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Abstract. Complex physical systems have several degrees of freedom.
They only work correctly when their control parameters obey corre-
sponding constraints. Based on the informal specification of the European
Train Control System (ETCS), we design a controller for its cooperation
protocol. For its free parameters, we successively identify constraints that
are required to ensure collision freedom. We formally prove the parameter
constraints to be sharp by characterizing them equivalently in terms of
reachability properties of the hybrid system dynamics. Using our deduc-
tive verification tool KeYmaera, we formally verify controllability, safety,
liveness, and reactivity properties of the ETCS protocol that entail colli-
sion freedom. We prove that the ETCS protocol remains correct even in
the presence of perturbation by disturbances in the dynamics. We verify
that safety is preserved when a PI controlled speed supervision is used.

Keywords: formal verification of hybrid systems, train control, theorem
proving, parameter constraint identification, disturbances

1 Introduction

Complex physical control systems often contain many degrees of freedom includ-
ing how specific parameters are instantiated or adjusted [1–3]. Yet, virtually all
of these systems are hybrid systems [4] and only work correctly under certain
constraints on these parameters. The European Train Control System (ETCS) [5]
has a wide range of different possible configurations of trains, track layouts, and
different driving circumstances. It is only safe for certain conditions on external
parameters, e.g., as long as each train is able to avoid collisions by braking with
its specific braking power on the remaining distance to the rear end of the next
train. Similarly, internal control design parameters for supervisory speed control
and automatic braking triggers need to be adjusted in accordance with the un-
derlying train dynamics. Moreover, parameters must be constrained such that
the system remains correct when passing from continuous models with instant
reactions to sampled data discrete time controllers of hardware implementations.
Finally, parameter choices must preserve correctness robustly in the presence of
disturbances caused by unforeseen external forces (wind, friction, . . . ) or internal
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modelling inaccuracies of ideal-world dynamics, e.g., when passing from ideal-
world dynamics to proportional-integral (PI) controller implementations.3 Yet,
determining the range of external parameters and the choice of internal design
parameters for which complex control systems like ETCS are safe, is not possible
just by looking at the model, even less so in the presence of disturbance.

Likewise, it is difficult to read off the parameter constraints that are required
for correctness from a failed verification attempt of model checkers [6–8], since
concrete numeric values of a counterexample trace cannot simply be translated
into a generic constraint on the free parameters of the system which would have
prevented this kind of error. While approaches like counterexample-guided ab-
straction refinement [9, 8] are highly efficient in undoing automatic abstractions
of an abstract hybrid system from spurious counterexamples, they stop when
true counterexamples remain in the concrete system. For discovering constraints
on free parameters, though, even concrete models will have counterexamples
until all required parameter constraints have been identified.

Instead, we use our techniques based on symbolic decompositions [10] for
systematically exploring the design space of a hybrid system and for discovering
correctness constraints on free parameters. For a complex physical system, we
show step by step how a control system can be developed that meets its control
design goals and desired correctness properties. Starting from a coarse skeleton
of the ETCS cooperation protocol obtained from its official specification [5], we
systematically develop a safe controller and identify the parameter constraints
that are required for collision freedom. Although these parameter constraints
are safety-critical, they are not stated in the official specification [5]. Rather,
they result from the system dynamics and objectives and need to be made ex-
plicit to find safe choices. The constraints are nontrivial especially those needed
to ensure a safe interplay of physics and sampled control implementations. Us-
ing the parametric constraints so discovered, we verify correctness properties
of the ETCS cooperation protocol that entail collision freedom. We verify rich
properties, including safety, controllability, reactivity, and liveness, which are
not uniformly expressible and verifiable in most other approaches. Moreover, we
verify those correctness properties of the parametric ETCS case study almost
fully automatically in our verification tool KeYmaera [11]. Compared to our pre-
liminary short report [12] we prove 12 additional properties including PI control
and disturbance extensions.

Contributions We show how realistic fully parametric hybrid systems for traffic
protocols can be designed and verified using a logic-based approach. For ETCS,
we identify all relevant safety constraints on free parameters, including external
system parameters and internal design parameters of controllers. Safe control
choices will be important for more than two million passengers in Europe per day.
Our first contribution is that we characterize safe parameter choices equivalently
in terms of properties of the train dynamics and that we verify controllability,
reactivity, safety, and liveness properties of ETCS. Our second contribution is
3 PI is a standard control technique and also used for controlling trains [2].
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that we show how to verify ETCS with a proportional-integral (PI) controller.
In contrast to their routine use in control, giving formal proofs for the correct
functioning of PIs has been an essentially unsolved problem. Other issues often
arise from verification results for ideal-world dynamics that cease to hold for
real-world dynamics. Our third contribution is to show how to extend ETCS
verification to the presence of disturbances in the dynamics, which account for
friction etc. Most notably, the ETCS model with its rich set of properties is out of
scope for other approaches. ETCS further illustrates a more general phenomenon
in hybrid systems: safely combining dynamics with control requires parameter
constraints that are much more complicated than the original dynamics.

Related Work Model checkers for hybrid systems, for example HyTech [4]
and PHAVer [8], verify by exploring the state space of the system as exhaustively
as possible. In contrast to our approach they need concrete numbers for most
parameters and cannot verify liveness or existential properties, e.g., whether and
how a control parameter can be instantiated so that the system is always safe.

Batt et al. [3] give heuristics for splitting regions by linear constraints that
can be used to determine parameter constraints. Frehse et al. [13] synthesize
parameters for linear hybrid automata. However, realistic systems like ETCS re-
quire non-linear parameter constraints and are out of scope for these approaches.

Tomlin et al. [14] show a game-theoretic semi-decision algorithm for hybrid
controller synthesis. For systems like ETCS, which are more general than linear
or o-minimal hybrid automata, they suggest numerical approximations. We give
exact results for fully parametric ETCS using symbolic techniques.

Peleska et al. [15] and Meyer et al. [1] verify properties of trains. They do not
verify hybrid dynamics or the actual movement of trains. The physical dynamics
is crucial for faithful train models and for showing actual collision freedom,
because, after all, collision freedom is a property of controlled movement.

Cimatti et al. [16] analyze consistency of informal requirements on ETCS
expressed as temporal properties. Our work is complementary, as we focus on
developing and verifying an actual hybrid systems controller that can be imple-
mented later on, not the consistency of the requirement specification properties.

Structure of this Paper In Sect. 2 we summarize differential dynamic logic [10]
which we use for modelling ETCS. We introduce a formal model for paramet-
ric ETCS in Sect. 3. We refine and verify it using symbolic decompositions [10]
in Sect. 4. More complex control models, namely PI controllers are the topic of
Sect. 5. In Sect. 6, we generalize the physical transmission model to the presence
of disturbances and verify ETCS with disturbances. Section 7 gives experimental
results in our verification tool KeYmaera. Proofs are given in [17].

2 Preliminaries: Differential Dynamic Logic

In this section, we survey differential dynamic logic dL [10] which is tailored for
specifying and verifying rich correctness properties of parametric hybrid systems.
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Both its ability to express rich properties and the structural decomposition tech-
niques for dL are highly beneficial for expressing and discovering the required
parameter constraints for ETCS. We only develop the theory as far as necessary
and refer to [10] for more background on dL and the sequent proof calculus for
dL which is implemented in KeYmaera [11].

The logic dL is a first-order logic with built-in correctness statements about
hybrid systems. It is designed such that parametric verification analysis can be
carried out directly in dL. Generalizing the principle of dynamic logic to the
hybrid case, dL combines hybrid system operations and correctness statements
about system states within a single specification and verification language. dL
uses hybrid programs (HP) [10] as a program notation for hybrid systems that is
amenable to deductive structural decomposition in dL. In addition to standard
operations of discrete programs, HPs have continuous evolution along differential
equations as a basic operation. For example, the movement of a train braking
with force b can be expressed by placing the differential equation τ.p′′ = −b
(where τ.p′′ is the second time-derivative of τ.p) at the appropriate point inside
a HP. Together with the change of variable domain from N to R, differential
equations constitute a crucial generalization from discrete dynamic logic to dL.

The syntax of hybrid programs is shown together with an informal semantics
in Tab. 1. The basic terms (called θ in the table) are either real numbers, real-
valued variables or arithmetic expressions built from those.

The effect of x := θ is an instantaneous discrete jump assigning θ to x. That
of x′ = θ ∧ χ is an ongoing continuous evolution controlled by the differential
equation x′ = θ while remaining within the evolution domain χ. The evolution
is allowed to stop at any point in χ but it must not leave χ. For unrestricted
evolution, we write x′ = θ for x′ = θ ∧ true. Systems of differential equations and
higher-order derivatives are defined accordingly: τ.p′ = v ∧ τ.v′ = −b ∧ τ.v ≥ 0,
for instance, characterizes the braking mode of a train with braking force b that
holds within τ.v ≥ 0 and stops at speed τ.v ≤ 0 at the latest.

The test action ?χ is used to define conditions. It completes without chang-
ing the state if χ is true in the current state, and it aborts all further evo-

Table 1: Statements of hybrid programs (F is a first-order formula, α, β are HPs)

Statement Effect

α; β sequential composition, first performs α and then β afterwards
α ∪ β nondeterministic choice, following either α or β
α∗ nondeterministic repetition, repeating α some n ≥ 0 times
x := θ discrete assignment of the value of term θ to variable x (jump)
x := ∗ nondeterministic assignment of an arbitrary real number to x`
x′1 ∼1 θ1 ∧ · · · ∧ continuous evolution of xi along differential (in)equation system

x′n ∼n θn ∧ F
´
x′i ∼i θi, with ∼i ∈ {≤,=}, restricted to evolution domain F

?F check if formula F holds at current state, abort otherwise
if(F ) then α perform α if F is true, do nothing otherwise
if(F ) then α else β perform α if F is true, perform β otherwise
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lution, otherwise. The nondeterministic choice α ∪ β expresses alternatives in
the behavior of the hybrid system. The if-statement can be expressed using the
test action and the choice operator. Its semantics is that if the condition is
true, the then-part is executed, otherwise the else-part is performed, if there is
one, otherwise the statement is just skipped. The sequential composition α;β
expresses that β starts after α finishes. Nondeterministic repetition α∗ says
that the hybrid program α repeats an arbitrary number of times. These op-
erations can be combined to form any other control structure. For instance,
(?τ.v ≥ m.r; τ.a :=A) ∪ (?τ.v ≤ m.r; τ.a :=−b) says that, depending on the re-
lation of the current speed τ.v of some train and its recommended speed m.r, τ.a
is chosen to be the maximum acceleration A if m.e − τ.p ≥ 0 or maximum de-
celeration −b if m.e− τ.p ≤ 0. If both conditions are true (hence, m.e− τ.p = 0)
the system chooses either way. The random assignment x := ∗ nondeterminis-
tically assigns any value to x, thereby expressing unbounded nondeterminism,
e.g., in choices for controller reactions. For instance, the idiom τ.a := ∗; ?τ.a > 0
randomly assigns any positive value to the acceleration τ.a.

The dL-formulas are defined by the following grammar (θi are terms, x is a
real-valued variable, ∼ ∈ {<,≤,=,≥, >}, φ and ψ are formulas, α is a HP):

θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | φ↔ ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ

The formulas are designed as an extension of first-order logic over the reals
with built-in correctness statements about HPs. They can contain propositional
connectives ∧,∨,→,↔,¬ and real-valued quantifiers ∀,∃ for quantifying over
parameters and evolution times. For HP α, dL provides correctness statements
like [α]φ and 〈α〉φ, where [α]φ expresses that all traces of system α lead to states
in which φ holds. Likewise, 〈α〉φ expresses that there is at least one trace of α
to a state satisfying φ. As dL is closed under logical connectives, it provides
conditional correctness statements like φ→ [α]ψ, saying that α satisfies ψ if φ
holds at the initial state, or even nested statements like the reactivity state-
ment [α]〈β〉φ, saying that whatever HP α is doing, HP β can react in some way
to ensure φ. As a closed logic, dL can also express mixed quantified statements
like ∃m [α]φ saying that there is a choice of parameter m such that system α
always satisfies φ, which is useful for determining parameter constraints.

3 Parametric European Train Control System

The European Train Control System (ETCS) [5, 1] is a standard to ensure safe
and collision-free operation as well as high throughput of trains. Correct func-
tioning of ETCS is highly safety-critical, because the upcoming installation of
ETCS level 3 will replace all previous track-side safety measures in order to
achieve its high throughput objectives. In this section, we present a system
skeleton, which corresponds to a simple representation of the train dynamics
and controller reflecting the informal ETCS cooperation protocol [5]. This sys-
tem is actually unsafe. In Sect. 4, we will systematically augment this skeleton
with the parameter constraints that are required for safety but not stated in [5].
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1a: Dynamic assignment of movement authorities

far neg

cor fsa

1b: Cooperation pattern

Fig. 1: ETCS train cooperation protocol

3.1 Overview of the ETCS Cooperation Protocol

ETCS level 3 follows the moving block principle, i.e., movement permissions are
neither known beforehand nor fixed statically. They are determined based on
the current track situation by a Radio Block Controller (RBC). Trains are only
allowed to move within their current movement authority (MA), which can be
updated by the RBC using wireless communication. Hence the train controller
needs to regulate the movement of a train locally such that it always remains
within its MA. After MA, there could be open gates, other trains, or speed re-
strictions due to tunnels. The automatic train protection unit (atp) dynamically
determines a safety envelope around a train τ , within which it considers driving
safe, and adjusts the train acceleration τ.a accordingly. Fig. 1a illustrates the
dynamic assignment of MA. The ETCS controller switches according to the pro-
tocol pattern in Fig. 1b which corresponds to a simplified version of Damm et
al. [2]. When approaching the end of its MA the train switches from far mode
(where speed can be regulated freely) to negotiation (neg), which, at the latest,
happens at the point indicated by ST (for start talking). During negotiation the
RBC grants or denies MA-extensions. If the extension is not granted in time, the
train starts braking in the correcting mode (cor) returning to far afterwards.
Emergency messages announced by the RBC can also put the controller into cor
mode. If so, the train switches to a failsafe state (fsa) after the train has come
to a full stop and awaits manual clearance by the train operator.

Lemma 1 (Principle of separation by movement authorities). If each
train stays within its MA and, at any time, MAs issued by the RBC form a
disjoint partitioning of the track, then trains can never collide (proof see [17]).

Lemma 1 effectively reduces the verification of an unbounded number of traffic
agents to a finite number. We exploit MAs to decouple reasoning about global
collision freedom to local cooperation of every traffic agent with its RBC. In
particular, we verify correct coordination for a train without having to consider
gates or railway switches, because these only communicate via RBC mediation
and can be considered as special reasons for denial of MA-extensions. We only
need to prove that the RBC handles all interaction between the trains by assign-
ing or revoking MA correctly and that the trains respect their MA. However, to
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enable the RBC to guarantee disjoint partitioning of the track it has to rely on
properties like appropriate safe rear end computation of the train. Additionally,
safe operation of the train plant in conjunction with its environment depends
on proper functioning of the gates. As these properties have a more static na-
ture, they are much easier to show once the actual hybrid train dynamics and
movements have been proven to be controlled correctly.

As trains are not allowed to drive backwards without clearance by track
supervision personnel, the relevant part of the safety envelope is the closest
distance to the end of its current MA. The point SB, for start braking, is the
latest point where the train needs to start correcting its acceleration (in mode
cor) to make sure it always stays within the bounds of its MA. In Sect. 4, we
derive a necessary and sufficient constraint on SB that guarantees safe driving.

τ.v

τ.p
m1.r

m1.e
m1.d

m2.r

m2.e
m2.d

m3.r = m4.r

m3.e

m3.d

Fig. 2: ETCS track profile

We generalize the concept of MA to a vector
m = (d, e, r) meaning that beyond point m.e the
train must not have a velocity greater than m.d.
Additionally, the train should try not to out-
speed the recommended speed m.r for the cur-
rent track segment. Short periods of slightly higher speed are not considered
safety-critical. Fig. 2 shows an example of possible train behavior in conjunction
with the current value of m that changes over time due to RBC communication.

For a train τ = (p, v, a) at position τ.p with current velocity τ.v and accelera-
tion τ.a, we want to determine sufficient conditions ensuring safety and formally
verify that τ.v is always safe with respect to its current MA, thus satisfying:

τ.p ≥ m.e → τ.v ≤ m.d (S)

Formula (S) expresses that the train’s velocity τ.v does not exceed the strict
speed limit m.d after passing the point m.e (i.e., τ.p ≥ m.e). Generalized MA are
a uniform composition of two safety-critical features. They are crucial aspects for
ensuring collision free operation in ETCS (Lemma 1) and can take into account
safety-critical velocity limits due to bridges, tunnels, or passing trains. For exam-
ple high speed trains need to reduce their velocity while passing non-airtight or
freight trains with a pressure-sensitive load within a tunnel. Our model captures
this by reducing the speed component m.d of m.

3.2 Formal Model of Fully Parametric ETCS

For analyzing the proper functioning of ETCS, we have developed a formal model
of ETCS as a hybrid program (see Fig. 3) that is based on the informal speci-
fication [5]. RBC and train are independent distributed components running in
parallel. They interoperate by message passing over wireless communication. As
the RBC is a purely digital track-side controller and has no dependent continuous
dynamics, we can express parallelism equivalently by interleaving using nonde-
terministic choice (∪) and repetition (∗): the decisions of the train controller
only depend on the point in time where RBC messages arrive at the train, not
the communication latency. Thus, the nondeterministic interleaving in ETCS
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ETCSskel : (train ∪ rbc)∗

train : spd; atp; drive
spd : (?τ.v ≤ m.r; τ.a := ∗; ?− b ≤ τ.a ≤ A)

∪(?τ.v ≥ m.r; τ.a := ∗; ?− b ≤ τ.a ≤ 0)
atp : if (m.e− τ.p ≤ SB ∨ rbc.message = emergency) then τ.a := −b fi
drive : t := 0; (τ.p′ = τ.v ∧ τ.v′ = τ.a ∧ t′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε)
rbc : (rbc.message := emergency) ∪ (m := ∗; ?m.r > 0)

Fig. 3: Formal model of parametric ETCS cooperation protocol (skeleton)

where either the train or (∪) the RBC chooses to take action faithfully models
every possible arrival time without the need for an explicit channel model. The
∗ at the end of ETCSskel indicates that the interleaving of train and RBC re-
peats arbitrarily often. Successive actions in each component are modelled using
sequential composition (; ). The train checks for its offset to the recommended
speed (in spd) before checking if emergency breaking is necessary (in atp).

Train Controller. As it is difficult to use highly detailed models for the train and
its mechanical transmission like in [2] directly in the verification and parameter
discovery process, we first approximate it by a controller with a ranged choice for
the effective acceleration τ.a between its lower bound (−b) and upper bound (A).
(We will refine the dynamics in Sect. 5 and 6.) This controller provides a model
that we can use both to derive parameter constraints, and to overapproximate
the choices made by the physical train controller [2]. For Sect. 3–4, we model the
continuous train dynamics by the differential equation system

τ.p′ = τ.v ∧ τ.v′ = τ.a ∧ t′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε . (I)

It formalizes the ideal-world physical laws for movement, restricted to the evo-
lution domain τ.v ≥ 0 ∧ t ≤ ε in drive. The primed variables stand for the first
time-derivative of the respective unprimed variable. Therefore, τ.p′ gives the
rate with which the position of the train changes, i.e., the velocity (τ.p′ = τ.v).
The velocity itself changes continuously according to the acceleration τ.a, i.e.,
τ.v′ = τ.a. The train speeds up when τ.a > 0 and brakes when τ.a < 0. In par-
ticular, for τ.a < 0, the velocity would eventually become negative, which would
mean the train is driving backwards. But that is prohibited without manual
clearance, so we restrict the evolution domain to non-negative speed (τ.v ≥ 0).
Time can be measured by clocks, i.e. variables changing with constant slope 1
(t′ = 1). To further account conservatively for delayed effects of actuators like
brakes or for delays caused by cycle times of periodic sensor polling and sampled
data discrete time controllers, we permit the continuous movement of the train
to continue for up to ε > 0 time units until control decisions finally take effect.
This is expressed using the invariant region t ≤ ε on the clock t that is reset us-
ing the discrete assignment t := 0 before the continuous evolution starts. When
the system executes the system of differential equations in drive, it can follow a
continuous evolution respecting the constraints of (I).
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The speed supervision spd has two choices (∪). The first option in Fig. 3 can
be taken if the test ?τ.v ≤ m.r succeeds, the second one if the check ?τ.v ≥ m.r is
successful. If both succeed, either choice is possible. The spd chooses the acceler-
ation τ.a to keep the recommended speed m.r by a random assignment τ.a := ∗,
which assigns an arbitrary value to τ.a. By the subsequent test ?− b ≤ τ.a ≤ 0
an acceleration is chosen from the interval [−b, 0] if the current speed τ.v ex-
ceeds m.r (otherwise the full range [−b, A] is available.) Our controller includes
controllers optimizing speed and energy consumption as secondary objectives.

As a supervisory controller, the automatic train protection (atp in Fig. 3)
checks whether the point SB has been passed (m.e − τ.p ≤ SB) or a message
from the RBC was received notifying of a track-side emergency situation. Both
events cause immediate braking with full deceleration −b. Thus, atp decisions
take precedence over spd speed advisory. In the case where m.e− τ.p > SB but
no emergency message arrived the decisions made by spd take effect.

Radio Block Controller. We model the RBC as a controller with two possible
choices (∪). It may choose to demand immediate correction by sending emer-
gency messages (rbc.message := emergency) or update the MA by assigning ar-
bitrary new values to its three components (m := ∗). These nondeterministic
changes to m reflect different real-world effects like extending m.e and m.d if
the heading train has advanced significantly or, instead, notify of a new recom-
mended speed m.r for a track segment. We will identify safety-critical constraints
on MA updates in Sect. 4.2.

4 Parametric Verification of Train Control

The model in Fig. 3 from the informal specification is unsafe, i.e., it does not
always prevent collisions. To correct this we identify free parameter constraints
by analyzing increasingly more complex correctness properties of ETCS. Using
these constraints we refine the train control model iteratively into a safe model
with constraints on design parameter choices and physical prerequisites on ex-
ternal parameters resulting from the safety requirements on the train dynamics.

Iterative Refinement Process. For discovering parametric constraints required
for system correctness, we follow an iterative refinement process using structural
symbolic decomposition in dL: first, we decompose the uncontrolled system dy-
namics to a first-order formula characterizing the controllable state region, which
specifies for which parameter combinations the system dynamics can actually be
controlled safely by any control law. Next, we successively add partial control
laws to the system while leaving its decision parameters (like SB or m) free and
use structural symbolic decomposition again to discover parametric constraints
that preserve controllability under these control laws. This step we repeat until
the resulting system is proven safe. Finally, we prove that the discovered para-
metric constraints do not over-constrain the system inconsistently by showing
that it remains live.
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In practice, variants of the controllable domain constitute good candidates
for inductive invariants, and the parameter constraints discovered ensure that
the control choices taken by the controller never leave the controllable domain.

4.1 Controllability Discovery in Parametric ETCS

By analyzing the uncontrolled train dynamics, we obtain a controllability con-
straint on the external train parameters, i.e., a formula characterizing the pa-
rameter combinations for which the train dynamics can be controlled safely by
any control law at all. For our analysis we choose the following assumptions

τ.v ≥ 0 ∧m.d ≥ 0 ∧ b > 0 (A)

stating that the velocity is non-negative, the movement authority issued by the
RBC does not force the train to drive backwards, and the train has some positive
braking power b. The controllability constraint is now obtained by applying the
dL proof calculus [10] to the following dL formula:

(A ∧ τ.p ≤ m.e)→ [τ.p′ = τ.v ∧ τ.v′ = −b ∧ τ.v ≥ 0]S .

τ.p

τ.v

m.d

m.e

τ.v2 −m.d2

≤ 2b(m.e− τ.p)

Fig. 4: Controllable region

This means that starting in some state
where (A) holds and the train has not yet
passed m.e (τ.p ≤ m.e) every possible evo-
lution of the train system that applies full
brakes (τ.v′ = −b) is safe, i.e. does not
violate (S). This dL formula only holds if
τ.v2 −m.d2 ≤ 2b(m.e− τ.p). We prove that
the so discovered constraint, illustrated in
Fig. 4, characterizes the set of states where
the train dynamics can still respect MA by
appropriate control choices (expressed by the
left-hand side dL formula):

Proposition 1 (Controllability). The constraint τ.v2 −m.d2 ≤ 2b(m.e− τ.p)
is a controllability constraint for the train τ with respect to property (S) on page
252, i.e., the constraint retains the ability of the train dynamics to respect the
safety property. Formally, with A ∧ τ.p ≤ m.e as regularity assumptions, the fol-
lowing equivalence is a valid dL formula:

[τ.p′ = τ.v ∧ τ.v′ = −b ∧ τ.v ≥ 0](τ.p ≥ m.e→ τ.v ≤ m.d)

≡ τ.v2 −m.d2 ≤ 2b(m.e− τ.p)

This formula expresses that every run of a train in braking mode satisfies (S)
if and only if condition τ.v2 −m.d2 ≤ 2b(m.e− τ.p) holds initially. Observe how
the above equivalence reduces a dL formula about future controllable train dy-
namics to a single constraint on the current state. We use this key reduction
step from safe train dynamics to controllably safe state-constraints by analyzing
whether each part of the ETCS controller preserves train controllability.
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Definition 1 (Controllable state). A train τ is in a controllable state, if
the train is always able to stay within its movement authority m by appropriate
control actions, which, by Proposition 1, is equivalent to

τ.v2 −m.d2 ≤ 2b(m.e− τ.p) ∧ A . (C)

ETCS cannot be safe unless trains start and stay in controllable states. Hence
we pick (C) as a minimal candidate for an inductive invariant. This invariant
will be used to prove safety of the system by induction even automatically using
the technique in [18].

4.2 Iterative Control Refinement of ETCS Parameters

Starting from the constraints for controllable trains, we identify constraints for
their various control decisions and refine the ETCS model correspondingly.

RBC Control Constraints. For a safe functioning of ETCS it is important that
trains always respect their current MA. Consequently, RBCs are not allowed
to issue MAs that are physically impossible for the train like instantaneous full
stops. Instead RBCs are only allowed to send new MAs that remain within the
controllable range of the train dynamics. For technical reasons the RBC does not
reliably know the train positions and velocities in its domain of responsibility
to a sufficient precision, because the communication with the trains has to be
performed wirelessly with possibly high communication delay and message loss.
Thus, we give a failsafe constraint for MA updates which is reliably safe even
for loss of position recording communication.

Proposition 2 (RBC preserves train controllability). The constraint

m0.d
2 −m.d2 ≤ 2b(m.e−m0.e) ∧m0.d ≥ 0 ∧m.d ≥ 0 (M)

ensures that the RBC preserves train controllability (C) when changing MA
from m0 to m, i.e., the following formula is valid:

∀τ
(
C → [m0 :=m; rbc]

(
M→ C

))
. (1)

This RBC controllability is characterized by the following valid formula:

m.d ≥ 0 ∧ b > 0→ [m0 :=m; rbc]
(
M↔ ∀τ

(
(〈m :=m0〉C)→ C

))
. (2)

Constraint (M) characterizes that an extension is safe if it is possible to reduce
the speed by braking with deceleration b from the old target speed m0.d to
the new target speed m.d within the extension range m.e−m0.e, regardless of
the current speed of train τ . It imposes constraints on feasible track profiles.
Property (1) expresses that, for all trains in a controllable state (C), every RBC
change of MA m0 to m that complies with (M) enforces that the train is still in
a controllable state (C). Constraint (M) is characterized by the equivalence (2),
expressing that for every decision of rbc, (M) holds for the RBC change from
m0 to m if and only if all trains (∀τ) that were controllable (C) for the previous
MA (set using 〈m :=m0〉) remain controllable for the new MA m.
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Train Control Constraints. Now that we found constraints characterizing when
the cooperation of train and RBC is controllable, we need to find out under which
circumstances the actual control choices by spd and atp retain controllability. In
particular, the design parameter SB (start braking point relative to the end of
the movement authority) needs to be chosen appropriately to preserve (C). First
we show that there is a choice of SB:

Proposition 3. For all feasible RBC choices and all choices of speed control,
there is a choice for SB that makes the train always stay within its MA, i.e., for
controllable states, we can prove:

C → [m0 := m; rbc]
(
M→ [spd]〈SB := ∗〉[atp; drive]S

)
.

The formula expresses that, starting in a controllable region C, if the RBC up-
dates the MA from m0 to m respecting (M), then after arbitrary spd choices,
the train controller is still able to find some choice for SB (〈SB := ∗〉) such that
it always respect the fresh MA when following atp and drive. Since Proposition 3
is provable in KeYmaera we know that there is a safe solution for ETCS. On
the formula level the assumptions are expressed using implications such that the
formula does not make any proposition if either (C) is not initially satisfied or
the RBC does not respect (M). The train controller is split up into the propo-
sition that for all executions of the speed supervision ([spd]) there is a choice
for SB (〈SB := ∗〉) such that the automatic train protection unit (atp) always
preserves safety during the execution of the trains movement in the drive phase.
For atp and drive we again make a statement over all possible executions of the
components. Only the choice of SB is existentially quantified.

To find a particular constraint on the choice of SB, we need to take the
maximum reaction latency ε of the train controllers into account. With ε > 0, the
point where the train needs to apply brakes to comply with m is not determined
by (C) alone, but needs additional safety margins to compensate for reaction
delays. Therefore, we search for a constraint that characterizes that for every
possible end of the movement authority (∀m.e) and train position (∀τ.v), train
movement with an acceleration of A preserves (C) if it started in a state where (C)
holds and the point SB has not been passed yet (m.e− τ.p ≥ SB ∧ C).

Proposition 4 (Reactivity constraint). If the train is in a controllable state,
the supervisory ETCS controller reacts appropriately in order to maintain con-
trollability iff SB is chosen according to the following equivalence(

∀m.e ∀τ.p
(
m.e− τ.p ≥ SB ∧ C → [τ.a :=A; drive] C

))
≡ SB ≥ τ.v2 −m.d2

2b
+
(
A

b
+ 1
)(

A

2
ε2 + ε τ.v

)
. (B)

Constraint (B) on SB is derived using a projection of the train behavior to the
worst-case acceleration A in a state where SB has not been passed yet. We
choose this projection because the train controller needs to ensure that it can
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ETCSr : (trainr ∪ rbcr)
∗

trainr : spd; atpr; drive

atpr : SB := τ.v2−m.d2
2b

+
`
A
b

+ 1
´ `

A
2
ε2 + ε τ.v

´
; atp

rbcr : (rbc.message := emergency)
∪ `
m0 := m;m := ∗; ?m.r ≥ 0 ∧m.d ≥ 0 ∧m0.d

2 −m.d2 ≤ 2b(m.e−m0.e)
´

Fig. 5: Refined parametric ETCS cooperation protocol with bug-fixes to Fig. 3

drive safely with maximum acceleration A for ε time units even right before
passing SB in order for an acceleration choice of A to be safe constraint (B) is
not obvious from the system model. After discovering constraint (B), it can be
explained in retrospect: It characterizes the relative braking distance required
to reduce speed from τ.v to target speed m.d with braking deceleration b, which
corresponds to controllability and is expressed by the term τ.v2−m.d2

2b . In addition,
it involves the distance travelled during one maximum reaction cycle of ε time
units with acceleration A, including the additional distance needed to reduce
the speed down to τ.v after accelerating with A for ε time units (expressed
by
(
A
b + 1

) (
A
2 ε

2 + ε τ.v
)
). This extra distance results from speed changes and

depends on the relation A
b of maximum acceleration A and braking power b.

Propositions 1–4 prove equivalences. Hence, counterexamples exist for the
ETCS skeleton in Fig. 3 whenever the parameter constraints are not met. Con-
sequently, these constraints must be respected for correctness of any model of
ETCS controllers, including implementation refinements. It is, thus, important
to identify these safety constraints early in the overall design and verification
process.

4.3 Safety Verification of Refined ETCS

By augmenting the system from Fig. 3 with the parametric constraints obtained
from Propositions 1–4, we synthesize a safe system model completing the ETCS
protocol skeleton. The refined model is presented in Fig. 5 which bug-fixes the
model in Fig. 3 taken from the informal specification (spd , atp, drive as in Fig. 3).

Proposition 5 (Safety). Starting in a controllable state, this global and un-
bounded-horizon safety formula about the refined ETCS system in Fig. 5 is valid:

C → [ETCSr](τ.p ≥ m.e→ τ.v ≤ m.d) .

This provable formula states that, starting in a controllable region (C), the aug-
mented ETCS model is safe, i.e., trains always respect their movement authority.

As an example to illustrate the proof structure for the verification of Propo-
sition 5, consider the sketch in Fig. 6. By convention, such proofs start with the
conjecture at the bottom and proceed by decomposition to the leaves. We need
to prove that universal controllability (C) implies safety (S) at all times. As the
system consists of a global loop, we prove that (C) is an invariant of this loop
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C → [ETCSr]S

C → C
C → [trainr ∪ rbcr]C

C → [rbcr]C
m := ∗ rec

C → [trainr]C

τ.v ≥ m.r

m.e− τ.p ≥ SB
m.e− τ.p ≤ SB

τ.v ≤ m.r

m.e− τ.p ≤ SB
m.e− τ.p ≥ SB

C → S

Fig. 6: Proof sketch for Proposition 5

and strong enough to imply (S). It can
be shown easily that the invariant (C) is
initially valid (left branch) and implies
the postcondition (S) (right branch). As
usual, proving that invariant (C) is pre-
served by the loop body is the most chal-
lenging part of the proof in KeYmaera
(middle branch), which splits into two
cases. For the left case, we have to show
that the RBC preserves the invariant,
which can be proven like Proposition 2.
For the right case, we show that the train
controller preserves the invariant. The
proof splits due to the choice in the spd
component depending on the relation of the current speed to the recommended
speed (τ.v vs. m.r). The next split on both of these branches depends on the
relation of (m.e − τ.p) and SB. If the train has passed point SB (middle case)
the system is safe (Proposition 1), because the invariant describes a controllable
state and the atp applies brakes. The outer branches, where the train has not
yet passed SB, can be proven using Proposition 4.

4.4 Liveness Verification of Refined ETCS

In order to show that the discovered parameter constraints do not over-constrain
the system inconsistently, we show liveness, i.e., that an ETCS train is able to
reach every track position with appropriate RBC permissions.

Proposition 6 (Liveness). The refined ETCS system is live, i.e., assuming
the RBC can safely grant the required MAs because preceding trains are moving
on, trains are able to reach any track position P by appropriate RBC choices:

τ.v ≥ 0 ∧ ε > 0 → ∀P 〈ETCSr〉 τ.p ≥ P

The formula expresses that, starting in a state where the velocity is non-negative
and the maximum evolution time is positive, every point P (∀P ) can be reached
(τ.p ≥ P ) by some execution of the ETCS model (〈ETCSr〉). Here the diamond
modality is used to say that not all, but some appropriate execution reaches a
state where the postcondition (τ.p ≥ P ) holds. For showing that the system is
live, a more liberal initial state is possible with regard to the controllability of
the train. It is easy to see from the domain restrictions (τ.v ≥ 0∧ t ≤ ε) in drive
that the assumptions (τ.v ≥ 0) and ε > 0 are necessary.

4.5 Full Correctness of ETCS

By collecting Propositions 1–6, we obtain the following main result of this paper,
which demonstrates the feasibility of dL-based parametric discovery and verifi-
cation supported by our theorem prover KeYmaera. It gives important insights
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in the fully parametric ETCS case study and yields conclusive and fully verified
choices for the free parameters in ETCS. By virtue of the parametric formula-
tion, this result applies to all concrete instantiations of the ETCS cooperation
protocol from Sect. 3, including controllers that further optimize speed or model
refinements in hardware implementations.

Theorem 1 (Correctness of ETCS cooperation protocol). The ETCS
system augmented with constraints (B) and (M) is correct as given in Fig. 5.
Starting in any controllable state respecting (C), trains remain in the control-
lable region at any time. They safely respect movement authorities issued by the
RBC so that ETCS is collision-free. Further, trains can always react safely to all
RBC decisions respecting (M). ETCS is live: When tracks become free, trains
are able to reach any track position by appropriate RBC actions. Furthermore,
the augmented constraints (C) and (B) are necessary and sharp: Every configu-
ration violating (C) or (B), respectively, gives rise to a concrete counterexample
violating safety property (S). Finally, every RBC choice violating (M) gives rise
to a counterexample in the presence of lossy wireless communication channels.

5 Inclusion and Safety of PI Controllers

Trains use proportional-integral (PI) controllers for speed supervision [2] like
most physical control systems do. A PI uses a linear combination of the pro-
portional and integral values of the difference between the current (τ.v) and
the target system state (m.r) to determine control actions. The proportional
part uses the current error τ.v −m.r of the system state compared to the tar-
get state with some factor l, whereas the integral part sums up previous errors∫

(τ.v −m.r)dt with some factor i. Damm et al. have identified a detailed train
model with a PI controller [2]. The resulting PI corresponds to the differential
equation system

τ.p′ = τ.v ∧ τ.v′ = min
(
A,max

(
−b, l(τ.v −m.r)− i s− cm.r

))
∧ s′ = τ.v −m.r ∧ t′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε . (P)

The position of the train τ.p changes according to its velocity τ.v (τ.p′ =
τ.v) and τ.v changes according to the acceleration determined by PI equa-
tions. Variable s tracks the integral part of the controller: differential equation
s′ = τ.v −m.r corresponds to integral equation s =

∫
(τ.v −m.r)dt. Thus i s rep-

resents the integral share of the error scaled by i in the PI. Since trains do not
drive backwards by braking, the system contains an evolution domain stating
that the speed remains non-negative (τ.v ≥ 0). PI P influences the velocity by
changing the acceleration of the train according to proportional and integral
changes compared to recommended speed m.r. The parameters l, i and c are
derived from the train physics and chosen in a way such that the controller does
not oscillate. Note that classical PIs use c = 0. We also allow c 6= 0, which is
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used in the refined PI controller identified in [2] for additional attenuation. Fol-
lowing [2], the controller further obeys physical bounds for the acceleration and
is restricted to values between −b < 0 and A > 0 using min, max functions.

In this section we relate this model for the train control with the approx-
imation (I) used in Sect. 3–4. First, we prove that our abstraction is a valid
overapproximation by showing that whatever the PI controller (P) does, the
ideal-world physical controller for (I) can reach the same point within the same
time. Unlike (I), we cannot simply solve PI (P) in polynomial arithmetic to
prove properties. We use differential invariants [19, 18] instead for proofs.

Proposition 7 (PI inclusion). Starting from 0, every possible execution of
the PI controller (P) can be imitated by the ranged controller

spds := (τ.a := ∗; ?τ.a ≥ −b ∧ τ.a ≤ A)

for the dynamics (I) such that they are in the same place at the same time:

[P ∧ t′π = 1] 〈(spds; t := 0; I ∧ t′τ = 1)∗〉 (π.p = τ.p ∧ tπ = tτ )

That is, for every evolution of (P), spds can choose its options such that (I)
reaches the same point π.p at the same time tπ. Here tπ is a clock (t′π = 1)
measuring the time the first controller (P) consumes and tτ measures the time
needed by the second controller to reach the same position at the same time.

The ranged controller spds is less restrictive than spd , because it allows more
liberal acceleration choices. As the previous propositions do not depend on the
value of m.r showing the inclusion property for spds is sufficient.

With the constraints in ETCSr, we verify that the fully parametric PI con-
troller combined with the automatic train protection atpr preserves safety:

Proposition 8 (Safety of the PI-controlled system). For trains in con-
trollable state, the ETCSr system with a PI controller for speed regulation is
safe, i.e., when replacing drive by (Pe ∧ t′ = 1 ∧ t ≤ ε) for (continuous) speed
supervision and with emergency braking according to Fig. 5. This corresponds to
the physical train model identified in [2].

6 Disturbance and the European Train Control System

In Sect. 3–4, we assumed direct control of acceleration. In reality, acceleration
results from physical transmission of corresponding forces that depend on the
electrical current in the engine [2]. As a conservative overapproximation of these
effects, we generalize the ETCS model to a model with differential inequali-
ties [19], where we also take into account disturbances in the physical transmis-
sion of forces (including wind, friction etc.):

τ.p′ = τ.v ∧ τ.a− l ≤ τ.v′ ≤ τ.a+ u ∧ t′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε (Id)

with a disturbance within the interval [−l, u]. That is, the acceleration τ.a chosen
by the train controller can take effect with an error bounded by −l and u, because
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the derivative τ.v′ of the velocity will not need to be τ.a exactly in (Id), but τ.v′

can vary arbitrarily between τ.a − l and τ.a + u over time. We generalize the
differential equation (I) in component train from Fig. 3 and Fig. 5 by replacing
it with the differential inequality (Id) and denote the result by traind.

Notice that, unlike (I), we cannot simply solve differential inequality (Id),
because its actual solution depends on the precise value of the disturbance, which
is a quantity that changes over time. Thus, solutions would only be relative to
this disturbance function and a reachability analysis would have to consider
all choices of this function, which would require higher-order logic. Instead, we
verify using differential invariants [19, 18] as a sound first-order characterization.

6.1 Controllability in ETCS with Disturbances

The controllability characterization from Proposition 1 carries over to train con-
trol with disturbance when taking into account the maximum disturbance u on
the braking power b that limit the effective braking power to (b− u):

Proposition 9 (Controllability despite disturbance). The constraint

τ.v2 −m.d2 ≤ 2(b− u)(m.e− τ.p) ∧m.d ≥ 0 ∧ b > u ≥ 0 ∧ l ≥ 0 (Cd)

is a controllability constraint with respect to property (S) for the train τ with dis-
turbance (Id), i.e., it retains the ability of the train dynamics to respect the safety
property despite disturbance. Formally, with A ∧ τ.p ≤ m.e ∧ b > u ≥ 0 ∧ l ≥ 0
as regularity assumptions, the following equivalence holds:

[τ.p′ = τ.v ∧ τ.a− l ≤ τ.v′ ≤ τ.a+ u ∧ t′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε]S
≡ τ.v2 −m.d2 ≤ 2(b− u)(m.e− τ.p)

Here (Cd) results from (C) by replacing b with (b−u). In worst case disturbance,
the train cannot brake with deceleration −b but instead might be off by u. To
guarantee that the train is able to stay within its MA the controller has to assume
maximum guaranteed deceleration −(b− u) when making control decision.

6.2 Iterative Control Refinement of Parameters with Disturbances

When taking into account worst-case effects of disturbance on control, reactivity
constraint (B) carries over to the presence of disturbance in the train dynamics:

Proposition 10 (Reactivity constraint despite disturbance). For trains
in controllable state, the supervisory ETCS controller reacts appropriately despite
disturbance in order to maintain controllability iff SB is chosen according to the
following provable equivalence:(

∀m.e ∀τ.p
(
(m.e− τ.p ≥ SB ∧ τ.v2 −m.d2 ≤ 2(b− u)(m.e− τ.p))→

[τ.a :=A; drived](τ.v2 −m.d2 ≤ 2(b− u)(m.e− τ.p)
))

≡ SB ≥ τ.v2 −m.d2

2(b− u)
+
(
A+ u

b− u
+ 1
)(

A+ u

2
ε2 + ετ.v

)
(Bd)
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ETCSd : (traind ∪ rbcd)∗

traind : spd; atpd; drived

atpd : SB := τ.v2−m.d2
2(b−u)

+
“
A+u
b−u + 1

” `
A+u

2
ε2 + ετ.v

´
;

if (m.e− τ.p ≤ SB ∨ rbc.message = emergency) then τ.a := −b fi
drived : t := 0; (τ.p′ = τ.v ∧ τ.a− l ≤ τ.v′ ≤ τ.a+ u ∧ t′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε)
rbcd : (rbc.message := emergency)

∪ `
m0 := m;m := ∗;

?m.r ≥ 0 ∧m.d ≥ 0 ∧m0.d
2 −m.d2 ≤ 2(b− u)(m.e−m0.e)

´
Fig. 7: Parametric ETCS cooperation protocol with disturbances

For reactivity (Bd) not only the maximum deceleration but also the maximum
acceleration matters. Therefore, we need to substitute every b by (b−u) but also
every A with (A+ u) which is the maximum acceleration under disturbance to
get a (provable) reactivity constraint for the disturbed system.

6.3 Safety Verification of ETCS with Disturbances

When we augment the ETCS model by the constraints (Bd) and (Md), where
(Md) results from (M) by again replacing every b by (b−u), ETCS is safe even
in the presence of disturbance when starting in a state respecting (Cd).

Proposition 11 (Safety despite disturbance). Assuming the train starts in
a controllable state satisfying (Cd), the following global and unbounded-horizon
safety formula about the ETCS system with disturbance from Fig. 7 is valid:

Cd → [ETCSd](τ.p ≥ m.e→ τ.v ≤ m.d) .

This safety proof generalizes to ETCS with disturbance, using differential induc-
tion [19, 18] with a time-dependent version of (Bd) as differential invariant:

m.e− τ.p ≥ τ.v2 −m.d2

2(b− u)
+
(
A+ u

b− u
+ 1
)(

A+ u

2
(ε− t)2 + (ε− t)τ.v

)

7 Experimental Results

Tab. 2 shows experimental results for verifying ETCS in our dL-based verification
tool KeYmaera [11]. The results are from a system with two quad core Intel
Xeon E5430 (2.66 GHz per core, using only one core) and 32 gigabyte of RAM.
All correctness properties and parameter constraints of ETCS can be verified
with 91% to 100% degree automation. More than 91% of the proof steps are
fully automatic. The proofs are 100% automatic in 6 properties and require minor
guidance in 7 more challenging cases. Tab. 2 gives the number of user interactions
necessary in the column Int, for comparison the total number of applied proof
rules in column Steps. In most cases proofs can be found automatically [18].
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For more complicated properties beyond the capabilities of currently available
decision procedures for real arithmetic, KeYmaera needs more user guidance but
they can still be verified with KeYmaera! We see that the formula complexity
and symbolic state dimension (Dim) has more impact on the computational
complexity than the number of proof steps in dL decompositions, which indicates
good scalability in terms of the size of the system model.

Table 2: Experimental results for the European Train Control System

Case study Int Time(s) Memory(MB) Steps Dim

Controllability Proposition 1 0 1.3 29.6 14 5
Refinement Proposition 2 eqn. (1) 0 1.7 29.0 42 12
RBC Control Proposition 2 eqn. (2) 0 2.2 29.0 42 12
Reactivity Proposition 3 8 133.4 118.7 229 13
Reactivity Proposition 4 0 86.8 688.2 52 14
Safety Proposition 5 0 249.9 127.8 153 14
Liveness Proposition 6 4 27.3 100.7 166 7

Inclusion Proposition 7 PI 19 766.2 354.4 301 25
Safety Proposition 8 PI 16 509.0 688.2 183 15

Controllability Proposition 9 disturbed 0 5.6 30.8 37 7
Reactivity Proposition 10 disturbed 2 34.6 74.3 78 15
Safety Proposition 11 disturbed 5 389.9 41.7 88 16

8 Summary

As a case study for parametric verification of hybrid systems, we have verified
controllability, reactivity, safety, and liveness of the fully parametric coopera-
tion protocol of the European Train Control System. We have demonstrated
the feasibility of logic-based verification of parametric hybrid systems and iden-
tified parametric constraints that are both sufficient and necessary for a safe
collision-free operation of ETCS. We have characterized these constraints on
the free parameters of ETCS equivalently in terms of corresponding reachability
properties of the underlying train dynamics. We have verified a corresponding
fully parametric PI controller and proven that the system remains correct even
when the train dynamics is subject to disturbances caused, e.g., by the physical
transmission, friction, or wind.

We have shown how the properties of train control can be expressed in dL.
Our experimental results with KeYmaera show a scalable approach by com-
bining the power of completely automatic verification procedures with the in-
tuition behind user guidance to tackle even highly parametric hybrid systems
and properties with substantial quantifier alternation (reactivity or liveness) or
disturbance.

We have verified all propositions formally in the KeYmaera tool. Proof sketches
are presented in [17].
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