
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The original paper was published in
IEEE Control Syst. Lett.. 6, pp. 1574-1579, 2022. http://dx.doi.org/10.1109/LCSYS.2021.3125717

Safe and Resilient Practical Waypoint-following
for Autonomous Vehicles

Qin Lin, Stefan Mitsch, André Platzer, Senior Member, IEEE , and John M. Dolan, Senior Member, IEEE

Abstract— We combine theorem proving and reachabil-
ity analysis for cyber-physical systems verification to ar-
rive at a practical approach to safe waypoint-following for
an autonomous mobile vehicle controlled by a learning-
enabled controller. We propose a robust monitor verifying
short-term and long-term safety simultaneously at runtime,
thereby combining the benefits of both theorem proving
and reachability analysis. The proposed novel monitor ar-
chitecture allows temporary violation of long-term safety
while maintaining short-term safety to recover to a state
with long-term safety. The recovery is based on a fallback
model predictive controller. The experiments conducted in
a high-fidelity racing car simulator demonstrate that our
framework is safe and resilient in path tracking scenarios,
in which avoiding collision with the race track boundary
and obstacles is required.

Index Terms— Reachability analysis, Theorem proving,
Safety verification, Safe control, Learning-enabled control

I. INTRODUCTION

LEARNING-ENABLED components (LECs) are being
deployed in autonomous systems. However, reliability

is a crucial concern because many autonomous systems are
safety-critical. In this letter, we are particularly interested
in the safety assurance in the control layer. The Simplex
architecture [1] has been used for a safety-assured closed-
loop control system and provides a way to operate learning-
enabled controllers safely even when they are themselves not
formally verified. In such a setup there are two controllers:
one is a high-performance LE controller, e.g., a neural net-
work (NN)-based controller; the other one is a high-assurance
fallback controller. A monitor decides between operating the
LE controller and the fallback controller. When the control
action of the LE controller is not verified to be safe, we switch
to the fallback controller. Besides the high-assurance fallback
controller, correctness guarantees for this approach hinge on
the correctness of the monitor for the decision logic.

Formal verification approaches have been leveraged to de-
sign the monitor. There are three main categories: 1) Barrier

This paragraph of the first footnote will contain the date on which
you submitted your paper for review. This material is based upon work
supported by the United States Air Force and DARPA under Contract
No. FA8750-18-C-0092.

Qin Lin and John Dolan are with the Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA 15213, USA
qinlin,jdolan@andrew.cmu.edu

Stefan Mitsch and André Platzer are with the Computer Science
Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
smitsch,aplatzer@cs.cmu.edu

certificates. The idea is to find a barrier that cannot be crossed
by the system’s trajectory. A barrier certificate is usually
defined as a Lyapunov-like function [2]. In the control domain,
the certificates can be control barrier functions (CBFs) used as
hard safety constraints (by analogy with the safety condition
of a monitor in Simplex) for computing optimal control (by
analogy with fallback control in Simplex). The framework
works as a safety filter, which unifies the monitor and fallback
control synthesis in an optimization program. There also exist
other types of safety filters, e.g., predictive filters [3]. 2)
Reachability analysis. This is based on forward state explo-
ration over a bounded time horizon using set computations
[4]. A reachability-based monitor performs all computations
online and is satisfied when the forward-projected states do
not intersect with unsafe states. Assuming model correctness,
it provides safety guarantees up to the bounded time horizon.
It is worth noting that forward reachability is fundamentally
different from backward reachability [5]. 3) Theorem proving.
Hybrid systems theorem proving does not require online state
exploration, but shifts computation effort offline to prove time-
unbounded correctness properties e.g., safety and liveness.
Theorem proving may use and thus formally verify invariant
properties, e.g., differential invariants or barrier certificates [6].
Even most of a runtime verification proof [7], which shows
that a satisfied monitor provably implies system safety, is
pre-computed offline: the resulting monitor conditions in real-
arithmetic represent the remaining proof obligations that are
verified at runtime from observations and control decisions.
The approach validates (rather than assumes) model correct-
ness at runtime and transfers unbounded-time offline proofs to
system runtime. A promising direction is to combine formal
verification with learning, e.g., safe reinforcement learning [8].

These approaches have different theoretical advantages, this
leaves the question of how to best approach correctness for
practice. We summarize comparisons between reachability
analysis and theorem proving. First, theorem proving can
verify safety and liveness in infinite time without exploring all
possible states, whereas reachability analysis using state explo-
ration in unbounded time is generally undecidable [9]. Second,
the state exploration of reachability analysis repeats in a new
control cycle with an updated initial state. For computations
to succeed, it is important that the initial regions be small and
the time horizon short. That is why safety verification is also
done online from the current state by checking the intersection
of the reachable states and a pre-defined unsafe set. A well-
known bottleneck of reachability analysis is the computation
burden. Theorem proving shifts computations offline to verify

http://dx.doi.org/10.1109/LCSYS.2021.3125717

unbounded-time/-space safety conditions using provers such as
KeYmaera X [10]. The resulting arithmetic condition can be
easily and quickly checked for the control action at runtime.
Third, while theorem proving-based approaches can support
fairly general dynamic systems, their complexity and human
intervention are reduced for simpler models; therefore, existing
safety verification results of vehicle dynamic systems [11],
[12] avoid sophisticated models. At the expense of time-
bounded predictions and extensive online computations, reach-
ability analysis is able to scale with less human intervention
to nonlinear models with slip angle and tire force.

In this letter, we address a general waypoint-following prob-
lem for an autonomous vehicle. Our previous work [12] used
ModelPlex [7] to develop a theorem proving-based monitor.
The ModelPlex monitor consists of a model monitor and a
controller monitor: The model monitor performs online model
validation and checks whether the verified model accurately
represents the system dynamics by inspecting observed states.
The controller monitor checks whether the proposed control
is considered safe by the verified model by inspecting the
current state and the control output. In this work, we focus
on controller monitors and assume that the dynamic model is
accurate and that the model disturbance has been captured by
the tolerance setting in the monitor. The monitor’s arithmetic
safety condition is proved offline using the KeYmaera X
theorem prover [10]. If the monitor is satisfied, we have a
formal guarantee that the vehicle remains able to reach the
waypoint and that it will respect a desired speed range once it
reaches the waypoint. The model [12] uses relative coordinates
to represent waypoints in the reference frame of the vehicle,
which makes the resulting monitors “blind” to global con-
straints such as road limits; those are the responsibility of our
reachability analysis-based monitors. Note that this condition
is “invariant-like”, i.e., it needs to be satisfied in each control
cycle to guarantee “long-term” safety. However, in practice,
we observe that disturbances and other effects that are not
represented in the model make it difficult for a vehicle to
always satisfy the monitors. This can be problematic when the
fallback control is conservative (e.g., slows down the vehicle)
so that even small violations disrupt efficient control.

The first research question is: Is there a robust monitor to
ensure safety while minimizing the intervention? To answer
this question, we relax the long-term safety by allowing
small violations with a manageable hazard in short term.
We introduce reachability analysis to verify short-term safety.
Thus, small violations of the long-term safety when there is
a short-term online safety guarantee will not invoke fallback
control. The fallback controller only intervenes when the
nominal controller violates the short-term safety.

The second research question is: Can we design a fallback
controller to steer the vehicle back to a state without short-
term and long-term safety violations? To answer this question,
we use an efficient sampling approach to obtain a safe state
from the monitor’s safety condition and the safe set based on
the reachability analysis. The safe state is used as a target state
for a fallback model predictive controller (MPC).

We make the following contributions in this letter:
1) To the best of our knowledge, this is the first work

integrating theorem proving and reachability for a run-
time monitor verifying short-term and long-term safety
simultaneously.

2) We design a novel Simplex-like framework to guarantee
safety and minimize interventions.

3) We demonstrate in a simulator involving high-fidelity
racing (RC) cars. The RC car is controlled by a neural
network. Using our framework, the car can safely follow
the planned trajectory with minimized risks of running
outside the track and colliding with obstacles.

II. SHORT-TERM AND LONG-TERM SAFETY MONITORS

A. Long-term waypoint following monitors

We summarize the main features of our prior waypoint path
following model [12]. We use hybrid programs with ordinary
differential equations (ODEs) to concisely describe control
laws and kinematics of our system, and verify properties about
hybrid programs using differential dynamic logic (dL). The
dynamics model of the vehicle is in Eq. (1).

dyn ≡ t := 0; {x′ = v(ky − 1), y′ = −vkx, v′ = a,

t′ = 1 & t ≤ T ∧ v ≥ 0}
(1)

where a relative coordinate system is used: the vehicle’s
position is placed at the origin, and (x, y) are the relative coor-
dinates of a waypoint. Positive x points forward, and positive
y points to the left. Positive k represents clockwise motion of
the waypoint towards the vehicle (when the waypoint is on the
left side of the vehicle), k = 0 is straight-ahead, and negative
k means counter-clockwise motion (when the waypoint is on
the right side of the vehicle). v and a are the longitudinal
velocity and acceleration, respectively. t′ = 1 is a clock, and
T is the upper bound on the time step of a control cycle. The
vehicle does not drive in reverse: v ≥ 0.

The perfect path for the vehicle to follow is padded with a
tolerance size ϵ of an annular section, see Eq. (2) and Fig. 1.

Ann ≡ |k|ϵ ≤ 1 ∧
∣∣∣∣k(x2 + y2 − ϵ2)

2
− y

∣∣∣∣ < ϵ (2)

Fig. 1: Annular section through the blue waypoint (2.5,−3).
Trajectories inside the section are legitimate, e.g., trajectories
for green/red waypoints with slightly different curvatures.

The controller ctrl in Eq. (3) receives a waypoint (x, y)
and desired speed range [vl, vh] from a high-level planner and
checks Feas to determine whether the waypoint is reachable
given the steering and acceleration/deceleration.

ctrl ≡ (x, y) := ∗; [vl, vh] := ∗; ?Feas; a := ∗; ?Go (3)

It further produces an acceleration or deceleration choice a,
subject to condition Go. The precise characterization of Feas
and Go is crucial for long-term safety, but not required for
understanding, cf. [12]. The important aspect for our purposes
here is that Feas and Go are predictive, i.e., they need to decide
whether following the chosen (x, y), [vl, vh], and a along the
dynamics of dyn preserves desired control properties.

The overall control objective of reaching the waypoint and
respecting the desired speed range is implied by an invariant J ,
which is proved to be maintained in each control cycle so that:
1) the vehicle follows the plan closely; 2) it drives at speeds
that let it achieve the speed limits in the remaining distance
to the goal. The exact formal definition of J can be found in
[12]: J captures the annular section between the vehicle and
the waypoint, as well as how much space is needed to close
the gap between current vehicle speed and speed limit.

The ModelPlex [7] automatically turns the program ctrl into
a controller monitor that checks the predictive conditions Feas
and Go and provably maintains J at runtime. In the imple-
mentation, we check two consecutive states (si, s̃i) in every
control cycle online with the controller monitor. Specifically,
we verify whether the current control choice γi—made by
an untrusted controller in state si, result captured in s̃i—
corresponds to a correct choice per ctrl before it is executed; if
γi satisfies the controller monitor, executing γi is guaranteed to
steer the current state si to a future state sj that maintains the
safety invariant J as long as the vehicle dynamics continue to
behave in a way allowed by dyn. In this letter, our focus is the
controller monitor by assuming the model is (nearly) accurate,
i.e., the model is precisely described or the model disturbance
has been captured by the tolerance ϵ. The checking procedure
is extremely efficient, since the controller monitor is composed
of arithmetic conditions that are evaluated on concrete values.

B. Reachability analysis

We use Flow* [13] for nonlinear forward reachability anal-
ysis. Given a dynamic model defined by ODEs, state and
control actions with box-bounded uncertainty, and a prediction
horizon, Flow* computes the reachable set. All possible future
trajectories will be included in the reachable set with a
theoretical guarantee owing to an over-approximation.

The dynamic model is ẋ(t) = f(x(t),u(t)), where
x(t) := (x1(t), · · · , xn(t))T ∈ Rn and u(t) :=
(u1(t), · · · , um(t))T ∈ Rm. The reachability analysis essen-
tially tries to solve an initial value problem, i.e., given condi-
tion x(0) ∈ X0 ⊂ Rn and a closed and bounded set U for u,
the reachable set of the system in a given time interval [0, Th]
is defined by reach

Th

(x(0),U) := {φf (x(0),u(0), t) |x0 ∈
X0,u(t) ∈ U , t ∈ [0, Th]}, where φf (x0,u0, t) is the solution
of the ODE with initial state x0 and control u(t).

In practice, we compute the time-dependent reachable set
iteratively for discrete time increments ∆t ∈ R+. At each
time point tk = k∆t with k ∈ N, we define the reachable set:
Rk+1 := reach

tk+1

(Rk,U), R0 = X0.

It is not possible to compute the exact set Rk in general, due
to the fact that getting the solution φf is difficult. We compute

an over-approximation denoted by R̂k. A Taylor model is used
for the representation of an over-approximated reachable set.

Definition 2.1: (Taylor Model): A Taylor Model (TM) of
order k is denoted by a pair (p, I), wherein p is a Taylor
polynomial of at most degree k, and I is a remainder interval.
Given a TM (p, I) and a function φf which are both over the
same domain Rn, φf is over-approximated by (p, I), denoted
by φf ∈ (p, I), i.e., φf (x) ∈ p(x) + I,∀x ∈ Rn.

The TM flowpipe construction is a process to get over-
approximation sets R̂1, · · · , R̂k := (p1, I1), · · · , (pk, Ik). In
this letter, a kinematic bicycle model is used. All state and
control actions with uncertainty and the resulting reachable
set at each state dimension are represented by bounding boxes
with minimum and maximum values.

1) Kinematic bicycle model:
Ẋ = vx cos(ψ + β)

Ẏ = vx sin(ψ + β)

ψ̇ = v sin(β)/lr

v̇x = a

β = arctan

(
lr
tan(δ)

lf + lr

) (4)

where δ is the steering angle, a is the longitudinal acceleration,
X and Y are coordinates in a global initial frame. Ẋ and Ẏ
are the corresponding velocity and ψ and ψ̇ are the yaw and
the yaw rate, vx is the longitudinal velocity, β is the slip angle
of the current velocity of the center of mass with respect to
the longitudinal axis of the car, and lf and lr represent the
distance from the center of mass of the vehicle to the front
and rear axles, respectively.

Definition 2.2: (Cartesian occupancy): The occupancy of
a vehicle at time t is a subspace of its global positions in
a Cartesian inertial frame projected from the reachable set,
proj(R̂k) := rectangle(Xk, X̄k, Yk, Ȳk)

An unsafe control causing collision is detected when the
Cartesian occupancy of the ego vehicle has any intersection
with the pre-defined unsafe set, i.e., proj(R̂k)∩Sunsafe ̸= ∅.

III. PROPOSED FRAMEWORK

Combinations of the diagnostic results of ModelPlex (dm)
and reachability (dr) monitors are shown in Tab. I. Their values
1 and 0 denote safe and unsafe, respectively.

TABLE I: Reachability and ModelPlex

Case Diagnosis Note

1 dr = 0 ∧ dm = 0 OA violated; WP unreachable
2 dr = 0 ∧ dm = 1 OA violated; WP reachable
3 dr = 1 ∧ dm = 0 OA respected; WP unreachable
4 dr = 1 ∧ dm = 1 OA respected; WP reachable

OA: obstacle avoidance; WP: waypoint; ∧: logical conjunction

In Fig. 2, we divide the whole space into three sets:
a forbidden set (cases 1 and 2 in Tab. I), a temporarily
unsatisfactory set (case 3 in Tab. I), and a desirable set (case
4 in Tab. I). They are also called the red zone, yellow zone,
and green zone, respectively. The red zone is forbidden, since
a violation is imminent and fallback control is needed to

steer the vehicle to leave the red zone. In the yellow zone,
the vehicle does not have a long-term guarantee of reaching
the waypoint, but we avoid fallback control since there is no
imminent short-term safety concern and long-term waypoint
following can be re-established. In the green zone, the vehicle
has both short-term and long-term guarantees. In summary, we
allow the vehicle to mildly violate the long-term requirement,
but prevent it from entering the red zone.

Fig. 2: Safe, temporarily unsafe, and forbidden sets

The recovery mechanism is detailed in Alg. 1 and Alg. 2.
Alg. 1 is the main routine, which executes in every control
cycle. An intuitive illustration is shown in Fig. 3. The steering
control for the ModelPlex monitor is the waypoint’s curvature,
while reachability analysis uses steering angle. For consis-
tency, a transform based on Ackermann steering geometry is
used, i.e., k = tan(δ) cos(β)/(lf + lr).

The idea of recovery is to maintain a recovery state sequence
srb and a recovery control sequence crb in the yellow zone,
though no fallback is needed. The diagnostic results are from
ModelPlex diagm(.) and reachability diagr(.) (Line 3 in Alg.
1), respectively. srb and crb are empty in the beginning
(Lines 1–2 in Alg. 1). When the vehicle is predicted to stay in
the green zone, srb and crb are appended with the predicted
safe state s̃i and the safe control action ui, respectively. f
is the vehicle dynamic model. No intervention is needed to
override the current control action (Lines 4–7 in Alg. 1).

When the vehicle is predicted to enter the yellow zone (see
t0 in Fig. 3), the subroutine Sampling(.)—Alg. 2—is called
to sample the neighborhood control of the last safe control
to obtain safe future states for potential recovery use. The
neighborhood size ϵc is a tunable parameter. Note that since
we only maintain a recovery sequence, only one recovery state
and its associated control action are kept, though there might
exist multiple safe states and control actions. We pick up the
state with the closest Euclidean distance to the waypoint in
the Cartesian space (Line 13 in Algo. 2).

The recovery sequences continue growing until we have a
risk of entering the red zone (see t4 in Fig. 3). We retrieve
the last element in srb as the safe target state to invoke
a fallback controller to steer the vehicle to leave the red
zone (see Line 13 in Algo. 1). The recursive feasibility of
getting a target safe state from ModelPlex can be formulated
as Pr(s(ti) ∈ Ssafe, | s(ti−1) ∈ Ssafe,ui−1 ∈ U), where
Ssafe is the safe set from ModelPlex, i.e., the probability
of two consecutive states both being safe. We assume that
∀s(0) ∈ Ssafe, there exists a one-step reachable neighborhood
Ω := reach

[ti−1,ti]
(s(0),U), and Ω ∩ Ssafe ̸= ∅. A larger sampling

space implies a higher likelihood covering Ω, thus ensure the
safety of the next sampled state. An intuitive illustration is

in Fig. 1: the safe annular section is a perfect trajectory with
an infinite number of neighborhood trajectories under small
perturbations. With a larger sampling space, it is more likely
to sample the next safe state. In practice, choosing the nearest
waypoint can be a backup strategy if the sampling space is
too narrow to miss the safe state.

Fig. 3: Recovery mechanism illustration

Algorithm 1 Main recovery framework
Input: ui from the nominal controller, state si, and way-

point’s global coordinate wpi = (Xi, Yi)
Output: New control action u′

i

1 if i==0 then
2 srb = [], crb = [].
3 dmi = diagm(si,ui, wpi); dri = diagr(si,ui);
4 if dmi = 1 ∧ dri = 1 ▷ in green zone
5 then
6 srb = [s̃i], crb = [ui]; ▷ s̃i := f(si,ui)
7 return ui;
8 else if dmi = 0 ∧ dri = 1 ▷ in yellow zone
9 then

10 call Sampling(srb, crb, si, wpi);
11 return ui;
12 else
13 Use srbsize(srb)−1 as a target in MPC to compute u′

i;
14 return u′

i;
15 end

Algorithm 2 Sampling
Input: srb, crb, si, wpi
Output: updated srb, crb

1 Initialize a temporary state set sp = {} and a temporary
control action set cp = {}.

2 for control action cj in [crbsize(srb)−1−ϵc, crbsize(srb)−1+ϵc]
do

3 dmj = diagm(srbsize(srb)−1, cj , wpi);
4 drj = diagr(srbsize(srb)−1, cj);
5 if dmj = 1 ∧ drj = 1 ▷ in green zone
6 then
7 sp = sp ∪ f(srbsize(srb)−1), cj);
8 cp = cp ∪ cj ;
9 else

10 continue;
11 end
12 end
13 ind = argmin

k
||spk ↓ C−wpi||, k ∈ {0, 1, · · · , size(sp)− 1}

14 srb.append(spind), crb.append(cpind);
15 return srb and crb;

IV. EXPERIMENTAL RESULTS

We conduct experiments in an open-source racing car sim-
ulator [14]. The video can be found online1.

A. Vehicle dynamic model for control
The dynamic model for control does not have to be the

same as the aforementioned models. To deal with the arbitrary
geometry of a road, we use the curvilinear coordinate [14],
which is convenient for control, since the road boundary can
be handled as a lateral position constraint in the optimization.
The transformation between curvilinear and global coordinates
is available in [14]. The new dynamic model is xk+1 =
f(xk,uk), where xk = [vx,k, vy,k, ϕk, eϕ,k, sk, ey,k]

T , uk =
[ak, δk]

T , vx,k and vy,k are longitudinal and lateral velocity,
respectively, ϕk is yaw rate, eϕ,k is yaw error from the path,
sk is the curvilinear distance traveled along the centerline of
the track, and ey,k is the lateral error from the path.

B. Neural network-based path tracking controller
Due to convenience of training, imitation learning is used in

this letter, which has a demonstrator to obtain state-to-control
mapping data [15]. We use a fully-connected FNN as a LE
controller. The training dataset is from samples of the Stanley
controller [16], i.e., D = (ξ0,u0), (ξ1,u1), · · · , (ξn,un),
where ξi = [eϕ, ey, evx

]T , evx is the velocity error with respect
to the desired velocity. The cost function can be expressed as
a squared loss function: J =

∑n
i=0 ||F (ξi)−ui||. The training

is done by using back-propagation to minimize the loss offline.

C. Fallback controller based on MPC
We use a MPC to design the fallback controller by online-

solving the following finite-horizon optimization problem:

min
U

J =

N−1∑
k=0

(x̃kQx̃k + ukRuk) + x̃NQN x̃N (5)

s.t. xk+1 = f(xk,uk) (6)
xk ∈ X (7)
uk ∈ U (8)

(X ↓ C) ∩ O = ∅ (9)
where U = [u0,u1, · · · ,uN−1] is the sequence of control
actions, Q, R, and QN are weighting coefficient matrices, and
x̃k = xk − xr

k and x̃N = xN − xr
N are differences between

states and references. The reference state is obtained using
the recovery introduced in Section III. X and Xf are state
constraints; e.g., the vehicle is required not leave the track
by setting abs(ey,k) ≤ track width for ∀k ∈ {0, 1, · · · , N}.
U is the control limit. Eq. (9) says the projection of the
vehicle’s state space (X) into Cartesian space (C) does not
have any intersection with obstacles (O). We use the Euclidean
relative distance between the vehicle (v) and an obstacle (o):
(evy,k−eoy,k)2+(svy,k−soy,k)2 ≥ safety margin as a constraint.
We only have a convergence guarantee, since the optimization
just reaches the safe state as closely as possible. However, we
ensure not to enter the red zone with state constraints.

1https://www.youtube.com/watch?v=gmeureiWX5k

The NN controller’s result on an L-shaped map is shown in
Fig. 4. The tracking performance is satisfactory. The yellow
dots illustrate positions where the ModelPlex monitor raises
alarms. There are two main categories of abnormal controls:
1) the waypoint is not ahead of the vehicle: this occasionally
happens when the vehicle just passes the waypoint, and the
new waypoint has not been updated; 2) invalid steering (steer-
ing not in direction of goal): this happens when the vehicle’s
heading is not pointing at the waypoint (the annular section
does not cover the waypoint) or the controller is correcting
a large deviation mildly. These alarms are not caused by a
faulty monitor, but are rather the result of a simplified model
that does not account for wheel slip, counter-steering, and
corrections of over-steering. They can be mitigated by an
improved model in hybrid systems theorem proving, or by
better-tuned parameters such as ϵ to allow more tolerance
to include additional legitimate behaviors. However, more
complex models increase proof effort, while tuning involves
tedious trial-and-error efforts. Reachability analysis can help
us to estimate the risks of mild violations quantitatively. We
observe that no alarm from the reachability analysis is raised
since the vehicle stays in the centerline well without any
hazard of running outside the track boundary. We conclude that
if we only use the ModelPlex monitor, the fallback controller
will be frequently invoked for small deviations, while the
combined monitor is more robust.

Fig. 4: Using FNN as a tracking controller in the L-shaped
map. The vehicle’s initial position is (0, 0) and it runs in the
counter-clockwise direction.

The results using the same FNN controller in the G-shaped
and the rounded-square maps are shown in Fig. 5a and Fig. 5b,
respectively. The blue trajectories show that the vehicle runs
outside the track. The generalization of FNN is not satisfactory
because new curvatures of the roads and their corresponding
tracking control actions are not included in the training dataset.

This imperfection can be leveraged to demonstrate the effec-
tiveness of our integrated monitor and the fallback controller,
see Fig. 6a and Fig. 6b. The green dots are for positions in
the green zone and the red dots are for positions in the red
zone. When deviations are small, the vehicle is in the yellow
zone. However, when deviations are large and the vehicle is
in danger of hitting the track boundary, reachability can detect
the unsafe control and invoke the fallback controller to recover.

We also test in dynamic obstacle avoidance scenarios with
layered planning and control. The local planner generates
collision-free trajectories for the vehicle to follow. We expect

(a) G-shape (FNN) (b) Rounded-square (FNN)

Fig. 5: NN without fallback controller

(a) G-shape (ours) (b) Rounded-square (ours)

Fig. 6: NN with fallback controller

that any large deviation from the planned trajectory will poten-
tially cause collisions. The final trajectories of the ego vehicle
and three dynamic obstacles are shown in Fig. 7. The black,
orange, blue, and green trajectories are for the ego-vehicle and
three moving obstacles, respectively. The minimum distance
between the ego-vehicle and the obstacle in each time step is
larger than the vehicle shape - 0.25m.

Fig. 7: Trajectories of all vehicles.

When the ego-vehicle is passing by the first obstacle, the
fallback controller is invoked. This can have two causes: 1) the
vehicle does not follow the planned trajectory closely enough;
2) the planned trajectory is insufficiently separated from the
obstacle for even perfect execution to avoid a collision. Our
method can handle either of these two cases once the reachable
state has any intersection with the obstacle and invoke the
fallback controller to leave the red zone.

V. CONCLUSIONS

We propose a novel Simplex architecture for safe and re-
silient waypoint-following for autonomous vehicles controlled
by a neural network controller. Our new monitor combines
theorem proving and reachability analysis and inspects short-
term and long-term safety simultaneously online. The monitor

is more robust since it relaxes the violation of long-term safety
temporarily, but still offers a solid chance to recover to a
safe state with short-term and long-term safety. The fallback
controller is based on MPC, which derives the target safe
state by a novel sampling approach. The simulation results
in path tracking and obstacle avoidance scenarios demonstrate
that our proposed framework ensures safety and minimizes
interventions from the fallback controller. One limitation is
that the recursive feasibility of obtaining a safe state relies
on online sampling. One of our ongoing works is safety
verification using interval instead of concrete float values for
ModelPlex, which is expected to replace the sampling. Another
future work is to consider the recursive feasibility of the
MPC. Our results are important for the invariant synthesis for
recursive feasibility since we determine the terminal safe set.

VI. ACKNOWLEDGMENT
Any opinions, findings and conclusions or recommendations

expressed in this material are those of the author(s) and do not
necessarily reflect the views of the US Air Force and DARPA.

REFERENCES

[1] L. Sha et al., “Using simplicity to control complexity,” IEEE Software,
vol. 18, no. 4, pp. 20–28, 2001.

[2] S. Prajna, “Barrier certificates for nonlinear model validation,” Automat-
ica, vol. 42, no. 1, pp. 117–126, 2006.

[3] K. P. Wabersich and M. N. Zeilinger, “A predictive safety filter for
learning-based control of constrained nonlinear dynamical systems,”
Automatica, vol. 129, p. 109597, 2021.

[4] O. Maler, “Control from computer science,” Annual Reviews in Control,
vol. 26, no. 2, pp. 175–187, 2002.

[5] I. M. Mitchell, “Comparing forward and backward reachability as tools
for safety analysis,” in International Workshop on Hybrid Systems:
Computation and Control. Springer, 2007, pp. 428–443.

[6] A. Platzer and Y. K. Tan, “Differential equation invariance axiomatiza-
tion,” Journal of the ACM, vol. 67, no. 1, pp. 1–66, 2020.

[7] S. Mitsch and A. Platzer, “Modelplex: Verified runtime validation of
verified cyber-physical system models,” Formal Methods in System
Design, vol. 49, no. 1, pp. 33–74, 2016.

[8] J. Garcıa and F. Fernández, “A comprehensive survey on safe reinforce-
ment learning,” Journal of Machine Learning Research, vol. 16, no. 1,
pp. 1437–1480, 2015.

[9] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theoretical computer science, vol. 138,
no. 1, pp. 3–34, 1995.

[10] N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, and A. Platzer, “KeY-
maera X: An axiomatic tactical theorem prover for hybrid systems,” in
International Conference on Automated Deduction. Springer, 2015, pp.
527–538.

[11] S. M. Loos, A. Platzer, and L. Nistor, “Adaptive cruise control: Hybrid,
distributed, and now formally verified,” in International Symposium on
Formal Methods. Springer, 2011, pp. 42–56.

[12] B. Bohrer, Y. K. Tan, S. Mitsch, A. Sogokon, and A. Platzer, “A formal
safety net for waypoint-following in ground robots,” IEEE Robotics and
Automation Letters, vol. 4, no. 3, pp. 2910–2917, 2019.

[13] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer
for non-linear hybrid systems,” in International Conference on Computer
Aided Verification. Springer, 2013, pp. 258–263.

[14] U. Rosolia and F. Borrelli, “Learning how to autonomously race a car:
a predictive control approach,” IEEE Transactions on Control Systems
Technology, vol. 28, no. 6, pp. 2713–2719, 2019.

[15] A. Claviere, S. Dutta, and S. Sankaranarayanan, “Trajectory tracking
control for robotic vehicles using counterexample guided training of
neural networks,” in Proceedings of the International Conference on
Automated Planning and Scheduling, vol. 29, 2019, pp. 680–688.

[16] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun, “Au-
tonomous automobile trajectory tracking for off-road driving: Controller
design, experimental validation and racing,” in 2007 American Control
Conference. IEEE, 2007, pp. 2296–2301.

	Introduction
	Short-term and long-term safety monitors
	Long-term waypoint following monitors
	Reachability analysis
	Kinematic bicycle model

	Proposed framework
	Experimental results
	Vehicle dynamic model for control
	Neural network-based path tracking controller
	Fallback controller based on MPC

	Conclusions
	ACKNOWLEDGMENT
	References

