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ABSTRACT
We address the verification problem for distributed hybrid
systems with nontrivial dynamics. Consider air traffic colli-
sion avoidance maneuvers, for example. Verifying dynamic
appearance of aircraft during an ongoing collision avoidance
maneuver is a longstanding and essentially unsolved prob-
lem. The resulting systems are not hybrid systems and their
state space is not of the form Rn. They are distributed hy-
brid systems with nontrivial continuous and discrete dynam-
ics in distributed state spaces whose dimension and topol-
ogy changes dynamically over time. We present the first
formal verification technique that can handle the compli-
cated nonlinear dynamics of these systems. We introduce
quantified differential invariants, which are properties that
can be checked for invariance along the dynamics of the dis-
tributed hybrid system based on differentiation, quantified
substitution, and quantifier elimination in real-closed fields.
This gives a computationally attractive technique, because
it works without having to solve the infinite-dimensional dif-
ferential equation systems underlying distributed hybrid sys-
tems. We formally verify a roundabout maneuver in which
aircraft can appear dynamically.

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specify-
ing and Verifying and Reasoning about Programs; D.2.4
[Software Engineering]: Software/Program Verification

General Terms
Verification, Theory, Algorithms
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1. INTRODUCTION
Hybrid systems are everywhere [1, 9]. But several hybrid

systems applications are really more than just hybrid sys-
tems. They involve multiple participants that communicate
with each other to achieve their respective control objec-
tives. The set of participants may even change over time
whenever participants join or leave the networked control
region. The resulting system dynamics has several aspects
of hybrid systems, including their joint discrete and contin-
uous dynamics. But that’s not all there is to it.

When multiple participants are involved, the system has
a high-dimensional hybrid dynamics. Then, the overall sys-
tem behavior depends on the effects of how the system par-
ticipants communicate and on structural properties like the
communication topology, which may change over time. The
most tricky part is when participants can join or leave the
system at runtime, leading to reconfigurable system behav-
ior and dynamics with varying dimensionality (appearance
and disappearance add or remove state variables during a
system evolution). The continuous system dynamics can no
longer be described by ordinary differential equations. It al-
ready requires arbitrary-dimensional quantified differential
equations [17]. Even without appearance and disappear-
ance, flat representations of the system as a fixed set of all
participants in a gigantic hybrid automaton becomes com-
putationally infeasible for moderately-sized systems already.

The class of systems that share the above aspects is called
distributed hybrid systems [6, 17], based on models for recon-
figurable hybrid systems [5, 12]. Distributed hybrid systems
evolve according to a joint discrete, continuous, structural,
and dimensionality-changing dynamics. Hybrid systems [20,
21, 24, 18, 16] cannot represent the distributed aspects nor
those of dynamic appearance and disappearance of partici-
pants. They would need infinitely many variables and differ-
ential equations to describe the system. Distributed systems
[2] cannot represent the continuous system dynamics. We
need to join both worlds to faithfully represent the system.
But we also need verification techniques to handle the com-
plicated resulting dynamics.

Prominent examples of distributed hybrid systems arise,
e.g., in air traffic control, where multiple aircraft are flying
to their respective goals. They use collision avoidance ma-
neuvers as needed to prevent collisions resulting from traffic
conflicts in imperfect flight trajectory planning, which have
gone unnoticed by pilots and air traffic controllers.

As an example, consider the roundabout collision avoid-
ance maneuver [19, 26] that aircraft x and y are following
in Fig. 1. Here, the hybrid system dynamics comes from
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Figure 1: New
appearance during
collision avoidance

the continuous movement of the
aircraft and the discrete flight
decisions by pilots and autopi-
lots. Even though this has usu-
ally been ignored in formal anal-
ysis, air traffic control systems
are really distributed hybrid sys-
tems, because the set of air-
craft participating in a coordi-
nated flight maneuver may be
large and may change over time
when more aircraft come near a traffic conflict or safely leave
the dense area. Aircraft z may suddenly come too close to
the collision avoidance maneuver that x and y are still per-
forming in Fig. 1. Then z appears new into the horizon of
relevance for x and y. This can happen when z changes its
flight direction unaware of the avoidance intentions of x and
y, when the collision avoidance of x and y takes longer than
expected, or when z was forced to do collision avoidance
with another aircraft a and now approaches the x, y round-
about. This is especially common in crowded airspace where
global planning of all trajectories is computationally infea-
sible. Verifying the dynamic appearance of aircraft in the
horizon of relevance during an air traffic control maneuver
is an essentially unsolved problem. One major reason why
distribution effects have been ignored in analysis so far is
that formal verification techniques did not previously sup-
port distributed hybrid systems, especially not with such
complicated dynamics as required in air traffic control. Pre-
vious techniques needed ad-hoc tricks to discuss the problem
away but could not verify it.

This paper is set out to correct this analytic deficiency
by developing verification techniques for distributed hybrid
systems with complicated nonlinear dynamics. For this pur-
pose, we present a generalization of differential invariants
[15, 18, 16]. These symbolic safety certificates, which we call
quantified differential invariants can be checked for invari-
ance along the dynamics of the distributed hybrid system
based on differentiation, quantified substitution, and quan-
tifier elimination in real-closed fields. This gives a compu-
tationally attractive technique, especially because it works
without having to solve the infinite- or arbitrary-dimensional
quantified differential equation systems underlying distributed
hybrid systems. Our approach bears some resemblance to
Lyapunov functions. But it works for safety instead of sta-
bility, it supports arbitrary logical formulas instead of just
a single function, and we have extended it appropriately to
cover distributed hybrid systems.

F
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Figure 2: Dif-
ferential invari-
ant F

Differential invariants [15, 18, 16]
are formulas F that do not change
their truth-value along the dynam-
ics of a differential equation describ-
ing a continuous system transition
in a hybrid system; see Fig. 2. To
prove that F is a differential invari-
ant, it is sufficient to check a con-
dition on the directional derivatives
of all terms of the formula [18]. Like
almost all other verification tech-
niques, differential invariants only work for hybrid systems,
not for distributed hybrid systems. Here we present an ex-
tension to distributed hybrid systems. In a sense made pre-
cise by our complete axiomatization relative to quantified

differential equations [17], we can focus mostly on verifica-
tion techniques for quantified differential equations, here,
because our previous proof calculus lifts any such verifica-
tion technique completely to distributed hybrid systems.

Our main contributions are as follows. We introduce a
generalization of differential invariants (called quantified dif-
ferential invariants), which can verify quantified differential
equations. In combination with our previous work [17], this
is the first formal verification technique for distributed hy-
brid systems with nontrivial continuous dynamics. We prove
that our verification technique is formally sound. As an ap-
plication scenario, we develop and verify a collision avoid-
ance maneuver in air traffic control, where dynamic appear-
ance of aircraft has been a major unsolved problem before.
We do not claim to solve all issues in how to fly the best ma-
neuver. Yet, we present the first verification technique with
which these maneuvers can be verified. We believe this to
be an important step in the development of formally assured
air traffic control maneuvers and other distributed designs
of cyber-physical systems.

2. RELATED WORK
The importance of understanding dynamic / reconfigurable

distributed hybrid systems was recognized in modeling lan-
guages SHIFT [5] and R-Charon [12]. They focused on simu-
lation and compilation [5] or the development of a semantics
[12], so that no verification is possible yet. Stochastic sim-
ulation has been proposed [13], but soundness has not been
proven, because ensuring coverage is difficult by simulation.

For distributed hybrid systems, even giving a formal se-
mantics is very challenging [3, 22, 12, 27]! A formal seman-
tics has been defined for a hybrid version of CSP [3] and a
hybrid version of the π-calculus [22]. Rounds [22] also pre-
sented a semantics for a spatial logic for these processes. But
from the semantics alone, no verification is possible in these
approaches, except perhaps by manual semantic reasoning.

Other process-algebraic approaches, like χ [27], have been
developed for modeling and simulation. Verification is still
limited to small fragments that can be translated directly to
other verification tools for (non-distributed) hybrid systems.

Our focus, instead, is on sound formal verification, not on
simulation. And it is on distributed hybrid systems.

Approaches for distributed systems [2] do not cover hy-
brid systems, because the addition of differential equations
to distributed systems is even more challenging than the
addition of differential equations to discrete dynamics.

Multi-party distributed control has been suggested for air
traffic control [26, 25, 14, 10]. Due to limits in previous
verification technology, no full formal verification of the dis-
tributed hybrid dynamics has been possible for these systems
yet. Random simulation has been proposed [14], but that
does not guarantee that the maneuver always works safely.

Ad-hoc informal arguments like “the distributed effects
can be ignored when we hope that at most 5 aircraft are
close” are neither general nor formal verification. They also
do not show whether the system stays safe if, nevertheless, a
sixth aircraft a approaches. If each 5-tuple of aircraft around
the sixth aircraft u assumes that u cannot appear and has
to go some place else, then the system will still be unsafe,
because u would have to stop moving (and drop out of the
sky) to comply with all those assumptions.

Lyapunov-style verification has been used successfully for
hybrid systems, including barrier certificates [20, 21], tem-



plate equations [24, 23], differential invariants [15, 18, 16]
and a constraint-based template approach [7]. Here, we
present an extension for distributed hybrid systems.

3. DISTRIBUTED HYBRID SYSTEMS
We review and extend a system model that we have re-

cently introduced for modeling distributed hybrid systems
[17]. The basic idea is to parameterize hybrid system mod-
els by agents and provide a means of quantifying over all af-
fected agents (of a certain type, e.g., A for aircraft). Hence,
instead of a primitive state variable like position x : R, dis-
tributed hybrid systems have a state function x : A→ R so
that x(i) will be the position of aircraft i and x(j) denotes
the position of aircraft j. In order to express that all air-
craft i evolve simultaneously, we will use quantified differen-
tial equations like ∀i x(i)′ = θ with a universal quantifier ∀i
(i.e., for all aircraft i) and some term θ for the flight equation
for each i. For the purpose of simplifying the presentation,
we ignore typing information (like A for aircraft, C for cars,
and R for reals), because it will be clear from the context.
Typing is needed for modelling multi-agent hybrid systems
with agents of different kinds (a mixed systems with both
aircraft and cars, not just all aircraft). We refer to [17] for
details on typing.

Quantified Hybrid Programs.
As a system model for distributed hybrid systems, we use

quantified hybrid programs (QHP) [17]. QHPs are a Kleene
algebra with tests [11] based on quantified assignments and
quantified differential equation systems for describing dis-
tributed hybrid dynamics. QHPs are defined by the follow-
ing grammar (α, β are QHPs, θ a term, i a variable, f is a
function symbol, and H is a formula of first-order logic):

α, β ::= ∀i f(i) := θ | ∀i f(i)′ = θ&H | i := new

| ?H | α ∪ β | α;β | α∗

The effect of quantified assignment ∀i f(i) := θ is an in-
stantaneous discrete jump assigning θ to f(i) simultaneously
for all objects i. Usually variable i occurs in the term θ. The
effect of quantified differential equation ∀i f(i)′ = θ&H is a
continuous evolution where, for all objects i, all differential
equations f(i)′ = θ hold and (written &) formula H holds
throughout the evolution (the state remains in the region
described by H). Again, variable i usually occurs in the
term θ. The dynamics of QHPs changes the interpretation
of terms over time: f(i)′ is intended to denote the deriva-
tive of the interpretation of the term f(i) over time during
continuous evolution, not the derivative of f(i) by its argu-
ment i. For f(i)′ to be defined, we assume f is an R-valued
function symbol. Time itself is implicit and can be axioma-
tized by a differential equation when needed. The effect of
i := new is to add a new object i (say a new aircraft of type
A) to the system. Then x(i) could denote its position, d(i)
its direction, and so on.

The effect of test ?H is a skip (i.e., no change) if formula H
is true in the current state and abort (blocking the system
run by a failed assertion), otherwise. Tests can be used to
define if-then-else. Nondeterministic choice α ∪ β is for al-
ternatives in the behavior of the distributed hybrid system.
In the sequential composition α;β, QHP β starts after α
finishes (β never starts if α continues indefinitely). Nonde-

terministic repetition α∗ repeats α an arbitrary number of
times, possibly zero times.

QHPs can be extended [17] to systems of quantified differ-
ential equations, simultaneous assignments to multiple func-
tions f, g, or statements with multiple quantifiers (∀i∀j . . . ).

We use logical formulas with operators ∧ (and), ∨ (or),
→ (implies), ∀ (forall) and ∃ (exists) to express properties
of QHPs. In addition to all formulas of first-order real arith-
metic, we allow formulas of the form [α]φ with a QHP α and
formula φ. Formula [α]φ is true in a state ν iff φ is true in all
states that are reachable from ν by following the transitions
of α. We only need to define the reachability relation of
QHPs in order to define a semantics for these formulas [17].

Case Study: Distributed Roundabout Maneuvers.
Before we discuss the semantics in detail, we first give

an intuitive example that we will also use as a case study
for distributed hybrid systems verification in Section 7. We
consider the roundabout collision avoidance maneuver for air
traffic control [26, 19, 16]. In the literature, formal verifica-
tion of the hybrid dynamics of air traffic control focused on a
fixed number of aircraft, usually two. In reality, many more
aircraft are in the same flight corridor, even if not all of them
participate in the same maneuver. They may be involved in
multiple distributed maneuvers at the same time, however.
Perfect global trajectory planning quickly becomes infeasible
then. The verification itself also becomes much more compli-
cated for three aircraft already. Explicit replication of the
system dynamics n times is computationally infeasible for
larger n. Yet, collision avoidance maneuvers need to work
for an (essentially) unbounded number of aircraft. Because
global trajectory planning is infeasible, the appearance of
other aircraft into a local collision avoidance maneuver al-
ways has to be expected and managed safely. See Fig. 1 for
a general illustration of roundabout-style collision avoidance
maneuvers and the phenomenon of dynamic appearance of
some new aircraft z into the horizon of relevance.

The resulting flight control system has several charac-
teristics of hybrid dynamics. But it is not a hybrid sys-
tem and does not even have a fixed finite number of vari-
ables in a fixed finite-dimensional state space. The sys-
tem forms a distributed hybrid system, in which all air-
craft fly at the same time and new aircraft may appear from
remote areas into the local flight scenario. Each aircraft
i has a position x(i) = (x1(i), x2(i)) and a velocity vector
d(i) = (d1(i), d2(i)). We model the continuous dynamics of
an aircraft i that follows a flight curve with an angular ve-
locity ω(i) by the (function) differential equation:

x1(i)′ = d1(i), x2(i)′ = d2(i),

d1(i)′ = −ω(i)d2(i), d2(i)′ = ω(i)d1(i) (Fω(i)(i))

This differential equation, which we denote by Fω(i)(i), is
the standard equation for curved flight from the literature
[26, 19, 16], but lifted to function symbols that are param-
eterized by aircraft i. Now, the quantified differential equa-
tion ∀iFω(i)(i) characterizes that all aircraft i fly along their
respective (function) differential equation Fω(i)(i) according
to their respective angular velocities ω(i) at the same time.
This quantified differential equation captures what no finite-
dimensional differential equation system could ever do. It
characterizes the simultaneous movement of an unbounded,
arbitrary, and even growing or shrinking set of aircraft.



ψ ≡ ∀i, j P(i, j)→ [drm]∀i, j P(i, j)

drm ≡ (free; newac; entry; ∀iFω(i))∗

free ≡ ∀iFω(i)(i) & ∀i, j P(i, j)

newac ≡ (n := new; ?∀iP(i, n)) ∪ (?true)

entry ≡ c1 := ∗; c2 := ∗;ω := ∗;
∀i d1(i) :=−ω(x2(i)− c2); ∀i d2(i) := ω(x1(i)− c1)

Figure 3: Distributed roundabout collision avoid-
ance maneuver for air traffic control

Two aircraft i and j have violated the safe separation
property if they falsify the following formula

P(i, j) ≡ i = j ∨ (x1(i)− x1(j))2 + (x2(i)− x2(j))2 ≥ p2

which says that aircraft i and j are either identical or sep-
arated by at least the protected zone p (usually 5mi). For
the aircraft control system to be safe, all aircraft have to
be safely separated, i.e., need to satisfy ∀i, j P(i, j). Yet,
it is not enough that this formula holds in the beginning
of the system evolution. It has to hold always. We express
this safety property for collision avoidance by the logical for-
mula ψ shown in Fig. 3. It uses the formula [drm]∀i, j P(i, j)
to say that safe separation P(i, j) holds for all aircraft i, j
always after following the dynamics of the distributed hy-
brid system drm arbitrarily long, if separation holds in the
beginning of the evolution (the assumption before →).

We present a QHP for the distributed roundabout ma-
neuver drm in Fig. 3. First, all aircraft perform free flight
(free). They fly arbitrarily with their respective angular ve-
locity ω(i), but can only do so as long as the system stays
safe in the evolution domain ∀i, j P(i, j). That is, free flight
is only permitted when the aircraft are still far enough apart.
It is easy to generalize the maneuver by allowing the aircraft
to repeatedly change their angular velocity ω(i) in free. For
space reasons, we do not pursue this here. Secondly, a new
aircraft may appear by the operation n := new in newac. Yet,
it may only appear at positions satisfying the subsequent
test ?∀iP(i, n) of n having sufficient distance to all other
aircraft i. The system cannot possibly be safe if the sensors
and communication is so bad that an aircraft could sud-
denly appear 5 feet before a collision. If no aircraft appears
(the choice after operator ∪ in newac), there is no further
test (trivial test ?true). Thirdly, the aircraft (including the
new one, if created during newac) coordinate their flight
paths locally and initiate collision avoidance as necessary
(entry). For entry , we use a simplified procedure based on
what has been used in classical roundabouts [26, 15]. Op-
eration entry chooses a center c = (c1, c2) like in Fig. 1 and
a common angular velocity ω for the roundabout. It then
directs all aircraft (∀i) into the appropriate directions d(i).
Such random assignments c1 := ∗ that choose an arbitrary
value for c1 are definable [17]. In the last step of drm, all
aircraft follow coordinated roundabout circles by evolving
along ∀iFω(i) with the common ω. Overall, drm repeats
collision avoidance maneuvers when necessary, as indicated
by the repetition ∗.

It might look as if new aircraft were only allowed to appear
immediately before a collision avoidance maneuver happens,
not in free flight. That is not the case, though, because it is
perfectly okay to follow the subsequent collision avoidance

circle ∀iFω(i) for zero time units if the system is still safe,
because it can then re-enter free immediately since it still
satisfies its evolution domain restriction ∀i, j P(i, j).

Semantics and Differential State Flows.
What is the behavior of a QHP? A system state ν asso-

ciates a function ν(x) of appropriate type with each func-
tion symbol x, which associates the x-value ν(x)(o) to each
object o. The set of all states is denoted by S. For rep-
resenting appearance and disappearance of objects in our
semantic model, we use an existence function

∃

() that has
value

∃

(o) = 1 if object o exists. For an elaboration of how
we represent (dis)appearance and the new operator, we refer
to previous work [17].

For a formula φ of first-order logic, we write ν |= φ iff φ
is true at state ν. We write ν |= [α]φ iff τ |= φ for all states
τ reachable from ν by a transition of QHP α. For this, we
subsequently define the reachability relation (ν, τ) ∈ ρ(α).

We write ν[[θ]] to denote the value of term θ in state ν. Fur-
ther, νei [[θ]] denotes the value of term θ in state νei , i.e., in a
state like ν, but with the interpretation of variable i changed
to e. Discrete assignments can be given a semantics based
on the effect they have on the state, i.e., how they transform
the current state ν to the next state τ . We define the behav-
ioral semantics of quantified discrete assignments as taking
an effect on all objects (say aircraft) at once. For differential
equations, however, this is more difficult, because a single
state is not sufficient for giving a semantics to differential
equations, let alone quantified differential equations.

For a semantics for quantified differential equations, we
first have to give a meaning to differential function symbols
like x(i)′. At isolated states, differential symbols do not
have a well-defined semantics, because derivatives are not
defined. Thus, we consider a flow ϕ of the system and define
a semantics for x(i)′ at every state along this flow.

Definition 1. (Differential state flow). A function
ϕ : [0, r] → S is called (differential) state flow of dura-
tion r ≥ 0 if ϕ is componentwise continuous on [0, r], i.e., for
all x ∈ Σ and all u, ϕ(ζ)(x)(u) is continuous in ζ. Then, the
differentially augmented state ϕ̄(ζ) of ϕ at ζ ∈ [0, r] agrees
with ϕ(ζ) except that it assigns values to some of the extra

differential function symbols x(1): If ϕ(t)(x)(u) is contin-

uously differentiable in t at ζ for all u, then ϕ̄(ζ)(x(1)) is

defined as the function u 7→ dϕ(t)(x)(u)
dt

(ζ) that maps u to

the time derivative dϕ(t)(x)(u)
dt

(ζ) at ζ; otherwise the value

of x(1) is not defined for ϕ̄(ζ). The value of x(i)′ at ϕ̄(ζ) is

defined to be the same as the value of x(1)(i) at ϕ̄(ζ).
A state flow ϕ of duration r is called state flow of the or-

der of quantified differntial equation ∀i f(i)′ = θ&H iff the
value of each differential symbol occurring in it is defined
on [0, r]. For a formula F with differential function sym-
bols, and a state flow ϕ of the order of F (all differential
symbols are defined), we write ϕ |= F iff for all ζ ∈ [0, r],
ϕ̄(ζ) |=R F using the standard semantics |=R of first-order
real arithmetic. In particular, ϕ |= ∀i f(i)′ = θ&H iff, at
each time ζ ∈ [0, r] and for each interpretation e of i:

• All differential equations hold and derivatives exist
(trivial for r = 0):

d (ϕ(t)ei [[f(i)]])

dt
(ζ) = (ϕ(ζ)ei [[θ]])



• And the evolution domain is respected: ϕ(ζ)ei |= H.

The transition relation, ρ(α) ⊆ S × S, of QHP α specifies
which state τ ∈ S is reachable from ν ∈ S by running QHP
α. It is defined inductively:

1. (ν, τ) ∈ ρ(∀i f(i) := θ) iff state τ is identical to ν ex-
cept that for each interpretation e of i, the value of f
changes as follows: τ(f)

(
e
)

= νei [[θ]].

2. (ν, τ) ∈ ρ(∀i f(i)′ = θ&H) iff there is a differential
state flow ϕ:[0, r]→ S for some r ≥ 0 with ϕ(0) = ν
and ϕ(r) = τ such that ϕ |= ∀i f(i)′ = θ&H.

3. ρ(?H) = {(ν, ν) : ν |= H}

4. ρ(α ∪ β) = ρ(α) ∪ ρ(β)

5. ρ(α;β) = {(ν, τ) : (ν, z) ∈ ρ(α) and (z, τ) ∈ ρ(β)
for a state z}

6. (ν, τ) ∈ ρ(α∗) iff there is an n ∈ N with n ≥ 0 and
states ν = σ0, . . . , σn = τ such that (σi, σi+1) ∈ ρ(α)
for all 0 ≤ i < n.

4. DERIVATIONS & DIFFERENTIATION
Now that we have defined a semantics, we know what the

behavior of the distributed hybrid system models of QHPs
is. The next important question is how we can prove prop-
erties of this behavior, e.g., that a QHP never leaves a safe
region. The trouble is that we cannot rely on having good
solutions of the quantified differential equations that dis-
tributed hybrid systems follow. First of all, quantified dif-
ferential equations do not have a fixed dimension and are
thus more complicated than ordinary differential equations.
Secondly, “most” differential equations (quantified or not)
either have solutions that are outside decidable classes of
arithmetic or have no closed-form solutions at all. The flight
equation Fω(i)(i), for instance, has trigonometric solutions
with first-order functions, which is not even semi-decidable.
In either case, we cannot rely on using the solutions for veri-
fication purposes. Instead, we are looking for a different way
of proving properties about the behavior of quantified differ-
ential equations by working with the quantified differential
equations, not their solutions.

In preparation for that, we define the notions that we will
use as crucial reasoning primitives in Section 5. We will de-
fine quantified differential invariants of formulas using syn-
tactic total derivations and their relation to analytic differ-
entiation. We first introduce these notions and generalize
them to quantified differential equations of distributed hy-
brid systems. We generally assume all formulas to be given
in prefix disjunctive normal form, that is they are of the
form Q

∨
i

∧
j Fi,j with a prefix Q of quantifiers and atomic

formulas Fi,j that have no quantifiers or logical operators.

Derivations.
Hybrid systems evolve along trajectories that are defined

in terms of the effects of discrete transitions and in terms of
solutions of their differential equations. A (vectorial) func-
tion f is a solution of a differential equation system if the
function f satisfies the differential equation, in which we
replace f ′ by its analytic differentiation. This is a good
mathematical definition, but not computational enough for

verification purposes, because analytic differentiation is de-
fined as a limit process at infinitely many points in time.
This becomes computationally even worse for quantified dif-
ferential equations, because those amount to an essentially
infinite-dimensional differential equation system, which we
cannot easily solve simultaneously for all positions at once.

In order to turn this mathematically precise definition
into a computationally tractable algorithm, we, instead, de-
fine an entirely syntactic and algebraic total derivation and
then prove that its valuation along differential flows coin-
cides with analytic differentiation. We can easily compute
the syntactic total derivation algebraically. And then we
show that its value coincides with the result of analytic dif-
ferentiation. In addition, we generalize total derivations to
quantified formulas and constraints with first-order function
symbols, as necessary for quantified differential equations.

Definition 2. (Derivation). The operator D that is de-
fined as follows on terms is called syntactic (total) deriva-
tion:

D(r) = 0 for r ∈ Q (1a)

D(x(s)) = x(s)′ for function symbol x : C → R
with C 6= R discrete (1b)

D(a+ b) = D(a) +D(b) (1c)

D(a− b) = D(a)−D(b) (1d)

D(a · b) = D(a) · b+ a ·D(b) (1e)

D(a/b) = (D(a) · b− a ·D(b))/b2 (1f)

We extend D to first-order formulas F in prefix disjunctive
normal form as follows:

D(∀i F ) ≡ ∀iD(F )

D(∃i F ) ≡ ∀iD(F )

D(F ∧G) ≡ D(F ) ∧D(G)

D(F ∨G) ≡ D(F ) ∧D(G)

D(a ≥ b) ≡ D(a) ≥ D(b) accordingly for <,>,≤,=.

In the aircraft example, consider the safe separation for-
mula ∀i, j P(i, j). We compute its syntactic total derivation
D(∀i, j P(i, j)) to be the following (differential) expression:

∀i, j
(
i′ = j′∧

2(x1(i)− x1(j))(x1(i)′ − x1(j)′)

+ 2(x2(i)− x2(j))(x2(i)′ − x2(j)′) ≥ 0
)

For making use of this syntactic total derivation for verifi-
cation purposes, we need to define how we can understand
its differential function symbols x1(i)′, x2(j)′, i′ and so on.
These differential function symbols do not even have a well-
defined semantics if we try to evaluate or prove the above
expression at an isolated state. But the first thing we need to
do is to understand what the above expression could mean at
all. Def. 2 is entirely syntactical (the x1(i)′ are just symbols),
which is good, because then we can compute it algebraically
during verification. But what is its meaning? What is its
relationship to the results of real analytic differentiation d

dt
that define the behavioral system semantics?

Differentiation.
In the following key lemma, we show that the syntactic

derivation D directly coincides with analytic differentiation



d
dt

, even for terms with differential function symbols, as oc-
curring in quantified differential equations.

Lemma 1 (Derivation lemma). The valuation of terms
is a differential homomorphism: Let θ be a term and let ϕ :
[0, r]→ S be any state flow of the order of D(θ) and of du-
ration r > 0 along which the value of θ is defined (as no
divisions by zero occur). Then we have for all ζ ∈ [0, r] that

dϕ(t)[[θ]]

dt
(ζ) = ϕ̄(ζ)[[D(θ)]].

In particular, ϕ(t)[[θ]] is continuously differentiable (where θ
is defined) and its derivative exists on [0, r].

Proof. The proof is an inductive consequence of the cor-
respondence of the semantics of differential symbols and an-
alytic derivatives in state flows (Def. 1). It uses the assump-
tion that the flow ϕ remains within the domain of definition
of θ and is continuously differentiable in all variables of θ.
In particular, all denominators are nonzero during ϕ.

• If θ is a function term x(s), the lemma holds by Def. 1:

dϕ(t)[[x(s)]]

dt
(ζ) =

dϕ(t)(x)(ϕ(t)[[s]])

dt
(ζ)

(!)
=

dϕ(t)(x)(ϕ(ζ)[[s]])

dt
(ζ) = ϕ̄(ζ)(x′)(ϕ(ζ)[[s]])

= ϕ̄(ζ)[[x′(s)]] = ϕ̄(ζ)[[D(x(s))]].

The equation marked (!) holds, because the argument
s of x has type C 6= R, which is equipped with the
discrete topology. Consequently, only the neighbor-
hood {ζ} is relevant in the limit process of the deriva-
tive, because s only has constant local dynamics. The
derivative exists because the state flow is of order 1
in x and, thus, (continuously) differentiable for x.

• If θ is of the form a+ b, the desired result can be ob-
tained by using the properties of derivatives, deriva-
tions (Def. 2), and evaluation ν[[·]] of terms:

d

dt
(ϕ(t)[[a+ b]])(ζ)

=
d

dt
(ϕ(t)[[a]] + ϕ(t)[[b]])(ζ) ν[[·]] homomorphic

=
d

dt
(ϕ(t)[[a]])(ζ) +

d

dt
(ϕ(t)[[b]])(ζ)

d

dt
is linear

= ϕ̄(ζ)[[D(a)]] + ϕ̄(ζ)[[D(b)]] induction hyp.

= ϕ̄(ζ)[[D(a) +D(b)]] ν[[·]] homomorphic

= ϕ̄(ζ)[[D(a+ b)]] D(·) derivation

• The case where θ is of the form a · b or a− b is similar,
using Leibniz product rule (1e) or subtractivity (1d)
of Def. 2, respectively.

• The case where θ is of the form a/b uses (1f) of Def. 2
and depends on the assumption that b 6= 0 along ϕ.
This assumption holds as the value of θ is assumed to
be defined all along state flow ϕ.

• The values of numbers r ∈ Q do not change during a
state flow (in fact, they are not affected by the state
at all); hence their derivative is D(r) = 0.

With Lemma 1, syntactic total derivations are directly re-
lated to the behavior during continuous flows of the system,
which is good. But how can we use them in a proof? Ex-
pressions like D(∀i, j P(i, j)) are related to expressions with
a meaning along a continuous flow. But we do not want
to reason explicitly about what happens at a point in time
during a continuous flow, otherwise we would need to know
their solutions for verification and be back at square one.
What prevents us from making sense of an expression like
D(∀i, j P(i, j)) is the occurrence of differential function sym-
bols like x2(i)′ in it, which are only well-defined along a flow.
So instead, we find a way to get rid of the differential func-
tion symbols without changing the meaning, i.e., the link to
the behavioral semantics of the distributed hybrid system.

Consider some quantified differential equation ∀i f(i)′ = θ.
What is the relationship between this quantified differential
equation and a quantified assignment ∀i f(i) := θ to the func-
tion symbol f(i)? Obviously that the quantified differential
equation takes effect continuously where term θ describes
the rate of change of f(i) along a flow ϕ, yet the quantified
assignment just has an instant effect at a single state ν of
changing f(i) to the new value θ once and then leaving f(i)
alone. This is quite a fundamental difference.

But now, what is the relationship between the quantified
differential equation ∀i f(i)′ = θ and a quantified assignment
∀i f(i)′ := θ to the differential function symbol f(i)′? This
question is more tricky. We cannot really understand the lat-
ter quantified assignment at a single state ν. First of all, the
semantics of differential function symbols is only well-defined
along a flow ϕ, not at an isolated state ν. The semantics is
further defined locally per (differentially augmented) state
ϕ̄(ζ) for each time ζ. So, instead, we consider a flow ϕ and
one of its local differential states ϕ̄(ζ). At this local differen-
tial state, we perform the quantified assignment ∀i f(i)′ := θ
and consider its effect on a differential term υ. That is we
consider [∀i f(i)′ := θ]υ at ϕ̄(ζ). Now the interesting point
is that the effect of this operation corresponds directly to
the local effect of the quantified differential equation. That
is, if the flow ϕ respects the quantified differential equation
∀i f(i)′ = θ, then the quantified assignment ∀i f(i)′ := θ does
not alter the value of any differential terms.

That is, we show that a quantified assignment of the
right-hand side θ of the differential equation to the differ-
ential term f(i)′ on its left-hand side does not change the
value of arbitrary differential terms along a flow ϕ that al-
ready respects this quantified differential equation. This is
an interesting generalized differential substitution property.
It shows that quantified differential equations have conse-
quences that correspond to substitutions by quantified as-
signments along their flows. Hence, locally, there is a way of
understanding the effects of a quantified differential equa-
tions expressed as quantified assignments. We make this
formally precise in the following lemma.

Lemma 2 (Differential substitution property).
If ϕ is a state flow satisfying ϕ |= ∀i f(i)′ = θ&H, then the
property ϕ |= υ = [∀i f(i)′ := θ]υ holds for all (differential)
terms υ that include only differential symbols of the form
f(i)′ for some variable i.

Proof. The proof is by induction on the structure of υ.
Consider a point in time ζ during the flow ϕ.

1. If υ is a differential symbol, then, by assumption, it is



(DI)
H→[∀i f(i)′ := θ]D(F )

F→[∀i f(i)′ = θ&H]F

(DC)
F→[∀i f(i)′ = θ&H]G F→[∀i f(i)′ = θ&H ∧G]F

F→[∀i f(i)′ = θ&H]F

([:=])
if∃i i = [A]u then∀i (i = [A]u→ φ(θ)) elseφ(f([A]u)) fi

φ([∀i f(i) := θ]f(u))
1

([∪])
[α]φ ∧ [β]φ

[α ∪ β]φ

1Occurrence f(u) in φ(f(u)) is not in scope of a modality
and we abbreviate quantified assignment ∀i f(i) := θ by A.

Figure 4: Proof rules using quantified differential
invariants for distributed hybrid systems

of the form f(i)′. Then

ϕ̄(ζ)[[f(i)′]] = ϕ̄(ζ)[[θ]] = ϕ̄(ζ)[[[∀i f(i)′ := θ]f(i)′]]

because f(i)′ and θ have the same value along any ϕ
satisfying the assumption ϕ |= ∀i f(i)′ = θ&H.

2. If υ is a non-differential function symbol g(i) with a
variable i, then it is not affected by assigning to differ-
ential symbols. Thus, ϕ |= g(i) = [∀i f(i)′ := θ]g(i).

3. If υ is a function term of the form f(s) for a function
symbol f and (possibly vectorial) term s, then f itself
is not affected by the assignment, but smight be. Then

ϕ̄(ζ)[[[∀i f(i)′ := θ]f(s)]] = ϕ̄(ζ)[[f([∀i f(i)′ := θ]s)]]

= ϕ̄(ζ)[[f(s)]]

The last equation holds, because, by induction hy-
pothesis, ϕ |= s = [∀i f(i)′ := θ]s, which directly im-
plies that ϕ̄(ζ) |= s = [∀i f(i)′ := θ]s.

5. QUANTIFIED DIFFERENTIAL INVARI-
ANTS

Based on the notions introduced in the last sections, we
can now describe our new verification approach for distributed
hybrid systems with nontrivial continuous dynamics. Our
verification approach is based on logic and automated the-
orem proving techniques. For each kind of operator that
can occur in a QHP describing a distributed hybrid system,
we need to give a proof rule that takes care of it. That is,
for the operators ; ,∪, ∗, ? and, most importantly, for quan-
tified assignments and quantified differential equations. We
list our proof rules for verifying distributed hybrid systems
in Fig. 4 and explain them subsequently. For the operators
; ,∪, ∗, ? of Kleene algebras with tests [11], there are classi-
cal proof rules, which we have previously shown to apply to
hybrid systems [15]. It can be shown easily [17] that we can
still use the rules for Kleene algebras in distributed hybrid
systems. For instance, the proof rule [∪] axiomatizes non-
deterministic choice ∪. This rule expresses that, when we
want to prove the formula [α ∪ β]φ below the inference bar
(conclusion), it is sufficient to prove the formula [α]φ ∧ [β]φ
above the inference bar (premiss). And this makes sense,
because if the premiss holds, that is, if all behavior of QHP
α safely stays in the region described by formula φ (i.e.,
[α]φ holds) and, independently, all behavior of β stays in φ

(i.e., [β]φ holds), then all behavior of the compound system
α ∪ β, which can choose between following any behavior of
α and any behavior of β, stays safely in φ (i.e., the conclu-
sion holds). This proof rule, like all of our other proof rules,
decomposes a property of a compound system α ∪ β into
properties of simpler subsystems. This compositional verifi-
cation principle is beneficial for scalability purposes, because
it helps taming the system complexity by recursively reduc-
ing the system to its parts during verification.

Most importantly, we need proof rules for quantified dif-
ferential equations in order to be able to prove properties of
the form [∀i f(i)′ = θ&H]F . One option is to assume that
we know an explicit closed-form solution of the quantified
differential equation and use that solution as a quantified
assignment ∀i f(i) := θ to verify that property F holds at
all times when following the solution, while staying in the
evolution domain H. This is the option we have pursued in
previous work [17]. It is correct, but the problem with that
approach is that it only works if we can find a simple closed-
form solution of the quantified differential equation. It does
not work, however, if the quantified differential equation has
no closed-form solution that we can write down, not if it has
one but we cannot compute it, and not if it only has solu-
tions that fall into undecidable classes of arithmetic. Flight
equations for curved flight, for instance, have solutions with
undecidable arithmetic [16].

Here, we thus follow an entirely different approach that
is not limited to working with closed-form solutions of dif-
ferential equations. We present an approach that has some
resemblance to Lyapunov functions. But it works for safety
instead of stability, and it supports arbitrary formulas in-
stead of just a single function. Most importantly, we have
extended the approach appropriately to cover distributed
hybrid systems and their arbitrary-dimensional dynamics,
including appearance and disappearance of participants.

The primary insight is that, when we want to verify a
property of a differential equation, we do not have to know
the solution for proving a property about it. If we want to
know whether formula [∀i f(i)′ = θ&H]F holds, i.e., whether
we always safely stay in the region described by formula F
when following that continuous dynamics, then we do not
need to know global solutions of where exactly each point of
the state space will evolve to when following the dynamics.
All we need to know is whether we can possibly ever go from
somewhere safe to somewhere unsafe. This is the intuition
illustrated in Fig. 2. We check if the local continuous dy-
namics always pushes the system state in a direction where
F is becoming “more” true, not in a direction where it could
become false. Then, if the system also starts safe (in F ), it
will always stay safe no matter where we go.

For quantified differential equations, one of the extra chal-
lenges is that the system does not have a fixed finite dimen-
sion but can be arbitrary-dimensional. Consequently, there
is not even a finite vector space in which the local direc-
tions of the vector field of the differential equations can be
described and checked. Instead we need a criterion that cap-
tures our verification approach based on implicit properties
of the local dynamics at uncountably infinitely many points
in an essentially infinite-dimensional vector field. The car-
dinality of this set is at least that of RN (vaguely: “∞∞”).

In Section 4, we have introduced entirely symbolic notions
of syntactic total derivations and the differential substitution
property, which we use to turn the above intuitions into the



formally precise and rigorous proof rule DI. For a formula F
if we can prove the premiss of rule DI, i.e., that, after a dif-
ferential substitution [∀i f(i)′ := θ], its total derivative D(F )
is valid in the evolution domain region H, then the conclu-
sion of DI is valid, i.e., that the system stays in region F
when it starts in F (left assumption in conclusion). It is im-
portant that we add the quantified assignment ∀i f(i)′ := θ
in the premiss, because, otherwise, the premiss of DI is
not even a logical formula that would have a well-defined
semantics when evaluated in a state. Unlike F , the total
derivative D(F ) will contain differential function symbols
like f(i)′, which do not have a semantics in isolated states
but only along a flow. The quantified assignment, however,
defines a value for those differential function symbols, which
has a well-defined correspondence to the local dynamics of
quantified differential equations by way of Lemma 2. The
quantified assignment resulting in the premiss of rule DI
can be handled subsequently by rule [:=].

We call formula F in rule DI a quantified differential in-
variant for quantified differential equation ∀i f(i)′ = θ&H.
Note that stronger assumptions than H are generally un-
sound for the premiss of DI; see previous work for details
[15, 16]. Even though stronger assumptions than H have
been proposed for hybrid systems [20, 7], they are generally
unsound even there. That is the reason why we take extra
care in this paper to make sure our proof system is actually
sound (cannot prove invalid formulas). Instead, we use a
proof rule called differential cut (DC) that can be used to
accumulate more knowledge and extra assumptions about
the dynamics successively in a sound way. The right pre-
miss proves that the property holds when assuming G as an
additional restriction on the evolution domain region, and
the left premiss proves that G is actually an invariant so that
restricting the dynamics to G on the right branch is just a
pseudo-restriction.

Rule [:=] handles quantified assignments [17]. Their effect
depends on whether ∀i f(i) := θ matches f(u), i.e., there is a
choice for i such that f(u) is affected by the assignment, be-
cause u is of the form i for some i. If it matches, the premiss
uses the term θ assigned to f(i) instead of f(u). Otherwise,
the occurrence of f in φ(f(u)) will be left unchanged. Rule
[:=] makes a case distinction on matching by if-then-else. In
either case, the original quantified assignment ∀i f(i) := θ,
which we abbreviate by A, will be applied to u in the pre-
miss, because the value of argument u may also be affected
by A, recursively. The side condition on rule [:=] makes sure
that we use rule [:=] in the appropriate order.

We use classical proof rules for the operators of the Kleene
algebra with tests, and refer to the literature for details [11,
17]. We also use a proof rule (written R) for real arithmetic
based on quantifier elimination in real-closed fields [4]. Be-
cause we do not need the details of real arithmetic for the
purpose of this paper, we consider it as a black box and refer
to previous work for an elaboration of real arithmetic [17].

As a simple example, consider the following proof:

true
R ∀i 3(x(i)2 + x(i)4 + 2) ≥ 0

[:=] [∀i x(i)′ := x(i)2 + x(i)4 + 2]∀i 3x(i)′ ≥ 0
DI∀i 3x(i) ≥ 1 →[∀i x(i)′ = x(i)2 + x(i)4 + 2]∀i 3x(i) ≥ 1

This simple proof shows that ∀i 3x(i) ≥ 1 is a (quantified
differential) invariant of the quantified differential equation

∀i x(i)′ = x(i)2 + x(i)4 + 2. Note that this differential equa-
tion is difficult to solve and the solution falls into undecid-
able classes of arithmetic. At the bottom the proof starts
with rule DI that reduces verification to a check on the total
differential of the formula after an assignment of the differen-
tial function symbol to the right hand side of the quantified
differential equation. The proof then uses rule [:=] to handle
the quantified assignment by substitution and finally can be
proven by quantifier elimination for real arithmetic (marked
by R). In this simple example, the quantifier for i can be
handled in a very simple modular way. We consider a more
complicated example in our case study in Section 7.

6. SOUNDNESS
The proof rules in Fig. 4 would be entirely useless if they

were unsound, because they could then be used to claim
counterfactual properties as “proven” that do not hold in re-
ality. In order to show the appropriateness of the proof rules,
we, thus, prove that all provable properties are actually true.

Theorem 1 (Soundness). The quantified differential
invariant proof rules in Fig. 4 are sound, i.e., every formula
they prove is a valid property (of the distributed hybrid sys-
tem that the formula refers to), i.e., it is true in all states.

Proof. We prove soundness of each proof rule.

DC Rule DC can be proven sound using the fact that the
left premise implies that every flow ϕ that satisfies the
quantified differential equation and evolution domain
restriction H also satisfies G all along the flow. Thus,
ϕ |= ∀i f(i)′ = θ&H implies ϕ |= ∀i f(i)′ = θ&H ∧G
so that the right premise entails the conclusion.

DI Assume that the premise is valid, i.e., true in all states.
We have to show that the conclusion is valid too. Let ν
be a state that satisfies the assumption F of the con-
clusion as, otherwise, there is nothing to show. We
prove soundness by induction on the structure of F .
First, we assume F to be quantifier-free in disjunctive
normal form and consider any disjunct G of F that is
true at ν. In order to show that F is invariant during
the continuous evolution, it is sufficient to show that
each conjunct of G is. We can assume these conjuncts
to be of the form c ≥ 0 (or c > 0 where the proof is
similar). Now let ϕ : [0, r]→ S be any state flow with
ϕ |= ∀i x(i)′ = θ&H beginning in ϕ(0) = ν. By an-
tecedent, ν |= F . We assume duration r > 0, because
the other case is immediate (ν |= F already holds). We
show that F holds all along the flow ϕ, i.e., ϕ |= F .

Consider the case where F is of the form c ≥ 0 (or c > 0
where the proof is similar). Suppose there was a ζ ∈
[0, r] where ϕ(ζ) |= c < 0; this will lead to a contra-
diction. Then the function h : [0, r] → R defined as
h(t) = ϕ(t)[[c]] satisfies h(0) ≥ 0 > h(ζ), because the
antecedent shows ν |= c ≥ 0. Now, ϕ is of the or-
der of D(c), because: ϕ is of order 1 for all sym-
bols x(i), and trivially of order∞ for variables that do
not change during the differential equation. The value
of c is defined all along ϕ, because we have assumed H
to guard against zeros of denominators. Thus, by
Lemma 1, h is continuous on [0, r] and differentiable
at every ξ ∈ (0, r). By mean value theorem there is a

ξ ∈ (0, ζ) such that dh(t)
dt

(ξ) · (ζ − 0) = h(ζ)− h(0) < 0.



In particular, since ζ ≥ 0, we can conclude dh(t)
dt

(ξ) < 0.

Lemma 1 implies that dh(t)
dt

(ξ) = ϕ̄(ξ)[[D(c)]] < 0. And
ϕ̄(ξ)[[D(c)]] = ϕ̄(ξ)[[[∀i x(i)′ := θ]D(c)]] by Lemma 2, as
ϕ |= ∀i x(i)′ = θ&H. This, however, is now a con-
tradiction, because the premise actually implies that
ϕ |= H → [∀i x(i)′ := θ]D(c) ≥ 0. In particular, since
ϕ̄(ξ) |= H holds by definition of the semantics, we have
ϕ̄(ξ) |= [∀i x(i)′ := θ]D(c) ≥ 0.

Second, consider the case where F is of the form ∀j G
for a fresh variable j that we can assume to occur only
in G by renaming. Again let ϕ : [0, r]→ S be any state
flow with ϕ |= ∀i x(i)′ = θ&H beginning in ϕ(0) = ν
with ν |= F . Consider any value e for the quanti-
fied variable j, then νej |= G, i.e., ν |= Ge

j . Premiss
H→[∀i x(i)′ := θ]D(F ) is provable and, thus, by induc-
tion hypothesis valid. Then H→[∀i x(i)′ := θ]D(Ge

j) is
valid too, because F ≡ ∀j G implies D(F ) ≡ ∀j D(G)
and [∀i x(i)′ := θ]∀j D(G) entails [∀i x(i)′ := θ]D(Ge

j)
by the definition of the semantics. Consequently, Ge

j

satisfies all assumptions of rule DI and the induc-
tion hypothesis implies that Ge

j→[∀i x(i)′ = θ&H]Ge
j

is valid. Since assumption ν |= Ge
j holds, we know that

Ge
j holds at all times when following ∀i x(i)′ = θ&H.

Now e was arbitrary, thus ∀j G→[∀i x(i)′ = θ&H]∀j G
is valid. If F is of the form ∃j G, the proof is similar,
except for the last step.

[:=] For a proof of the soundness of rule [:=] and [∪], we
refer to earlier work [17].

7. DISTRIBUTED ROUNDABOUT FLIGHT
VERIFICATION

As an example of a distributed hybrid system, we have ver-
ified collision freedom in a roundabout flight collision avoid-
ance maneuver; see Fig. 3. Unlike classical versions consid-
ered in the literature, we verify the roundabout maneuver
for arbitrarily many aircraft and for an unbounded number
of new aircraft that may appear into the horizon of rele-
vance during the collision avoidance maneuver; see Fig. 1. In
Fig. 5, we show the most important part of the proof for the
collision-freedom property defined in Fig. 3. This part of the
proof shows that the circle phase of the roundabout maneu-
ver stays collision-free indefinitely for an arbitrary number
of aircraft. That is the most crucial part, because we have to
know that the aircraft remain safe during the actual round-
about collision avoidance circle. In other flight modes (e.g.,
free), the aircraft are safe by construction, because the evo-
lution domain ∀i, j P(i, j) forces them to switch to a round-
about collision avoidance circle when the aircraft come too
close. The condition ∀i, j T (i, j) characterizes compatible
tangential maneuvering choices and can be proven to hold
after entry . Without a condition like T (i, j), roundabouts
can be unsafe [15, 16] so it is crucial that entry establishes
it. For a systematic derivation of how to construct T (i, j),
we refer to previous work [15, 16].

Note that the maneuver cannot be proven using any hy-
brid systems verification technique, because the dimension
is parametric and unbounded and may even change dynam-
ically during the remainder of the maneuver. The single
proof in Fig. 5 corresponds to infinitely many proofs for sys-
tems with n aircraft for all n (plus unbounded dynamic
changes of n in the proof for flight phase newac).

Our proof shows that the distributed roundabout maneu-
ver safely avoids collisions for arbitrarily many aircraft (even
with dynamic appearance of new aircraft). The above ma-
neuver still requires all aircraft in the horizon of relevance
to participate in the collision avoidance maneuver. In fact,
we can show that this is unnecessary for aircraft that are
far enough away and that may be engaged in other round-
abouts. For space reasons, a discussion of these phenomena
is beyond the scope of this paper, however.

8. CONCLUSIONS
Many cyber-physical systems are really distributed hybrid

systems, with joint discrete, continuous, structural, and di-
mensional dynamics. This makes them challenging for for-
mal verification. With hybrid systems verification, we can-
not understand the distributed aspects of these systems nor
aspects of dynamic appearance and disappearance of par-
ticipants. With distributed systems verification, we cannot
understand the continuous system dynamics. We present
the first verification technique for distributed hybrid systems
with nontrivial dynamics, which captures all these kinds
of dynamics at once. We introduce quantified differential
invariants for verifying properties of quantified differential
equations. These quantified differential invariants are com-
putationally attractive, because they can be used to ver-
ify distributed hybrid systems without having to solve their
quantified differential equation systems. In particular, quan-
tified differential invariants can be used even if the solu-
tions cannot be computed, fall into undecidable classes of
arithmetic, or do not even exist in closed form. We prove
soundness of our verification approach and formally verify
collision-freedom in a distributed roundabout maneuver in
which new aircraft can appear dynamically at runtime.

Future work includes a more detailed study of the dis-
tributed roundabout maneuver and improving automation.
In particular a number of assumptions in our distributed
roundabout maneuver would be interesting to relax in future
work (e.g., overly simplistic entry procedure, perfect commu-
nication, and synchronicity). Our verification approach does
not depend on these assumptions, but the example does.
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true
R ∀i, j T (i, j) →∀i, j

(
2(x1(i)− x1(j))(−ω(x2(i)− x2(j))) + 2(x2(i)− x2(j))ω(x1(i)− x1(j)) ≥ 0

)
R ∀i, j T (i, j) →∀i, j

(
0 = 0 ∧ 2(x1(i)− x1(j))(d1(i)− d1(j)) + 2(x2(i)− x2(j))(d2(i)− d2(j)) ≥ 0

)
[:=]∀i, j T (i, j) →[∀iL(i)]∀i, j

(
i′ = j′ ∧ 2(x1(i)− x1(j))(x1(i)′ − x1(j)′) + 2(x2(i)− x2(j))(x2(i)′ − x2(j)′) ≥ 0

)
true

R ∀i, j
(
− ωd2(i)− (−ωd2(j)) = −ω(d2(i)− d2(j)) ∧ ωd1(i)− ωd1(j) = ω(d1(i)− d1(j))

)
[:=] [∀iL(i)]∀i, j

(
d1(i)′ − d1(j)′ = −ω(x2(i)′ − x2(j)′) ∧ d2(i)′ − d2(j)′ = ω(x1(i)′ − x1(j)′)

)

DC

DI

[:=]
. . .

[∀iL(i)](∀i, j T (i, j))′

∀i, j P(i, j) ∧ ∀i, j T (i, j)→[∀iFω(i)]∀i, j T (i, j)
DI

[:=]
. . .

∀i, j T (i, j)→[∀iL(i)](∀i, j P(i, j))′

∀i, j P(i, j) ∧ ∀i, j T (i, j)→[∀iFω(i) & ∀i, j T (i, j)]∀i, j P(i, j)

∀i, j P(i, j) ∧ ∀i, j T (i, j)→[∀iFω(i)]∀i, j P(i, j)

Abbreviations: T (i, j) ≡ d1(i)− d1(j) = −ω(x2(i)− x2(j)) ∧ d2(i)− d2(j) = ω(x1(i)− x1(j))

L(i) ≡ x1(i)′ := d1(i), x2(i)′ := d2(i), d1(i)′ :=−ωd2(i), d2(i)′ := ωd1(i)

Figure 5: Proof for collision freedom of roundabout collision avoidance maneuver circle
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