/j.entcs.2005.12.007
https://doi.org/10.1007/s10009-011-0188-8
https://doi.org/10.1007/978-3-319-48989-6_44
https://doi.org/10.2514/1.44289
https://doi.org/10.1016/0004-3702(94)90078-7
https://doi.org/10.1016/0004-3702(94)90078-7

	Pegasus: A Framework for Sound Continuous Invariant Generation

